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Abstract. For a proper, smooth scheme X over a p-adic field K, we show that any proper, flat,
semistable OK-model X of X whose logarithmic de Rham cohomology is torsion free determines the
same OK-lattice inside Hi

dR(X/K) and, moreover, that this lattice is functorial in X. For this, we
extend the results of Bhatt–Morrow–Scholze on the construction and the analysis of an Ainf -valued
cohomology theory of p-adic formal, proper, smooth OK-schemes X to the semistable case. The
relation of the Ainf -cohomology to the p-adic étale and the logarithmic crystalline cohomologies
allows us to reprove the semistable conjecture of Fontaine–Jannsen.
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1. Introduction

1.1. Integral relations between p-adic cohomology theories. For a proper, smooth scheme
X over a complete, discretely valued extension K of Qp with a perfect residue field k, comparison
isomorphisms of p-adic Hodge theory relate the p-adic étale, de Rham, and, in the case of semistable
reduction, also crystalline cohomologies ofX. For instance, they show that for i ∈ Z, the Gal(K/K)-
representation H i

ét(XK ,Qp) functorially determines the filtered K-vector space H i
dR(X/K). Even

though the integral analogues of these isomorphisms are known to fail in general, one may still
consider their hypothetical consequences, for instance, one may ask the following.
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• For proper, flat, semistable OK-models X and X ′ of X endowed with their standard log
structures, do the images of H i

log dR(X/OK) and H i
log dR(X ′/OK) in H i

dR(X/K) agree?

One of the goals of the present paper is to show that the answer is positive if the logarithmic de Rham
cohomology of the models X and X ′ is torsion free (see (8.6.2) and Theorem 8.7): in this case, both
H i

log dR(X/OK) and H i
log dR(X ′/OK) agree with the OK-lattice in H i

dR(X/K) that is functorially
determined by H i

ét(XK ,Zp). The good reduction case of this result may be derived from the work
of Bhatt–Morrow–Scholze [BMS18] on integral p-adic Hodge theory, and our approach, as well as
the bulk of this paper, is concerned with extending the framework of op. cit. to the semistable case.

1.2. The Ainf-cohomology in the semistable case. To approach the question above, we set
C := K̂, let Ainf := W (O[C) be the basic period ring of Fontaine, and, for a semistable OK-model
X of X, similarly to the smooth case treated in [BMS18], construct the Ainf -cohomology object

RΓAinf
(X ) ∈ D[0, 2 dim(X)](Ainf)

that is quasi-isomorphic to a bounded complex of finite free Ainf -modules and has finitely presented
cohomology H i

Ainf
(X ). We show that base changes of RΓAinf

(X ) recover other cohomology theories:

RΓAinf
(X )⊗L

Ainf
W (C[) ∼= RΓét(XK ,Zp)⊗L

Zp W (C[),

RΓAinf
(X )⊗L

Ainf , θ
OC ∼= RΓlog dR(X/OK)⊗L

OK OC ,
RΓAinf

(X )⊗L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k))⊗L
W (k) W (k),

(1.2.1)

see §7.2; here RΓlog cris denotes the logarithmic crystalline (that is, Hyodo–Kato) cohomology, W (k)

(resp., OK) carries the log structure associated to N≥0
1 7→ 0, 0 7→ 1−−−−−−−→ W (k) (resp., OK \ {0} ↪→ OK),

and Xk is endowed with the base change of the standard log structure OX , ét ∩ (OX , ét[
1
p ])× of X .

If the cohomology of RΓlog dR(X/OK) is torsion free, then each H i
Ainf

(X ) is Ainf -free and the base
changes (1.2.1) hold in each individual cohomological degree (see §7.6 and Proposition 7.7). In this
case, the Fargues equivalence for Breuil–Kisin–Fargues Gal(K/K)-modules allows us to prove that

the Gal(K/K)-representation H i
ét(XK ,Zp) determines H i

Ainf
(X )

(see Theorem 8.7). Then H i
ét(XK ,Zp) also determines1 H i

log dR(X/OK) (and H i
log cris(Xk/W (k)))

and, since the same reasoning applies to another model X ′, the result claimed in §1.1 follows.

The base changes (1.2.1) also allow us to extend the cohomology specialization results obtained in
the good reduction case in [BMS18]. Qualitatively, in Proposition 7.7 we show that H i

log dR(X/OK)

is torsion free if and only if so is H i
log cris(Xk/W (k)), in which case H i

ét(XK ,Zp) is torsion free.
Quantitatively, in Theorems 7.9 and 7.12 we show that for every n ≥ 0,

lengthZp((H
i
ét(XK ,Zp)tors)/p

n) ≤ lengthW (k)((H
i
log cris(Xk/W (k))tors)/p

n),

lengthZp((H
i
ét(XK ,Zp)tors)/p

n) ≤ 1

lengthOK (OK/p)
· lengthOK ((H i

log dR(X/OK)tors)/p
n).

1.3. The semistable comparison isomorphism. The analysis of RΓAinf
(X ), specifically, its

relation to the p-adic étale and the logarithmic crystalline cohomologies, permits us to reprove in
Theorem 9.5 the semistable conjecture of Fontaine–Jansen [Kat94a, Conj. 1.1]:

RΓét(XK ,Zp)⊗
L
Zp Bst

∼= RΓlog cris(Xk/W (k))⊗L
W (k) Bst. (1.3.1)

1The implicit functor is nonexact, as it must be: there exists a nonexact sequence of abelian schemes over Z2 that
is short exact over Q2 (see [BLR90, 7.5/8]), so there is no exact functor F with F (H1

ét((−)Q2
,Z2)) = H1

dR(−/Z2).
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Other proofs of this conjecture have been given in [Tsu99], [Fal02], [Niz08], [Bha12], [Bei13a], and
[CN17], whereas [BMS18] used RΓAinf

(X ) to reprove the crystalline conjecture. Similarly to [CN17],
we establish (1.3.1) for p-adic formal OK-schemes X that are proper, flat, and “semistable.”

A key result that leads to (1.3.1) is the absolute crystalline comparison isomorphism

RΓAinf
(X )⊗L

Ainf
Acris

∼= RΓlog cris(XOK/p/Acris) (1.3.2)

of Corollary 5.43, whose construction in §5 forms the technical core of this paper. This construction
is based on an “all possible coordinates” technique that is a variant of its analogue used to establish
(1.3.2) in the smooth case in [BMS18, §12]. The presence of singularities and log structures creates
additional complications that do not appear in the smooth case and are overviewed in §5.

Using the absolute crystalline comparison isomorphism, in Theorem 6.6 we compare the Ainf -
cohomology of X with the B+

dR-cohomology ofX defined by Bhatt–Morrow–Scholze in [BMS18, §13]:

RΓAinf
(X )⊗L

Ainf
B+

dR
∼= RΓcris(X

ad
C /B+

dR). (1.3.3)

The identification (1.3.3) is important for ensuring that the semistable comparison (1.3.1) is com-
patible with the de Rham comparison proved in [Sch13a], and hence that it respects filtrations.

As for the question posed in §1.1, even though it only involves the étale and the de Rham coho-
mologies, the resolution of its torsion free case outlined in §1.2 uses both (1.3.2) and (1.3.3) (so also
the bulk of the material of this paper). This is because we need to ensure that the determination of
H i

dR(X/K) by H i
ét(XK ,Qp) via the de Rham comparison of p-adic Hodge theory is compatible with

the determination of H i
log dR(X/OK) and H i

log dR(X ′/OK) by H i
ét(XK ,Zp) via Ainf -cohomology and

Breuil–Kisin–Fargues modules. In fact, even for showing that the cohomology modules of RΓAinf
(X )

are Breuil–Kisin–Fargues, we already use the absolute crystalline comparison (1.3.2).

1.4. The object AΩX and its base changes. Even though above we have focused on schemes,
the construction and the analysis of RΓAinf

(−) works for any p-adic formal OC-scheme X that is
semistable in the sense described in §1.5 (see (1.5.1)) and that, whenever needed, is assumed to
be proper. Specifically, for such an X, in §2.2 we use the (variant for the étale topology of the)
definition of Bhatt–Morrow–Scholze from [BMS18] to build an object

AΩX ∈ D≥0(Xét, Ainf) and to set RΓAinf
(X) := RΓ(Xét, AΩX).

As in the smooth case of [BMS18], the relation of RΓAinf
(X) to the p-adic étale cohomology of the

adic generic fiber Xad
C of X follows from the results of [Sch13a] (see §2). In turn, the relations to the

logarithmic de Rham and crystalline cohomologies are the subjects of §4 and §5, respectively, and
rest on the following identifications established in Theorems 4.17 and 5.4:

AΩX ⊗L
Ainf , θ

OC ∼= Ω•X/OC , log and AΩX⊗̂
L
Ainf

Acris
∼= Ru∗(OXOC/p/Acris

), (1.4.1)

where u : (XOC/p/Acris)log cris → Xét is the forgetful map of topoi. The arguments for (1.4.1) build
on the same general skeleton as in [BMS18] but differ, among other aspects, in how they handle the
interaction of the Deligne–Berthelot–Ogus décalage functor Lη used in the definition ofAΩX with the
intervening base changes and with the almost isomorphisms supplied by the almost purity theorem.
Namely, for this, the nonflatness over the singular points of X of the explicit perfectoid proétale
covers that we construct makes it difficult to directly adapt the arguments from op. cit. Instead,
we take advantage of several general results about Lη from [Bha18]. Verifying their assumptions
in our case amounts to the analysis in §3 of continuous group cohomology modules built using the
aforementioned perfectoid cover. The typical conclusion of this analysis is that these modules have
no nonzero “almost torsion” and that the element µ ∈ Ainf kills their “nonintegral parts.”
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Further and more specific overviews of our arguments are given in the beginning parts of the
sections that follow. In the rest of this introduction, we fix the precise notational setup for the rest
of the paper (see §1.5), discuss the logarithmic structure on X that we later use without notational
explication (see §1.6), and review the relevant general notational conventions (see §1.7).

1.5. The setup. In what follows, we fix the following notational setup.

• We fix an algebraically closed field k of characteristic p > 0, let C be the completed algebraic
closure of W (k)[1

p ], and let m ⊂ OC be the maximal ideal in the valuation ring of C.

• For convenience, we fix an embedding pQ ⊂ C, that is, for every prime `, we fix a system of
compatible `n-power roots p1/`∞ := (p1/`n)n≥0 of p in OC .

• We fix a p-adic formal scheme X over OC that in the étale topology may be covered by open
affines U which admit an étale OC-morphism

U = Spf(R)→ Spf(R�) with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q) (1.5.1)

for some d ≥ 0, some 0 ≤ r ≤ d, and some q ∈ Q>0 (where d, r, and q may depend on U).

For example, C could be the completed algebraic closure of any discretely valued field K of mixed
characteristic (0, p) with a perfect residue field. In addition, no generality is gained by allowing pq in
(1.5.1) to be any nonunit π ∈ OC \{0}. The role of the embedding pQ ⊂ C is to simplify arguments
with explicit charts for the log structure on X (defined in §1.6); this is particularly useful in §5,
especially in §§5.25–5.26. Our C is less general than in [BMS18], where any complete algebraically
closed nonarchimedean extension of Qp is typically allowed. One of the main reasons for this is
that we want to be able to apply, especially in §5, certain auxiliary results from [Bei13b] (besides,
relations t0 · · · tr − π in which π has a nonrational valuation go beyond “semistable reduction”).

The existence of étale local semistable coordinates (1.5.1) implies that each XOC/pn is flat and
locally of finite presentation over OC/pn and Xsm

OC/pn is dense in XOC/pn . By [SP, 04D1] and limit
arguments, (1.5.1) is the formal p-adic completion of theW (k)-base change of an étale O-morphism

U → Spec
(
O[t0, . . . , tr, t

±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − pq)

)
(1.5.2)

for some discrete valuation subring O ⊂W (k) that contains pq. Loc. cit. and [GR03, 7.1.6 (i)] also
imply that R is R�-flat. In addition, if R⊗OC k is not k-smooth, then R determines q.2

Any smooth p-adic formal OC-scheme X meets the requirements above: indeed, then the cover {U}
exists already for the Zariski topology with r = 0 and q = 1 for all U, see [FK18, I.5.3.18]. Another
key example is

X = X̂OC (1.5.3)

for some discrete valuation subring O ⊂ OC with a perfect residue field and a uniformizer π ∈ O
and a locally of finite type, flat O-scheme X that is semistable in the sense that XO/π is a normal
crossings divisor in X (as defined in [SP, 0BSF]), so that, in particular, X is regular at every point

2The following argument justifies this. Choose an n ∈ Z>q and let A be the local ring of Spec(R/pn) at some
singular point. Without loss of generality, all the ti with 0 ≤ i ≤ r are noninvertible in A, so, in particular, r ≥ 1.
The d-th Fitting ideal Fittd(Ω

1
(R�/pn)/(OC/p

n)
) ⊂ R�/pn is generated by the r-fold partial products t0 · · · t̂i · · · tr

with 0 ≤ i ≤ r, so the same holds for Fittd(Ω
1
A/(OC/p

n)) ⊂ A (see [SGA 7I, VI, 5.1 (a)]). Consequently, the quotient
(R�/pn)/(Fittd(Ω

1
(R�/pn)/(OC/p

n)
)) is faithfully flat over OC/(pq), and hence so is A/(Fittd(Ω

1
A/(OC/p

n))). It follows
that (pq) ⊂ OC is the preimage of Fittd(Ω

1
A/(OC/p

n)) ⊂ A, to the effect that R determines q.
4
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of XO/π.3 Moreover, if X is even strictly semistable in the sense that XO/π is even a strict normal
crossings divisor in X (as defined in [SP, 0BI9]), then the étale maps (1.5.4) exist even Zariski
locally on X , and so also the cover {U} exists already for the Zariski topology of X.

• We let Xad
C denote the adic generic fiber of X. By (1.5.1) and [Hub96, 3.5.1], the adic space

Xad
C is smooth over C; by [Hub96, 1.3.18 ii)], if X is OC-proper, then Xad

C is C-proper.

• We let (Xad
C )proét denote the proétale site of Xad

C (reviewed in [BMS18, §5.1] and defined in
[Sch13a, 3.9] and [Sch13e, (1)]) and let

ν : (Xad
C )proét → Xét (1.5.5)

be the morphism to the étale site of X that sends any étale U→ X to the constant pro-system
associated to its adic generic fiber. By [SP, 00X6], this functor indeed defines a morphism of
sites: by [Hub96, 3.5.1], it preserves coverings, commutes with fiber products, and respects
final objects. Thus, ν induces a morphism of topoi (ν−1, ν∗) (see [SP, 00XC]).

1.6. The logarithmic structure on X. Unless noted otherwise, we always equip

(1) the ring OC (resp., OC/pn or k) with the log structure OC \ {0} ↪→ OC (resp., its pullback);

(2) the formal scheme X (resp., XOC/pn or Xk) with the log structure given by the subsheaf
associated to the subpresheaf4 OX, ét∩(OX, ét[

1
p ])× ↪→ OX, ét (resp., its pullback log structure).

Both (1) and (2) determine the same log structure on Spf(OC), so the map X → Spf(OC) is that
of log formal schemes. Moreover, étale locally on X, the log structure may be made explicit: in the
presence of a coordinate morphism (1.5.1), Claims 1.6.1 and 1.6.3 below give an explicit chart for the
log structure of U, namely, the chart (1.6.2) in which we replace O by OC , replace U by U, and set
π := pq. This chart shows, in particular, that U and OC may be endowed with fine log structures
whose base changes along a “change of log structure” self-map of OC recover the log structures
described in (1)–(2) (for example, the fine log structure on OC could be the one determined by the

chart N≥0
a 7→(pq)a−−−−−→ OC , in which case the “change of log structure” self-map of OC is the identity

on the underlying scheme Spec(OC) and is determined on the log structures by the map of charts

N≥0
a 7→(pq)a−−−−−→ OC \ {0}). Since many common properties of maps of log schemes are stable under

base change, in practice this means that we may often deal with the log structures in (1)–(2) as if
they were fine and, in particular, we may cite [Kat89] for certain purposes.

By the preceding discussion, all the log structures above are quasi-coherent and integral. Moreover,
by [Kat89, 3.7 (2)], each XOC/pn is log smooth over OC/pn, so that, by [Kat89, 3.10], the OX-module
Ω1
X/OC , log of logarithmic differentials is finite locally free. We set

Ωi
X/OC , log

:=
∧i Ω1

X/OC , log,

let Ω•X/OC , log denote the logarithmic de Rham complex, and set

RΓlog dR(X/OC) := RΓ(Xét,Ω
•
X/OC , log).

3To justify that any X as in (1.5.3) meets the requirements, we first note that étale locally on X there exists a
regular sequence such that the product its r + 1 first terms cuts out XO/π. Thus, since any finite extension of O/π
is separable, the miracle flatness theorem [EGA IV2, 6.1.5] ensures that every x ∈ XO/π has an étale neighborhood
U → X that admits an étale O-morphism U → Spec(O[t0, . . . , td]/(t0 · · · tr − π)) or, equivalently, an étale morphism

U → Spec(O[t0, . . . , tr, t
±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − π))). (1.5.4)

4The subpresheaf and its associated subsheaf necessarily agree on every quasi-compact object U of Xét.
5
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Claim 1.6.1. For a valuation subring O ⊂W (k) and an O-scheme U that has an étale morphism

U → Spec
(
O[t0, . . . , tr, t

±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − π)

)
for some nonunit π ∈ O \ {0},

the log structure on U associated to OU, ét ∩ (OU, ét[
1
p ])× has the chart

Nr+1
≥0 tN≥0

(O \ {0})→ Γ(U,OU ) (1.6.2)

given by (ai)0≤i≤r 7→
∏

0≤i≤r t
ai
i on Nr+1

≥0 , the diagonal N≥0 → Nr+1
≥0 and N≥0

a 7→πa−−−−→ (O \ {0}) on
N≥0, and the structure map (O \ {0})→ Γ(U,OU ) on O \ {0}.

Proof. Without loss of generality, U is affine, so, by a limit argument, we may assume that O is
discretely valued. Then U , endowed with the log structure associated to (1.6.2), is logarithmically
regular in the sense of [Kat94b, 2.1] (compare with [Bei12, §4.1, proof of Lemma]). Therefore, since
the locus of triviality of this log structure is U [1

p ], the claim follows from [Kat94b, 11.6]. �

Claim 1.6.3. For O as in Claim 1.6.1, a flat O-scheme U (resp., and its formal p-adic completion
U) endowed with the log structure associated to OU, ét ∩ (OU, ét[

1
p ])× (resp., OU, ét ∩ (OU, ét[

1
p ])×),

the formal p-adic completion morphism j : U→ U of log ringed étale sites is strict. (1.6.4)

Proof. For a geometric point u of U, due to [SP, 04D1], the stalk map OU, u ∼= j−1(OU, u) → OU, u

induces an isomorphism OU, u/pn ∼= OU, u/p
n for every n > 0. We consider the stalk map

OU, u ∩ (OU, u[1
p ])× ∼= j−1(OU, u ∩ (OU, u[1

p ])×)→ OU, u ∩ (OU, u[1
p ])×. (1.6.5)

Every element x of the target of (1.6.5) satisfies the equation xy = pn for some n > 0. We choose
an x̃ ∈ OU, u congruent to x modulo pn+1, so that x̃ỹ = pn + pn+1z̃ for some ỹ, z̃ ∈ OU, u. Since
1 +pz̃ ∈ O×U, u, we adjust ỹ to get x̃ỹ = pn, which shows that x̃ ∈ OU, u∩ (OU, u[1

p ])× and (pn) ⊂ (x̃).
Thus, the image of x̃ in OU, u and x generate the same ideal, and hence are unit multiples of each
other. Conversely, if x̃1, x̃2 ∈ OU, u ∩ (OU, u[1

p ])× are unit multiples of each other in OU, u, then, by
reducing modulo pn for a large enough n, we see that they generate the same ideal in OU, u, so are
unit multiples of each other already in OU, u. In conclusion, the map (1.6.5) induces an isomorphism

(OU, u ∩ (OU, u[1
p ])×)/O×U, u

∼−→ (OU, u ∩ (OU, u[1
p ])×)/O×U, u,

to the effect that the map (1.6.4) is indeed strict, as claimed. �

1.7. Conventions and additional notation. For a field K, we let K be its algebraic closure
(taken inside C if K is given as a subfield of C). If K has a valuation, we let OK be its valuation
subring and write OK for the integral closure of OK in K. In mixed characteristic, we normalize
the valuations by requiring that v(p) = 1. We let (−)sm denote the smooth locus of a (formal)
scheme over an implicitly understood base. For power series rings, we use {−} to indicate decaying
coefficients. For a topological ring R, we let R◦ denote the subset of powerbounded elements.

We let W (−) (resp. Wn(−)) denote p-typical Witt vectors (resp., their length n truncation), and
let [−] denote Teichmüller representatives. We let Z(p) be the localization of Z at p, let µpn be the
group scheme of pn-th roots of unity, and let ζpn denote a primitive pn-th root of unity. For brevity,
we set Zp(1) := lim←− (µpn(C)). We let M̂ denote the (by default, p-adic) completion of a module M
and, similarly, let

⊕̂
denote the completion of a direct sum. Unless specified otherwise, we endow

a p-adically complete module with the inverse limit of the discrete topologies.

We use the definition of a perfectoid ring given in [BMS18, 3.5] (the compatibility with prior
definitions is discussed in [BMS18, 3.20]). Explicitly, by [BMS18, 3.9 and 3.10], a p-torsion free ring

6
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S is perfectoid if and only if S is p-adically complete and the divisor (p) ⊂ S has a p-power root in
the sense that there is a $ ∈ S with ($p) = (p) and S/$S

x 7→xp
∼ // S/pS. In particular, for such

an S, any p-adically formally étale S-algebra S′ that is p-adically complete is also perfectoid.

For a ring object R of a topos T , we write D(T , R), or simply D(R), for the derived category of
R-modules. For an object M of a derived category, we denote its derived p-adic completion by

M̂ := R limn(M ⊗L
Z Z/pnZ), and also set ∗ ⊗̂L

· − := R limn((∗ ⊗L
· −)⊗L

Z Z/pnZ) (1.7.1)

(see [SP, 0940] for the definition of R lim). For a morphism f of ringed topoi, we use the commu-
tativity of the functor Rf∗ with derived limits and derived completions, see [SP, 0A07 and 0944].

For a profinite group H and a continuous H-module M , we write RΓcont(H,M) for the continuous
cochain complex. Whenever convenient, we also view RΓcont(H,−) as the derived global sections
functor of the site of profinite H-sets (see [Sch13a, 3.7 (iii)] and [Sch13e, (1)]).

For commuting endomorphisms f1, . . . , fn of an abelian group A, we recall the Koszul complex :

KA(f1, . . . , fn) := A⊗Z[x1,...,xn]

⊗n
i=1

(
Z[x1, . . . , xn]

xi−→ Z[x1, . . . , xn]
)
, (1.7.2)

where A is regarded as a Z[x1, . . . , xn]-module by letting xj act as fj , the tensor products are over
Z[x1, . . . , xn], and the factor complexes are concentrated in degrees 0 and 1.

For an ideal I of a ring R and an R-module complex (M•, d•) withM j ∼= 0 for j < 0, the subcomplex

ηI(M
•) ⊂M• is defined by (ηI(M

•))j := {m ∈ IjM j | dj(m) ∈ Ij+1M j+1}. (1.7.3)

We will mostly (but a priori not always, see Proposition 5.34) use ηI(M•) as in [BMS18, 6.2],
namely, when I is generated by a nonzerodivisor and the M j have no nonzero I-torsion.

A logarithmic divided power thickening (or, for brevity, a log PD thickening) is an exact closed
immersion of logarithmic (often abbreviated to log) schemes equipped with a divided power structure
on the quasi-coherent sheaf of ideals that defines the underlying closed immersion of schemes.

Acknowledgements. We thank Bhargav Bhatt and Matthew Morrow for writing the surveys
[Bha18] and [Mor16], which have been useful for preparing this paper. We thank the referee for
helpful comments and suggestions. We thank Bhargav Bhatt, Pierre Colmez, Ravi Fernando, Luc
Illusie, Arthur-César Le Bras, Matthew Morrow, Wiesława Nizioł, Arthur Ogus, Peter Scholze,
Joseph Stahl, Jakob Stix, Jan Vonk, and Olivier Wittenberg for helpful conversations or correspon-
dence. We thank the Kyoto Top Global University program for providing the framework in which
this collaboration started. We thank the Miller Institute at the University of California Berkeley,
the Research Institute for Mathematical Sciences at Kyoto University, and the University of Bonn
for their support during the preparation of this article.

2. The object AΩX and the p-adic étale cohomology of X

As in the case when X is smooth treated in [BMS18], the eventual construction of the Ainf -
cohomology modules of X rests on the object AΩX that lives in a derived category of Ainf -module
sheaves on X. In this short section, we review the definition of AΩX in §2.2 and then, in the case
when X is proper, review the connection between AΩX and the integral p-adic étale cohomology of
Xad
C in Theorem 2.3. We begin by fixing the basic notation that concerns the ring Ainf of integral

p-adic Hodge theory. The setup of §§2.1–2.2 will be used freely in the rest of the paper.
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2.1. The ring Ainf . We denote the tilt of OC by

O[C := lim←−y 7→yp (OC/p) , so that, by reduction mod p, lim←−y 7→yp OC
∼−→ lim←−y 7→yp (OC/p) = O[C

as multiplicative monoids (see [Sch12, 3.4 (i)]). We regard p1/p∞ fixed in §1.5 as an element of
O[C . Due to the fixed embedding pQ≥0 ⊂ OC , this element comes equipped with well-defined
powers (p1/p∞)q ∈ O[C for q ∈ Q≥0. For each x ∈ O[C , we let (. . . , x(1), x(0)) denote its preimage
in lim←−y 7→yp OC . The map x 7→ valOC (x(0)) makes O[C a complete valuation ring of height 1 whose

fraction field C[ := Frac(O[C) is algebraically closed (see [Sch12, 3.4 (iii), 3.7 (ii)]). We let m[ denote
the maximal ideal of O[C .

The basic period ring Ainf of Fontaine is defined by

Ainf := W (O[C) and comes equipped with the Witt vector Frobenius ϕ : Ainf
∼−→ Ainf .

We equip the local domain Ainf with the product of the valuation topologies via the Witt coordinate
bijection W (O[C) ∼=

∏∞
n=1O[C . Then Ainf is complete and its topology agrees with the (p, [x])-

adic topology for any nonzero nonunit x ∈ O[C . We fix (once and for all) a compatible system
ε = (. . . , ζp2 , ζp, 1) of p-power roots of unity in OC , so that ε ∈ O[C , and set

µ := [ε]− 1 ∈ Ainf . (2.1.1)

Since (p, µ) = (p, [ε− 1]), the topology of Ainf is (p, µ)-adic. By forming the limit of the sequences

0→Wn(O[C)
µ−→Wn(O[C)→Wn(O[C)/µ→ 0, (2.1.2)

we see that Ainf/µ is p-adically complete and that the ideal (µ) ⊂ Ainf does not depend on the
choice of ε (use the fact that the valuation of ζp − 1 does not depend on ζp).

The assignment [x] 7→ x(0) extends uniquely to a ring homomorphism

θ : Ainf � OC , the de Rham specialization map of Ainf , (2.1.3)

which is surjective, as indicated, and intertwines the Frobenius ϕ of Ainf with the absolute Frobenius
of OC/p. Its kernel Ker(θ) ⊂ Ainf is principal and generated by the element

ξ :=
∑p−1

i=0 [εi/p] (2.1.4)

(see [BMS18, 3.16]). Analogues of the sequences (2.1.2) show that each Ainf/ξ
n is p-adically com-

plete. In fact, the map θ identifies Ainf/ξ
n with the initial p-adically complete infinitesimal thick-

ening of OC of order n− 1, see [SZ18, 3.13]. The composition

θ ◦ ϕ−1 : Ainf � OC is the Hodge–Tate specialization map of Ainf ,

and its kernel is generated by the element ϕ(ξ) =
∑p−1

i=0 [εi].

Due to the nature of our C (see §1.5), the ring OC/p is a k-algebra, so Ainf is a W (k)-algebra.

2.2. The object AΩX. The operations that define O[C and Ainf make sense on the proétale site
(Xad

C )proét: namely, as in [Sch13a, 4.1, 5.10, and 6.1], we have the integral completed structure sheaf

Ô+
Xad
C

:= lim←−n(O+
Xad
C , proét

/pn), its tilt Ô+, [

Xad
C

:= lim←−y 7→yp(O
+
Xad
C , proét

/p), (2.2.1)

and the basic period sheaf
Ainf,Xad

C
:= W (Ô+, [

Xad
C

).

For brevity, we often denote these sheaves simply by Ô+, Ô+, [, and Ainf . Affinoid perfectoids form
a basis for (Xad

C )proét (see [Sch13a, 4.7]) and the construction of the map θ of (2.1.3) makes sense
8



for any perfectoid OC-algebra (see [BMS18, §3]). In particular, Ainf,Xad
C

comes equipped with the
map

θXad
C

: Ainf,Xad
C
→ Ô+

Xad
C

, (2.2.2)

which, by construction, is compatible with the map θ : Ainf → OC , intertwines the Witt vector
Frobenius ϕ of Ainf,Xad

C
with the absolute Frobenius of Ô+

Xad
C

/p, and, by [Sch13a, 6.3 and 6.5], is
surjective with Ker(θXad

C
) = ξ · Ainf,Xad

C
(in addition, ξ is not a zero divisor in Ainf,Xad

C
).

The key object that we are going to study in this paper is

AΩX := Lη(µ)(Rν∗(Ainf,Xad
C

)) ∈ D≥0(Xét, Ainf), (2.2.3)

where the décalage functor Lη of [BMS18, §6] is formed with respect to the ideal (µ) of the constant
sheaf Ainf of Xét (the definition of Lη(µ) builds on the formula (1.7.3) for η(µ)). The formula (2.2.3)
may also be executed with the Zariski site XZar as the target of ν, and it then defines the object

AΩXZar
∈ D≥0(XZar, Ainf), (2.2.4)

which is the AΩX that was used in [BMS18]. We will only use AΩXZar
in Corollary 4.21 (and in

some results that lead to it) for comparison to AΩX.

Since ϕ(µ) = ϕ(ξ)µ, by [BMS18, 6.11], we have Lη(ϕ(µ))
∼= Lη(ϕ(ξ)) ◦ Lη(µ), so the Frobenius

automorphism of Ainf,Xad
C

gives the Frobenius morphism

AΩX ⊗L
Ainf , ϕ

Ainf
∼= Lη(ϕ(ξ))(AΩX)

[BMS18, 6.10 and 3.17 (ii)]−−−−−−−−−−−−−−−−−→ AΩX in D≥0(Xét, Ainf), (2.2.5)

which, by [BMS18, 6.14], induces an isomorphism

(AΩX ⊗L
Ainf , ϕ

Ainf)[
1

ϕ(ξ) ]
∼−→ (AΩX)[ 1

ϕ(ξ) ]. (2.2.6)

In addition, by loc. cit., we also have

AΩX ⊗L
Ainf

Ainf [
1
µ ] ∼= (Rν∗(Ainf,Xad

C
))⊗L

Ainf
Ainf [

1
µ ], (2.2.7)

so a result of Scholze [BMS18, 5.6] supplies the following relation to integral p-adic étale cohomology:

Theorem 2.3. If X is proper over OC , then there is an identification

RΓ(Xét, AΩX)⊗L
Ainf

Ainf [
1
µ ] ∼= RΓét(X

ad
C ,Zp)⊗L

Zp Ainf [
1
µ ]. (2.3.1)

In broad strokes, the proof of Theorem 2.3 given in loc. cit. goes as follows: one considers the map

RΓét(X
ad
C ,Zp)⊗L

Zp Ainf
∼= RΓproét(X

ad
C ,Zp)⊗L

Zp Ainf → RΓproét(X
ad
C ,Ainf,Xad

C
) (2.3.2)

induced by the inclusion Ainf ↪→ Ainf,Xad
C

and deduces from the almost purity theorem with, for
instance, Lemma 3.17 below that the ideal

W (m[) := Ker(W (O[C) �W (k)) of Ainf (2.3.3)

kills the cohomology of its cone. Since µ lies in W (m[) and we have the identification (2.2.7), it
follows that the map (2.3.2) induces the identification (2.3.1).

Remark 2.4. In practice, X often arises as the formal p-adic completion of a proper, finitely
presented OC-scheme X . In this situation, Xad

C agrees with the adic space associated to XC (see
[Con99, 5.3.1 4.], [Hub94, 4.6 (i)], and [Hub96, 1.9.2 ii)]) and, by [Hub96, 3.7.2], we have

RΓét(X
ad
C ,Zp) ∼= RΓét(XC ,Zp).
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3. The local analysis of AΩX

Even though the definition of the object AΩX given in (2.2.3) is global, the key computations that
will eventually relate it to the logarithmic de Rham and crystalline cohomologies are local and are
presented in this section. Under the assumption that X has a coordinate morphism as in (1.5.1) (or
(3.1.1) below), their basic goal is to express the cohomology of the proétale sheaf Ainf,Xad

C
, at least

after applying Lη(µ), in terms of continuous group cohomology formed using an explicit perfectoid
proétale cover Xad

C,∞ of Xad
C (see Theorem 3.20). The basic relation of this sort is supplied by the

almost purity theorem, so the key point is to explicate the appearing group cohomology modules
well enough in order to eliminate the “almost” ambiguities inherent in this theorem with the help of
Lemma 3.18 below that comes from [Bha18]. We first carry out this program for the simpler sheaf
Ô+

Xad
C

, and then build on this case to address Ainf,Xad
C
.

In comparison to the local analysis carried out in the smooth case in [BMS18], one complication
is that the perfectoid cover of X that gives rise to Xad

C,∞ is not flat over the singular points of
Xk. This makes it difficult to transfer various arguments with “q-de Rham complexes” across the
coordinate morphism (3.1.1). In fact, we avoid q-de Rham complexes altogether and instead phrase
the intermediate steps of the local analysis purely in terms of continuous group cohomology modules.

3.1. The local setup. We assume throughout §3 that X = Spf(R) and for some d ≥ 0, some
0 ≤ r ≤ d, and some q ∈ Q>0, there is an étale Spf(OC)-morphism as in (1.5.1):

X = Spf(R)→ Spf(R�) =: X� with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q). (3.1.1)

Due to our assumptions from §1.5, a general X is of this form on a basis for its étale topology.

3.2. The perfectoid cover Xad
C,∞. For each m ≥ 0, we consider the R�-algebra

R�
m := OC{t1/p

m

0 , . . . , t1/p
m

r , t
±1/pm

r+1 , . . . , t
±1/pm

d }/(t1/p
m

0 · · · t1/pmr −pq/pm), and R�
∞ :=

(
lim−→R�

m

)
,̂

where, as always unless mentioned otherwise (see §1.7), the completion is p-adic. Explicitly, we
have the p-adically completed direct sum decomposition

R�
∞
∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

OC · ta0
0 · · · t

ad
d , (3.2.1)

which shows that R�
∞ is perfectoid (see §1.7) and that, for each m ≥ 0, the map R�

m → R�
∞ is an

inclusion of an R�
m-module direct summand comprised of those summands OC · ta0

0 · · · t
ad
d of (3.2.1)

for which pmaj ∈ Z for all j.

The corresponding R-algebras are

Rm := R⊗R� R
�
m and R∞ :=

(
lim−→Rm

)̂ ∼= (R⊗R� R
�
∞)̂.

Each Rm (resp., R∞) is a p-torsion free p-adically formally étale R�
m-algebra (resp., R�

∞-algebra).
In particular, R∞ is perfectoid (see §1.7). By [GR03, 7.1.6 (ii)], each Rm is p-adically complete.

The summands in (3.2.1) with aj 6∈ Z for some 0 ≤ j ≤ d comprise an R�-submodule M�
∞ of R�

∞,
and we set M∞ := R⊗̂R�M�

∞. Thus, we have the R�-module (resp., R-module) decomposition

R�
∞
∼= R� ⊕M�

∞ (resp., R∞ ∼= R⊕M∞). (3.2.2)
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The profinite group

∆ :=

{
(ε0, . . . , εd) ∈

(
lim←−m≥0

(µpm(OC))
)⊕(d+1) ∣∣∣ ε0 · · · εr = 1

}
' Z⊕dp

acts R�-linearly on R�
m by scaling each t1/p

m

j by the µpm-component of εj . The induced actions of ∆

on R�
∞ and R∞ are continuous, compatible, and preserve the decompositions (3.2.1) and (3.2.2). In

terms of the element ε fixed in §2.1, ∆ is topologically freely generated by the following d elements:

δi := (ε−1, 1, . . . , 1, ε, 1, . . . , 1) for i = 1, . . . , r, where the 0-th and i-th entries are nonidentity;
δi := (1, . . . , 1, ε, 1, . . . , 1) for i = r + 1, . . . , d, where the i-th entry is nonidentity.

After inverting p, for each m ≥ 0, we have

R�
m[1

p ] ∼=
⊕

a1,...,ad∈{0, 1
pm

,..., p
m−1
pm
}R

�[1
p ] · ta1

1 · · · t
ad
d ,

so R�
m[1

p ] is the R�[1
p ]-algebra obtained by adjoining the (pm)th roots of t1, . . . , td ∈ (R�[1

p ])×, and

hence is finite étale over R�[1
p ]. Therefore, lim−→m

(
R�
m[1

p ]
)
is a pro-(finite étale) ∆-cover of R�[1

p ].

The explicit description (3.2.1) implies that R�
m = (R�

m[1
p ])◦, so the pro-object

(X�)ad
C,∞ := lim←− Spa(R�

m[1
p ], R�

m), which determines the perfectoid space Spa(R�
∞[1

p ], R�
∞),

is an affinoid perfectoid pro-(finite étale) ∆-cover of the adic generic fiber (X�)ad
C of Spf(R�); in

particular, (X�)ad
C,∞ is an affinoid perfectoid object of the proétale site ((X�)ad

C )proét. Consequently,
the Xad

C -base change of (X�)ad
C,∞, namely, the tower

Xad
C,∞ := lim←− Spa(Rm[1

p ], Rm), which determines the perfectoid space Spa(R∞[1
p ], R∞),

is an affinoid perfectoid pro-(finite étale) ∆-cover of Xad
C , so, in particular, is an affinoid perfectoid

object of (Xad
C )proét.

By [Sch13a, 4.10 (iii)], the value on Xad
C,∞ of the sheaf Ô+

Xad
C

reviewed in (2.2.1) is the ring R∞.

3.3. The cohomology of Ô+ and continuous group cohomology. By [Sch13a, 3.5, 3.7 (iii)
and its proof, 6.6] (see also [Sch13e]), the Čech complex of the sheaf Ô+

Xad
C

with respect to the
pro-(finite étale) affinoid perfectoid cover

Xad
C,∞ � Xad

C

is identified with the continuous cochain complex RΓcont(∆, R∞). In particular, by using [SP,
01GY], we obtain the edge map to the proétale cohomology of Ô+

Xad
C

:

e : RΓcont(∆, R∞)→ RΓproét(X
ad
C , Ô+), (3.3.1)

which on the level of cohomology is described by the Cartan–Leray spectral sequence (see loc. cit. or
[SGA 4II, V.3.3]). By the almost purity theorem [Sch13a, 4.10 (v)], the maximal ideal m ⊂ OC kills
the cohomology groups of Cone(e).

We will show in Theorem 3.9 that Lη(ζp−1)(e) is an isomorphism, so that Lη(ζp−1)(RΓproét(X
ad
C , Ô+))

is computed in terms of continuous group cohomology. For this, we will use the following lemma.

Lemma 3.4 ([BMS18, 8.11 (i)]). An OC-module map f : M →M ′ with M [m] =
(

M
(ζp−1)M

)
[m] = 0

and both Ker f and Coker f killed by m induces an isomorphism M
M [ζp−1]

∼−→ M ′

M ′[ζp−1] . �
11
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In order to apply Lemma 3.4, we will check in Proposition 3.8 that the cohomology modules
H i

cont(∆, R∞) have no nonzero m-torsion. This will use the following general lemmas.

Lemma 3.5. For an inclusion o ⊂ O of a discrete valuation ring into a nondiscrete valuation ring
of rank 1, if N is an o-module and M ⊂ O denotes the maximal ideal, then (N ⊗o O)[M] = 0.

Proof. The o-flatness of O reduces us to the case when N is finitely generated, so it suffices to
observe that (O/(a))[M] = 0 whenever a ∈ O. �

Lemma 3.6. Fix an i ∈ Z≥0, let H be a profinite group, let {Mj}j∈J be p-adically complete,
p-torsion free, continuous H-modules, and suppose that either

(i) the group H i
cont(H,Mj) is p-torsion free for every j, or

(ii) some pn kills H i
cont(H,Mj) for every j.

Then the following map is injective:

H i
cont(H,

⊕̂
j∈JMj) ↪→

∏
j∈J H

i
cont(H,Mj), where the completion is p-adic.

In particular, in the case (i) (resp., (ii)), H i
cont(H,

⊕̂
j∈JMj) is p-torsion free (resp., killed by pn).

Proof. Let c be a continuous
(⊕̂

j∈JMj

)
-valued i-cocycle that represents an element of the kernel.

For each j, let cj be the “j-th coordinate” of c. We discard the j with cj = 0 and, for each remaining
j, we choose the maximal nj ∈ Z≥0 such that cj is (pnjMj)-valued, so that the function j 7→ nj is
finite-to-one. Since each Mj is p-torsion free, each p−njcj is an Mj-valued continuous i-cocycle.

In the case (i), the class of p−njcj in H i
cont(H,Mj) vanishes, so each cj is the coboundary of a

(pnjMj)-valued continuous (i − 1)-cochain bj . In the case (ii), pn kills H i
cont(H,Mj), so cj is the

coboundary of a (pnj−nMj)-valued continuous (i− 1)-cochain bj whenever nj ≥ n.

In both cases, the bj ’s exhibit c as a continuous coboundary. �

Lemma 3.7 ([BMS18, 7.3 (ii)]). Let H be a profinite group isomorphic to Z⊕dp for some d > 0, and
let M ∼= lim←−n≥1

Mn be a continuous H-module with each Mn a discrete, pn-torsion, continuous H-
module. For any γ1, . . . , γd ∈ H that topologically freely generate H, there is a natural identification

RΓcont(H,M) ∼= KM (γ1 − 1, . . . , γd − 1), so also Hj
cont(H,M) ∼= Hj(KM (γ1 − 1, . . . , γd − 1)),

in the derived category (see §1.7 for the notation). �

Proposition 3.8. The element ζp − 1 kills the OC-modules H i
cont(∆,M∞). Moreover, for each

b ∈ OC , the OC-modules R∞/b and H i
cont(∆, R∞/b) have no nonzero m-torsion.

Proof. Let S := OC ·ta0
0 · · · t

ad
d be a summand of (3.2.1). By Lemma 3.7, the OC-module H i

cont(∆, S)

is the i-th cohomology of the OC-tensor product of d complexes of the form OC
ζ−1−−→ OC for suitable

p-power roots of unity ζ. Moreover, since the d complexes may be defined over some discrete
valuation subring of OC , Lemma 3.5 ensures that

H i
cont(∆, S) has no nonzero m-torsion. (3.8.1)

If S contributes to M∞, that is, if aj 6∈ Z for some j, then some ζ is not 1, and the corresponding
factor complex is quasi-isomorphic to OC/(ζ − 1). Thus, in this case,

ζ − 1, and hence also ζp − 1, kills H i
cont(∆, S). (3.8.2)
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For m > 0, let M�
m denote the p-adically completed direct sum of those summands OC · ta0

0 · · · t
ad
d of

(3.2.1) for which m is the smallest nonnegative integer with pm · (a0, . . . , ad) ∈ Z⊕(d+1). Lemma 3.6
and (3.8.1)–(3.8.2) imply that the OC-module

H i
cont(∆,M

�
m) has no nonzero m-torsion and is killed by ζp − 1. (3.8.3)

Since R is R�-flat and R⊗R� M�
m is p-adically complete (see §1.5 and §3.2), Lemma 3.7 gives

H i
cont(∆, R⊗R� M

�
m) ∼= R⊗R� H

i
cont(∆,M

�
m). (3.8.4)

SinceM∞ ∼=
⊕̂

m(R⊗R�M�
m), (3.8.3)–(3.8.4) and Lemma 3.6 imply that ζp−1 kills H i

cont(∆,M∞).

Since R∞/b is p-adically complete and each of the summands of the decomposition

R∞/(b, p
n) ∼= R/(b, pn)⊕

⊕
m>0(R⊗R� M�

m)/(b, pn) for n > 0

may be defined over a suitably large discrete valuation subring of OC , Lemma 3.5 ensures that
R∞/b has no nonzero m-torsion. In addition, the ∆-action on each summand may be defined over
a possibly larger such subring, so, by Lemmas 3.5 and 3.7, in the case b 6= 0 each

H i
cont(∆, (R⊗R� M

�
m)/b), so also H i

cont(∆,M∞/b), has no nonzero m-torsion.

This conclusion extends to the case b = 0 because the (ζp−1)-annihilation of H i
cont(∆,M∞) supplies

the injection H i
cont(∆,M∞) ↪→ H i

cont(∆,M∞/(ζp − 1)). It remains to observe that the OC-module
H i

cont(∆, R/b) also has no nonzero m-torsion: ∆ acts trivially on R/b, so Lemma 3.7 ensures that
H i

cont(∆, R/b) is a direct sum of copies of R/b. �

Theorem 3.9. The edge map e defined in (3.3.1) induces the isomorphism

Lη(ζp−1)(e) : Lη(ζp−1)(RΓcont(∆, R∞))
∼−→ Lη(ζp−1)(RΓproét(X

ad
C , Ô+)).

Proof. Proposition 3.8 ensures that the OC-modules H i
cont(∆, R∞) have no nonzero m-torsion and

that Hi
cont(∆, R∞)

Hi
cont(∆, R∞)[ζp−1]

∼= Hi
cont(∆, R)

Hi
cont(∆, R)[ζp−1]

. Since ∆ acts trivially on R, this last quotient is a finite
direct sum of copies of R (see Lemma 3.7), so, by Proposition 3.8, it has no nonzero m-torsion.
Consequently, since m kills the kernel and the cokernel of each map

H i(e) : H i
cont(∆, R∞)→ H i(Xad

C , Ô+)

(see §3.3), Lemma 3.4 applies to these maps and gives the desired conclusion. �

Remark 3.10. Theorem 3.9 extends as follows: for any profinite group ∆′ equipped with a con-
tinuous surjection ∆′ � ∆ and any pro-(finite étale) affinoid perfectoid ∆′-cover

Spa(R′∞[1
p ], R′∞)→ Spa(R[1

p ], R) ∼= Xad
C that refines the ∆-cover Xad

C,∞ → Xad
C of §3.2

compatibly with the surjection ∆′ � ∆, the edge map e′ defined analogously to (3.3.1) induces the
isomorphism

Lη(ζp−1)(e
′) : Lη(ζp−1)(RΓcont(∆

′, R′∞))
∼−→ Lη(ζp−1)(RΓproét(X

ad
C , Ô+)).

Indeed, by the almost purity theorem [Sch13a, 4.10 (v)], the ideal m kills the cohomology of Cone(e′)
(in addition to that of Cone(e)), so the octahedral axiom (see [BBD82, 1.1.7.1]) ensures that it also
kills the cohomology of the cone of the map RΓcont(∆, R∞) → RΓcont(∆

′, R′∞); Lemma 3.4 then
applies to this map and combines with Theorem 3.9 to give the claim.

The main goal of this section is an analogue of Theorem 3.9 for the sheaf Ainf,Xad
C

(see Theorem 3.20).

To prepare for it, in §3.11 and §3.14 we describe the values of the sheaves Ô+, [

Xad
C

and Ainf,Xad
C

on Xad
C,∞.
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3.11. The tilt R[∞. Thanks to the explicit description (3.2.1) of the perfectoid ring R�
∞, its tilt

(R�
∞)[ := lim←−y 7→yp(R

�
∞/p) is described explicitly by the identification

(R�
∞)[ ∼=

(
lim−→m

(
O[C [x

1/pm

0 , . . . , x
1/pm

r , x
±1/pm

r+1 , . . . , x
±1/pm

d ]/(x
1/pm

0 · · ·x1/pm

r − (p1/p∞)q/p
m

)
))̂

∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

O[C · x
a0
0 · · ·x

ad
d ,

where x1/pm

i corresponds to the p-power compatible sequence (. . . , t
1/pm+1

i , t
1/pm

i ) of elements of R�
∞,

the completions are p1/p∞-adic, and the decomposition is as O[C-modules. Thus,

the tilt R[∞ := lim←−y 7→yp(R∞/p) of the perfectoid ring R∞

is identified with the p1/p∞-adic completion of any lift of the étale R�
∞/p-algebra R∞/p to an étale

(R�
∞)[-algebra (such a lift exists, see [SP, 04D1]). By [Sch13a, 5.11 (i)], the value on Xad

C,∞ of the
sheaf Ô+, [

Xad
C

reviewed in (2.2.1) is the ring R[∞.

By functoriality, the group ∆ acts continuously and O[C-linearly on (R�
∞)[ and R[∞. Explicitly, ∆

respects the completed direct sum decomposition and an (ε0, . . . , εd) ∈ ∆ scales xajj by εajj ∈ O[C .

Our analysis in §3.14 of the value on Xad
C,∞ of the sheaf Ainf,Xad

C
will hinge on the following lemmas.

Lemma 3.12. Both R[∞/b and H i
cont(∆, R

[
∞/b) for each b ∈ O[C \ {0} have no nonzero m[-torsion.

Proof. We may assume that b ∈ m[, so, by using Frobenius, that b | p1/p∞ in O[C . Then Proposi-
tion 3.8 and the ∆-isomorphism R[∞/b

∼= R∞/b
] for some b] ∈ OC gives the claim. �

Lemma 3.13. For any affinoid perfectoid Spa(R′∞[1
p ], R′∞) over Spa(C,OC), the ring

Ainf(R
′
∞) := W ((R′∞)[) (resp., Ainf(R

′
∞)/µ)

is (p, µ)-adically complete (resp., p-adically complete). Moreover, for any n, n′ > 0, the sequence
(pn, µn

′
) is Ainf(R

′
∞)-regular and the Ainf/(p

n, µn
′
)-algebra Ainf(R

′
∞)/(pn, µn

′
) is flat.

Proof. By its definition, the perfect O[C-algebra (R′∞)[ := lim←−y 7→yp(R
′
∞/p) has no nonzero p1/p∞-

torsion (that is, it is O[C-flat), so the regular sequence claim follows from [SP, 07DV]. The formal
criterion of flatness [BouAC, Ch. III, §5.2, Thm. 1 (i)⇔(iv)] then implies the Ainf/(p

n, µn
′
)-flatness

of Ainf(R
′
∞)/(pn, µn

′
) (even with n′ = 0). In addition, the short exact sequences (2.1.2) with (R′∞)[

in place of O[C imply the p-adic completeness of Ainf(R
′
∞)/µ.

Analogously to the case of Ainf discussed in §2.1, we use the Witt coordinate bijection and the
µ-adic topology on (R′∞)[ to topologize Ainf(R

′
∞) ∼=

∏∞
n=1(R′∞)[ and we see that this topology

agrees with the (p, µ)-adic topology. Thus, Ainf(R
′
∞) is (p, µ)-adically complete. �

3.14. The ring Ainf(R∞). By [Sch13a, 6.5 (i)], the value on Xad
C,∞ of the sheaf Ainf,Xad

C
is the ring

Ainf(R∞) := W (R[∞).

By Lemma 3.13 and the formal criterion of flatness, Ainf(R∞) is (p, µ)-adically formally flat as
an Ainf -algebra and (p, µ)-adically formally étale as an Ainf(R

�
∞)-algebra. By using, in addition,

Lemma 3.12, we see that each quotient

Ainf(R∞)/(pn, µn
′
), so also Ainf(R∞)/µ, has no nonzero W (m[)-torsion. (3.14.1)
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In general, for a perfect Fp-algebra A, the Witt ring W (A) is the unique p-adically complete p-
torsion free Zp-algebra Ã equipped with an isomorphism Ã/p ' A (see [Bha18, 2.5]). For an a ∈ A,
the Teichmüller [a] ∈ Ã is lim

n→∞
(ãp

n

n ) where ãn ∈ Ã is any lift of a1/pn (see [Bha18, 2.4]). Therefore,

Ainf(R
�
∞) ∼=

(
lim−→m

Ainf [X
1/pm

0 , . . . , X
1/pm

r , X
±1/pm

r+1 , . . . , X
±1/pm

d ]/(
∏r
i=0X

1/pm

i − [(p1/p∞)q/p
m

])
)̂

∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

Ainf ·Xa0
0 · · ·X

ad
d ,

where the completions are (p, µ)-adic, the decomposition is as Ainf -modules, and, in terms of §3.11,
we have X1/pm

i = [x
1/pm

i ]. The summands for which ai ∈ Z for all i comprise a subring

A(R�) ∼= Ainf{X0, . . . , Xr, X
±1
r+1, . . . , X

±1
d }/(X0 · · ·Xr − [(p1/p∞)q]) inside Ainf(R

�
∞), (3.14.2)

where the convergence is (p, µ)-adic. The remaining summands, that is, those for which ai 6∈ Z for
some i, comprise an A(R�)-submodule N�

∞ ⊂ Ainf(R
�
∞).

On sections over Xad
C,∞, the map θ from (2.2.2) is identified with the unique ring homomorphism

θ : Ainf(R∞) � R∞ such that [x] 7→ x(0),

is surjective with the kernel generated by the regular element ξ (see [BMS18, 3.10, 3.11]), and
intertwines the Witt vector Frobenius of Ainf(R∞) with the absolute Frobenius of R∞/p. Thus,

θ : A(R�) � R� is described by Xi 7→ ti. (3.14.3)

We use the surjection (3.14.3) to uniquely lift the étale R�/p-algebra R/p to a (p, µ)-adically
complete, formally étale A(R�)-algebra A(R). By construction, we have the identification

Ainf(R∞) ∼= Ainf(R
�
∞)⊗̂A(R�)A(R), (3.14.4)

where the completion is (p, µ)-adic. Therefore, by setting N∞ := N�
∞⊗̂A(R�)A(R), we arrive at the

decompositions of Ainf(R
�
∞) and Ainf(R∞) into “integral” and “nonintegral” parts:

Ainf(R
�
∞) ∼= A(R�)⊕N�

∞ and Ainf(R∞) ∼= A(R)⊕N∞. (3.14.5)

Modulo Ker θ (that is, modulo ξ), these decompositions reduce to the decompositions (3.2.2).

The Witt vector Frobenius of Ainf(R
�
∞) preserves A(R�); explicitly: it is semilinear with respect to

the Frobenius of Ainf and raises each X1/pm

i to the p-th power. By construction, A(R) inherits a
Frobenius ring endomorphism from A(R�), and the identification (3.14.4) is Frobenius-equivariant.

The natural ∆-action on Ainf(R∞) is continuous and commutes with the Frobenius. Explicitly, ∆
respects the completed direct sum decomposition and an (ε0, . . . , εd) ∈ ∆ scales Xaj

j by [ε
aj
j ] ∈ Ainf .

The ∆-action on A(R�) lifts uniquely to a necessarily Frobenius-equivariant ∆-action on A(R). In
particular, ∆ acts trivially on A(R)/µ. The identifications (3.14.4) and (3.14.5) are ∆-equivariant.

3.15. The cohomology of Ainf and continuous group cohomology. Similarly to §3.3, the
Čech complex of the sheaf Ainf,Xad

C
with respect to the pro-(finite étale) affinoid perfectoid cover

Xad
C,∞ → Xad

C is identified with the continuous cochain complex RΓcont(∆,Ainf(R∞)). Thus, by
using [SP, 01GY], we obtain the edge map to the proétale cohomology of Ainf,Xad

C
:

e : RΓcont(∆,Ainf(R∞))→ RΓproét(X
ad
C ,Ainf). (3.15.1)

By the almost purity theorem, more precisely, by [Sch13a, 6.5 (ii)], the subset [m[] ⊂ Ainf that
consists of the Teichmüller lifts of the elements in the maximal idealm[ ⊂ O[C kills all the cohomology
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groups of Cone(e). Since µ ∈ W (m[) (see (2.3.3)), it will be useful to strengthen this annihilation
as follows.

Lemma 3.16. The ideal W (m[) ⊂ Ainf defined in (2.3.3) kills each H i(Cone(e)).

Proof. We argue similarly to [BMS18, proof of Thm. 5.6]. Both the source and the target of e are
derived p-adically complete (see §1.7), so, by [BS15, 3.4.4 and 3.4.14], each H i(Cone(e)) is also
derived p-adically complete. Thus, the desired conclusion follows from the following lemma. �

Lemma 3.17. If [m[]Ainf kills a derived p-adically complete Ainf-module H, then so does W (m[).

Proof. By the derived p-adic completeness, any free Ainf -module resolution F • of H satisfies

H ∼= Coker
(

lim←−n(F−1/pn)→ lim←−n(F 0/pn)
)
.

Moreover, for every n ≥ 1 the ideals [m[] · Wn(O[C) and Wn(m[) := Ker(Wn(O[C) → Wn(k)) of
Wn(O[C) agree. Thus, the ([m[]Ainf)-annihilation of H implies that Wn(m[) kills both

H/pn ∼= H0(F • ⊗Ainf
Ainf/p

n) and TorAinf
1 (H,Ainf/p

n) ∼= H−1(F • ⊗Ainf
Ainf/p

n).

Thus, since [m[]2 = [m[] and F0/p
n has no nonzerom-torsion for every nonzerom ∈ [m[], any element

x ∈Wn+1(m[) · (F0/p
n+1) may be lifted to Wn+1(m[) · (F−1/p

n+1), compatibly with a specified lift
of its image x ∈ Wn(m[) · (F0/p

n) to Wn(m[) · (F−1/p
n). In particular, W (m[) · (lim←−n(F 0/pn)) lies

in the image of lim←−n(F−1/pn), that is, W (m[) kills H, as desired. �

We will show in Theorem 3.20 that Lη(µ)(e) is an isomorphism, so that continuous group cohomology
computes Lη(µ)(RΓproét(X

ad
C ,Ainf)). For this, we will use the following lemma.

Lemma 3.18. If B b−→ B′ is a morphism in D(Ainf) such that each H i(B ⊗L
Ainf

Ainf/µ) has no
nonzero W (m[)-torsion and W (m[) kills each H i(Cone(b)), then Lη(µ)(b) is an isomorphism.

Proof. Since Lη is not a triangulated functor, the fact that Lη(µ)(Cone(b)) ∼= 0 does not a priori
suffice. Instead, the ideal (W (m[))2 kills the cohomology of Cone(b)⊗L

Ainf
Ainf/µ, so the sequences

0→ H i(B ⊗L
Ainf

Ainf/µ)→ H i(B′ ⊗L
Ainf

Ainf/µ)→ H i(Cone(b)⊗L
Ainf

Ainf/µ)→ 0

are short exact. By the Bockstein construction (see [BMS18, 6.12]), as i varies, they comprise a
short exact sequence whose terms are complexes that compute Lη(µ)(B) ⊗L

Ainf
Ainf/µ, etc. Thus,

the vanishing of Lη(µ)(Cone(b)) implies that (Lη(µ)(b)) ⊗L
Ainf

Ainf/µ is an isomorphism. It follows
that Cone(Lη(µ)(b)) ⊗L

Ainf
Ainf/µ ∼= 0, so µ acts invertibly on the cohomology of Cone(Lη(µ)(b)).

But then, as we see after applying −⊗L
Ainf

Ainf [
1
µ ], this cohomology vanishes. �

We now verify that the edge map e defined in (3.15.1) also meets the first assumption of Lemma 3.18.

Proposition 3.19. For each i ∈ Z, the Ainf-module H i
cont(∆,Ainf(R∞)/µ) is p-torsion free and

p-adically complete; moreover, the following natural maps are isomorphisms:

H i
cont(∆,Ainf(R∞)/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆,Ainf(R∞)/(µ, pn)) for n > 0 (3.19.1)

and
H i

cont(∆,Ainf(R∞)/µ)
∼−→ lim←−n

(
H i

cont(∆,Ainf(R∞)/(µ, pn))
)
. (3.19.2)

In addition, H i
cont(∆,Ainf(R∞)/(µ, pn)) and H i

cont(∆,Ainf(R∞)/µ) have no nonzeroW (m[)-torsion.
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Proof. Since A(R)/µ is p-adically complete and has a trivial ∆-action (see Lemma 3.13 and §3.14),
Lemma 3.7 implies that H i

cont(∆, A(R)/µ) is a direct sum of copies of A(R)/µ, and likewise for
H i

cont(∆, A(R)/(µ, pn)). Consequently, since, by (3.14.1), the rings A(R)/(µ, pn) and A(R)/µ have
no nonzero W (m[)-torsion, the analogues of all the claims with A(R) in place of Ainf(R∞) follow.
Thus, due to (3.14.5), we only need to establish these analogues with N∞ in place of Ainf(R∞).

To prepare for treating N∞, we start by building on the ideas of [Bha18, proof of Lem. 4.6] to
analyze a single summand S := Ainf ·Xa0

0 · · ·X
ad
d that, as in §3.14, contributes to N�

∞. We set

bj := aj − a0 for 1 ≤ j ≤ r and bj := aj for r + 1 ≤ j ≤ d, (3.19.3)

and letm ∈ Z>0 be the minimal such that pmbj ∈ Z for all j. Lemma 3.7 applied with the topological
generators δ1, . . . , δd of ∆ defined in §3.2 gives an Ainf -isomorphism H i

cont(∆, S/µ) ' H i(C•), where
C• is the (Ainf/µ)-tensor product of the d complexes

[Ainf/µ
[εbj ]−1−−−−→ Ainf/µ] ∼= Ainf/([ε

bj ]− 1)⊗L
Ainf

Ainf/µ. (3.19.4)

By reordering the bj , we may assume that for all j we have bj/b1 ∈ Z(p), so that b1 6∈ Z and both
[εb1 ] − 1 | [εbj ] − 1 and [εb1 ] − 1 | µ. Then the object (3.19.4) with j = 1 is given by the complex
[Ainf/([ε

b1 ]− 1)
0−→ Ainf/([ε

b1 ]− 1)] and, by using the left sides of (3.19.4) for the factors with j 6= 1,
we see that C• is quasi-isomorphic to a direct sum of shifts of Ainf/([ε

b1 ]−1) ∼= Ainf/ϕ
−m(µ). Thus,

for i ∈ Z,

H i
cont(∆, S/µ) '

⊕
I Ainf/ϕ

−m(µ) for some set I, and hence H i
cont(∆, S/µ)[p] = 0. (3.19.5)

By Lemma 3.7 and [SP, 061Z, 0662], this implies that

H i
cont(∆, S/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, S/(µ, p
n)). (3.19.6)

We now analyze N�
∞. Since Ainf(R

�
∞)/µ is p-adically complete, §3.14 gives the ∆-decomposition

Ainf(R
�
∞)/µ ∼=

⊕̂
(a0,...,ad)∈(Z[ 1

p
]≥0)⊕(r+1)⊕(Z[ 1

p
])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

Ainf/µ ·Xa0
0 · · ·X

ad
d

in which the completion is p-adic. Lemma 3.6 (i) then combines with (3.19.5) to prove that

H i
cont(∆, N

�
∞/µ)[p] = 0 for each i ∈ Z.

Analogously to (3.19.6), this, in turn, implies that

H i
cont(∆, N

�
∞/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, N
�
∞/(µ, p

n)). (3.19.7)

Finally, we analyze N∞. The identification

N∞/(µ, p
n) ∼= N�

∞/(µ, p
n)⊗A(R�) A(R)

is ∆-equivariant and A(R)/(µ, pn) is (A(R�)/(µ, pn))-flat, so Lemma 3.7 gives the identifications

H i
cont(∆, N∞/(µ, p

n)) ∼= H i
cont(∆, N

�
∞/(µ, p

n))⊗A(R�) A(R) for n ≥ 1, (3.19.8)

which are compatible as n varies. Consequently, for n > 1, the sequences

0→ H i
cont(∆, N∞/(µ, p

n))[p]→ H i
cont(∆, N∞/(µ, p

n))→ H i
cont(∆, N∞/(µ, p

n−1))→ 0 (3.19.9)

are short exact because, by (3.19.5) and (3.19.7), so are their analogues with N�
∞ in place of N∞.

By taking the inverse limit of these sequences for varying n and using [SP, 0D6K], we obtain

H i
cont(∆, N∞/µ)

∼−→ lim←−n
(
H i

cont(∆, N∞/(µ, p
n))
)
, (3.19.10)
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which is the sought analogue of (3.19.2). The p-torsion freeness of H i
cont(∆, N∞/µ) follows from

(3.19.9)–(3.19.10) and, as in (3.19.6), it implies that

H i
cont(∆, N∞/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, N∞/(µ, p
n)).

It remains to show that each H i
cont(∆, N∞/(µ, p

n)) has no nonzero W (m[)-torsion.

The surjectivity aspect of the short exact sequences (3.19.9) implies that the sequences

0→ N∞/(µ, p)
pn−1

−−−→ N∞/(µ, p
n)→ N∞/(µ, p

n−1)→ 0

stay short exact after applying H i
cont(∆,−). Thus, H i

cont(∆, N∞/(µ, p
n)) is a successive exten-

sion of copies of H i
cont(∆, N∞/(µ, p)). Consequently, it has no nonzero W (m[)-torsion because,

by Lemma 3.12, neither does H i
cont(∆, N∞/(µ, p)) (note that N∞/(µ, p) is a direct summand of

Ainf(R∞)/(µ, p) ∼= R[∞/µ). �

Theorem 3.20. The edge map e defined in (3.15.1) induces the isomorphism

Lη(µ)(e) : Lη(µ)(RΓcont(∆,Ainf(R∞)))
∼−→ Lη(µ)(RΓproét(X

ad
C ,Ainf,Xad

C
)).

Proof. By the projection formula [SP, 0944],

RΓcont(∆,Ainf(R∞))⊗L
Ainf

Ainf/µ ∼= RΓcont(∆,Ainf(R∞)/µ), (3.20.1)

so Proposition 3.19 implies that the cohomology modules of RΓcont(∆,Ainf(R∞))⊗L
Ainf

Ainf/µ have
no nonzero W (m[)-torsion. Thus, the claim follows from Lemmas 3.16 and 3.18. �

Remark 3.21. Analogously to Remark 3.10, Theorem 3.20 extends as follows: for any pro-(finite
étale) affinoid perfectoid ∆′-cover

Spa(R′∞[1
p ], R′∞)→ Spa(R[1

p ], R) ∼= Xad
C that refines Xad

C,∞ → Xad
C

subject to the same conditions as in Remark 3.10, the edge map e′ defined analogously to (3.15.1)
induces the isomorphism

Lη(µ)(e
′) : Lη(µ)(RΓcont(∆

′,Ainf(R
′
∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf,Xad

C
)).

Indeed, as in Remark 3.10, by the almost purity theorem and the octahedral axiom, [m[]Ainf kills the
cohomology modules of the cone of the map e0 : RΓcont(∆,Ainf(R∞))→ RΓcont(∆

′,Ainf(R
′
∞)) and,

by [BS15, 3.4.4 and 3.4.14], these modules are derived p-adically complete; thus, by Lemma 3.17,
even W (m[) kills them, to the effect that Lemma 3.18 applies to the map e0 and proves the claim.

As a final goal of §3, we wish to show in Theorem 3.34 that even the maps Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris )

are isomorphisms for Ainf -algebras A
(m)
cris reviewed in §3.26 below. This extension of Theorem 3.20

will be important for relating AΩX to logarithmic crystalline cohomology in §5. Our analysis of
Lη(µ)(e⊗̂

L
Ainf

A
(m)
cris ) will use the following further consequences of the proof of Proposition 3.19.

3.22. The decomposition of N∞. For m ≥ 0, let N�
m be the (p, µ)-adically completed direct

sum of those summands Ainf ·Xa0
0 · · ·X

ad
d that contribute to Ainf(R

�
∞) in §3.14 for which m is the

smallest nonnegative integer such that pmaj ∈ Z for all j (equivalently, in the notation of (3.19.3),
such that pmbj ∈ Z for all j). For varying m > 0, the A(R�)-modules N�

m and the A(R)-modules
Nm := N�

m⊗̂A(R�)A(R) comprise the (p, µ)-adically completed direct sum decompositions

N�
∞
∼=
⊕̂

m>0N
�
m and N∞ ∼=

⊕̂
m>0Nm. (3.22.1)
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For a fixed i, Lemma 3.7 and (3.19.5)–(3.19.6) imply that

H i
cont(∆, N

�
m/(µ, p

n)) '
⊕

I′ Ainf/(ϕ
−m(µ), pn) for some set I ′ and every n > 0. (3.22.2)

Corollary 3.23. For all i and n,m ≥ 0,

H i
cont(∆, Nm/(µ, p

n)) is killed by ϕ−m(µ) and is a flat Ainf/(ϕ
−m(µ), pn)-module.

Proof. If R = R�, then (3.22.2) suffices. In addition, by Lazard’s theorem, A(R)/(µ, pn) is a filtered
direct limit of finite free A(R�)/(µ, pn)-modules. Thus, the general case of the claim follows by using
(3.19.8) and its analogue for N0 and N�

0 . �

We wish to supplement Proposition 3.19 with Proposition 3.25 that analyzes the cohomology of N∞
without reducing modulo µ. Its proof will use the following base change result for Lη.

Lemma 3.24 ([Bha18, 5.16]). For a ring A, elements f, g ∈ A with g a nonzerodivisor, and a
K ∈ D(A), if the modules H i(K ⊗L

A A/f) have no nonzero g-torsion, then the natural map

Lη(f)(K)⊗L
A A/g → Lη(f)(K ⊗

L
A A/g), where f denotes the image of f in A/g,

is an isomorphism. �

Proposition 3.25. The element µ kills every H i
cont(∆, N∞).

Proof. Let δ1, . . . , δd be the free generators of ∆ fixed in §3.2. By Lemma 3.7, we need to prove that

Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1)) ∼= 0. (3.25.1)

The key point, with which we start, is to prove the vanishing (3.25.1) modulo ϕ(ξ). The isomorphism

KN∞(δ1 − 1, . . . , δd − 1)⊗L
Ainf

Ainf/µ ∼= KN∞/µ(δ1 − 1, . . . , δd − 1),

Lemma 3.7, and Proposition 3.19 show that the cohomology of KN∞(δ1−1, . . . , δd−1)⊗L
Ainf

Ainf/µ
is p-torsion free. Therefore, Lemma 3.24 supplies the identification

Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1))⊗L
Ainf

Ainf/ϕ(ξ) ∼= Lη(ζp−1)(KN∞/ϕ(ξ)(δ1 − 1, . . . , δd − 1)). (3.25.2)

The inverse Frobenius ϕ−1 maps N�
∞ isomorphically onto a direct summand of N�

∞, so it maps N∞
isomorphically onto a direct summand of N∞. Thus, ϕ−1 maps N∞/ϕ(ξ) isomorphically onto a
direct summand of N∞/ξ ∼= M∞ (see (3.14.5)). In particular, by Lemma 3.7 and Proposition 3.8,
ζp − 1 kills the cohomology of KN∞/ϕ(ξ)(δ1 − 1, . . . , δd − 1), so both sides of (3.25.2) are acyclic.

Since N∞ is (p, µ)-adically complete, it is also ϕ(ξ)-adically complete (see [SP, 090T]). Thus,
KN∞(δ1 − 1, . . . , δd − 1) is derived ϕ(ξ)-adically complete, and [BMS18, 6.19] implies the same
for Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1)). The established acyclicity of the left side of (3.25.2) therefore
implies the desired vanishing (3.25.1). �

3.26. The Ainf-algebras A
(m)
cris . For m ∈ Z≥1, we let A(m)

cris be the p-adic completion of the Ainf -
subalgebra A0, (m)

cris of Ainf [
1
p ] generated by the elements ξs

s! with s ≤ m. In particular, A(m)
cris
∼= Ainf

for m < p. In contrast, if m ≥ p, then, since µp

p! ∈ A
(m)
cris , the p-adic and (p, µ)-adic topologies of A(m)

cris

agree. By its definition, A(m)
cris is p-torsion free; in fact, although we will not use this, Proposition 5.36

below implies that A(m)
cris is even a domain. The map θ of (2.1.3) extends to A(m)

cris :

θ : A
(m)
cris � OC . (3.26.1)
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Due to the “finite type nature” of the Ainf -algebra A
(m)
cris , more precisely, due to [BMS18, 12.8 (ii)],

the systems of ideals

(pnA
(m)
cris )n≥1 and ({x ∈ A(m)

cris | µx ∈ p
nA

(m)
cris })n≥1 of A(m)

cris are intertwined.

Equivalently,

for every n ≥ 1, the map (A
(m)
cris /p

n′)[µ]→ A
(m)
cris /p

n vanishes for large n′ > n. (3.26.2)

Therefore, by taking the inverse limit over n of the sequences

0→ (A
(m)
cris /p

n)[µ]→ A
(m)
cris /p

n µ−→ A
(m)
cris /p

n → A
(m)
cris /(µ, p

n)→ 0, (3.26.3)

we conclude that

A
(m)
cris is µ-torsion free and A

(m)
cris /µ is p-adically complete. (3.26.4)

The Frobenius automorphism of Ainf preserves the subring A0, (m)
cris ⊂ Ainf [

1
p ]: indeed, for m ≥ p,

since ξ =
∑p−1

i=0 [εi/p] and ξp ∈ pA0, (m)
cris , we have ϕ(ξ) =

∑p−1
i=0 [εi] and ϕ(ξ) ∈ pA0, (m)

cris . Thus, the
Frobenius induces a ring endomorphism

ϕ : A
(m)
cris → A

(m)
cris ,

which, via the map θ, intertwines the absolute Frobenius of OC/p (compare with (2.1.3)).

3.27. The A(R)-algebras A(m)
cris (R). The “relative version” of A(m)

cris (resp., a “highly ramified cover”
of this relative version) is the A(R)-algebra (resp., Ainf(R∞)-algebra)

A
(m)
cris (R) := A(R)⊗̂Ainf

A
(m)
cris (resp., A(m)

cris (R∞) := Ainf(R∞)⊗̂Ainf
A

(m)
cris ),

where the completion is (p, µ)-adic (equivalently, p-adic if m ≥ p). In the case m < p, due to
Lemma 3.13 and §3.26, we have A(m)

cris (R) ∼= A(R) and A(m)
cris (R∞) ∼= Ainf(R∞).

Due to the decomposition (3.14.5), the subring A(m)
cris (R) ⊂ A(m)

cris (R∞) is an A(m)
cris (R)-module direct

summand. Explicitly, the decomposition of Ainf(R
�
∞) described in §3.14 gives the decomposition

A(m)
cris (R�

∞) ∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

A
(m)
cris ·X

a0
0 · · ·X

ad
d , (3.27.1)

where the completion is (p, µ)-adic (equivalently, p-adic if m ≥ p), and A(m)
cris (R∞) is (p, µ)-adically

formally étale over A(m)
cris (R�

∞) (see §3.14). In particular, (3.26.2) holds with A
(m)
cris replaced by

A(m)
cris (R�

∞), and hence also by A(m)
cris (R∞). Consequently, the generalization of (3.26.4) holds, too:

A(m)
cris (R∞) is µ-torsion free and A(m)

cris (R∞)/µ is p-adically complete. (3.27.2)

In addition, by (3.27.1) and the formal étaleness, each A(m)
cris (R∞) is p-torsion free. By §3.14 and

§3.26, the rings A(m)
cris (R) and A(m)

cris (R∞) come equipped with compatible A(m)
cris -semilinear Frobenius

endomorphisms that are compatible as m varies.

The group ∆ acts continuously, Frobenius-equivariantly, andA(m)
cris -linearly onA(m)

cris (R) and A(m)
cris (R∞).

For each δ ∈ ∆, the Ainf -module endomorphism δ−1
µ of A(R) induces an A(m)

cris -module endomorphism
δ−1
µ of A(m)

cris (R) that satisfies δ = 1 + µ · δ−1
µ . In particular, ∆ acts trivially on A(m)

cris (R)/µ.
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3.28. The A
(m)
cris -base change of the edge map. Since A(m)

cris
∼= Ainf for m < p, for the sake of

analyzing the map e⊗̂L
Ainf

A
(m)
cris , where e is as in (3.15.1), we suppose that m ≥ p. Then, for each

n > 0, we have A(m)
cris /p

n ∼= A
(m)
cris /(p

n, µn
′
) for every large enough n′ > 0 (see §3.26). Consequently,

since (pn, µn
′
) is an Ainf(R∞)-regular sequence with Ainf(R∞)/(pn, µn

′
) flat over Ainf/(p

n, µn
′
) (see

Lemma 3.13), the projection formula [SP, 0944] and Lemma 3.7 imply that

RΓcont(∆,Ainf(R∞))⊗̂L
Ainf

A
(m)
cris
∼= RΓcont(∆,A

(m)
cris (R∞)).

Consequently, the edge map e defined in (3.15.1) gives rise to the map

e⊗̂L
Ainf

A
(m)
cris : RΓcont(∆,A

(m)
cris (R∞))→ RΓproét(X

ad
C ,Ainf)⊗̂

L
Ainf

A
(m)
cris . (3.28.1)

Since [m[] kills each H i(Cone(e)) (see §3.15) and [m[]2 = [m[], by using a free Ainf -module resolution
of A(m)

cris /p
n and the definition [SP, 064M], we see that [m[] also kills each H i(Cone(e)⊗L

Ainf
A

(m)
cris /p

n).

Consequently, by [SP, 0D6K], the ideal [m[]Ainf kills each H i(Cone(e)⊗̂L
Ainf

A
(m)
cris ), to the effect that,

by Lemma 3.17 (and [BS15, 3.4.4 and 3.4.14]), so does W (m[). In conclusion,

W (m[) kills the cohomology modules of Cone(e⊗̂L
Ainf

A
(m)
cris ) ' Cone(e)⊗̂L

Ainf
A

(m)
cris . (3.28.2)

By applying Lemma 3.18, we will show in Theorem 3.34 that Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris ) is an isomorphism.

Thus, we need to know that the Ainf -modulesH i
cont(∆,A

(m)
cris (R∞)/µ) have no nonzeroW (m[)-torsion

(compare with Proposition 3.19 for Ainf(R∞)/µ). The following result is a step in that direction:

Proposition 3.29. Each A(m)
cris (R∞)/(µ, pn) and also A(m)

cris (R∞)/µ have no nonzero W (m[)-torsion.

Proof. By the p-adic completeness of A(m)
cris (R∞)/µ (see (3.27.2)), we may focus on A(m)

cris (R∞)/(µ, pn).
The argument for the latter is similar to that of [BMS18, 12.8 (iii)] and uses approximation by
Noetherian rings. Namely, by the (p, ϕ−1(µ))-adic completeness of Ainf , the assignment

T 7→ [ε]1/p − 1 defines a Zp-algebra morphism ZpJT K→ Ainf . (3.29.1)

By [BMS18, 4.31], this makes Ainf a faithfully flat ZpJT K-algebra. Thus, letting M be the mod
((T +1)p−1, pn) reduction of the ZpJT K-subalgebra of ZpJT K[1

p ] generated by the 1
s!(
∑p−1

i=0 (T +1)i)s

with s ≤ m, we have the identification

A(m)
cris (R∞)/(µ, pn) ∼= M ⊗ZpJT K/((T+1)p−1, pn) Ainf(R∞)/(µ, pn).

The (ZpJT K/((T+1)p−1, pn))-flatness of Ainf(R∞)/(µ, pn) ensures that the ϕ−1(µ)-torsion submod-
ule of A(m)

cris (R∞)/(µ, pn) is the base change of the T -torsion submodule M [T ] ⊂M . Consequently,
since ϕ−1(µ) ∈W (m[), the consideration of the p-adic filtration of M [T ] reduces us to proving that

Fp ⊗ZpJT K/((T+1)p−1, pn) Ainf(R∞)/(µ, pn) ∼= R[∞/ϕ
−1(µ) has no nonzero m[-torsion,

which follows from Lemma 3.12. �

To relate H i
cont(∆,A

(m)
cris (R∞)/µ) to H i

cont(∆,Ainf(R∞)/µ) in Proposition 3.33, we will use the fol-
lowing general result about exactness properties of p-adically completed tensor products. For con-
creteness, we state it for Ainf and its algebra A(m)

cris , but the proof is not specific to these choices.

Lemma 3.30. For a fixed m ≥ p, consider the following condition on an Ainf-module L:

for all j > 0, {TorAinf
j (L,A

(m)
cris /p

n)}n>0 is Mittag–Leffler with vanishing eventual images, (?)
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which means that for every j, n, the map TorAinf
j (L,A

(m)
cris /p

n′) → TorAinf
j (L,A

(m)
cris /p

n) vanishes for
some n′ > n. For a bounded complex

M• = . . .→M i di−→M i+1 → . . .

of Ainf-modules, if each M i and each H i(M•) satisfy (?), then, for every i, we have

H i(M•⊗̂Ainf
A

(m)
cris ) ∼= lim←−n(H i(M• ⊗Ainf

A
(m)
cris /p

n)) ∼= H i(M•)⊗̂Ainf
A

(m)
cris . (3.30.1)

Proof. For an inverse system {0 → I ′n → In → I ′′n → 0}n>0 of short exact sequences of abelian
groups, {In}n>0 is Mittag–Leffler with vanishing eventual images if and only if so are both {I ′n}n>0

and {I ′′n}n>0. Therefore, the short exact sequences

0→ Ker(di)→M i → Im(di)→ 0 and 0→ Im(di−1)→ Ker(di)→ H i(M•)→ 0 (3.30.2)

imply, by descending induction on i, that each Ker(di) and each Im(di) satisfy (?). Consequently,
these sequences stay short exact after applying −⊗̂Ainf

A
(m)
cris , to the effect that the flanking terms of

(3.30.1) get identified. By construction, this identification is compatible with the canonical maps
to lim←−n

(
H i(M• ⊗Ainf

A
(m)
cris /p

n)
)
, so it remains to establish the second identification in (3.30.1).

By [SP, 0662 and 0130], the spectral sequences associated to a double complex give the following
spectral sequences that converge to H i+j(M• ⊗L

Ainf
A

(m)
cris /p

n):

(n)Eij2 = H i(Hj(M•)⊗L
Ainf

A
(m)
cris /p

n) and (n)′Eij1 = Hj(M i ⊗L
Ainf

A
(m)
cris /p

n),

where the differential on the (n)′E1-page is Hj(di ⊗L
Ainf

A
(m)
cris /p

n). As n varies, both families of
spectral sequences form inverse systems. Moreover, by assumption, the systems {(n)Eij2 }n>0 with
i 6= 0 and {(n)′Eij1 }n>0 with j 6= 0 are Mittag–Leffler with vanishing eventual images. This persists
to the subsequent pages: namely, by the first sentence of the proof, to the systems {(n)Eijs }n>0 with
i 6= 0 and {(n)′Eijs }n>0 with j 6= 0 for any s ≤ ∞. Consequently, the edge maps

H i(M•)⊗A(m)
cris /p

n → H i(M• ⊗L A
(m)
cris /p

n) and H i(M• ⊗L A
(m)
cris /p

n)→ H i(M• ⊗A(m)
cris /p

n)

become isomorphisms after applying the functor lim←−n. It remains to note that then so does their

composition, which is the canonical map H i(M•)⊗Ainf
A

(m)
cris /p

n → H i(M• ⊗Ainf
A

(m)
cris /p

n). �

To make Lemma 3.30 practical to use, we now establish its condition (?) in several key cases.

Lemma 3.31. For a fixed m ≥ p, the condition (?) holds in any of the following cases:

(i) for any n, n′ > 0, the sequence (pn, µn
′
) is L-regular and L/(pn, µn′) is Ainf/(p

n, µn
′
)-flat;

(ii) the module L has no nonzero p-torsion and each L/pn is a filtered direct limit of direct sums
of Ainf-modules of the form Ainf/(ϕ

−s(µ), pn) for variable s ≥ 0.

Thus, (?) holds for Ainf(R∞) and Ainf(R∞)/µ, and for each H i
cont(∆, N∞) and H i

cont(∆,Ainf(R∞)/µ).

Proof. If (i) holds, then, by the regular sequence aspect, L⊗L
Ainf

Ainf/(p
n, µn

′
) ∼= L/(pn, µn

′
), so, by

the flatness aspect, L ⊗L
Ainf

A
(m)
cris /p

n is concentrated in degree 0. Thus, in the case (i), the inverse
systems in (?) vanish termwise.

If (ii) holds, then each L⊗L
Ainf

Ainf/p
n is concentrated in degree 0, so

{TorAinf
j (L,A

(m)
cris /p

n)}n>0
∼= {Tor

Ainf/p
n

j (L/pn, A
(m)
cris /p

n)}n>0 (3.31.1)
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for every j ≥ 0. In addition, since ϕ−s(µ) | µ for s ≥ 0 and each Ainf/p
n has no nonzero µ-torsion,

the assumption on L/pn in (ii) ensures that the right side of (3.31.1) vanishes termwise for j > 1.
In contrast, for j = 1 and every n > 0, there is an n′ > n such that the transition map between
positions n′ and n in the right side system of (3.31.1) vanishes: this follows from the identification

Tor
Ainf/p

n′

1 (Ainf/(ϕ
−s(µ), pn

′
), A

(m)
cris /p

n′) ∼= (A
(m)
cris /p

n′)[ϕ−s(µ)]

and (3.26.2). Consequently, (ii) implies (?), as claimed.

By Lemma 3.13, (i) holds for Ainf(R∞) and then, by Lazard’s theorem, (ii) holds for Ainf(R∞)/µ.
Likewise, Proposition 3.19, Corollary 3.23, and Lazard’s theorem imply that (ii) holds for each
H i

cont(∆,Ainf(R∞)/µ). By Lemma 3.7, H i
cont(∆, N∞) vanishes for large i and, by Proposition 3.25,

we have the short exact sequences

0→ H i
cont(∆, N∞)→ H i

cont(∆, N∞/µ)→ H i+1
cont(∆, N∞)→ 0.

Therefore, due to the first sentence of the proof of Lemma 3.30, descending induction on i shows
that (?) for H i

cont(∆,Ainf(R∞)/µ) implies (?) for H i
cont(∆, N∞). �

Thanks to Lemma 3.31, we may draw the following concrete consequences from Lemma 3.30.

Proposition 3.32. For every m ≥ p and i ∈ Z, we have the identifications

H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ) ∼= lim←−n(H i

cont(∆, N∞⊗Ainf
A

(m)
cris /p

n)) ∼= H i
cont(∆, N∞)⊗̂Ainf

A
(m)
cris . (3.32.1)

In particular, µ kills every H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ).

Proof. By Lemma 3.7, the Koszul complex M• of N∞ with respect to δ1, . . . , δd satisfies

H i(M•) ∼= H i
cont(∆, N∞) and H i(M•⊗̂A(m)

cris ) ∼= H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ),

as well as H i(M•⊗A(m)
cris /p

n) ∼= H i
cont(∆, N∞⊗A

(m)
cris /p

n) for every n > 0. Moreover, by Lemma 3.31,
each M i and each H i(M•) satisfy (?). Thus, (3.32.1) is a special case of (3.30.1). By Proposi-
tion 3.25, µ kills every H i

cont(∆, N∞), so, by (3.32.1), it also kills every H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ). �

Proposition 3.33. For every m ≥ p and i ∈ Z, we have the identifications

H i
cont(∆,A

(m)
cris (R∞)/µ) ∼= lim←−n(H i

cont(∆,A
(m)
cris (R∞)/(µ, pn))) ∼= H i

cont(∆,Ainf(R∞)/µ)⊗̂Ainf
A

(m)
cris .

Moreover, the Ainf-module H i
cont(∆,A

(m)
cris (R∞)/µ) has no nonzero W (m[)-torsion.

Proof. Similarly to the proof of Proposition 3.32, Lemma 3.30 applies to the Koszul complex of
Ainf(R∞)/µ and, due to (3.27.2), gives the identifications. Thus, it suffices to show that each

H i
cont(∆,Ainf(R∞)/µ)⊗Ainf

A
(m)
cris /p

n
(3.19.1)∼= H i

cont(∆,Ainf(R∞)/(µ, pn))⊗Ainf/pn A
(m)
cris /p

n

has no nonzero W (m[)-torsion. Since ∆ acts trivially on A(R)/(µ, pn), Lemma 3.7 and Proposi-
tion 3.29 imply that each H i

cont(∆, A(R)/(µ, pn)) ⊗Ainf/pn A
(m)
cris /p

n has no nonzero W (m[)-torsion.
Consequently, due to the decomposition (3.22.1), it suffices to show that for j > 0, the module

H i
cont(∆, Nj/(µ, p

n))⊗Ainf/pn A
(m)
cris /p

n
3.23∼= H i

cont(∆, Nj/(µ, p
n))⊗Ainf/(ϕ−j(µ), pn) A

(m)
cris /(ϕ

−j(µ), pn)

has no nonzero W (m[)-torsion. For this, similarly to the proof of Proposition 3.29, we will approx-
imate by Noetherian rings. More precisely, similarly to (3.29.1), the assignment

T 7→ [ε]1/p
j − 1 defines a Zp-algebra morphism ZpJT K→ Ainf ,
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for which Ainf is ZJT K-flat. In terms of this morphism, the Ainf -algebra A
(m)
cris /(ϕ

−j(µ), pn) is the
Ainf/(ϕ

−j(µ), pn)-base change of the mod (T, pn) reduction M of the ZpJT K-subalgebra of ZpJT K[1
p ]

generated by the elements 1
s!(
∑p−1

i=0 (T + 1)p
j−1·i)s with s ≤ m. Consequently, we need to show that

H i
cont(∆, Nj/(µ, p

n))⊗ZpJT K/(T, pn) M

has no nonzeroW (m[)-torsion. By Corollary 3.23, the moduleH i
cont(∆, Nj/(µ, p

n)) is ZpJT K/(T, pn)-
flat. Thus, by p-adically filtering M , we reduce to showing that H i

cont(∆, Nj/(µ, p
n))/p has no

nonzero W (m[)-torsion. This, in turn, follows from Proposition 3.19 and Lemma 3.12. �

With Proposition 3.33 in hand, we are ready for the promised claim about Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris ):

Theorem 3.34. For each m ≥ p, the map e⊗̂L
Ainf

A
(m)
cris from (3.28.1) induces the isomorphism

Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris ) : Lη(µ)(RΓcont(∆,A

(m)
cris (R∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf)⊗̂

L
Ainf

A
(m)
cris ).

Proof. By (3.28.2), the ideal W (m[) ⊂ Ainf kills the cohomology of Cone(e⊗̂L
Ainf

A
(m)
cris ). By Propo-

sition 3.33 (and the projection formula [SP, 0944] with (3.27.2)), the cohomology modules of

RΓcont(∆,A
(m)
cris (R∞))⊗L

Ainf
Ainf/µ

have no nonzero W (m[)-torsion. Thus, Lemma 3.18 applies and gives the desired conclusion. �

Remark 3.35. Analogously to Remark 3.21, we may extend Theorem 3.34 to any affinoid perfectoid
∆′-cover that refines Xad

C,∞ → Xad
C and is subject to the same conditions as in Remark 3.10: more

precisely, with the notation used there, we have

Lη(µ)(e
′⊗̂L

Ainf
A

(m)
cris ) : Lη(µ)(RΓcont(∆

′,A(m)
cris (R′∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf)⊗̂

L
Ainf

A
(m)
cris ),

where A(m)
cris (R′∞) := Ainf(R

′
∞)⊗̂Ainf

A
(m)
cris . Indeed, as there (see also §3.28), the ideal W (m[) kills the

cohomology of the cone of the map RΓcont(∆,A
(m)
cris (R∞))→ RΓcont(∆

′,A(m)
cris (R′∞)), so Lemma 3.18

applies to this map and gives the claim.

4. The de Rham specialization of AΩX

With the local analysis of §3 at our disposal, we turn to relating AΩX to the logarithmic de Rham
complex of X in Theorem 4.17. The key steps for this are the identification and the analysis of the
Hodge–Tate specialization of AΩX in Theorems 4.2 and 4.11. These steps were also used in the
smooth case in [BMS18, §8 and §9] but, due to the difficulties mentioned in the beginning of §3,
we carry them out differently. Namely, we rely on the analysis of group cohomology presented in
§3 and, in the identification step, we use Lemma 3.24 (which comes from [Bha18]). Nevertheless,
similarly to [BMS18, §9.2], we will take advantage of the following formalism of presheaves.

4.1. The presheaf version AΩpsh
X . In addition to the étale site Xét, we consider the site Xpsh

ét
whose objects are those connected affine opens of Xét that have an étale coordinate map (1.5.1) and
coverings are the isomorphisms. Thus, the topology of Xpsh

ét is the coarsest possible and any presheaf
is already a sheaf. Since the objects of Xpsh

ét form a basis of Xét, there is a morphism of topoi

(φ−1, φ∗) : Xét → Xpsh
ét
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for which φ∗ is given by restricting sheaves on Xét to Xpsh
ét and φ−1 is given by sheafifying. In

particular, since any sheaf is the sheafification of its associated presheaf, φ−1 ◦ φ∗ ∼= id. We let

νpsh := φ ◦ ν : (Xad
C )proét → Xpsh

ét

be the indicated composition of morphisms of topoi (with ν defined in (1.5.5)) and set

AΩpsh
X := Lη(µ)(Rν

psh
∗ (Ainf,Xad

C
)) ∈ D≥0(Xpsh

ét , Ainf). (4.1.1)

Since Lη commutes with pullback under flat morphisms of ringed topoi (see [BMS18, 6.14]),

φ−1(AΩpsh
X ) ∼= AΩX. (4.1.2)

Moreover, AΩpsh
X may be described explicitly: for every object U of Xpsh

ét , we have

RΓ(U, AΩpsh
X ) ∼= Lη(µ)(RΓ((Uad

C )proét,Ainf,Uad
C

)). (4.1.3)

In particular, since, by [BMS18, 6.19], the functor Lη preserves derived completeness when used
in the context of a replete topos (such as that of sets), we see from (4.1.3) that AΩpsh

X is derived
ξ-adically (and also ϕ(ξ)-adically) complete (compare with Corollary 4.6 below).

Armed with the formalism of §4.1, we now identify the Hodge–Tate specialization of AΩX.

Theorem 4.2. We have the identification

AΩX ⊗L
Ainf , θ◦ϕ−1 OC

∼−→ Lη(ζp−1)(Rν∗(Ô+
Xad
C

)), (4.2.1)

where in the target Lη is with respect to the ideal sheaf (ζp − 1)OX, ét ⊂ OX, ét. If the coordinate
morphisms (1.5.1) exist Zariski locally on X, then (4.2.1) also holds for AΩXZar

(defined in (2.2.4)).

Proof. The kernel of θXad
C
◦ϕ−1 : Ainf,Xad

C
� Ô+

Xad
C

is generated by the nonzero divisor ϕ(ξ) (see §2.2),
so the projection formula [SP, 0944] provides the identification

Rν∗(Ainf,Xad
C

)⊗L
Ainf , θ◦ϕ−1 OC ∼= Rν∗(Ô+

Xad
C

).

Since (θ ◦ ϕ−1)(µ) = ζp − 1, this induces the map (4.2.1) and, likewise, also its presheaf version

AΩpsh
X ⊗L

Ainf , θ◦ϕ−1 OC → Lη(ζp−1)(Rφ∗(Rν∗(Ô+
Xad
C

))). (4.2.2)

Due to (4.1.2), φ−1 brings (4.2.2) to (4.2.1), so we seek to show that (4.2.2) is an isomorphism.

For every object U ∼= Spf(R) of Xpsh
ét equipped with an étale morphism as in (1.5.1), the discussion

and the notation of §3 apply. In particular, Proposition 3.19 and (3.20.1) ensure that the cohomology
of RΓcont(∆,Ainf(R∞)) ⊗L

Ainf
Ainf/µ is p-torsion free. Thus, since ϕ(ξ) ≡ p mod (µ) (see §2.1),

Lemma 3.24 implies that

Lη(µ)(RΓcont(∆,Ainf(R∞)))⊗L
Ainf , θ◦ϕ−1 OC

∼−→ Lη(ζp−1)(RΓcont(∆, R∞)).

Since the edge maps (3.3.1) and (3.15.1) are compatible, Theorems 3.9 and 3.20 then imply that

Lη(µ)(RΓ((Uad
C )proét,Ainf))⊗L

Ainf , θ◦ϕ−1 OC
∼−→ Lη(ζp−1)(RΓ((Uad

C )proét, Ô+)).

Consequently, (4.2.2) is an isomorphism on every U, as desired. �

4.3. The object Ω̃X. To proceed further, we need to analyze the right side of (4.2.1), namely,

Ω̃X := Lη(ζp−1)(Rν∗(Ô+
Xad
C

)) ∈ D≥0(OX, ét), (4.3.1)

where, as in Theorem 4.2, the functor Lη is formed with respect to the ideal sheaf (ζp − 1)OX, ét.
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Proposition 4.4. For i ≥ 0, the OX, ét-module H i(Ω̃X) is locally free of rank
(

dimx(Xk)
i

)
at a variable

closed point x of Xk (in particular, each H i(Ω̃X)/pn is a quasi-coherent OX, ét/p
n-module). Moreover,

ν] : OX, ét
∼−→ ν∗(Ô+

Xad
C

), so that H0(Ω̃X) ∼= OX, ét. (4.4.1)

Proof. The claims are étale local (see [SP, 058S]), so we assume that X = Spf(R), that X is
connected, and that there is an étale Spf(OC)-morphism as in (1.5.1):

X = Spf(R)→ Spf(R�) =: X� with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q), (4.4.2)

so that the discussion and the notation of §3 apply. In particular, since R is R�-flat (see §1.5) and
∆ acts trivially on R� and R, Lemma 3.7 and Proposition 3.8 imply that

R⊕(di) ∼= H i
cont(∆, R

�)⊗R� R ∼=
Hi

cont(∆, R
�
∞)

Hi
cont(∆, R

�
∞)[ζp−1]

⊗R� R
∼−→ Hi

cont(∆, R∞)

Hi
cont(∆, R∞)[ζp−1]

. (4.4.3)

Thus, since the edge maps e of (3.3.1) are compatible for R and R�, Theorem 3.9 shows that

Hi((X�)ad
C , Ô+)

Hi((X�)ad
C , Ô+)[ζp−1]

⊗R� R
∼−→ Hi(Xad

C , Ô+)

Hi(Xad
C , Ô+)[ζp−1]

(4.4.4)

is an isomorphism of free R-modules of rank
(
d
i

)
. Consequently,

Hi((X�)ad
C , Ô+)

Hi((X�)ad
C , Ô+)[ζp−1]

⊗R� OSpf(R), ét
∼−→ Riν∗(Ô+)

(Riν∗(Ô+))[ζp−1]
∼= H i(Ω̃X), (4.4.5)

to the effect that H i(Ω̃X) is free of rank
(
d
i

)
, as desired. For (4.4.1), by §3.3, we need to show that

R
∼−→ (R∞)∆. This map is an inclusion of a direct summand whose complementary summand M∆

∞
is both p-torsion free and, by Proposition 3.8, killed by ζp − 1, so the claim follows. �

Remark 4.5. The proof of Proposition 4.4, specifically, (4.4.4) and (4.4.5), shows that if X is affine,

connected, and admits a coordinate map as in (1.5.1), then the presheaf assigning Hi(X′ad
C , Ô+)

Hi(X′ad
C , Ô+)[ζp−1]

to a variable X-étale affine X′ is already a sheaf. In particular, if the coordinate maps (1.5.1) exist
Zariski locally on X (for instance, if X is OC-smooth or arises as in (1.5.3) from a strictly semistable
X ), then the sheaves H i(Ω̃X) may be computed using the Zariski topology: more precisely, then the
object Ω̃XZar

defined by the formula (4.3.1) using the Zariski topology of X satisfies

H i(Ω̃XZar
)
∼−→ (H i(Ω̃X))|XZar

for every i. (4.5.1)

Corollary 4.6. The object AΩX is derived ξ-adically complete and

AΩpsh
X

∼−→ Rφ∗(AΩX)
(4.1.2)∼= Rφ∗(φ

−1(AΩpsh
X )). (4.6.1)

Proof. For the derived ξ-adic completeness, since φ−1 ◦Rφ∗ ∼= id, it suffices to show that the map

AΩX → R limn(AΩX ⊗L
Ainf

Ainf/ξ
n)

becomes an isomorphism after applying Rφ∗. Thus, since AΩpsh
X is derived ξ-adically complete (see

§4.1), it suffices to establish the adjunction isomorphism (4.6.1). For this, by the definition of Xpsh
ét

given in §4.1, we may assume that X is affine, connected, and admits an étale morphism (1.5.1). In
addition, since AΩpsh

X is derived ϕ(ξ)-adically complete, the Xpsh
ét -analogue of [BMS18, 9.15] reduces

us to proving that

AΩpsh
X ⊗L

Ainf
Ainf/(ϕ(ξ)n)

∼−→ Rφ∗(φ
−1(AΩpsh

X ⊗L
Ainf

Ainf/(ϕ(ξ)n))).
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By the five lemma, we may assume that n = 1 and, by the proof of Theorem 4.2,

AΩpsh
X ⊗L

Ainf
Ainf/(ϕ(ξ)) ∼= Lη(ζp−1)(Rφ∗(Rν∗(Ô+

Xad
C

))) =: Ωpsh
X .

It remains to recall from Remark 4.5 that the cohomology presheaves of Ωpsh
X are in fact sheaves. �

Our next task is to identify the vector bundles H i(Ω̃X) with the twists of the bundles given by
logarithmic differentials (see Theorem 4.11). For this, in Proposition 4.8, we first express H i(Ω̃X)

as
∧iH1(Ω̃X), and then, in (4.10.2), construct a map that relates H1(Ω̃X) to Kähler differentials.

4.7. The cup product maps. By the same arguments as in [SP, 068G], there are product maps

Rjν∗(Ô+)⊗OX, ét
Rj
′
ν∗(Ô+)

−∪−−−−→ Hj+j′(Rν∗(Ô+)⊗L
OX, ét

Rν∗(Ô+))

that satisfy x ∪ y = (−1)jj
′
y ∪ x (see [SP, 0BYI]). By [SP, 0B6C], there is a cup product map

Rν∗(Ô+)⊗L
OX, ét

Rν∗(Ô+)→ Rν∗(Ô+).

These maps combine to give the “cup product map” (where the tensor product is over OX, ét)⊗i
s=1R

1ν∗(Ô+)→ Riν∗(Ô+) for each i > 0. (4.7.1)

Proposition 4.8. For each i > 0, the map (4.7.1) induces the isomorphism∧i
(

R1ν∗(Ô+)

R1ν∗(Ô+)[ζp−1]

)
∼=
∧iH1(Ω̃X)

∼−→ H i(Ω̃X) ∼= Riν∗(Ô+)

Riν∗(Ô+)[ζp−1]
. (4.8.1)

Proof. By Proposition 4.4, each H i(Ω̃X) has no nontrivial 2-torsion, so the antisymmetry of the map
(4.7.1) in each pair of variables indeed induces the OX, ét-module map (4.8.1). For the isomorphism
claim, we may work étale locally, so we put ourselves in the situation (4.4.2). The edge maps

e : H i
cont(∆, R∞)→ H i(Xad

C , Ô+)

of (3.3.1) are compatible with cup products: to check this, one identifiesH i(Xad
C , Ô+) with the direct

limit of the ith Čech cohomology groups of Ô+ with respect to a variable proétale hypercovering of
Xad
C (see [SP, 01H0]) and uses the hypercovering construction of the cup product (see [SP, 01FP]).

Due to Theorem 3.9 and (4.4.3), it then remains to argue that via the cup product the identification

H1
cont(∆, R)

3.7∼= Rd induces H i
cont(∆, R)

3.7∼=
∧i(Rd),

which follows from [BMS18, 7.3 and 7.5]. �

To relateH1(Ω̃X) to Kähler differentials, we now review the needed material on cotangent complexes.

4.9. The completed cotangent complex L̂Ô+/Zp. Affinoid perfectoids form a basis of (Xad
C )proét

(see [Sch13a, 4.7]). Therefore, [BMS18, 3.14] ensures that for the sheaf of rings Ô+
Xad
C

, the cotangent

complex LÔ+/OC , whose terms are Ô+
Xad
C

-flat and which gives an object of D≤0(Ô+
Xad
C

), satisfies

LÔ+/OC ⊗
L
Z Z/pZ ∼= 0, and hence also L̂Ô+/OC

∼= 0.

Consequently, the derived p-adic completion turns the canonical morphism

LOC/Zp ⊗OC Ô
+
Xad
C

→ LÔ+/Zp into an isomorphism (LOC/Zp ⊗OC Ô
+
Xad
C

)̂ ∼−→ L̂Ô+/Zp
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in the derived category. By [GR03, 6.5.12 (ii)], the complex LOC/Zp is quasi-isomorphic to Ω1
OC/Zp

placed in degree 0. The p-divisibility of Ω1
OC/Zp then ensures that for every n > 0 we have

LOC/Zp⊗
L
OC (Ô+/pnÔ+) ∼= (Ω1

OC/Zp [p
n]⊗OC Ô

+)[1]
[Sch13a, 4.2 (iii)]∼= (Ω1

OC/Zp [p
n]⊗OC (O+/pnO+))[1],

where O+ abbreviates the integral structure sheaf O+
Xad
C

. Moreover, by [Fon82, Thm. 1′ (ii)],5

OC{1} := lim←−n, y 7→py
(

Ω1
OC/Zp [p

n]
)

is a free OC-module of rank 1.

In conclusion, letting {1} abbreviate the OC-tensor product with OC{1}, we obtain an isomorphism

(LOC/Zp⊗OC Ô
+
Xad
C

)̂ ∼= (Ô+
Xad
C

{1})[1], and hence also L̂Ô+/Zp
∼= (Ô+

Xad
C

{1})[1], inD(Ô+
Xad
C

). (4.9.1)

4.10. The relation between Ω̃X and Kähler differentials. The functoriality of the cotangent
complex supplies the pullback morphism

L̂OX, ét/Zp → Rν∗(L̂Ô+/Zp)
(4.9.1)∼= (Rν∗(Ô+

Xad
C

{1}))[1]. (4.10.1)

To explicate its source, we note that, as in §4.9, the explicit description of LOC/Zp gives

(LOC/Zp ⊗OC OX, ét)̂ ∼= (OX, ét{1})[1], so H0(L̂OX, ét/Zp)
∼= H0(L̂OX, ét/OC ).

Moreover, the short exact sequence [SP, 0D6K] leads to the identification H0(L̂OX, ét/OC ) ∼= Ω1
X/OC

(the R1 lim term vanishes due to the description [Ill71, III.3.2.7]: each XOC/pn is a local complete
intersection over OC/pn and, as may be seen using (1.5.1), no nonzero local section of a vector
bundle on XOC/pn vanishes on Xsm

OC/pn). By [Ill71, III.3.1.2], over Xsm, this identification gives a
quasi-isomorphism between

L̂OXsm, ét/OC and Ω1
Xsm/OC placed in degree 0.

Consequently, by applying H0(−) to the map (4.10.1) and twisting by OC{−1} we obtain the first
map in the following composition of OX, ét-module morphisms:

Ω1
X/OC{−1} → R1ν∗(Ô+

Xad
C

) � R1ν∗(Ô+)

(R1ν∗(Ô+))[ζp−1]
∼= H1(Ω̃X). (4.10.2)

By [BMS18, 8.15 and its proof], the restriction of this composition to Xsm is an isomorphism onto
((ζp−1) ·H1(Ω̃X))|Xsm . Moreover, by Proposition 4.4, the OX, ét-module H1(Ω̃X) is a vector bundle,
so it has no nonzero (ζp−1)-torsion and (H1(Ω̃X))/(ζp−1) has no nonzero local sections that vanish
on Xsm

OC/(ζp−1). In conclusion, we may divide the composition (4.10.2) by ζp − 1 to obtain a map

Ω1
X/OC{−1} → H1(Ω̃X) that is an isomorphism over Xsm. (4.10.3)

Theorem 4.11. The restriction of the map (4.10.3) to Xsm extends uniquely to an OX, ét-isomorphism

Ω1
X/OC , log{−1} ∼= H1(Ω̃X), (4.11.1)

which, by (4.4.1) and Proposition 4.8, induces an OX, ét-module identification

Ωi
X/OC , log{−i} ∼= H i(Ω̃X) for every i ≥ 0. (4.11.2)

5For passage from Ω1
Zp/Zp

of loc. cit. to Ω1
OC/Zp

, one may use [GR03, 6.5.20 (i)] to conclude that Ω1
OC/Zp

[p] = 0.
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The proof of Theorem 4.11 will use the formal GAGA and Grothendieck existence theorems. The
Noetherian cases of these theorems proved in [EGA III1, §5] have been extended to suitable non-
Noetherian settings by K. Fujiwara and F. Kato (with important inputs due to O. Gabber). The
following theorem summarizes the relevant to our aims special case of this extension.

Theorem 4.12 (Fujiwara–Kato). For a valuation ring V of height 1, a nonzero nonunit a ∈ V
such that V is a-adically complete, and a proper, finitely presented V -scheme Y , the functor

F 7→ (F/anF)n>0 (4.12.1)

is an equivalence from the category of finitely presented OY -modules F to that of sequences (Fn)n>0

of finitely presented OYV/an -modules Fn equipped with isomorphisms Fn+1|YV/an ' Fn.

Proof. The claim is a special case of [FK18, I.10.1.2]. In order to explain why loc. cit. implies our
assertion, we first reinterpret our source and target categories.

By a result of Gabber [FK18, 0.9.2.7], the ring V is “a-adically topologically universally adhesive,”
so, by [FK18, 0.8.5.25 (2)], it is also “topologically universally coherent with respect to (a).” In
particular, by [FK18, 0.8.5.24], every finitely presented V -algebra is a coherent ring, and hence,
by [FK18, 0.5.1.2], the OY -module OY is coherent (in the sense of [FK18, 0.4.1.4 (2)] or [EGA I,
0.5.3.1]). In particular, by [FK18, 0.4.1.8], an OY -module F is finitely presented if and only if F is
coherent, and likewise for OYV/an -modules for n > 0.

By [FK18, 0.8.4.2 and 0.8.5.19 (3)], the formal a-adic completion Ŷ of Y is covered by open affines
whose coordinate rings are “topologically universally adhesive” and hence, by [FK18, 0.8.5.18], also
“topologically universally Noetherian outside (a).” In particular, by [FK18, I.2.1.1 (1) and I.2.1.7],
the topological ring V is “topologically universally rigid-Noetherian” and the formal scheme Ŷ is
“universally rigid-Noetherian.” In addition, by [FK18, 0.8.4.5], the formal scheme Ŷ is locally of
finite presentation over Spf(V ). Thus, [FK18, I.7.2.2] applied with A = V and [FK18, I.7.2.1] imply
that Ŷ is “universally cohesive.” Then, by [FK18, I.7.2.4 and I.3.4.1], the functor (Fn) 7→ lim←−Fn is
an equivalence from the target category of (4.12.1) to the category of coherent O

Ŷ
-modules.

In conclusion, our claim is that the quasi-coherent pullback i∗ along the morphism i : Ŷ → Y of
locally ringed spaces induces an equivalence between the category of coherent OY -modules and that
of coherent O

Ŷ
-modules. This is a special case of [FK18, I.10.1.2] (see also [FK18, I.§9.1]). �

Remarks.

4.13. In Theorem 4.12, if each Fn is locally free, then the OY -module F that algebraizes the
sequence (Fn)n>0 is also locally free. Indeed, it is enough to argue that the stalks of F
at the points of YV/a are flat, so, since i is flat by [FK18, I.1.4.7 (2), 0.8.5.8 (2), 0.8.5.17],
it suffices to note that the O

Ŷ
-module i∗F ∼= lim←−Fn is locally free because the Nakayama

lemma ensures that Fn+1 is locally trivialized by any lifts of local sections that trivialize Fn.

4.14. Remark 4.13 and the proof of Theorem 4.12 also show that i is flat and that the functor
(Fn) 7→ lim←−Fn is an equivalence to the category of finitely presented O

Ŷ
-modules.

4.15. Proof of Theorem 4.11. As we observed in §4.10, no nonzero local section of a vector bundle
on X vanishes on Xsm. Thus, the desired isomorphism (4.11.1) is unique if it exists. Consequently,
we may assume that X = Spf

(
OC{t0, . . . , tr, t±1

r+1, . . . , t
±1
d }/(t0 · · · tr − p

q)
)
with r, d, and q as in

(1.5.1). In this case, X is an open subscheme of the formal p-adic completion of some proper, flat
W (k)-scheme X that Zariski locally has étale “coordinate morphisms” as in (1.5.2) with O there
replaced by W (k). Thus, finally, we may drop the previous assumptions and assume instead that
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X = X̂ with X as above. We equip X with the log structure OX ∩(OX [1
p ])×, so that X is log smooth

over W (k) (see §1.6, especially, Claim 1.6.1) and the map X → X of log ringed étale sites is strict
(see Claim 1.6.3). By Theorem 4.12, the map (4.10.3) algebraizes to an OX -module map

f : Ω1
X/OC{−1} → H.

By Proposition 4.4 and Remark 4.13, the OX -module H is locally free. By (4.10.3) and the
Nakayama lemma, f is surjective at every point of X sm

k .

Claim 4.15.1. There is an isomorphism HC ' Ω1
XC/C .

Proof. By the adic GAGA (see [Sch13a, 9.1 (i)]), it suffices to find an analogous isomorphism after
pullback to (XC)ad ∼= Xad

C . On the one hand, such a pullback ofHC is isomorphic to (R1ν∗(Ô+
Xad
C

))[1
p ].

On the other, [Sch13b, 3.23–3.24 and their proofs] supply an isomorphism between (R1ν∗(Ô+
Xad
C

))[1
p ]

and the pullback of Ω1
XC/C to (XC)ad. �

Claim 4.15.1 ensures that fC is a generically surjective morphism between isomorphic vector bundles
on XC . Since XC is proper and smooth, every global section of the structure sheaf of each connected
component of XC is constant, so det(fC) is an isomorphism, and hence fC is also an isomorphism.
In conclusion, f |X sm is a surjection between vector bundles of the same rank, so

f |X sm : Ω1
X sm/OC{−1} ∼−→ H|X sm . (4.15.2)

Since X \ X sm is of codimension ≥ 2 in X , limit arguments and [EGA IV2, 5.10.5] ensure that H
is the unique vector bundle extension of H|X sm to X . The isomorphism (4.15.2) then leads to an
isomorphism Ω1

X/OC , log{−1} ' H whose formal p-adic completion gives the desired (4.11.1). �

Remark 4.16. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then, by (4.5.1), the
identifications of Theorem 4.11 hold already for the Zariski topology; more precisely, then

H i(Ω̃XZar
) ∼= Ωi

X/OC , log{−i} as OXZar
-modules for every i ≥ 0.

We are ready to relate the de Rham specialization of AΩX to differential forms by combining the
results above with the argument from the proof of [BMS18, 14.1].

Theorem 4.17. There is an identification

AΩX ⊗L
Ainf , θ

OC ∼= Ω•X/OC , log. (4.17.1)

If the coordinate morphisms (1.5.1) exist Zariski locally on X, then (4.17.1) also holds for AΩXZar
.

Proof. Since ϕ(µ) = ϕ(ξ)µ (see §2.1), [BMS18, 6.11] gives the second identification in

AΩX ⊗L
Ainf , θ

OC ∼= AΩX ⊗L
Ainf , ϕ

Ainf ⊗L
Ainf , θ◦ϕ−1 OC ∼= (Lη(ϕ(ξ))(AΩX))⊗L

Ainf , θ◦ϕ−1 OC .

By [BMS18, 6.12], since Ainf/(ϕ(ξ)) ∼= OC via θ ◦ ϕ−1, the object (Lη(ϕ(ξ))(AΩX)) ⊗L
Ainf , θ◦ϕ−1 OC

is identified with the complex whose i-th degree term is

H i(AΩX ⊗L
Ainf , θ◦ϕ−1 OC)⊗OC

(
Ker(θ◦ϕ−1)

(Ker(θ◦ϕ−1))2

)⊗i (4.2.1)∼= H i(Ω̃X)⊗OC
(

Ker(θ◦ϕ−1)
(Ker(θ◦ϕ−1))2

)⊗i
and the differentials are given by Bockstein homomorphisms.
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Since O[C is perfect, L̂Ainf/Zp
∼= 0. Moreover, (4.9.1) applied with X = Spf(OC) implies that

L̂OC/Zp ∼= (OC{1})[1]. Thus, L̂OC/Ainf
∼= (OC{1})[1], where OC is an Ainf -algebra via θ ◦ ϕ−1. In

particular, due to [Ill71, III.3.2.4 (iii)], we have Ker(θ◦ϕ−1)
(Ker(θ◦ϕ−1))2

∼= OC{1}.

In conclusion, by (4.11.2) and the preceding discussion, AΩX⊗L
Ainf , θ

OC is identified with the complex
whose i-th degree term is Ωi

X/OC , log and the differentials are certain Bockstein homomorphisms.
Each Ωi

X/OC , log is a vector bundle, so the agreement of the Bockstein differentials with those of
Ω•X/OC , log may be checked over Xsm (compare with the argument for (4.10.3)), where it follows from
[BMS18, 14.1 (ii)] (or [Bha18, proof of Prop. 7.9]).

Due to Remark 4.16, the proof for AΩXZar
is the same. �

Corollary 4.18. The de Rham specialization of RΓ(Xét, AΩX) may be identified as follows:

RΓ(Xét, AΩX)⊗L
Ainf , θ

OC ∼= RΓlog dR(X/OC). (4.18.1)

Proof. The claim follows from Theorem 4.17 and the projection formula [SP, 0944]. �

Remark 4.19. In the case when X ∼= X̂ for a proper, flatW (k)-scheme X that étale locally has étale
coordinate morphisms (1.5.2) with O there replaced by W (k), we have the further identification

RΓ(Xét,Ω
•
X/W (k), log

)⊗L
W (k)

OC
∼−→ RΓ(Xét,Ω

•
X/OC , log) = RΓlog dR(X/OC),

where X is endowed with the log structure OX , ét ∩ (OX , ét[
1
p ])× (whose pullback to X is the log

structure OX, ét ∩ (OX, ét[
1
p ])× of X, see Claim 1.6.3) and W (k) is endowed with the log structure

associated to W (k) \ {0} ↪→W (k). Indeed, the pullback map between the E1-spectral sequences

Hj(XOC ,Ω
i
XOC /OC , log)⇒ H i+j(RΓ(Xét,Ω

•
XOC /OC , log)),

Hj(X,Ωi
X/OC , log)⇒ H i+j(RΓlog dR(X/OC))

is an isomorphism because, by the Grothendieck finiteness and comparison theorems [EGA III1, 3.2.1
and 4.1.7] (combined with limit arguments, which use Claim 1.6.1 and the fact that X is necessarily
finitely presented, see [SP, 053E]; alternatively, directly by [FK18, I.9.2.1]),

Hj(XOC ,Ω
i
XOC /OC , log)

∼−→ Hj(X,Ωi
X/OC , log) for all i, j.

Corollary 4.20. If X is proper over OC , then RΓ(Xét, AΩX) is a perfect object of D≥0(Ainf); in
other words, then RΓ(Xét, AΩX) is quasi-isomorphic to a bounded complex of finite free Ainf-modules.

Proof. By the Grothendieck finiteness theorem [Ull95, 5.3] and the spectral sequence as in Re-
mark 4.19, the OC-modules Hj(RΓlog dR(X/OC)) are finitely presented, and hence also perfect (see
[SP, 0ASP]). Thus, by Corollary 4.18 and [SP, 066U], the object RΓ(Xét, AΩX) ⊗L

Ainf
Ainf/(ξ) of

D≥0(OC) is perfect. Moreover, by Corollary 4.6, the object RΓ(Xét, AΩX) is derived ξ-adically
complete. Therefore, by [SP, 09AW], it is perfect as well, as desired. �

We close the section by comparing RΓ(Xét, AΩX) to its analogue defined using the Zariski topology.

Corollary 4.21. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then RΓ(Xét, AΩX)
may be computed using the Zariski topology of X; more precisely, then

RΓ(XZar, AΩXZar
)
∼−→ RΓ(Xét, AΩX). (4.21.1)
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Proof. By Theorem 4.17 and Corollary 4.18, the reduction of (4.21.1) modulo ξ is identified with

RΓ(XZar,Ω
•
X/OC , log)

∼−→ RΓ(Xét,Ω
•
X/OC , log),

and hence is an isomorphism as indicated. Thus, since, by Corollary 4.6 (and its Zariski analogue),
RΓ(XZar, AΩXZar

) and RΓ(Xét, AΩX) are derived ξ-adic complete, (4.21.1) is an isomorphism. �

Example 4.22. By §1.5, Corollary 4.21 applies to any OC-smooth X and, more generally, to any
X that Zariski locally arises from a strictly semistable scheme defined over a discrete valuation ring.

5. The absolute crystalline comparison isomorphism

In Theorem 4.17, we identified the OC-base change along θ of the object AΩX with Ω•X/OC , log. The
goal of this section is to similarly identify the Acris-base change of AΩX with an object that computes
the logarithmic crystalline (that is, Hyodo–Kato) cohomology of XOC/p over Acris (see Theorem 5.4).
This is more general because, on the one hand, θ factors through the map Ainf → Acris, while, on
the other, Ω•X/OC , log computes the log crystalline cohomology of XOC/p over OC . In fact, even the
map Ainf � Ainf/µ factors through Ainf → Acris, so the identification of the Acris-base change of
AΩX will capture the entire µ = 0 locus of Ainf (in contrast, the comparison with the p-adic étale
cohomology captured the µ 6= 0 locus, see Theorem 2.3).

In comparison to the case when X is smooth treated in [BMS18, §12], controlling the interaction of
the functor Lη(µ) with the relevant base changes seems more subtle. To overcome this, we resort
to the analysis of continuous group cohomology carried out in §3. Another major complication is
the presence of log structures. Specifically, not knowing the existence of logarithmic divided power
envelopes of certain nonexact logarithmic closed immersions in mixed characteristic, we are forced
to devise slightly indirect arguments when analyzing the relevant divided power envelopes. For this,
we rely on the results and arguments from [Kat89] and [Bei13b];6 the latter reference is especially
useful for us because some log structures that we use are not coherent (only quasi-coherent).

5.1. The ring Acris. Using the generator ξ of the kernel of θ : Ainf � OC , we let A0
cris be the Ainf -

subalgebra of Ainf [
1
p ] generated by the divided powers ξ

n

n! for n ≥ 1. The induced map θ : A0
cris � OC

identifies A0
cris with the divided power envelope of θ : Ainf � OC/p over (Zp, pZp) equipped with

the unique divided powers on pZp, see [Tsu99, A2.8]. Since θ(µ) = 0, we have µp ∈ pA0
cris, so the

p-adic topology of A0
cris agrees with the (p, µ)-adic topology. We set

Acris := (A0
cris)̂, where the completion is p-adic (equivalently, (p, µ)-adic).

The induced map θ : Acris � OC identifies Acris with the initial p-adically complete divided power
thickening of OC over Zp (see [Tsu99, A1.3 and A1.5]). By Proposition 5.36 below (or by [Tsu99,
A2.13] and [Bri06, 2.33]), the map A0

cris → Acris is an injection into an integral domain.

Analogously to §3.26, the ring Acris comes equipped with the Frobenius endomorphism ϕ that
intertwines the absolute Frobenius endomorphism of OC/p via the map θ. The identification

Acris
∼= (lim−→m

A
(m)
cris )̂, which results from the evident A0

cris
∼= lim−→m

A
0, (m)
cris , (5.1.1)

is Frobenius equivariant and compatible with the maps θ.

5.2. The log structure on Acris. For each n > 0, the ring Acris/p
n is a divided power thickening of

OC/p over Z/pn. Therefore, by [Bei13b, §1.17, Lemma], every quasi-coherent, integral log structure
N on OC/p for which N/(OC/p)× is uniquely p-divisible lifts uniquely to a quasi-coherent, integral

6We are citing the post-publication arXiv version of the article, which slightly differs from the published version.
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log structure on Acris/p
n. Thus, letting N be the default log structure §1.6 (1) on OC/p, for which

N/(OC/p)× ∼= Q≥0, we obtain compatible, quasi-coherent, integral log structures on the rings
Acris/p

n, to the effect that each Acris/p
n becomes a log PD thickening of OC/p. Explicitly, these

log structures are the pullbacks of the log structure on Acris associated to the prelog structure

O[C \ {0} → Acris, x 7→ [x]. (5.2.1)

In what follows, we always equip

• each Acris/p
n, as well as Acris, with the log structure described above;

• each Z/pnZ with the standard divided powers on pZ/pnZ and the trivial log structure.

For every divided power thickening Z̃ over Z/pnZ of an OC/p-scheme Z, the map Z z−→ Spec(OC/p)
extends uniquely to a PD map Z̃ z̃−→ Spec(Acris/p

n) (see the proof of [Tsu99, A1.5]). If, in addition,
Z̃ is equipped with a quasi-coherent, integral log structure for which z is enhanced to a map z]

of log schemes, then, by [Bei13b, §1.17, Exercise], the map z] extends uniquely to a PD map
z̃] : Z̃ → Spec(Acris/p

n) of log schemes.

5.3. The absolute crystalline cohomology of XOC/p. We let

(XOC/p/Zp)log cris

be the log crystalline site of XOC/p over Zp defined as in [Bei13b, §1.12]: the objects are the étale
XOC/p-schemes Z equipped with a divided power thickening Z̃ over some Z/pnZ such that Z̃ is, in
turn, equipped with a quasi-coherent, integral log structure whose pullback to Z is identified with
the pullback of the log structure of XOC/p (which is defined in §1.6 (2)); the coverings are the jointly
surjective étale log PD morphisms. The universal property of Acris reviewed in the last paragraph
of §5.2 gives the following identification of sites:

(XOC/p/Zp)log cris
∼= (XOC/p/Acris)log cris,

where (XOC/p/Acris)log cris is the log crystalline site of XOC/p over Acris defined analogously to the
site (XOC/p/Zp)log cris reviewed above (simply replace Z/pnZ by Acris/p

n). The absolute logarithmic
crystalline cohomology of XOC/p is the cohomology of the structure sheaf:

RΓlog cris(XOC/p/Acris) := RΓ((XOC/p/Acris)log cris, OXOC/p/Acris
).

We consider the morphism of topoi

u : (XOC/p/Acris)log cris → (XOC/p)ét
∼= Xét

that “forgets the thickenings Z̃” (see [Bei13b, §1.5]), and we use it to obtain the identification

RΓlog cris(XOC/p/Acris) ∼= RΓ(Xét, Ru∗(OXOC/p/Acris
)).

By the functoriality discussed in [Bei13b, §1.5, Corollary], the absolute Frobenius of XOC/p (which
is the multiplication by p on log structures) and the Frobenius of Acris induce the Acris-semilinear
Frobenius endomorphisms of Ru∗(OXOC/p/Acris

) and RΓlog cris(XOC/p/Acris).

The main goal of this section is the following identification of the Acris-base change of AΩX.

Theorem 5.4. There is a Frobenius-equivariant identification

AΩX⊗̂
L
Ainf

Acris
∼= Ru∗(OXOC/p/Acris

), (5.4.1)

where the Frobenii result from those discussed in §2.1, §2.2, §5.1, and §5.3 and, consistently with the
notation (1.7.1), we have AΩX⊗̂

L
Ainf

Acris = R limn(AΩX ⊗L
Ainf

Acris/p
n).
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We will first prove a version of Theorem 5.4 in the presence of fixed semistable coordinates. We will
then complete the proof by using “all possible coordinates” to globalize the argument. This overall
strategy is similar to the one used in [BMS18, §12] in the smooth case.

5.5. The local setup. For the local argument, we assume until §5.17 that X = Spf(R), that X is
connected, and that for some 0 ≤ r ≤ d and q ∈ Q>0 there is an étale OC-morphism

X = Spf(R)→ Spf(R�) with R� = OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q). (5.5.1)

We use the rings R�
∞ and R∞, the group ∆, and its generators δi introduced in §3.2, the rings

Ainf(R
�
∞), Ainf(R∞), A(R�), and A(R) and the modules N�

∞ and N∞ introduced in §3.14, the rings
A(m)

cris (R∞) and A(m)
cris (R) introduced in §3.27, and the object AΩpsh

X introduced in §4.1.

Roughly speaking, with the coordinates above, we will access the right side of (5.4.1) through the
logarithmic de Rham complex of an explicit log smooth lift Spf(Acris(R)) over Spf(Acris) of XOC/p
over Spec(OC/p) (see Proposition 5.13). This complex may be made explicit by expressing its
differentials in terms of the ∆-action on Acris(R) (see Lemma 5.15). In contrast, results from §3,
namely, Theorem 3.20 and (3.25.1), make the left side of (5.4.1) explicit. Once both sides are
explicit, one identifies them and establishes (the presheaf version of) the local case of Theorem 5.4.

However, this relatively short local proof, whose detailed version in the good reduction case is
given in [BMS18, 12.5], is ill-suited for globalizing. This is so because it appears difficult to ex-
tend the implicit exchange of the order of the functors Lη(µ) and −⊗̂L

Ainf
Acris in this argument

to general perfectoid covers that appear in the “all possible coordinates” technique. For instance,
one may attempt to use the almost purity theorem and Lemma 3.18 to reduce such commuta-
tivity to the “base case” of R∞, but this requires understanding the W (m[)-torsion in the groups
H i

cont(∆, (Ainf(R∞)⊗̂Ainf
Acris)/µ) that seem difficult to access due to pathologies of the ring Acris/µ.

Similarly to [BMS18, §12.2], to overcome this difficulty we will use the rings A(m)
cris reviewed in §3.26

that retain better finite type properties over Ainf than Acris. In particular, we use the work of §3 to
commute the functors Lη(µ) and −⊗̂L

Ainf
A

(m)
cris in the following proposition:

Proposition 5.6. In the local setting of §5.5, for every m ≥ p, we have

Lη(µ)(RΓproét(X
ad
C ,Ainf))⊗̂

L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf)⊗̂

L
Ainf

A
(m)
cris ). (5.6.1)

Proof. The map (5.6.1) exists because its target is derived p-adically complete (see [BMS18, 6.19]).
Moreover, by Theorems 3.20 and 3.34, it suffices to prove that

Lη(µ)(RΓcont(∆,Ainf(R∞)))⊗̂L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓcont(∆,A
(m)
cris (R∞))).

By Propositions 3.25 and 3.32, the “nonintegral” part N∞ does not contribute, so it suffices to show:

Lη(µ)(RΓcont(∆, A(R)))⊗̂L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓcont(∆, A
(m)
cris (R))). (5.6.2)

In turn, (5.6.2) follows from the triviality of the ∆-action on A(R)/µ and A(m)
cris (R)/µ (see §3.14 and

§3.27): namely, due to Lemma 3.7 and this triviality, the left (resp., right) side of (5.6.2) becomes

KA(R)(
δ1−1
µ , . . . , δd−1

µ )⊗̂Ainf
A

(m)
cris (resp., K

A
(m)
cris (R)

( δ1−1
µ , . . . , δd−1

µ )),

where the completed tensor product is nonderived (that is, termwise) because each pn, µn′ is an
A(R)-regular sequence with A(R)/(pn, µn

′
) flat over Ainf/(p

n, µn
′
) (see Lemma 3.13); the two Koszul

complexes may then be identified termwise (see §3.27). �
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Continuing to work in the local setting, we now express the (presheaf version of the) left side of
(5.4.1) in the form that will be convenient for the “all possible coordinates” technique.

Corollary 5.7. In the local setting of §5.5, there is a Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris
∼=
(

lim−→m

(
η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)))̂
(5.7.1)

(see (4.1.1) for AΩpsh
X ) where, on the right side, the direct limit and the p-adic completion are termwise.

Proof. The ∆-equivariant Frobenii of the rings A(m)
cris (R∞) are compatible as m varies (see §3.27), so,

due to the divisibility µ | ϕ(µ), they induce the Frobenius on the right side of (5.7.1). Proposition 5.6
and Theorem 3.34 give the Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

A
(m)
cris
∼= η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)
,

so it remains to pass to the direct limit and to form the p-adic completion. �

We turn to the right side of (5.4.1) and begin by constructing a log smooth lift Acris(R) of R/p.

5.8. The ring Acris(R). The “relative version” of Acris (resp., a “highly ramified cover” of this
relative version) is the A(R)-algebra (resp., Ainf(R∞)-algebra)

Acris(R) := A(R)⊗̂Ainf
Acris (resp., Acris(R∞) := Ainf(R∞)⊗̂Ainf

Acris),

where the completion is p-adic (equivalently, (p, µ)-adic, see §5.1). Due to the decomposition
(3.14.5), the subring Acris(R) ⊂ Acris(R∞) is an Acris(R)-module direct summand. The maps θ
from §3.14 and §5.1 induce compatible surjections

θ : Acris(R) � R and θ : Acris(R∞) � R∞.

We let A0
cris(R∞) be the Ainf(R∞)-subalgebra of Ainf(R∞)[1

p ] generated by the elements ξn

n! for
n ≥ 1. By [Tsu99, proof of A2.8], letting Ainf(R∞)[T

n

n! ]n≥1 denote the divided power polynomial
algebra over Ainf(R∞) in one variable, we have

A0
cris(R∞) ∼= (Ainf(R∞)[T

n

n! ]n≥1)/(T − ξ), so also A0
cris(R∞) ∼= Ainf(R∞)⊗Ainf

A0
cris.

Consequently, since ξ generates Ker(θ) ⊂ Ainf(R∞), the ring A0
cris(R∞) is identified with the divided

power envelope of (Ainf(R∞),Ker(θ) + pAinf(R∞)) over (Zp, pZp). By the previous display,

Acris(R∞) ∼= (A0
cris(R∞))̂.

By §3.14, the ring Acris(R∞) (resp., Acris(R)) is p-adically formally étale as an Acris(R
�
∞)-algebra

(resp., Acris(R
�)-algebra) and p-adically formally flat as an Acris-algebra. In particular, Acris(R∞)

inherits p-torsion freeness from Acris. Moreover, even though we will not use this, Acris(R∞) is also
µ-torsion free, as follows from Proposition 5.36 below (contrast this with an argument for (3.27.2)).

The rings Acris(R) and Acris(R∞) come equipped with Acris-semilinear Frobenius endomorphisms
that are compatible with their counterparts for A(m)

cris (R) and A(m)
cris (R∞) discussed in §3.27. The

profinite group ∆ acts continuously, Frobenius-equivariantly, and Acris-linearly on Acris(R) and
Acris(R∞). As in §3.27, the induced ∆-action on Acris(R)/µ is trivial.

We will endow Acris(R) with a log structure, which will in fact come from A(R).
35



5.9. The log structure on A(R). Provisionally, we consider the (fine) log structures on Ainf and
A(R) associated to the prelog structures

N≥0
a 7→ [(p1/p∞ )q ]a−−−−−−−−−−→ Ainf and Nr+1

≥0

(ai) 7→
∏
X
ai
i−−−−−−−−→ A(R).

Then, under the diagonal map N≥0 → Nr+1
≥0 , the ring A(R) is a (p, µ)-adically formally log smooth

Ainf -algebra (see (3.14.2) and [Kat89, 3.5–3.6]). To eliminate the dependence on q, we always, unless
noted otherwise, equip Ainf with the log structure associated to the prelog structure

O[C \ {0} → Ainf , x 7→ [x]. (5.9.1)

Likewise, we always equip A(R) with the log structure that is the base change of the fine log
structure on A(R) described above along the “change of log structure” self-map of Ainf determined

by N≥0
a 7→ ((p1/p∞ )q)a−−−−−−−−−−→ O[C \ {0}. Explicitly, this log structure is associated to the prelog structure

Nr+1
≥0

⊔
N≥0

(O[C \ {0})→ A(R) (5.9.2)

that embeds N≥0 diagonally into Nr+1
≥0 , sends an a ∈ N≥0 to ((p1/p∞)q)a, and sends the ith standard

basis vector of Nr+1
≥0 (resp., an x ∈ O[C \ {0}) to Xi (resp., to [x]).

These latter “default” log structures on Ainf and A(R) are quasi-coherent and integral and, by base
change, with them A(R) is (p, µ)-adically formally log smooth over Ainf . In fact, via the map θ,
the ring A(R) over Ainf becomes a (p, µ)-adically formally log smooth thickening of R/p over OC/p
(where R/p is endowed with the log structure discussed in §1.6).

The Frobenii of Ainf and A(R) extend to the log structures by letting them act as multiplication
by p on Nr+1

≥0 and N≥0 and as the p-th power map on O[C \ {0}. Consequently, the Frobenius of the
log Ainf -algebra A(R) lifts the absolute Frobenius of the log OC/p-algebra R/p.

The Frobenius-equivariant ∆-action on the Ainf -algebra A(R) (see §3.14) extends to a Frobenius-
equivariant ∆-action on the log Ainf -scheme Spec(A(R)): indeed, a δ ∈ ∆ sends each Xi with
0 ≤ i ≤ r to uδ, i ·Xi for some Teichmüller unit uδ, i ∈ A(R)× (see §3.14) and the prelog structures

Nr+1
≥0

(ai) 7→
∏
X
ai
i−−−−−−−−→ A(R) and Nr+1

≥0

(ai) 7→
∏

(uδ, i·Xi)ai−−−−−−−−−−−−→ A(R)

determine the same log structure on Spec(A(R)), namely, the one associated to the prelog structure

Zr+1 × Nr+1
≥0

((zi), (ai)) 7→
∏
u
zi
δ, i·
∏
X
ai
i−−−−−−−−−−−−−−−−→ A(R).

5.10. The logarithmic de Rham complex. With a slight abuse of notation, we let

Ω•A(R)/Ainf , log

be the (global section complex of the) logarithmic de Rham complex of Spf(A(R)) over Spf(Ainf).
More precisely, Ω•A(R)/Ainf , log is the (termwise) inverse limit over n, n′ > 0 of the logarithmic de
Rham complexes of A(R)/(pn, µn

′
) over Ainf/(p

n, µn
′
) (described, for instance, in [Ogu18, V.2.1.1]).

Due to the formal log smoothness of A(R) over Ainf , each Ωi
A(R)/Ainf , log is a free A(R)-module:

indeed, the logarithmic differentials

d log(X1), . . . , d log(Xd)

form an A(R)-basis of Ω1
A(R)/Ainf , log. We let

∂
∂ log(Xi)

: A(R)→ A(R) for i = 1, . . . , d (5.10.1)
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denote the dual basis of log Ainf -derivations (we do not notationally explicate the accompanying
homomorphisms from the log structure to A(R)). These satisfy the following explicit formulas that
are derived using the relation d log(X0) + · · ·+ d log(Xr) = 0:

∂
∂ log(Xi)

(Xj) =

{
0, if 0 < j 6= i,
Xi, if j = i,

and ∂
∂ log(Xi)

(X0) =

{
−X0, if 0 < i ≤ r,
0, if r < i.

(5.10.2)

The ∂
∂ log(Xi)

also define an isomorphism Ω1
A(R)/Ainf , log

∼= A(R)⊕d, which extends to an isomorphism

Ω•A(R)/Ainf , log
∼= KA(R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
(5.10.3)

that may be considered canonical because its construction only uses data determined by the local
coordinate map (5.5.1). The Frobenius of the log Ainf -algebra A(R) multiplies each d log(Xi) by p,
so its effect on the right side of (5.10.3) is given in each degree j by pj times the Frobenius of A(R).

5.11. The log structure on Acris(R). Unless specified otherwise, we equip the A(R)-algebras
Acris(R) and Acris(R)/pn for n > 0 with the pullback of the log structure on A(R) determined by
(5.9.2). Thus, since the log structures (5.9.1) on Ainf and (5.2.1) on Acris agree, Acris(R) is p-adically
formally log smooth over Acris. Letting the completion be p-adic, we set

Ω•Acris(R)/Acris, log
:= Ω•A(R)/Ainf , log⊗̂Ainf

Acris,

which is the (global sections of the) logarithmic de Rham complex of Spf(Acris(R)) over Spf(Acris).

We use the p-adic completeness of Acris(R) and its p-adic formal flatness over Acris (see §5.8) to
extend the divided power structure of Acris to Acris(R) (see [SP, 07H1]). In effect, Acris(R) over Acris

becomes a p-adically formally log smooth log PD thickening of R/p over OC/p (compare with §5.9).

Through results of [Bei13b], the following lemma will be key for relating the right side of (5.4.1) to
the logarithmic de Rham cohomology of Spf(Acris(R)) over Spf(Acris) in Proposition 5.13.

Lemma 5.12. For each n ≥ 1, the log smooth log PD thickening Acris(R)/pn over Acris/p
n of R/p

over OC/p is PD smooth in the sense of [Bei13b, §1.4] (see the proof for the definition).

Proof. The PD smoothness is the claim that for every log PD thickening U ↪→ Ũ over the log PD
scheme Acris/p

n such that U is affine and the log structure of Ũ (and hence also of U) is integral
and quasi-coherent, the indicated diagonal log PD morphism exists in every commutative diagram

U //� _

��

Spec(R/p) �
�

// Spec(Acris(R)/pn)

log PD
��

Ũ
log PD

//

log PD
33

Spec(Acris/p
n)

of log schemes and log (or log PD where indicated) scheme morphisms over Acris/p
n (see loc. cit.).

This sought property of Acris(R)/pn is invariant under base change that changes the log structure on
Acris/p

n, so we may assume that Acris/p
n and Acris(R)/pn are instead equipped with the pullbacks of

the “provisional” fine log structures defined in §5.9. Moreover, since the PD structure of Acris(R)/pn

is extended from Acris/p
n, the log PD thickening Spec(R/p) ↪→ Spec(Acris(R)/pn) over Acris/p

n is
its own log PD-envelope over Acris/p

n (in the sense of [Bei13b, §1.3]). Thus, the log smoothness of
Acris(R)/pn over Acris/p

n and [Bei13b, §1.4, Remarks (ii)] give the claimed PD smoothness. �
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Proposition 5.13. In the local setting of §5.5, letting ∂
∂ log(Xi)

: A
(m)
cris (R) → A

(m)
cris (R) denote the

A
(m)
cris -derivations induced from (5.10.1) by base change, we have Frobenius-equivariant identifications

RΓlog cris(OXOC/p/Acris
) ∼= Ω•Acris(R)/Acris, log

(5.10.3)∼=
(

lim−→m≥p

(
K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

))) ̂
(the Frobenius action on the last term is analogous to the one described after (5.10.3)).

Proof. By Lemma 5.12, each Acris(R)/pn over Acris/p
n is a PD smooth thickening of R/p over OC/p,

so [Bei13b, (1.8.1)] gives the Frobenius-equivariant identification7

RΓlog cris(OXOC/p/Acris
) ∼= RΓét(Spf(Acris(R)),Ω•Spf(Acris(R))/ Spf(Acris), log).

Since the sheaves Ωi
Spf(Acris(R))/Spf(Acris), log are locally free and, in particular, quasi-coherent, they

are acyclic for Γét(Spf(Acris(R)),−) (see [FK18, I.1.1.23 (2)]), so we have

RΓét(Spf(Acris(R)),Ω•Spf(Acris(R))/ Spf(Acris), log) ∼= Γét(Spf(Acris(R)),Ω•Spf(Acris(R))/ Spf(Acris), log).

It remains to observe that the latter complex is identified with Ω•Acris(R)/Acris, log. �

Having expressed the presheaf versions of both sides of (5.4.1) in the desired forms in Corollary 5.7
and Proposition 5.13, we now seek to exhibit an isomorphism between them in Proposition 5.16.

5.14. The element log([ε]). Fix an m ≥ p2. By the proof of [BMS18, 12.2],8 each µn

(n+1)! ∈ A
(m)
cris [1

p ]

with n ≥ 1 lies in A
(m)
cris , is p-adically topologically nilpotent there, and p-adically tends to 0 as

n→∞. Consequently, recalling that µ = [ε]− 1, we may define

log([ε]) := µ− µ2

2 + µ3

3 − . . . in A
(m)
cris ,

so that the Frobenius maps log([ε]) to p · log([ε]). By loc. cit.,9 the elements log([ε]) and µ are unit
multiples of each other in A

(m)
cris , so

(log([ε]))n

µ·n! lies in A
(m)
cris , is topologically nilpotent if n > 1, and

p-adically tends to 0 in A(m)
cris as n→∞.

The following lemma describes the ∆-action on A(m)
cris (R) in terms of the derivations ∂

∂ log(Xi)
induced

on A(m)
cris (R) by base change from the derivations (5.10.1).

Lemma 5.15. For m ≥ p2, a δi ∈ ∆ with i = 1, . . . , d (see §3.2) acts on A(m)
cris (R) as the series

exp(log([ε]) · ∂
∂ log(Xi)

) :=
∑

n≥0
(log([ε]))n

n! ( ∂
∂ log(Xi)

)n. (5.15.1)

In particular, for m and i as above, we have the following description of the “q-derivative” δi−1
µ :

δi−1
µ = ∂

∂ log(Xi)
·
(∑

n≥1
(log([ε]))n

µ·n! ( ∂
∂ log(Xi)

)n−1
)

as maps A
(m)
cris (R)→ A

(m)
cris (R), (5.15.2)

7Loc. cit. uses the logarithmic PD de Rham complex, that is, the quotient of Ω•Spf(Acris(R))/ Spf(Acris), log by the PD
relations d(u[m]) = u[m−1]du, see [Bei13b, §1.7]. In our situation, there is no difference: since the PD structure of
Acris(R)/pn is extended from the base Acris/p

n, the PD relations hold already in Ω•Spf(Acris(R))/ Spf(Acris), log.
8The argument is as follows. Since p, µξ is an Ainf -regular sequence, µp − µξp ∈ pµξAinf , so µp−1

p
= ξp

p
+ ξa with

a ∈ Ainf . Thus, since (p2)!
pp
∈ pZ, we have

(
µp−1

p

)p
∈ pA(m)

cris , so
µp−1

p
is topologically nilpotent in A(m)

cris . In effect,

since 1
(n+1)!

p
b n
p−1
c ∈ Zp, the elements µn

(n+1)!
tend to 0 in the p-adic topology of A(m)

cris and are topologically nilpotent.
9The argument is as follows. By the previous footnote,

∑
n≥p

(−1)nµn

n+1
lies in pA(m)

cris . Thus, since each µn

n+1
with

0 < n < p is topologically nilpotent in A(m)
cris , so is

∑
n≥1

(−1)nµn

n+1
. In conclusion, log([ε])

µ
is a unit in A(m)

cris .
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where the parenthetical factor defines an A(m)
cris -linear additive automorphism of A(m)

cris (R).

Proof. The argument is similar to that of [BMS18, 12.4]. Firstly, (log([ε]))n

n! tends to 0 in the p-adic
topology of A(m)

cris (see §5.14), so the series (5.15.1) does define an A(m)
cris -linear additive endomorphism

of A(m)
cris (R). This endomorphism is also multiplicative because, by the Leibniz rule,

(log([ε]))n

n! ( ∂
∂ log(Xi)

)n(ab) =
∑n

j=0

(
(log([ε]))j

j! ( ∂
∂ log(Xi)

)j(a) · (log([ε]))n−j

(n−j)! ( ∂
∂ log(Xi)

)n−j(b)
)
.

Therefore, in the case R = R�, the desired equality

δi = exp(log([ε]) · ∂
∂ log(Xi)

) of endomorphisms A
(m)
cris (R�)→ A

(m)
cris (R�) (5.15.3)

follows by noting that both of its sides agree on every Xj : indeed, due to the formulas (5.10.2), they
send Xi to [ε]Xi, fix each Xj with 0 < j 6= i, and send X0 to [ε−1]X0 if i ≤ r and to X0 if r < i.

In the general case, since µ, and hence also ξ, divides each (log([ε]))n

n! with n ≥ 1 (see §5.14), both
sides of the equality (5.15.3) induce the trivial action modulo (p, ξ) (see §3.27). Therefore, due to
the formal étaleness of A(m)

cris (R) over A(m)
cris (R�) and the settled R = R� case, the sides agree.

Since A(m)
cris (R) is µ-torsion free (see (3.27.2)) and µ | (log([ε]))n

n! in A(m)
cris , the equality (5.15.2) follows

from (5.15.3). Since (log([ε]))n

µ·n! is a unit for n = 1, is topologically nilpotent for n > 1 (see §5.14), and
p-adically tends to 0 as n→∞, the parenthetical factor of (5.15.2) is indeed an automorphism. �

We are ready to settle the (presheaf version of the) local case of Theorem 5.4.

Proposition 5.16. In the local setting of §5.5, for m ≥ p2 and i = 1, . . . , d, the morphism(
A

(m)
cris (R)

∂
∂ log(Xi)−−−−−→ A

(m)
cris (R)

) (
id,
∑
n≥1

(log([ε]))n

n!
( ∂
∂ log(Xi)

)n−1
)

−−−−−−−−−−−−−−−−−−−−−−→
(
A

(m)
cris (R)

δi−1−−−→ A
(m)
cris (R)

)
(5.16.1)

of complexes in degrees 0 and 1 is Frobenius equivariant, granted that the usual Frobenius action on
the copy of A(m)

cris (R) in degree 1 of the source is multiplied by p (compare with the description after
(5.10.3)). For m ≥ p2, these morphisms induce a Frobenius-equivariant quasi-isomorphism

K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
∼−→ η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)
, (5.16.2)

which, as m varies, induces the Frobenius-equivariant identification (a local version of (5.4.1)):

RΓlog cris(OXOC/p/Acris
) ∼= RΓ(Xpsh

ét , AΩpsh
X )⊗̂L

Ainf
Acris. (5.16.3)

Proof. The Frobenius-equivariance of (5.16.1) follows from the equations
∂

∂ log(Xi)
◦ ϕ = p ·

(
ϕ ◦ ∂

∂ log(Xi)

)
and ϕ(log([ε])) = p · log([ε])

(see §5.10 and §5.14). Since ∆ acts trivially on A(m)
cris (R)/µ (see §3.27), the subcomplex

η(µ)

(
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)
)
⊂ K

A
(m)
cris (R)

(δ1 − 1, . . . , δd − 1)

is obtained by letting its j-th term be the submodule of the j-th term ofK
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)

comprised of the µj-multiples (see (1.7.2) and (1.7.3)); since µ | ϕ(µ), this subcomplex is Frobenius-
stable. Thus, Lemma 5.15 implies that the morphisms (5.16.1) induce an isomorphism

K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
∼−→ η(µ)

(
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)
)
. (5.16.4)
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Proposition 3.32 (with Lemma 3.7) implies that the natural inclusion of the target of (5.16.4) into the
target of (5.16.2) is a quasi-isomorphism, and (5.16.2) follows. The maps (5.16.2) are compatible
as m varies, so, by passing to their limit over m, forming the termwise p-adic completions, and
applying Corollary 5.7 and Proposition 5.13, we obtain the desired identification (5.16.3). �

Proposition 5.16 concludes the “single coordinate patch” part of the proof of Theorem 5.4, so we turn
to the “all possible coordinates” technique that will globalize the argument. For this, the key steps
are, for a small enough affine X, to build in §5.21 a functorial in X explicit complex that computes
the presheaf version of the left side of (5.4.1), to then build in §5.32 such a complex for the right side
of (5.4.1), and, finally, to build in §5.38 and Proposition 5.39 a natural quasi-isomorphism between
these complexes. Each of these steps will use our work in the setting of §5.5 discussed so far.

5.17. More general coordinates. Continuing to work locally, we now assume until the final part
of the proof of Theorem 5.4 given in §5.40 that X = Spf(R) is affine and nonempty, that every two
irreducible components of Spec(R⊗OC k) meet (so that X is connected), and that we have

• a finite set Σ that indexes the coordinates of the formal OC-torus

R�
Σ := OC{t±1

σ |σ ∈ Σ};

• a nonempty finite set Λ and, for each λ ∈ Λ, an OC-algebra

R�
λ := OC{tλ, 0, . . . , tλ, rλ , t

±1
λ, rλ+1, . . . , t

±1
λ, d}/(tλ, 0 · · · tλ, rλ − p

qλ) with qλ ∈ Q>0;

• a closed immersion

X = Spf(R)→ Spf(R�
Σ)×

∏
λ∈Λ Spf(R�

λ ), (5.17.1)

where the products are formed over Spf(OC), subject to the requirements that already

X = Spf(R)→ Spf(R�
Σ) is a closed immersion (5.17.2)

and, for each λ ∈ Λ, the induced map

X = Spf(R)→ Spf(R�
λ ) is étale. (5.17.3)

By (5.17.3), for each λ ∈ Λ, the irreducible components of Spec(R⊗OC k) are a priori identified with
the connected components of

⊔
i Spec((R⊗OC k)/(tλ, i)). Thus, our assumption on Spec(R⊗OC k)

implies that each irreducible component of Spec(R⊗OC k) is cut out by a unique tλ, i with 0 ≤ i ≤ rλ.

By §1.5, if R ⊗OC k is not k-smooth, then R determines qλ, which therefore does not depend on
λ. On the other hand, if R ⊗OC k is k-smooth, then qλ may depend on λ. This, together with the
possibility that rλ > 0, complicates matters in the “simpler” smooth case but is crucial to allow in
order for the eventual “all possible coordinates” constructions to be functorial in R.

For any X, the data above exist on a basis for Xét: indeed, a coordinate map (5.17.3) exists étale
locally on X (see §1.5), and then R is the p-adic completion of a finite type OC-algebra, so the
Zariski topology of Spf(R) has a basis whose elements embed into some (variable) ĜΣ

m.

Each (5.17.3) is an instance of the local setting of §5.5, so the discussion between §5.5 and the
present section applies to it. Another instance is the identity map Spf(R�

Σ)
=−→ Spf(R�

Σ) (with r = 0
and d = #Σ), so the indicated discussion also applies to the ring R�

Σ in place of R�.

Our first aim in this setup is to reexpress the (presheaf version of the) left side of (5.4.1) in §5.21.
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5.18. The perfectoid RΣ,Λ,∞. For each λ ∈ Λ, we set

∆λ :=

{
(ε0, . . . , εd) ∈

(
lim←−m≥0

(µpm(OC))
)⊕(d+1) ∣∣∣ ε0 · · · εrλ = 1

}
' Z⊕dp

and let

Spa(Rλ,∞[1
p ], Rλ,∞)→ Spa(R[1

p ], R) and Spa(R�
λ,∞[1

p ], R�
λ,∞)→ Spa(R�

λ [1
p ], R�

λ )

be the affinoid perfectoid pro-(finite étale) ∆λ-covers defined as in §3.2 using the coordinate map

Spf(R)
(5.17.3)−−−−→ Spf(R�

λ ). Similarly, we set

∆Σ :=
(

lim←−m≥0
(µpm(OC))

)Σ
' ZΣ

p

and let
Spa(R�

Σ,∞[1
p ], R�

Σ,∞)→ Spa(R�
Σ[1
p ], R�

Σ)

be the affinoid perfectoid pro-(finite étale) ∆Σ-cover defined as in §3.2 using the coordinate map
Spf(R�

Σ)
=−→ Spf(R�

Σ), so that, explicitly,

R�
Σ,∞

∼=
(

lim−→m≥0
(OC{t±1/pm

σ |σ ∈ Σ})
) ̂.

By forming products over Spa(OC [1
p ],OC) and setting

∆Σ,Λ := ∆Σ ×
∏
λ∈Λ ∆λ,

we obtain the affinoid perfectoid pro-(finite étale) ∆Σ,Λ-cover

Spa(R�
Σ,∞[1

p ], R�
Σ,∞)×

∏
λ∈Λ Spa(R�

λ,∞[1
p ], R�

λ,∞)→ Spa(R�
Σ[1
p ], R�

Σ)×
∏
λ∈Λ Spa(R�

λ [1
p ], R�

λ ),

which we abbreviate as

Spa(R�
Σ,Λ,∞[1

p ], R�
Σ,Λ,∞)→ Spa(R�

Σ,Λ[1
p ], R�

Σ,Λ).

Its base change along the generic fiber of (5.17.1) is the pro-(finite étale) ∆Σ,Λ-cover

Spa(RΣ,Λ,∞[1
p ], RΣ,Λ,∞)→ Spa(R[1

p ], R), (5.18.1)

which contains each Spa(Rλ,∞[1
p ], Rλ,∞)→ Spa(R[1

p ], R) as a subcover. Thus, by the almost purity
theorem [Sch12, 7.9 (iii)], the OC-algebra RΣ,Λ,∞ defined by (5.18.1) is perfectoid (the notions of
‘perfectoid’ used here and in [Sch12] agree by [BMS18, 3.20]).

The topological generators for ∆Σ and ∆λ fixed in §3.2 are

δσ := (1, . . . , 1, ε, 1, . . . , 1) for σ ∈ Σ, where the σ-th entry is nonidentity,

and
δλ, i := (ε−1, 1, . . . , 1, ε, 1, . . . , 1) for i = 1, . . . , rλ, where the 0-th and i-th entries are nonidentity;
δλ, i := (1, . . . , 1, ε, 1, . . . , 1) for i = rλ + 1, . . . , d, where the i-th entry is nonidentity.

Jointly, the δσ’s and the δλ, i’s topologically freely generate ∆Σ,Λ.

5.19. The rings Ainf(RΣ,Λ,∞) and A(m)
cris (RΣ,Λ,∞). Similarly to §3.14, we set

Ainf(RΣ,Λ,∞) := W (R[Σ,Λ,∞).

By Lemma 3.13, for n, n′ > 0, the sequence (pn, µn
′
) is Ainf(RΣ,Λ,∞)-regular, Ainf(RΣ,Λ,∞)/(pn, µn

′
)

is Ainf/(p
n, µn

′
)-flat, and Ainf(RΣ,Λ,∞)/µ is p-adically complete. As in §3.14, we have the surjection

θ : Ainf(RΣ,Λ,∞) � RΣ,Λ,∞ (5.19.1)
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that intertwines the Witt vector Frobenius of Ainf(RΣ,Λ,∞) with the absolute Frobenius of RΣ,Λ,∞/p
and whose kernel is generated by the regular element ξ. To fix further notation, we let

A(R�
Σ) ∼= Ainf{X±1

σ |σ ∈ Σ},

A(R�
λ ) ∼= Ainf{Xλ, 0, . . . , Xλ, rλ , X

±1
λ, rλ+1, . . . , X

±1
λ, d}/(Xλ, 0 · · ·Xλ, rλ − [(p1/p∞)qλ ])

(5.19.2)

be the isomorphisms (3.14.2) for R�
Σ and R�

λ . Similarly to §3.27, for an m ∈ Z≥1, we set

A(m)
cris (RΣ,Λ,∞) := Ainf(RΣ,Λ,∞)⊗̂Ainf

A
(m)
cris , (5.19.3)

where the completion is (p, µ)-adic (equivalently, p-adic if m ≥ p). Since Ainf(RΣ,Λ,∞) is (p, µ)-
adically formally flat over Ainf , the ring A(m)

cris (RΣ,Λ,∞) inherits p-torsion freeness from A
(m)
cris . By

also using the short exact sequences (3.26.3) and the vanishing (3.26.2), we see that

A(m)
cris (RΣ,Λ,∞) is µ-torsion free and A(m)

cris (RΣ,Λ,∞)/µ is p-adically complete.

As in §3.27, the rings A(m)
cris (RΣ,Λ,∞) come equipped with A(m)

cris -semilinear Frobenius endomorphisms
that are compatible as m varies. The maps (3.26.1) and (5.19.1) give rise to the surjection

θ : A(m)
cris (RΣ,Λ,∞) � RΣ,Λ,∞. (5.19.4)

The actions of the profinite group ∆Σ,Λ on Ainf(RΣ,Λ,∞) and A(m)
cris (RΣ,Λ,∞) are compatible, con-

tinuous, and Frobenius-equivariant.

The following consequence of Remark 3.35 will help us build a desired functorial complex in §5.21.

Proposition 5.20. In the local setting of §5.17, for every m ≥ p, the analogue for RΣ,Λ,∞ of the
edge map (3.15.1) induces the Frobenius-equivariant identification

η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

)
∼−→ RΓ(Xpsh

ét , AΩpsh
X )⊗̂L

Ainf
A

(m)
cris . (5.20.1)

In particular, we have the following Frobenius-equivariant identification in the derived category:(
lim−→m

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

)))̂ ∼−→ RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris,

where the direct limit and the p-adic completion of the complexes in the source are formed termwise.

Proof. Proposition 5.6 gives the Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

A
(m)
cris
∼= Lη(µ)(RΓproét(X

ad
C ,Ainf)⊗̂

L
Ainf

A
(m)
cris ).

Therefore, since the pro-(finite étale) affinoid perfectoid ∆Σ,Λ-cover Spa(RΣ,Λ,∞[1
p ], RΣ,Λ,∞) of

Spa(R[1
p ], R) contains Spa(Rλ,∞[1

p ], Rλ,∞) as a subcover (see §5.18), Remark 3.35 applies and (with

Lemma 3.7) gives (5.20.1). The remaining assertion follows: each A(m)
cris (RΣ,Λ,∞) is p-torsion free, so

the termwise p-adic completion of the source there agrees with the derived p-adic completion. �

5.21. A functorial complex that computes RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris. For a fixed R, we form
the filtered direct limit over the closed immersions (5.17.1) for varying Σ and Λ to build the complex

lim−→Σ,Λ

((
lim−→m≥p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

))) )̂
, (5.21.1)

where the direct limits and the p-adic completion are termwise. By its construction, this complex
comes equipped with an Acris-semilinear Frobenius endomorphism. The isomorphisms of Proposi-
tion 5.20 are compatible with enlarging Σ and Λ, so they show that in the derived category the
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complex (5.21.1) is canonically and Frobenius-equivariantly identified with

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris.

Moreover, if R′ is a p-adically formally étale R-algebra equipped with data as in §5.17 for some
sets Σ′ and Λ′, then the term indexed by Σ, Λ (and by the closed immersion (5.17.1)) of the direct
limit (5.21.1) maps to the term indexed by Σ ∪ Σ′, Λ ∪ Λ′ (and by a closed immersion of Spf(R′))
of the analogous direct limit for R′, compatibly with the transition maps in (5.21.1) and with the
Frobenius. Thus, the complex (5.21.1) equipped with its Frobenius is functorial in R, and so is its
identification with RΓ(Xpsh

ét , AΩpsh
X )⊗̂L

Ainf
Acris.

Our next aim is to similarly reexpress the (presheaf version of the) right side of (5.4.1) in §5.32.

5.22. The completed log PD envelope DΣ,Λ. By §5.9, the maps θ : A(R�
λ ) � R�

λ of (3.14.3)
are compatible with log structures. Thus, they give rise to a Frobenius-equivariant closed immersion

Spec(R/p) ↪→ Spf(A(R�
Σ))×

∏
λ∈Λ Spf(A(R�

λ )) =: Spf(A�
Σ,Λ) (5.22.1)

of (p, µ)-adic formal log schemes, where the products are over the (p, µ)-adic formal log scheme
Spf(Ainf). By [Kat89, 4.1, 4.4], for n, n′ > 0, the quasi-coherent log structure of Spec(A�

Σ,Λ/(p
n, µn

′
))

and the log scheme map Spec(A�
Σ,Λ/(p

n, µn
′
))→ Spec(Ainf/(p

n, µn
′
)) are integral.

For n, n′ > 0, by [Bei13b, 1.3, Theorem], the Ainf/(p
n, µn

′
)-base change of the closed immersion

(5.22.1) has a log PD envelope

Spec(DΣ,Λ, n, n′) over (Z/pnZ, pZ/pnZ),

which, in particular, is a nil thickening of Spec(R/p), so is affine as indicated (see [SP, 01ZT]). In
fact, DΣ,Λ, n, n′ is supplied already by [Kat89, 5.4] because the closed immersion (5.22.1) is the base
change of a similar closed immersion of fine formal log schemes along a “change of log structure”
self-map of Ainf (see §5.9).10

If n′ is large enough relative to n, so that µn′ ∈ pnAcris, then, by §§5.1–5.2, Spec(Acris/p
n) is identi-

fied with the log PD envelope of the exact log closed immersion Spec(OC/p) ↪→ Spec(Ainf/(p
n, µn

′
))

over (Z/pnZ, pZ/pnZ). Thus, for such n, n′, the envelope Spec(DΣ,Λ, n, n′) comes equipped with a
canonical log PD morphism to Spec(Acris/p

n) that identifies it with the log PD envelope of

Spec(R/p) ↪→ Spec(A�
Σ,Λ ⊗Ainf

Acris/p
n) over Spec(OC/p) ↪→ Spec(Acris/p

n).

Thus, letting DΣ,Λ, n be this log PD envelope, that is, the common DΣ,Λ, n, n′ for large n′, we have
DΣ,Λ, n/p

n−1 ∼= DΣ,Λ, n−1 for n > 1 and obtain a p-adic formal log Spf(Acris)-scheme Spf(DΣ,Λ)
that fits into a factorization

Spec(R/p) ↪→ Spf(DΣ,Λ)→ Spf(Acris(R
�
Σ))×

∏
λ∈Λ Spf(Acris(R

�
λ )) =: Spf(A�

Σ,Λ, cris), (5.22.2)

where the products are formed over the p-adic formal log scheme Spf(Acris) and we have

A�
Σ,Λ, cris

∼= A�
Σ,Λ⊗̂Ainf

Acris.

By functoriality, Spf(DΣ,Λ) comes equipped with an Acris-semilinear Frobenius. In addition, since,
for each n > 0, the ideal defining the exact closed immersion Spec(R/p) ↪→ Spec(R/pn) inherits
divided powers from Z/pn, the universal property of DΣ,Λ supplies the factorization

Spec(R/p) ↪→ Spf(R) ↪→ Spf(DΣ,Λ) over Spec(OC/p) ↪→ Spf(OC) ↪→ Spf(Acris). (5.22.3)

10The two references characterize the log PD envelope differently, but they give the same Spec(DΣ,Λ, n, n′), in
essence because the image of any monoid morphism M →M ′ with M finitely generated is finitely generated.
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The profinite group ∆Σ,Λ acts continuously and Frobenius-equivariantly on A�
Σ,Λ over Ainf (see

§3.14) and, due to the last paragraph of §5.9, this action extends to a ∆Σ,Λ-action on the (p, µ)-adic
formal log scheme Spf(A�

Σ,Λ). Thus, since the closed immersion (5.22.1) is ∆Σ,Λ-equivariant, ∆Σ,Λ

acts Acris-linearly and Frobenius-equivariantly on each DΣ,Λ, n and also on DΣ,Λ.

The main practical deficiency of DΣ,Λ is its inexplicit nature, for instance, we do not know whether
DΣ,Λ is p-torsion free. In contrast, its utility for us manifests itself through the following proposition.

Proposition 5.23. In the local setting of §5.17, the complex (where the inverse limit is termwise)

Ω•DΣ,Λ/Acris, log,PD
:= lim←−n>0

(
Ω•

(A�Σ,Λ, cris/p
n)/(Acris/pn), log

⊗A�Σ,Λ, cris/p
n DΣ,Λ, n

)
is canonically and Frobenius-equivariantly identified in the derived category as follows:

RΓlog cris(OXOC/p/Acris
) ∼= Ω•DΣ,Λ/Acris, log,PD. (5.23.1)

Under this identification, the map

RΓlog cris(OXOC/p/Acris
)→ RΓlog dR(X/OC) is Ω•DΣ,Λ/Acris, log,PD

(5.22.3)−−−−→ Ω•Spf(R)/OC , log. (5.23.2)

In particular, we have a Frobenius-equivariant identification

RΓlog cris(OXOC/p/Acris
) ∼= KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)
(5.23.3)

where the ∂
∂ log(Xσ) (resp., ∂

∂ log(Xλ, i)
) are as in (5.10.1) with R�

Σ (resp., R�
λ ) in place of R and the

Frobenius acts in degree j on the right side as pj times the Frobenius of DΣ,Λ (compare with §5.10).

Proof. By §5.11, each A�
Σ,Λ, cris/p

n is a log smooth thickening of R/p over Acris/p
n. Therefore, by

[Bei13b, 1.4, Remarks (ii)] (and the second paragraph of §5.22), the log PD thickeningDΣ,Λ, n of R/p
is PD smooth over Acris/p

n (see the proof of Lemma 5.12). Thus, as in the proof of Proposition 5.13
above, [Bei13b, (1.8.1)] ensures that the logarithmic PD de Rham complex Ω•DΣ,Λ, n/(Acris/pn), log,PD

Frobenius-equivariantly computes RΓlog cris(OXOC/p/(Acris/pn)). By [Bei13b, 1.7, Exercises, (i)],

Ω•DΣ,Λ, n/(Acris/pn), log,PD
∼= Ω•

(A�Σ,Λ, cris/p
n)/(Acris/pn), log

⊗A�Σ,Λ, cris/p
n DΣ,Λ, n, (5.23.4)

so (5.23.1) follows. Then, since each R/pn is a log smooth log PD thickening of R/p over OC/pn,

analogous reasoning applies to RΓlog cris(OXOC/p/OC
)

[Bei13b, (1.8.1)]∼= RΓlog dR(X/OC) (compare with
the proof of Proposition 5.13) and gives (5.23.2).

Finally, the identification (5.23.3) results from (5.23.1) and the Frobenius-equivariant identifications

Ω•
(A�Σ,Λ, cris/p

n)/(Acris/pn), log
∼= KA�Σ,Λ, cris/p

n

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)
supplied by (5.10.3). �

Remark 5.24. By [Bei13b, (1.11.1)], the first map in (5.23.2) induces the identification

RΓlog cris(OXOC/p/Acris
)⊗L

Acris
OC/p ∼= RΓlog dR(X/OC)⊗L

OC OC/p (5.24.1)

in the derived category, so the same holds for the second map:

Ω•DΣ,Λ/Acris, log,PD ⊗
L
Acris
OC/p ∼= Ω•(R/p)/(OC/p), log.
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To make the identification (5.23.3) analogous to the identification in Proposition 5.20, we will express
DΣ,Λ as a completed direct limit of rings D(m)

Σ,Λ that “are generated by divided powers of degree at
most m,” see (5.30.1). For this, we will build on the ideas from the proof of [Kat89, 4.10 (1)] to
identify DΣ,Λ with the p-adic completion of the (non log) divided power envelope of an exact closed
immersion in Lemma 5.29.11 This will also make DΣ,Λ more explicit and easier to analyze.

5.25. A chart for A�
Σ,Λ. To express DΣ,Λ as the p-adic completion of a usual (non log) divided

power envelope, in §§5.25–5.27 we build a chart for the (fine version) of the log closed immersion

Spec(R/p) ↪→ Spec(A�
Σ,Λ). (5.25.1)

For this, we fix the unique q ∈ Q>0 for which

Z · q = Σλ∈Λ Z · qλ inside Q,
so that qλ

q ∈ Z>0 for every λ (and even qλ = q in the case when R⊗OC k is not k-smooth, see §5.17).
We endow OC/p and Ainf with the compatible via θ fine log structures determined by

N≥0 → OC/p with 1 7→ pq and N≥0 → Ainf with 1 7→ [(p1/p∞)q].

For each λ ∈ Λ, we consider the submonoid

Qλ ⊂ q
qλ

∏
0≤i≤rλ N≥0 generated by

∏
0≤i≤rλ N≥0 and the diagonal ( q

qλ
, . . . , qqλ ),

so that the chart

Qλ → A(R�
λ ) given by

∏
0≤i≤rλ N≥0

(ni) 7→
∏
X
ni
λ, i−−−−−−−−−→ A(R�

λ ) and ( q
qλ
, . . . , qqλ ) 7→ [(p1/p∞)q]

makes Spec(A(R�
λ )) a fine log Spec(Ainf)-scheme. We let

Q :=
(∏

λ∈ΛQλ
)
/(( q

qλ1
, . . . , q

qλ1
) = ( q

qλ2
, . . . , q

qλ2
))λ1 6=λ2

be the quotient monoid obtained by identifying the diagonal elements ( q
qλ
, . . . , qqλ ), so that the map

Q→ A�
Σ,Λ that results from the charts Qλ → A(R�

λ )

is a chart for the target Spec(A�
Σ,Λ) of a fine version of the log closed immersion (5.25.1). In terms

of this chart, the Frobenius of A�
Σ,Λ multiplies each element of Q by p (see §5.9).

5.26. A convenient chart in the smooth case. We consider the case when R⊗OC k is k-smooth,
so that for each λ ∈ Λ there is a unique 0 ≤ iλ ≤ rλ with tλ, iλ 6∈ R×, and build the monoids

Pλ0
:=
(
N≥0 ×

∏
0≤i≤rλ0

, i 6=iλ0
Z
)
×
∏
λ 6=λ0

((∏
0≤i≤rλ Z

)
/Z
)

for λ0 ∈ Λ, (5.26.1)

where each Z by which we quotient is embedded diagonally. For each (λ, i) with 0 ≤ i ≤ rλ,
tλ, i = (pq)nλ, i · vλ, i in R for unique nλ, i ∈ Z≥0 and vλ, i ∈ R×; (5.26.2)

explicitly, nλ, iλ = qλ
q and nλ, i = 0 for i 6= iλ. In particular,

∏
0≤i≤rλ vλ, i = 1 for each λ. The map

Pλ0 → R/p given by N≥0 3 1 7→ pq, Z(λ,i) 3 1 7→ vλ,i,

where the subscript (λ, i) indicates the factor Z of (5.26.1) being considered, is a chart for the
source Spec(R/p) of a fine version of the log closed immersion (5.25.1). In terms of this chart, the
Frobenius of R/p multiplies each element of Pλ0 by p.

11The arguments below would become more direct if we could “uncomplete” DΣ,Λ by constructing the log PD
envelope of the (possibly nonexact) log closed immersion Spec(R/p) ↪→ Spec(A�Σ,Λ). Neither [Kat89, 5.4] nor [Bei13b,
1.3, Theorem] gives this hypothetical envelope because p is not nilpotent in A�Σ,Λ.
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Due to (5.26.2), knowing the indices iλ, we may evidently express the image of every generator of
Q under Q→ A�

Σ,Λ � R/p in terms of the images of elements of Pλ0 without knowing the “values”
of these images. Thus, the log closed immersion (5.25.1) has a natural Frobenius-equivariant chart

Q→ Pλ0 =
(
N≥0 ×

∏
0≤i≤rλ0

, i 6=iλ0
Z
)
×
∏
λ 6=λ0

((∏
0≤i≤rλ Z

)
/Z
)

that, for instance, sends 1 ∈ (N≥0)(λ0, iλ0
) to the element (

qλ0
q ,−1, . . . ,−1) of N≥0×

∏
0≤i≤rλ0

, i 6=iλ0
Z,

each ( q
qλ
, . . . , qqλ ) to 1 ∈ N≥0, each 1 ∈ (N≥0)(λ,i) with i 6= iλ to 1 ∈ Z(λ,i), etc.

More precisely, the resulting A�
Σ,Λ-algebra

A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ]

comes equipped with an A�
Σ,Λ-semilinear Frobenius and is initial among the A�

Σ,Λ-algebras B
equipped with a unit Vλ, i ∈ B× for each (λ, i) with 0 ≤ i ≤ rλ subject to the relations

Xλ, i = [((p1/p∞)q)nλ, i ] · Vλ, i,
∏

0≤i≤rλ Vλ, i = 1. (5.26.3)

In particular,

R is naturally an (A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra (with Vλ, i = vλ, i). (5.26.4)

A fine version of the log closed immersion (5.25.1) factors Frobenius-equivariantly as follows:

Spec(R/p) �
� jλ0 // Spec

(
A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ]
) qλ0 // Spec(A�

Σ,Λ), (5.26.5)

where Spec
(
A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ]
)

is equipped with the log structure determined by Pλ0 . By con-
struction, jλ0 is an exact closed immersion and, by [Kat89, 3.5], the projection qλ0 is log étale.

The relations (5.26.3) do not depend on the choice of λ0, so neither does the factorization (5.26.5).
More precisely, for another λ′0 ∈ Λ, we have the a natural isomorphism over Q of charts for R/p:

Pλ0

∼−→ Pλ′0 , (5.26.6)

which gives rise to the vertical Frobenius-equivariant isomorphism in the commutative diagram

Spec
(
A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ]
)

qλ0
,,

Spec(R/p)
# �
jλ0 22

� {

jλ′0

,,
Spec(A�

Σ,Λ).

Spec
(
A�

Σ,Λ ⊗Z[Q] Z[Pλ′0 ]
)∼

OO

qλ′0

22 (5.26.7)

5.27. A convenient chart in the nonsmooth case. We now consider the case when R ⊗OC k
is not k-smooth, so that qλ = q and Qλ ∼=

∏
0≤i≤rλ N≥0 for every λ ∈ Λ. Letting ∆λ ⊂ Qλ be the

diagonal copy of N≥0, we can then describe the chart Q for a fine version of Spec(A�
Σ,Λ) as follows:

Q ∼=
(∏

λ∈Λ

(∏
0≤i≤rλ N≥0

))
/ (∆λ1 = ∆λ2)λ1 6=λ2

.

By §5.17, each tλ, i 6∈ R× cuts out a unique irreducible component {yλ, i} of Spec(R ⊗OC k).
Its generic point yλ, i determines the ideal (tλ, i) ⊂ R: indeed, (pq) ⊂ (tλ, i) in R and the ideal
(tλ, i)/(p

q) ⊂ R/(pq) is the kernel of the localization map R/(pq) → (R/(pq))yλ, i , as may be seen
over R�

λ . Conversely, for each generic point y of Spec(R ⊗OC k) and λ ∈ Λ, a unique tλ, iλ(y) with
0 ≤ iλ(y) ≤ rλ cuts out {y} (see §5.17). Consequently, for each y and λ, λ0 ∈ Λ,

tλ, iλ(y) = uλ, λ0, y · tλ0, iλ0
(y) in R for a unique uλ, λ0, y ∈ R×. (5.27.1)
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Letting Y denote the set of the generic points of Spec(R⊗OC k), for λ0 ∈ Λ we build the monoid

Pλ0
:=
((∏

Y N≥0 ×
∏
{0≤i≤rλ0

}\iλ0
(Y) Z

)
×
∏
λ 6=λ0

(∏
0≤i≤rλ Z

))/
(∆λ = ∆λ0)λ 6=λ0 , (5.27.2)

where the quotient means that for every λ 6= λ0 we are identifying every diagonal element of∏
0≤i≤rλ Z with the corresponding diagonal element of

∏
{0≤i≤rλ0

}\iλ0
(Y) Z (interpreted to be 0 if

the indexing set is empty). The assignment (as in §5.26, subscripts indicate factors in (5.27.2))

(N≥0)y 3 1 7→ tλ0, iλ0
(y), Z(λ, i) 3 1 7→ tλ, i if i 6∈ iλ(Y), Z(λ, i) 3 1 7→ uλ, λ0, y if i = iλ(y)

determines a chart
Pλ0 → R/p

for the source Spec(R/p) of a fine version of the log closed immersion (5.25.1). In terms of this
chart, the Frobenius of R/p multiplies each element of Pλ0 by p.

Due to the relation (5.27.1), the images in R/p of the generators of Q are evidently expressible in
terms of the images of the elements of Pλ0 (without knowing the “values” of these images), so, as in
the smooth case, there is a natural Frobenius-equivariant chart for a fine version of (5.25.1):

Q→ Pλ0

that, for instance, for λ 6= λ0 and y ∈ Y, sends 1 ∈ (N≥0)(λ, iλ(y)) to (1, 1) ∈ (N≥0)y × Z(λ, iλ(y)).

The resulting A�
Σ,Λ-algebra

A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ]

comes equipped with an A�
Σ,Λ-semilinear Frobenius endomorphism and is initial among the A�

Σ,Λ-
algebras B for which Xλ, i ∈ B× when i 6∈ iλ(Y) and that are equipped with, for each y ∈ Y and
λ ∈ Λ, a unit Uλ, λ0, y ∈ B× subject to the relations

Xλ, iλ(y) = Uλ, λ0, y ·Xλ0, iλ0
(y), Uλ0, λ0, y = 1, and∏

y∈Y Uλ, λ0, y =
(∏
{0≤i≤rλ0

}\iλ0
(Y)Xλ0, i

)/(∏
{0≤i≤rλ}\iλ(Y)Xλ, i

)
for λ ∈ Λ.

(5.27.3)

For a λ′0 ∈ Λ, we may set Uλ, λ′0, y = Uλ, λ0, y ·U
−1
λ′0, λ0, y

to express the Uλ, λ′0, y in terms of the Uλ, λ0, y,
so, up to a canonical A�

Σ,Λ-isomorphism, A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ] does not depend on λ0. Moreover,

R is naturally an (A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra (with Uλ, λ0, y = uλ, λ0, y). (5.27.4)

As in the smooth case, we equip Spec
(
A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ]
)

with the log structure determined by
Pλ0 , so a fine version of the log closed immersion (5.25.1) factors Frobenius-equivariantly as follows:

Spec(R/p) �
� jλ0 // Spec

(
A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ]
) qλ0 // Spec(A�

Σ,Λ), (5.27.5)

where jλ0 is an exact closed immersion and, by [Kat89, 3.5], the projection qλ0 is log étale. As in
§5.26, we have natural isomorphisms Pλ0 ' Pλ′0 over Q and the compatibility diagram (5.26.7).

We now use the charts Q→ Pλ0 to build a (non log) PD envelope whose p-adic completion is DΣ,Λ.

5.28. The divided power envelope of jλ0. For λ0 ∈ Λ, we letDjλ0
be the divided power envelope

over (Zp, pZp) of the closed immersion jλ0 defined in (5.26.5) and (5.27.5). The universal property
of A0

cris (see §5.1) identifies Djλ0
with the divided power envelope of the closed immersion

jλ0, cris : Spec(R/p) ↪→ Spec((A�
Σ,Λ ⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ]) over Spec(OC/p) ↪→ Spec(A0

cris)
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(compare with §5.22). Since jλ0 underlies an exact closed immersion of log schemes, we may, in
addition, identify Djλ0

endowed with the log structure determined by Pλ0 with the log PD envelope
of jλ0 over Zp, or of jλ0, cris over A0

cris (compare with [Kat89, 5.5.1]). For λ′0 ∈ Λ, the vertical
isomorphism in (5.26.7) induces an isomorphism

Djλ0

∼= Djλ′0
. (5.28.1)

By functoriality, Djλ0
comes equipped with an A0

cris-semilinear Frobenius endomorphism, and the
isomorphisms (5.28.1) are Frobenius equivariant. Due to (5.26.4) and (5.27.4), there is a map

Djλ0
→ R that lifts Djλ0

� R/p; (5.28.2)

its formation is compatible with the isomorphisms (5.28.1).

By the universal property of A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ] (see (5.26.3) and (5.27.3)), the continuous ∆Σ,Λ-

action on A�
Σ,Λ extends to a (p, µ)-adically continuous ∆Σ,Λ-action on A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ], so it
induces an A0

cris-linear ∆Σ,Λ-action on Djλ0
. As an (A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra, Djλ0
is generated

by the divided powers of the elements of the ideal of jλ0 , so this action is p-adically continuous.

Lemma 5.29. For λ0 ∈ Λ, the map qλ0 induces Frobenius- and ∆Σ,Λ-equivariant isomorphisms

DΣ,Λ, n
∼= Djλ0

/pn for n > 0 (resp., DΣ,Λ
∼= D̂jλ0

) (5.29.1)

that are Acris-linear and compatible with divided powers, maps to R/pn (resp., R; see (5.22.3) and
(5.28.2)), and the isomorphisms (5.28.1). In particular, DΣ,Λ is p-adically complete,

DΣ,Λ/p
n ∼−→ DΣ,Λ, n for n > 0

and the ∆Σ,Λ-action on DΣ,Λ is p-adically continuous.

Proof. We may identify DΣ,Λ, n with the log PD envelope of

Spec(R/p) ↪→ Spec(A�
Σ,Λ, cris/p

n) over Spec(OC/p) ↪→ Spec(Acris/p
n)

defined using fine log structures (see §5.22). On the other hand, we may identify Djλ0
/pn with the

(log) divided power envelope of jλ0, cris ⊗A0
cris

A0
cris/p

n, that is, of

Spec(R/p) ↪→ Spec((A�
Σ,Λ, cris/p

n)⊗Z[Q] Z[Pλ0 ]), over Spec(OC/p) ↪→ Spec(Acris/p
n)

(see §5.28 and [SP, 07HB]). Consider a commutative square

T0� _

��

// Spec((A�
Σ,Λ, cris/p

n)⊗Z[Q] Z[Pλ0 ])

qλ0
⊗Ainf

Acris/p
n

��

T //

?

55

Spec(A�
Σ,Λ, cris/p

n)

(5.29.2)

of log schemes over Acris/p
n in which T0 ↪→ T is a log PD thickening such that the log struc-

ture NT of T (and hence also NT0 of T0) is integral and quasi-coherent and the log structures of
Spec((A�

Σ,Λ, cris/p
n)⊗Z[Q] Z[Pλ0 ]) and Spec(A�

Σ,Λ, cris/p
n) are determined by the charts Pλ0 and Q,

respectively (see §§5.25–5.27). By [Bei13b, 1.1 Exercises (iii)], for any t, t′ ∈ Γ(T,NT ) and u0 ∈ O×T0

with t|T0 = u0 · t′|T0 , there exists a unique lift u ∈ O×T of u0 such that t = ut′. Thus, by the
construction of Pλ0 and the universal property described by the equations (5.26.3) and (5.27.3),
there is a unique log morphism indicated by the dashed arrow in (5.29.2) that makes the diagram
commute. Consequently, qλ0 induces an isomorphism between the log PD envelopes:

Djλ0
/pn ∼= DΣ,Λ, n, and, by letting n vary, also D̂jλ0

∼= DΣ,Λ.
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Functoriality implies the claimed compatibilities, and (5.29.1) implies the “in particular” claim. �

We now use Lemma 5.29 to define the rings D(m)
Σ,Λ that are analogous to the rings A(m)

cris (R) of §3.27.

5.30. The rings D(m)
Σ,Λ. For λ0 ∈ Λ, the divided powers of the elements of the ideal of jλ0 generate

Djλ0
as an (A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra. In turn, for a fixed m ∈ Z≥1, the divided powers of degree
at most m generate a Frobenius-stable (A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ])-subalgebra

D
(m)
jλ0
⊂ Djλ0

, and Djλ0
=
⋃
m≥1D

(m)
jλ0

.

SinceDjλ0
is naturally and Frobenius-semilinearly an A0

cris-algebra (see §5.28), D
(m)
jλ0

is naturally and

Frobenius-semilinearly an algebra over the subring A0, (m)
cris ⊂ A0

cris defined in §3.26. By Lemma 5.29,

the image D0
Σ,Λ of Djλ0

in DΣ,Λ

(5.29.1)∼= D̂jλ0
is Frobenius-stable and independent of λ0,

and the same holds for the image D0, (m)
Σ,Λ ⊂ D0

Σ,Λ of D(m)
jλ0

in DΣ,Λ. Form ≥ p, the p-adic completion

D
(m)
Σ,Λ := (D

0, (m)
Σ,Λ )̂ is naturally an algebra over A

(m)
cris

and comes equipped with an A(m)
cris -semilinear Frobenius.

By Lemma 5.29, the composition Djλ0
� D0

Σ,Λ ↪→ DΣ,Λ induces an isomorphism modulo pn, and

hence so do both maps that comprise it. Thus, since D0
Σ,Λ =

⋃
m≥pD

0, (m)
Σ,Λ , we have

DΣ,Λ
∼= (D0

Σ,Λ)̂ ∼= (lim−→m≥pD
(m)
Σ,Λ

) ̂ over Acris (5.30.1)

compatibly with the Frobenii. In what follows, D0
Σ,Λ plays the role of the ring that underlies the

hypothetical log PD envelope of the log closed immersion (5.25.1) (see footnote 11).

By Lemma 5.29, the ∆Σ,Λ-action on DΣ,Λ respects the subrings D0, (m)
Σ,Λ ⊂ DΣ,Λ. The induced A

(m)
cris -

linear ∆Σ,Λ-action on D(m)
Σ,Λ is p-adically continuous and compatible as m varies. The identifications

in (5.30.1) are ∆Σ,Λ-equivariant.

5.31. The derivations ∂
∂ log(Xτ ) . For brevity, let τ denote either the index “σ” for some σ ∈ Σ or

the index “λ, i” for some λ ∈ Λ and i = 1, . . . , d. The log derivations ∂
∂ log(Xτ ) defined in (5.10.1)

with R�
Σ or R�

λ in place of R give rise to the log Ainf -derivations
∂

∂ log(Xτ ) : A�
Σ,Λ → A�

Σ,Λ (5.31.1)

(as in §5.10, we do not explicate the accompanying homomorphisms from the log structure). These,
in turn, induce the divided power Acris-derivations

∂
∂ log(Xτ ) : DΣ,Λ → DΣ,Λ (5.31.2)

(compare with Proposition 5.23 and its proof, especially, (5.23.4)), where a divided power Acris-
derivation ∂ is required to satisfy ∂(x[m]) = x[m−1]∂(x) for divided powers x[m] with m ≥ 1, in
addition to the Acris-linearity and the Leibniz rule.

Since qλ0 is log étale (see §§5.26–5.27), the derivations (5.31.1) uniquely extend to logAinf -derivations
∂

∂ log(Xτ ) : A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ]→ A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ] for every λ0 ∈ Λ. (5.31.3)
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These, in turn, induce divided power A0
cris-derivations (see [SP, 07HW])
∂

∂ log(Xτ ) : Djλ0
→ Djλ0

. (5.31.4)

By construction, the derivations (5.31.2) and (5.31.4) are compatible, so they induceA(m)
cris -derivations

∂
∂ log(Xτ ) : D

(m)
Σ,Λ → D

(m)
Σ,Λ for m ≥ p

that are compatible as m varies and recover (5.31.2) under the identification DΣ,Λ
∼=
(

lim−→D
(m)
Σ,Λ

) ̂.
Consequently, we may reexpress the identification (5.23.3) as the Frobenius-equivariant identification

RΓlog cris(OXOC/p/Acris
) ∼=

(
lim−→m≥p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

))) ̂, (5.31.5)

where in degree j of K
D

(m)
Σ,Λ

(( ∂
∂ log(Xτ ))τ ) the Frobenius acts as pj times the Frobenius of D(m)

Σ,Λ.

5.32. A functorial complex that computes RΓlog cris(XOC/p/Acris). For a fixed R, the formation
of the ringsDΣ,Λ, Djλ0

, D0
Σ,Λ, andD

(m)
Σ,Λ and the morphisms jλ0 and qλ0 is compatible with enlarging

Σ and Λ, and the same holds for the identification (5.31.5). Thus, we may form the filtered direct
limit over all the closed immersions (5.17.1) for varying Σ and Λ to build the complex

lim−→Σ,Λ

((
lim−→m≥p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

))) ̂) , (5.32.1)

where the direct limits and the p-adic completion are termwise. By construction, this complex
comes equipped with an Acris-semilinear Frobenius endomorphism (see the end of §5.31) and, by
(5.31.5), in the derived category it is canonically and Frobenius-equivariantly identified with

RΓlog cris(OXOC/p/Acris
).

Moreover, if R′ is a p-adically formally étale R-algebra equipped with data as in §5.17 for some
sets Σ′ and Λ′, then the term indexed by Σ, Λ (and by the closed immersion (5.17.1)) of the direct
limit (5.32.1) maps to12 the term indexed by Σ∪Σ′, Λ∪Λ′ (and by a closed immersion of Spf(R′))
of the analogous direct limit for R′, compatibly with the transition maps in (5.32.1) and with the
Frobenius. Thus, the complex (5.32.1) equipped with its Frobenius is functorial in R, and so is its
identification with RΓlog cris(OXOC/p/Acris

).

Since the formation of the maps (5.23.2) is compatible with enlarging Σ and Λ, and then also with
replacing R by R′, the map RΓlog cris(OXOC/p/Acris

)→ RΓlog dR(X/OC) is identified with a map

lim−→Σ,Λ

((
lim−→m≥p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

))) ̂)→ Ω•Spf(R)/OC , log

whose formation is compatible is compatible with replacing R by R′.

Having constructed the functorial complexes (5.21.1) and (5.32.1), we seek to exhibit a natural map
between them and to prove that it is an isomorphism. These tasks, which will be completed in §5.38
and Proposition 5.39, are the last stepping stones to the proof of Theorem 5.4 given in §5.40. We
begin with the following variants of Lemma 5.15 and Proposition 5.16.

12One uses the universal properties described in (5.26.3) and (5.27.3) and keeps in mind the case when R ⊗OC k
is not k-smooth but R′ ⊗OC k is.
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Lemma 5.33. For m ≥ p2, the element δτ ∈ ∆Σ,Λ, where the index τ is either “σ” for some σ ∈ Σ

or “λ, i” for some λ ∈ Λ and i = 1, . . . , d (see §5.18), acts on D(m)
Σ,Λ as the endomorphism∑

n≥0
(log([ε]))n

n! ( ∂
∂ log(Xτ ))n, (5.33.1)

where (log([ε]))n

n! lies in A(m)
cris and p-adically tends to 0 (see §5.14).

Proof. Analogously to the proof of Lemma 5.15, the series (5.33.1) a priori defines an Acris-algebra
endomorphism of DΣ,Λ. Moreover, by Lemma 5.15, the action of δτ on the ring A�

Σ,Λ, cris defined in
(5.22.2) is given by (5.33.1). Thus, due to the universal properties (5.26.3) and (5.27.3), the same
holds for the action of δτ on A�

Σ,Λ, cris⊗̂Z[Q]Z[Pλ0 ] ∼= ((A�
Σ,Λ⊗Ainf

A0
cris)⊗Z[Q]Z[Pλ0 ])̂ (see (5.31.3)),

where the completion is p-adic. Then, by the universal property of Djλ0
(see §5.28) and (5.29.1),

the element δτ acts on DΣ,Λ, and hence also on D0, (m)
Σ,Λ and D(m)

Σ,Λ, by the series (5.33.1). �

Proposition 5.34. In the local setting of §5.17, for m ≥ p2, the additive morphisms(
D

(m)
Σ,Λ

∂
∂ log(Xτ )−−−−−→ D

(m)
Σ,Λ

) (
id,
∑
n≥1

(log([ε]))n

n!
( ∂
∂ log(Xτ )

)n−1
)

−−−−−−−−−−−−−−−−−−−−−−−→
(
D

(m)
Σ,Λ

δτ−1−−−→ D
(m)
Σ,Λ

)
(5.34.1)

of complexes in degree 0 and 1, where the index τ ranges over “σ” for σ ∈ Σ and “λ, i” for λ ∈ Λ
and i = 1, . . . , d, define a Frobenius-equivariant morphism (whose target is defined as in (1.7.3))

K
D

(m)
Σ,Λ

(
( ∂
∂ log(Xσ))σ∈Σ, (

∂
∂ log(Xλ, i)

)λ∈Λ, 1≤i≤d

)
→ η(µ)

(
K
D

(m)
Σ,Λ

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

)
,

where in each degree j of the source the Frobenius acts as pj times the Frobenius of D(m)
Σ,Λ.

Proof. By Lemma 5.33, the morphism (5.34.1) is well defined. Moreover, the image of its degree 1

component lies in µ ·D(m)
Σ,Λ because, by §5.14, (log([ε]))n

µ·n! lies in A(m)
cris and p-adically tends to 0. The

rest of the claim then follows from the definitions (1.7.2) and (1.7.3), granted that one argues the
Frobenius-equivariance as in the proof of Proposition 5.16. �

Proposition 5.34 reduces the task of exhibiting a natural map from the complex (5.32.1) to the
complex (5.21.1) to exhibiting a natural ∆Σ,Λ-equivariant ring morphism D

(m)
Σ,Λ → A(m)

cris (RΣ,Λ,∞).

To build the latter, we will realize A(m)
cris (RΣ,Λ,∞) inside the following ring Acris(RΣ,Λ,∞).

5.35. The ring Acris(RΣ,Λ,∞). For an affinoid perfectoid Spa(R′∞[1
p ], R′∞) over Spa(C,OC) (such

as the one with R′∞ = RΣ,Λ,∞), we consider the Ainf(R
′
∞)-subalgebra

A0
cris(R

′
∞) ⊂ Ainf(R

′
∞)[1

p ]

generated by the elements ξn

n! for n ≥ 1. Analogously to §5.8, by [Tsu99, proof of A2.8], we have

A0
cris(R

′
∞) ∼= (Ainf(R

′
∞)[T

n

n! ]n≥1)/(T − ξ), so A0
cris(R

′
∞) ∼= Ainf(R

′
∞)⊗Ainf

A0
cris.

Thus, analogously to §5.8, the ring A0
cris(R

′
∞) is identified with the divided power envelope of

(Ainf(R
′
∞),Ker(θ) + p · Ainf(R

′
∞)) over (Zp, pZp), and

Acris(R
′
∞) := Ainf(R

′
∞)⊗̂Ainf

Acris is identified with (A0
cris(R

′
∞))̂.
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For an m ∈ Z≥1, we let A0, (m)
cris (R′∞) ⊂ A0

cris(R
′
∞) be the Ainf(R

′
∞)-subalgebra generated by the

elements ξn

n! with n ≤ m (compare with §3.26). For a fixed m, the subalgebra

Ainf(R
′
∞)[T

n

n! ]m≥n≥1 ⊂ Ainf(R
′
∞)[T

n

n! ]n≥1 ⊂ (Ainf(R
′
∞)[1

p ])[T ]

is described by explicit lower bounds on the “p-adic valuations” of the coefficients of TN for N ≥ 1.
Thus, since the sequence (p, ξ) is Ainf(R

′
∞)-regular (compare with Lemma 3.13), the quotient of

Ainf(R
′
∞)[T

n

n! ]n≥1 by Ainf(R
′
∞)[T

n

n! ]m≥n≥1 has no nonzero (T − ξ)-torsion. Consequently,

A0, (m)
cris (R′∞) ∼= (Ainf(R

′
∞)[T

n

n! ]m≥n≥1)/(T − ξ), (5.35.1)

to the effect that
A0, (m)

cris (R′∞) ∼= Ainf(R
′
∞)⊗Ainf

A
0, (m)
cris .

Thus, by letting the completion be p-adic if m ≥ p and (p, µ)-adic if m < p, we obtain the following
identification with the A(m)

cris -algebra A(m)
cris (R′∞) defined as in (5.19.3):

(A0, (m)
cris (R′∞))̂ ∼= A(m)

cris (R′∞) := Ainf(R
′
∞)⊗̂Ainf

A
(m)
cris . (5.35.2)

Proposition 5.36. For an affinoid perfectoid Spa(R′∞[1
p ], R′∞) over Spa(C,OC) and an m ≥ 1, the

following ring homomorphisms are injective:

A0, (m)
cris (R′∞) ↪→ A(m)

cris (R′∞) ↪→ Acris(R
′
∞) ↪→ B+

dR(R′∞) := (Ainf(R
′
∞)[1

p ])̂ (5.36.1)

where the completion is ξ-adic and the definition of the last map is explained in the proof. In
particular, the Ainf-algebras in (5.36.1) have no nonzero µ-torsion.

Proof. The assertion about the µ-torsion follows from the rest because µ/ξ is a unit in B+
dR(R′∞)

(see (2.1.1)–(2.1.4)) and B+
dR(R′∞) inherits ξ-torsion freeness from Ainf(R

′
∞).

The sequence (p, ξ) is Ainf(R
′
∞)-regular and Ainf(R

′
∞) is ξ-adically separated (see [SP, 090T]), so

the ring Ainf(R
′
∞)[1

p ] is also ξ-adically separated. Thus, we obtain the injection

Ainf(R
′
∞)[1

p ] ↪→ B+
dR(R′∞), and hence also A0, (m)

cris (R′∞) ↪→ B+
dR(R′∞),

which, in particular, allows us to assume that m ≥ p. For varying n ≥ 0, the Ainf(R
′
∞)-submodules

Fil0n ⊂ A0
cris(R

′
∞) generated by the ξn

′

n′! for n′ ≥ n

form a decreasing filtration of A0
cris(R

′
∞) by ideals. By [Tsu99, A2.9 (2)],13 each

A0
cris(R

′
∞)/Fil0n is p-torsion free and p-adically complete. (5.36.2)

Thus, the p-adic completions Filn := (Fil0n)̂ form a decreasing filtration of Acris(R
′
∞) by ideals with

Acris(R
′
∞)/Filn ∼= A0

cris(R
′
∞)/Fil0n . (5.36.3)

The p-torsion freeness also supplies a decreasing filtration modulo p:

Fil0n /pFil0n ↪→ A0
cris(R

′
∞)/pA0

cris(R
′
∞).

The isomorphism A0
cris(R

′
∞) ∼= (Ainf(R

′
∞)[T

n

n! ]n≥1)/(T − ξ) gives the explicit description

A0
cris(R

′
∞)/pA0

cris(R
′
∞) ∼= (R′[∞/ξ

p)[Y1, Y2, . . .]/(Y
p

1 , Y
p

2 , . . .) with Yj = T p
j

(pj)!
(5.36.4)

(compare with [BC09, 9.4.1 (3)]), so the filtration {Fil0n /pFil0n}n≥0 is separated. Thus, since

Fil0n /pFil0n
∼= Filn /pFiln compatibly with A0

cris(R
′
∞)/pA0

cris(R
′
∞) ∼= Acris(R

′
∞)/pAcris(R

′
∞),

13Loc. cit. is written in a different setting, but its proof continues to work if A there is replaced by our R′∞.
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the p-adic separatedness of Acris(R
′
∞) and (5.36.2) force the filtration {Filn}n≥0 to be separated, too:

Acris(R
′
∞) ↪→ lim←−n (Acris(R

′
∞)/Filn)

(5.36.3)∼= lim←−n (A0
cris(R

′
∞)/Fil0n).

Moreover, we have the injection lim←−n (A0
cris(R

′
∞)/Fil0n) ↪→ B+

dR(R′∞) that results from the injections

A0
cris(R

′
∞)/Fil0n ↪→ (A0

cris(R
′
∞)/Fil0n)[1

p ] ∼= (Ainf(R
′
∞)[1

p ])/ξn ∼= B+
dR(R′∞)/ξn.

Thus, we obtain the desired natural injection Acris(R
′
∞) ↪→ B+

dR(R′∞) of A0
cris(R

′
∞)-algebras.

We turn to the remaining injection A(m)
cris (R′∞) ↪→ Acris(R

′
∞). For n ≥ 0, we consider the ideal

Fil
0, (m)
n := A0, (m)

cris (R′∞)
⋂

Fil0n = Ker
(
A0, (m)

cris (R′∞)→ (Ainf(R
′
∞)[1

p ])/ξn
)
⊂ A0, (m)

cris (R′∞),

so that {Fil
0, (m)
n }n≥0 forms a filtration of A0, (m)

cris (R′∞). Explicitly, as an Ainf(R
′
∞)-module, Fil

0, (m)
n

is generated by the products ξn1

n1! · · ·
ξns

ns!
with n1 + . . .+ ns ≥ n and 0 ≤ ni ≤ m. By (5.36.2), each

A0, (m)
cris (R′∞)/Fil0, (m)

n is p-torsion free, (5.36.5)

so we again get the induced filtration modulo p:

Fil0, (m)
n /pFil0, (m)

n ↪→ A0, (m)
cris (R′∞)/pA0, (m)

cris (R′∞).

As in the case of {Fil0n /pFil0n}n≥0, the analogous to (5.36.4) description of A0, (m)
cris (R′∞)/pA0, (m)

cris (R′∞)

supplied by the isomorphism (5.35.1) shows that the filtration {Fil
0, (m)
n /pFil

0, (m)
n }n≥0 is separated.

For each n > 0, there is a jn > 0 such that pjn kills

A0
cris(R

′
∞)/(A0, (m)

cris (R′∞) + Fil0n)

(for instance, jn := ordp(n!) has this property). Consequently, pjn kills the kernel of the map

A0, (m)
cris (R′∞)/Fil

0, (m)
n

pj ·(A0, (m)
cris (R′∞)/Fil

0, (m)
n )

→ A0
cris(R

′
∞)/Fil0n

pj ·(A0
cris(R

′
∞)/Fil0n)

for each j > 0,

so, for j > jn, every element of this kernel is a multiple of pj−jn . The short exact sequences

0→ Fil
0, (m)
n

pj ·Fil
0, (m)
n

(5.36.5)−−−−→ A0, (m)
cris (R′∞)

pj ·A0, (m)
cris (R′∞)

→ A0, (m)
cris (R′∞)/Fil

0, (m)
n

pj ·(A0, (m)
cris (R′∞)/Fil

0, (m)
n )

→ 0

then show that for each n > 0, every element of the kernel

Ker(A(m)
cris (R′∞)→ Acris(R

′
∞)) ∼= Ker

(
lim←−j>0

(A0, (m)
cris (R′∞)/pj)→ lim←−j>0

(A0
cris(R

′
∞)/pj)

)
(5.36.6)

lies in lim←−j>0

(
Fil

0, (m)
n /pj Fil

0, (m)
n

)
. In particular, this kernel maps to Fil

0, (m)
n /p ⊂ A0, (m)

cris (R′∞)/p

for each n > 0. However, by the previous paragraph,
⋂
n>0 (Fil

0, (m)
n /p) = 0, so the kernel (5.36.6)

lies in p·A(m)
cris (R′∞). Since Acris(R

′
∞) has no nonzero p-torsion and A(m)

cris (R′∞) is p-adically separated,
this implies that the map A(m)

cris (R′∞)→ Acris(R
′
∞) is injective, as desired. �

The following lemma is the final step to building the desired map D(m)
Σ,Λ → A(m)

cris (RΣ,Λ,∞) in §5.38.

Lemma 5.37. For λ0 ∈ Λ, there is a ∆Σ,Λ-equivariant divided power morphism

Djλ0
→ A0

cris(RΣ,Λ,∞) (5.37.1)

that is compatible with the isomorphisms Djλ0

∼= Djλ′0
of (5.28.1) and is Frobenius-equivariant.
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Proof. By construction, Ainf(RΣ,Λ,∞) is an A�
Σ,Λ-algebra. Moreover, since Ainf(RΣ,Λ,∞) is ξ-

adically complete with Ainf(RΣ,Λ,∞)/ξ ∼= RΣ,Λ,∞ (see §5.19), if tλ, i is a unit in R ⊂ RΣ,Λ,∞,
then Xλ, i is a unit in Ainf(RΣ,Λ,∞) (see (3.14.3)). Thus, if R⊗OC k is k-smooth, then the equations
(5.26.3) have a unique solution in Ainf(RΣ,Λ,∞), to the effect that, in this case, Ainf(RΣ,Λ,∞) is
naturally and ∆Σ,Λ-equivariantly an (A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra, compatibly with the “change of
λ0” isomorphisms of (5.26.7), the maps (5.26.4) and (5.19.1) to R and RΣ,Λ,∞, and the Frobenii.

If R⊗OC k is not k-smooth, then, in the notation of §5.27, for each m ≥ 0 and a generic point y ∈ Y
of Spec(R⊗OC k), the element t1/p

m

λ0, iλ0
(y) is not a zero divisor in RΣ,Λ,∞ and is a unit in RΣ,Λ,∞[1

p ].

Thus, since RΣ,Λ,∞ is integrally closed in RΣ,Λ,∞[1
p ], we conclude from (5.27.1) that

t
1/pm

λ, iλ(y)/t
1/pm

λ0, iλ0
(y) ∈ R

×
Σ,Λ,∞ for every λ0, λ ∈ Λ, m ≥ 0.

In other words,

t
1/pm

λ, iλ(y) = u
(m)
λ, λ0, y

· t1/p
m

λ0, iλ0
(y) in RΣ,Λ,∞ for a unique u

(m)
λ, λ0, y

∈ R×Σ,Λ,∞.

By the uniqueness, (u
(m+1)
λ, λ0, y

)p = u
(m)
λ, λ0, y

, so u[λ, λ0, y
:= (u

(m)
λ, λ0, y

)m≥0 ∈ (R[Σ,Λ,∞)× satisfies

Xλ, iλ(y) = [u[λ, λ0, y] ·Xλ0, iλ0
(y) in Ainf(RΣ,Λ,∞)

(see §3.11 and §3.14). Thus, since each Xλ, i is a nonzero divisor in Ainf(RΣ,Λ,∞), the [u[λ, λ0, y
] solve

the equations (5.27.3) in Ainf(RΣ,Λ,∞), compatibly with the solution in R ⊂ RΣ,Λ,∞ of (5.27.4).
Thus, in the nonsmooth case as well, Ainf(RΣ,Λ,∞) is ∆Σ,Λ-equivariantly an (A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ])-
algebra, compatibly with the change of λ0, the maps (5.27.4) and (5.19.1) to R and RΣ,Λ,∞, and
the Frobenii.

In conclusion, in all the cases we obtain a compatible with the change of λ0 commutative square

A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ]

jλ0 // //

��

R

��

so also

A�
Σ,Λ ⊗Z[Q] Z[Pλ0 ]

jλ0 // //

��

R

��

Ainf(RΣ,Λ,∞)
θ // // RΣ,Λ,∞, A0

cris(RΣ,Λ,∞)
θ // // RΣ,Λ,∞.

The universal property of Djλ0
then supplies the desired divided power morphism (5.37.1). �

5.38. The comparison map. The p-adic completion of the morphism (5.37.1) is the morphism

DΣ,Λ → Acris(RΣ,Λ,∞) (5.38.1)

(see Lemma 5.29), which does not depend on λ0. By construction, it makes the diagram

DΣ,Λ
(5.22.3)

// //

(5.38.1)
��

R� _

��

Acris(RΣ,Λ,∞)
θ // // RΣ,Λ,∞

(5.38.2)

commute. Its restriction to D0, (m)
Σ,Λ of §5.30 lands in the subring A0, (m)

cris (RΣ,Λ,∞)
5.36
⊂ Acris(RΣ,Λ,∞),

so, by passing to p-adic completions and using (5.35.2), we obtain the compatible morphisms

D
(m)
Σ,Λ → A(m)

cris (RΣ,Λ,∞) for m ≥ p (5.38.3)
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that recover (5.38.1) via the identifications (5.30.1) and (5.1.1). By construction and Lemma 5.37,
the morphisms (5.38.3) are ∆Σ,Λ-equivariant and Frobenius-equivariant, so they give rise to the
Frobenius-equivariant morphisms of complexes

K
D

(m)
Σ,Λ

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)→ KA(m)
cris (RΣ,Λ,∞)

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d).

After applying the functor η(µ), these morphisms compose with the ones constructed in Proposi-
tion 5.34 to give rise to the desired Frobenius-equivariant comparison map of complexes:(

lim−→m≥p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

))) ̂ → (
lim−→m≥p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))
,̂ (5.38.4)

where the direct limits and the p-adic completions are formed termwise and, for brevity, we let τ
range over the indices “σ” for σ ∈ Σ and “(λ, i)” for λ ∈ Λ and i = 1, . . . , d.

The source (resp., the target) of the map (5.38.4) is a term of the direct limit (5.32.1) (resp., (5.21.1))
and the formation of this map is compatible with enlarging Σ and Λ, that is, with the transition maps
of the direct limits (5.32.1) and (5.21.1). Moreover, if R′ is a p-adically formally étale R-algebra
equipped with data as in (5.17.1) for some sets Σ′ and Λ′, then the map (5.38.4) and its analogue
for R′ and the sets Σ∪Σ′, Λ∪Λ′ (and the induced closed immersion (5.17.1)) are compatible with
the maps between their sources (resp., targets) discussed in §5.21 and §5.32.

In conclusion, by taking the filtered direct limit of the maps (5.38.4) over all the closed immersions
(5.17.1) for varying Σ and Λ (but a fixed R), we obtain a comparison map from the complex (5.32.1)
to the complex (5.21.1), and the formation of this map is compatible with replacing R by a formally
étale R-algebra R′. The following proposition implies that this map is a quasi-isomorphism.

Proposition 5.39. The Frobenius-equivariant comparison map (5.38.4) is a quasi-isomorphism.

Proof. The proof is similar to that of [BMS18, 12.9], and the idea is to reduce to the case of a single
coordinate morphism settled in Proposition 5.16. More precisely, for m ≥ p, let

Spec(R/p) ↪→ Spf(D
(m)
Σ,Λ)

be the closed immersion induced by its analogue for DΣ,Λ, that is, by the first map in (5.22.2). For
each λ0 ∈ Λ, the ideal of A�

Σ,Λ ⊗Z[Q] Z[Pλ0 ] that cuts out R/p (see (5.27.5)) is finitely generated.

Consequently, for each m ≥ p, the ideal of D(m)
Σ,Λ that cuts out R/p is finitely generated, too, and

hence, due to divided powers, it is also p-adically topologically nilpotent. Thus, fixing a λ ∈ Λ

and, for m ≥ p, letting A(m)
cris (R)λ denote the ring A(m)

cris (R) of §3.27 constructed using the coordinate
morphism R�

λ → R, we may use the p-adic formal étaleness of A(m)
cris (R�

λ ) → A
(m)
cris (R)λ (see §3.14)

to obtain the unique indicated lifts in the commutative diagram

Spec(RΣ,Λ,∞/p)� _

θ
��

// Spec(R/p)� _

��

// Spf(A
(m)
cris (R)λ)

��

Spf(A(m)
cris (RΣ,Λ,∞))

33

(5.38.3)
// Spf(D

(m)
Σ,Λ)

77

// Spf(A
(m)
cris (R�

λ ))

in which the bottom right horizontal map results from the fact that, by construction, each D(m)
Σ,Λ is

both an A(R�
λ )-algebra and an A(m)

cris -algebra. By the uniqueness of such lifts, the resulting maps

A
(m)
cris (R)λ → D

(m)
Σ,Λ (5.39.1)
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are compatible as m varies, ∆Σ,Λ-equivariant, where ∆Σ,Λ acts on A(m)
cris (R)λ through the projection

∆Σ,Λ � ∆λ, and are compatible with the maps from its source and target to A(m)
cris (RΣ,Λ,∞). By

construction, the maps (5.39.1) are also compatible with the derivations ∂
∂ log(Xλ, i)

for i = 1, . . . , d

discussed in §5.10 and §5.31. Consequently, the diagram

K
A

(m)
cris (R)λ

(
∂

∂ log(Xλ, 1) , . . . ,
∂

∂ log(Xλ, d)

)
(5.39.1)
��

(5.16.2)
// η(µ)

(
KA(m)

cris (Rλ,∞)
(δλ, 1 − 1, . . . , δλ, d − 1)

)
��

K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

)
5.34 and (5.38.3)

// η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

) (5.39.2)

commutes, where the index τ ranges over “σ” for σ ∈ Σ and “(λ′, i)” for λ′ ∈ Λ and i = 1, . . . , d.
By Proposition 5.16, for m ≥ p2, the top horizontal map in (5.39.2) is a quasi-isomorphism and, by
Lemma 3.7 and Remark 3.35, so is the right vertical map. By Proposition 5.13 and (5.31.5), the
left vertical map in (5.39.2) becomes a quasi-isomorphism after applying lim−→m≥p and forming the
termwise p-adic completion. These operations turn the bottom horizontal map in (5.39.2) into the
comparison map (5.38.4), so we conclude that the latter is also a quasi-isomorphism, as desired. �

5.40. Proof of Theorem 5.4. By §5.38 and Proposition 5.39, the functorial in R complexes
(5.21.1) and (5.32.1) define canonically and Frobenius-equivariantly quasi-isomorphic complexes of
presheaves on a basis for the topology of Xét. Their associated complexes of sheaves on Xét are then
also canonically and Frobenius-equivariantly quasi-isomorphic. By §5.21 and §5.32, these complexes
of sheaves Frobenius-compatibly represent AΩX⊗̂

L
Ainf

Acris and Ru∗(OXOC/p/Acris
), respectively, so

that, in conclusion, Proposition 5.39 supplies a Frobenius-equivariant isomorphism

Ru∗(OXOC/p/Acris
)
∼−→ AΩX⊗̂

L
Ainf

Acris, (5.40.1)

which gives the desired identification (5.4.1). �

We have obtained two ways to identify the de Rham specialization of AΩX: we may either use
(4.17.1) or combine (5.40.1) with the fact that the logarithmic crystalline cohomology of XOC/p over
OC is computed by Ω•X/OC , log. For use in §8, we now check that these two identifications agree.

Proposition 5.41. The following diagram commutes:

Ru∗(OXOC/p/Acris
)

''

∼
(5.40.1)

// AΩX⊗̂
L
Ainf

Acris

(4.17.1)
ww

Ω•X/OC , log

(5.41.1)

where the unlabeled map results from the identification Ru∗(OXOC/p/Acris
)⊗̂L

Acris, θ
OC ∼= Ω•X/OC , log of

[Bei13b, (1.8.1) and (1.11.1)] (compare with Remark 5.24).

Proof. The overall argument is similar to the one given in the smooth case in [BMS18, proof of 14.1].

The claim is local, so we assume the setup of §5.17. Then the d log(Xσ) and d log(Xλ, i) generate the
differential graded algebra Ω•DΣ,Λ/Acris, log,PD over DΣ,Λ (see Proposition 5.23), so, since the terms
of Ω•Spf(R)/OC , log are p-torsion free and each tσ and tλ, i is a unit in R[1

p ], there is at most one map
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of differential graded algebras

Ω•DΣ,Λ/Acris, log,PD → Ω•Spf(R)/OC , log with DΣ,Λ
(5.22.3)

// // R in degree 0. (5.41.2)

By Proposition 5.23, the unlabeled map of (5.41.1) is identified with this unique map, so we need
to show that so is the composition in (5.41.1).

We recall from the proof of Theorem 4.17 that the right diagonal map in (5.41.1) is defined by com-
posing the Frobenius of AΩX, the reduction modulo ϕ(ξ), and the canonical identification supplied
by [BMS18, 6.12] of (Lη(ϕ(ξ))(AΩX))/ϕ(ξ) with the complex14 H•(AΩX/ϕ(ξ)) that is a posteriori
identified with Ω•Spf(R)/OC , log and whose differentials are a priori given by Bockstein homomor-
phisms (defined in loc. cit. using AΩX/(ϕ(ξ))2). Letting τ range over the usual indices (see §5.31),
we may also apply this construction to the complex η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
: Frobenius maps

it isomorphically to η(ϕ(µ))

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
, for which the reduction modulo ϕ(ξ) map is

η(ϕ(µ))

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
→ H•

((
η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

))
/ϕ(ξ)

)
.

Moreover, due to the isomorphism (4.2.2) and Remarks 3.10 and 3.21,(
η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

))
/ϕ(ξ)

∼−→ η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

)
.

The cited remarks and Theorem 4.11 (with Remark 4.5) imply that this describes the de Rham
specialization map AΩX → Ω•X/OC , log in terms of the complex η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
.

We now describe the right diagonal map of (5.41.1) in terms of η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
,

which is a variable term that comprises the target of the comparison map (5.38.4). Namely, we first
let ϕ(A(m)

cris (RΣ,Λ,∞)) be the analogue of the ring A(m)
cris (RΣ,Λ,∞) built using the element ϕ(ξ) instead

of ξ, so that the Frobenius gives the isomorphism A(m)
cris (RΣ,Λ,∞)

∼−→ ϕ(A(m)
cris (RΣ,Λ,∞)).15 Then

the Frobenius maps the complex η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
isomorphically to the complex

η(ϕ(µ))

(
K
ϕ(A(m)

cris (RΣ,Λ,∞))
((δτ − 1)τ )

)
, for which the reduction modulo ϕ(ξ) map is

η(ϕ(µ))

(
K
ϕ(A(m)

cris (RΣ,Λ,∞))
((δτ − 1)τ )

)
→ H•

(
η(µ)

(
K
ϕ(A(m)

cris (RΣ,Λ,∞))
((δτ − 1)τ )

)
/ϕ(ξ)

)
. (5.41.3)

Via a morphism induced by θ ◦ ϕ−1 : ϕ(A(m)
cris (RΣ,Λ,∞)) � RΣ,Λ,∞, the target of (5.41.3) maps to

H•
(
η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

)) 3.10 and 4.11∼= Ω•Spf(R)/OC , log

because, since each H i
(
η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

))
is p-torsion free, the agreement of the Bock-

stein differentials may be checked after inverting p by using the fact that (Ainf(RΣ,Λ,∞)/ϕ(ξ)2)[1
p ]

is an algebra over ϕ(A(m)
cris (RΣ,Λ,∞)) via a map that lifts θ ◦ ϕ−1. The resulting composition

η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
→ H•

(
η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

)) ∼= Ω•Spf(R)/OC , log (5.41.4)

14For the sake of notational simplicity, we suppress the twists inherent in the construction H•(−) of loc. cit.
15Composing with the map ϕ(A(m)

cris (RΣ,Λ,∞))→ A(m)
cris (RΣ,Λ,∞) recovers the Frobenius of A(m)

cris (RΣ,Λ,∞).
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is the promised description of the right diagonal map of (5.41.1). In addition, by construction and
[BMS18, 6.13], this composition is a morphism of differential graded algebras16 that in degree 0 is
given by the map θ of (5.19.4).

On the other hand, the comparison map

Ω•DΣ,Λ/Acris, log,PD
∼= KDΣ,Λ

(( ∂
∂ log(Xτ ))τ )

(5.38.4)−−−−→
(

lim−→m≥p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂
would be a map of differential graded algebras if in the formula log([ε])·

∑
n≥0

(
(log([ε]))n

(n+1)! ( ∂
∂ log(Xτ ))n

)
that describes the morphism (5.34.1) in degree 1 we could disregard the terms with n ≥ 1. However,
log([ε]) and µ are unit multiples of each other (see §5.14) and θ( µn

(n+1)!) = 0 in OC for n ≥ 1, so we
can indeed ignore these terms if we are only interested in the composition

Ω•DΣ,Λ/Acris, log,PD →
(

lim−→m≥p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂ (5.41.4)−−−−→ Ω•Spf(R)/OC , log.

that describes the composition in (5.41.1). In conclusion, this composition is a morphism of dif-
ferential graded algebras that, due to (5.38.2), in degree 0 is the map DΣ,Λ � R from (5.22.3).
Therefore, as desired, it is the unique morphism (5.41.2). �

We conclude §5 by using Theorem 5.4 to analyze the crystalline specialization of RΓ(Xét, AΩX).

5.42. The crystalline specialization map. The Witt vector functoriality gives the surjection

Ainf �W (k), the crystalline specialization map of Ainf .

Since ξ maps to p in W (k), this surjection factors through Acris as follows: Ainf ↪→ Acris � W (k).
We equip W (k) with the pullback of the log structure (5.2.1) on Acris. Explicitly, the resulting log
structure on W (k) is associated to the prelog structure Q≥0

0 6= q 7→ 0, 0 7→ 1−−−−−−−−−→W (k).

Corollary 5.43. For quasi-compact and quasi-separated X, we have Frobenius-equivariant identifi-
cations

RΓ(Xét, AΩX)⊗̂L
Ainf

Acris
∼= RΓlog cris(XOC/p/Acris),

RΓ(Xét, AΩX)⊗̂L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k)).
(5.43.1)

For OC-proper X, we have Frobenius-equivariant identifications

RΓ(Xét, AΩX)⊗L
Ainf

Acris
∼= RΓlog cris(XOC/p/Acris),

RΓ(Xét, AΩX)⊗L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k)),
(5.43.2)

and the cohomology modules of RΓ(Xét, AΩX)⊗L
Ainf

Acris[
1
p ] are finite free over Acris[

1
p ].

Proof. By [BMS18, 4.9 (i)], a finitely presented Ainf/p
n-module is perfect as an Ainf -module. Con-

sequently, any Ainf/p
n-moduleM is a filtered direct limit of perfect Ainf -modules, so, by [SP, 0739],

RΓ(Xét, AΩX ⊗L
Ainf

M) ∼= RΓ(Xét, AΩX)⊗L
Ainf

M.

This applies to M = Acris/p
n, so the first identification in (5.43.1) follows from Theorem 5.4.

For each finite subextension of C/(W (k)[1
p ]), we consider its ring of integers O ⊂ OC equipped with

the (fine) log structure associated to O∩ (O[1
p ])× ↪→ O. By using étale local semistable coordinates

(1.5.1) and Claims 1.6.1 and 1.6.3, we employ limit arguments to find such an O and a quasi-compact

16The differential graded algebra structure on the Koszul complex K∗((δτ − 1)τ ) that computes continuous group
cohomology is described in [BMS18, 7.5] and its proof.
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and quasi-separated, fine, log smooth log scheme X over O/p that descends XOC/p and is of Cartier
type (see [Kat89, 4.8]). Then the base change theorem [Bei13b, (1.11.1)] applies17 and shows that

RΓlog cris(XOC/p/Acris)⊗̂
L
Acris

W (k) ∼= RΓlog cris(Xk/W (k)), (5.43.3)

so the second identification in (5.43.1) follows from the first.

If X isOC-proper, then, by Corollary 4.20, the objectRΓ(Xét, AΩX) is quasi-isomorphic to a bounded
complex of finite free Ainf -modules, so the identifications in (5.43.2) follow from those in (5.43.1).
Moreover, then X is O-proper and [Bei13b, 1.18, Theorem] proves that the cohomology groups of

RΓlog cris(XOC/p/Acris)⊗L
Acris

Acris[
1
p ], and hence also of RΓ(Xét, AΩX)⊗L

Ainf
Acris[

1
p ],

are finite free Acris[
1
p ]-modules. �

Remarks.

5.44. In the preceding proof, the special fiber Xk is a descent of Xk to a fine, log smooth log
scheme of Cartier type over k equipped with the log structure associated to N≥0

1 7→ 0, 0 7→ 1−−−−−−−→ k
(the base change map is a “change of log structure” self-map of k determined by the map
N≥0 → Q≥0 that sends 1 to the valuation of a uniformizer of O). Given such a descent, the
base change theorem [Bei13b, (1.11.1)] gives the further Frobenius-equivariant identification

RΓlog cris(Xk/W (k)) ∼= RΓlog cris(Xk/W (k)), (5.44.1)

where the W (k) on the left (resp., right) is equipped with the log structure associated to
Q≥0

0 6= q 7→ 0, 0 7→ 1−−−−−−−−−→ W (k) (resp., N≥0
1 7→ 0, 0 7→ 1−−−−−−−→ W (k)). Likewise, if Xk is k-smooth, then

loc. cit. gives the Frobenius-equivariant identification

RΓlog cris(Xk/W (k)) ∼= RΓcris(Xk/W (k)). (5.44.2)

5.45. The identification (5.43.3) expresses RΓlog cris(Xk/W (k)) in terms of RΓlog cris(XOC/p/Acris).
Further results from [Bei13b] imply a converse for proper X after extending coefficients to B+

st ,
see (9.2.2) below (when Xk is k-smooth, Acris[

1
p ] in place of B+

st suffices, see [BMS18, 13.21]).

6. The comparison to the B+
dR-cohomology

The main goal of this section is to prove in Theorem 6.6 that for OC-proper X, we have

RΓlog cris(XOC/p/Acris)⊗L
Acris

B+
dR
∼= RΓcris(X

ad
C /B

+
dR), (6.0.1)

where the definition of RΓcris(X
ad
C /B

+
dR), the “crystalline cohomology of Xad

C over B+
dR,” was given

in [BMS18, §13] (see §6.2 for a brief review). This definition is purely in terms of Xad
C and was

engineered in op. cit. to be compatible with RΓlog cris(XOC/p/Acris) when X is smooth. Thus, for
(6.0.1), we only need to check that a slightly more general definition that uses the étale topology
and more general embeddings than those furnished by annuli leads to the same cohomology (see
§§6.2–6.3). For this, we adapt the arguments of op. cit.; in fact, our C is (W (k)[1

p ])̂ (see §1.5),
so we may simplify the descent to a discretely valued base aspects of these arguments by taking
advantage of a result of Huber on the local structure of étale maps of adic spaces (see §6.3).

17In loc. cit., the map f of fine log schemes is quasi-compact and separated. One may relax this to quasi-compact
and quasi-separated: once Y there is affine, the iterated intersections of opens in an affine cover of Z are quasi-compact
and separated over Y , so the Čech technique (compare with [SP, 08BN]) reduces to the original assumptions.
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6.1. The ring B+
dR. Since ξ is not a zero divisor in Ainf [

1
p ] and generates Ker(θ[1

p ]), the (Ker(θ[1
p ]))-

adic completion of Ainf [
1
p ] is a complete discrete valuation ring B+

dR with ξ as a uniformizer and
C as the residue field. By Proposition 5.36, both Ainf and Acris are subalgebras of B+

dR. By the
“glueing of flatness” [RG71, II.1.4.2.1], the ring B+

dR is flat as an Ainf -algebra. We set

BdR := Frac(B+
dR).

Our Ainf is a W (k)-algebra (see §2.1), so, by the infinitesimal lifting, B+
dR is a W (k)[1

p ]-algebra.

6.2. The B+
dR-cohomology using the étale topology. In [BMS18, §13], Bhatt–Morrow–Scholze

used the analytic topology of a smooth adic C-space X to define the “B+
dR-cohomology” of X,

RΓcris(X/B
+
dR) ∈ D≥0(B+

dR).

We now review their construction and show that it may also be carried out in the étale topology.

By [Hub96, 1.6.10, 2.2.8], the analytic (resp., étale) topology of X has a basis of affinoids Spa(A,A◦)
each of which admits a map

Spa(A,A◦)→ TdC := Spa(C〈T±1
1 , . . . , T±1

d 〉,OC〈T
±1
1 , . . . , T±1

d 〉) for some d ≥ 0 (6.2.1)

that is a composition of a rational embedding, a finite étale map, and a rational embedding. By
localizing further, we refine the basis to consist of those Spa(A,A◦) as above for which there is a
finite subset Ψ ⊂ (A◦)× such that the following map is surjective:

C
〈
(X±1

u )u∈Ψ

〉 Xu 7→u−−−−→ A. (6.2.2)

Then, by endowing each Ainf/ξ
n with the p-adic topology, each (Ainf/ξ

n)[1
p ] with the unique ring

topology for which Ainf/ξ
n is an open subring, setting

B+
dR

〈
(X±1

u )u∈Ψ

〉
:= lim←−n>0

((B+
dR/ξ

n)
〈
(X±1

u )u∈Ψ

〉
), (6.2.3)

and composing the projection onto the n = 1 term with (6.2.2), we obtain the surjection

s : B+
dR

〈
(X±1

u )u∈Ψ

〉
� A and set DΨ(A) := lim←−n>0

((B+
dR

〈
(X±1

u )u∈Ψ

〉
)/(Ker s)n).

By the Leibniz rule, any (B+
dR

〈
(X±1

u )u∈Ψ

〉
)-valued derivation of B+

dR

〈
(X±1

u )u∈Ψ

〉
induces a DΨ(A)-

valued derivation of DΨ(A). Thus, the commuting derivations ∂
∂ log(Xu)

:= Xu · ∂
∂Xu

give rise to the
Koszul complex

Ω•
DΨ(A)/B+

dR

:= KDΨ(A)

(
( ∂
∂ log(Xu))u∈Ψ

)
that is functorial in enlarging Ψ. The resulting complex

Ω•
A/B+

dR

:= lim−→Ψ

(
Ω•
DΨ(A)/B+

dR

)
(6.2.4)

is contravariantly functorial in Spa(A,A◦). Consequently, by varying Spa(A,A◦), we obtain a
complex of presheaves on the basis described above for the analytic (resp., étale) topology of X.
The hypercohomology of the associated complex of sheaves is, by definition, the B+

dR-cohomology
of X:

RΓcris(X/B
+
dR) (resp., its variant for the étale topology RΓcris(Xét/B

+
dR)).

By [BMS18, 13.12 (ii), 13.13], if Spa(A,A◦) is fixed and Ψ is sufficiently large, then DΨ(A) is ξ-
torsion free and ξ-adically complete, Ω•

DΨ(A)/B+
dR

maps quasi-isomorphically to Ω•
A/B+

dR

, and, in the
derived category, we have a canonical identification

Ω•
DΨ(A)/B+

dR

/ξ ∼= Ω•, cont
A/C , so also Ω•

A/B+
dR

/ξ ∼= Ω•, cont
A/C .
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Consequently, by [BMS18, 9.15] (which we also used for proving Corollary 4.6), our definition of
RΓcris(X/B

+
dR) agrees with that of [BMS18, §13] (where one skips the sheafification step),

RΓcris(X/B
+
dR) and RΓcris(Xét/B

+
dR) are derived ξ-adically complete, (6.2.5)

and their (derived) reductions modulo ξ are canonically and compatibly identified with the de Rham
cohomology objects RΓ(X,Ω•, cont

X/C ) and RΓ(Xét,Ω
•, cont
X/C ), respectively, for instance:

RΓcris(X/B
+
dR)⊗L

B+
dR

C ∼= RΓ(X,Ω•, cont
X/C ) =: RΓdR(X/C). (6.2.6)

Thus, since, by the Hodge-to-de Rham spectral sequence and [Sch13a, 9.2 (ii)], the formation of the
de Rham cohomology is insensitive to passage to the étale topology, we have

RΓcris(X/B
+
dR)

∼−→ RΓcris(Xét/B
+
dR) (6.2.7)

via pullback. In addition, if X is proper over C and there is a complete, discretely valued subfield
K ⊂ C with a perfect residue field and a proper, smooth adic space X0 over K equipped with an
isomorphism X ∼= X0⊗̂KC, then, by [BMS18, 13.20], there is a canonical identification

RΓcris(X/B
+
dR) ∼= RΓdR(X0/K)⊗K B+

dR, where RΓdR(X0/K) := RΓ(X0,Ω
•, cont
X0/K

). (6.2.8)

In this situation, by the proof of loc. cit., the reduction modulo ξ of the identification (6.2.8) recovers
the identification (6.2.6) under the base change identification RΓdR(X/C) ∼= RΓdR(X0/K)⊗L

K C.

6.3. The B+
dR-cohomology using more general embeddings. To relate RΓcris(Xét/B

+
dR) to

the absolute crystalline cohomology of §5.3, we now mildly generalize the construction of the former.

The étale topology of X has a basis of affinoids Spa(A,A◦) each of which admits an étale map

Spa(A,A◦)→ Spa(C〈T0, . . . , Tr,T
±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq),

OC〈T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq))

(6.3.1)

for some d ≥ r ≥ 0 and q ∈ Q>0 (we have seen in §6.2 that even the ones with r = 0 would suffice).
By [Hub96, 1.7.3 iii)]18 and limit arguments, there is a finite subextension W (k)[1

p ] ⊂ K ⊂ C with
the ring of integers O containing pq and a finite type (O[T0, . . . , Tr, T

±1
r+1, . . . , T

±1
d ]/(T0 · · ·Tr−pq))-

algebra A0 that is étale after inverting p, flat over O, normal, and such that the morphism (6.3.1)
is the C-base change of an étale Spa(K,O)-morphism

Spa(Â0[1
p ], Â0)→ Spa(K〈T0, . . . , Tr,T

±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq),

O〈T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq)).

(6.3.2)

By also using the reduced fiber theorem [SP, 09IL], we enlarge K to ensure that, in addition,

A0⊗̂OW (k) ∼= A◦. (6.3.3)

The connected components of Spec(A0) on which p is a unit do not contribute to Â0, so we lose no
generality by assuming that Spec(A0) has no such components.

By working locally on Spa(Â0[1
p ], Â0), we refine the basis above to consist of those Spa(A,A◦) for

which, in addition, there are finite subsets Ψ0 ⊂ (Â0)× and Ξ0 ⊂ Â0 ∩ (Â0[1
p ])× such that the map

K〈(x±1
u )u∈Ψ0 , (xa)a∈Ξ0〉

xu 7→u, xa 7→a−−−−−−−−→ Â0[1
p ] (6.3.4)

18Noncomplete A are allowed in loc. cit., so we choose A+ := W (k)[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]/(T0 · · ·Tr − pq) and

AB := A+[ 1
p
].
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is surjective. Then there are finite subsets Ψ ⊂ (A◦)× and Ξ ⊂ A◦ ∩A× such that the map

C〈(X±1
u )u∈Ψ, (Xa)a∈Ξ〉

Xu 7→u,Xa 7→a−−−−−−−−−→ A (6.3.5)

is also surjective. Defining the ring B+
dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
analogously to (6.2.3), so that the

map (6.3.5) gives rise to the surjection

s : B+
dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
� A,

we set

DΨ,Ξ, n(A) := (B+
dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
)/(Ker s)n and DΨ,Ξ(A) := lim←−n>0

DΨ,Ξ, n(A).

By [BMS18, 13.4 (ii)], each DΨ,Ξ, n(A) is a complete, strongly Noetherian Tate ring (in the sense
of [Hub93, §1]), with the image of (Ainf/ξ

n)
〈
(X±1

u )u∈Σ, (Xa)a∈Ξ

〉
endowed with its p-adic topology

as a ring of definition. By construction, DΨ,Ξ, n(A) is a nilpotent thickening of DΨ,Ξ, 1(A) ∼= A.

The ring B+
dR is a K-algebra (see §6.1), so we let (B+

dR/ξ
n)0 ⊂ B+

dR/ξ
n for n > 0 be the (module-

finite) Ainf/ξ
n-subalgebra generated by the image of O. The proof of [BMS18, 13.11] shows (with

RA there replaced by our Â0[1
p ])19 that the B+

dR-algebra

B+
dR⊗̂K(A0[1

p ]) := lim←−n>0

(
((B+

dR/ξ
n)0⊗̂OA0)[1

p ]
)

(6.3.6)

has no nonzero ξ-torsion and is ξ-adically complete with

(B+
dR⊗̂K(A0[1

p ]))/ξ ∼= A and, more generally, (B+
dR⊗̂K(A0[1

p ]))/ξn ∼= ((B+
dR/ξ

n)0⊗̂OA0)[1
p ].

The argument of footnote 19 shows that the map (B+
dR/ξ

n+1)0⊗̂OA0 → (B+
dR/ξ

n)0⊗̂OA0 is surjec-
tive for n > 0 (with the kernel of square zero, as may be seen after inverting p), so the subring

lim←−n>0

(
(B+

dR/ξ
n)0⊗̂OA0

)
⊂ B+

dR⊗̂K(A0[1
p ]) surjects onto OC⊗̂OA0

(6.3.3)∼= A◦. (6.3.7)

Moreover, we have the following analogue of [BMS18, 13.12 (ii)] whose proof will be given in §6.4:

Lemma 6.3.8. If Spa(A,A◦) is an element of the refined basis for Xét described above, Ψ ⊂ (A◦)×

(resp., Ξ ⊂ A◦ ∩ A×) contains the images of the Ti for r + 1 ≤ i ≤ d (resp., 1 ≤ i ≤ r) under
a coordinate morphism as in (6.3.1), and Ψ and Ξ are large enough (see the proof for the precise
meaning), then

DΨ,Ξ(A) ∼= (B+
dR⊗̂K(A0[1

p ]))J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K (6.3.9)

where ã ∈ lim←−n>0

(
(B+

dR/ξ
n)0⊗̂OA0

)
⊂ B+

dR⊗̂K(A0[1
p ]) is a fixed lift of a (see (6.3.7)). In particular,

for large Ψ and Ξ, the B+
dR-algebra DΨ,Ξ(A) has no nonzero ξ-torsion and is ξ-adically complete.

Similarly to §6.2, for any Ψ and Ξ as in (6.3.5), the derivations ∂
∂ log(Xa)

:= Xa · ∂
∂Xa

with a ∈ Ψ∪Ξ

extend to DΨ,Ξ(A), and we may define the Koszul complex

Ω•
DΨ,Ξ(A)/B+

dR

:= KDΨ,Ξ(A)

(
( ∂
∂ log(Xu))u∈Ψ, (

∂
∂ log(Xa))a∈Ξ

)
that is functorial in replacing Ψ and Ξ by larger Ψ′ and Ξ′. Since a ∈ A× for a ∈ Ψ ∪ Ξ, the proof
of [BMS18, 13.13] shows that for Ψ and Ξ to which Lemma 6.3.8 applies,

Ω•
DΨ,Ξ(A)/B+

dR

/ξ ∼= Ω•, cont
A/C in the derived category, (6.3.10)

19In fact, in our case the argument is simpler, and we sketch it here. Since Spec(A0) has no connected components
on which p is a unit, by [RG71, I.3.3.5] and [SP, 0593], the ring A0 is free as an O-module. Thus, the n-th term of the
inverse limit in (6.3.6) is a p-adically completed direct sum of copies of (Ainf/ξ

n)[ 1
p
]. This makes the multiplication

by ξm map on this n-th term explicit and the desired claims follow by passing to the inverse limit over n.
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compatibly with enlarging Ψ and Ξ. In particular, due to the derived ξ-adic completeness supplied
by Lemma 6.3.8, for such large enough Ψ and Ξ, the map

Ω•
DΨ,Ξ(A)/B+

dR

→ Ω•
DΨ′,Ξ′ (A)/B+

dR

is a quasi-isomorphism.

Thus, if the element Spa(A,A◦) of the refined basis above also belongs to the basis considered in
§6.2, that is, if it has an étale coordinate map as in (6.2.1) and a surjection (6.2.2), then we obtain
the functorial in Spa(A,A◦) quasi-isomorphism with the complex Ω•

A/B+
dR

of (6.2.4):

Ω•
A/B+

dR

∼−→ lim−→Ψ,Ξ

(
Ω•
DΨ,Ξ(A)/B+

dR

)
. (6.3.11)

Such Spa(A,A◦) still form a basis for Xét (see the parenthetical remark after (6.3.1)), so we conclude
that the hypercohomology of the sheafification of the complex of presheaves furnished by the target
of (6.3.11) is identified with RΓcris(Xét/B

+
dR). In conclusion, we may summarize informally:

the complexes Ω•
DΨ,Ξ(A)/B+

dR

also compute the B+
dR-cohomology RΓcris(X/B

+
dR) (6.3.12)

and the maps (6.3.10) recover the identification (6.2.6).

6.4. Proof of Lemma 6.3.8. We adapt the proof of [BMS18, 13.12 (ii)] as follows. In addition
to the coordinate morphism (6.3.1) and its descent (6.3.2) used in the statement, we fix subsets
Ψ0 ⊂ (Â0)× and Ξ0 ⊂ Â0 ∩ (Â0[1

p ])× such that, as in (6.3.4), the map

s0 : K
〈
(x±1
u )u∈Ψ0 , (xa)a∈Ξ0

〉 xu 7→u, xa 7→a−−−−−−−−→ Â0[1
p ]

is surjective and Ψ0 (resp., Ξ0) contains the images of the Ti for r + 1 ≤ i ≤ d (resp., 1 ≤ i ≤ r)
under the map (6.3.2). We require that Ψ (resp., Ξ) contains the image of this Ψ0 (resp., Ξ0) in
A◦—this is the meaning of “large enough” in the statement. We set

D0, n := K
〈
(x±1
u )u∈Ψ0 , (xa)a∈Ξ0

〉
/(Ker s0)n for n > 0 and D0 := lim←−n>0

D0, n.

The continuous map K → B+
dR (see §6.1) gives a compatible with s0 and s continuous map

K
〈
(x±1
u )u∈Ψ0 , (xa)a∈Ξ0

〉 xu 7→Xu, xa 7→Xa−−−−−−−−−−→ B+
dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
, so also D0, n → DΨ,Ξ, n(A).

By the K[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]-étaleness of A0[1

p ], the map

A0[1
p ]→ Â0[1

p ] lifts to a map A0[1
p ]→ D0 with Ti 7→ xTi . (6.4.1)

By [GR03, 7.3.15], for each n > 0, the subring D◦0, n ⊂ D0, n of powerbounded elements is the
preimage of its counterpart (Â0[1

p ])◦ ⊂ Â0[1
p ]. Thus, the lift (6.4.1) maps A0 to D◦0, n, so also to

some ring of definition of D0, n. By composing with the map D0, n → DΨ,Ξ, n(A), we obtain the
map A0 → DΨ,Ξ, n(A) whose image lies in some ring of definition, so, as n varies, also the map

B+
dR⊗̂K(A0[1

p ])→ DΨ,Ξ(A) that is compatible with the maps to A.

This gives rise to the continuous map y in the diagram

(B+
dR⊗̂K(A0[1

p ]))J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K

y

��

Xa 7→ a

(( ((
B+

dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
//

XTi 7→Ti 11

A

DΨ,Ξ(A)

z

WW

44 44

whose maps “XTi 7→ Ti” and z are defined as follows.
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• To define the map “XTi 7→ Ti,” one first forms the inverse limit over N of the maps

(Ainf/ξ
n)
〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉 XTi 7→Ti−−−−−→ ((B+
dR/ξ

n)0 ⊗O A0/p
N )J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K

defined by using the fact that each ũ with u ∈ Ψ is a unit in (B+
dR/ξ

n)0⊗̂OA0 (see the
sentence of (6.3.7)) and the identity X−1

u = ũ−1(1 − ũ−1(Xu − ũ) + ũ−2(Xu − ũ)2 − . . .).
Then one inverts p and forms the inverse limit over n.

• The continuous map z is defined by combining the top part of the diagram, the ξ-adic
completeness of B+

dR⊗̂K(A0[1
p ]) (see §6.3), and the definition of DΨ,Ξ(A).

By construction, the diagram commutes, so that y ◦ z = id. By the K[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]-

étaleness of A0[1
p ], theK[T1, . . . , Tr, T

±1
r+1, . . . , T

±1
d ]-algebra endomorphism z◦y of the pro-thickening

(B+
dR⊗̂K(A0[1

p ]))J(Xa−ã)a∈(Ψ∪Ξ)\{T1,...,Td}K of A is the identity on A0[1
p ], so also on (B+

dR⊗̂K(A0[1
p ])).

It also fixes every Xa, so it must be the identity. Thus, z is the desired isomorphism (6.3.9). �

6.5. The map from the absolute crystalline cohomology. Returning to the X of §1.5, our
next goal is to use the preceding discussion to exhibit a map

RΓlog cris(XOC/p/Acris)→ RΓcris(X
ad
C /B

+
dR) over Acris

§6.1−−→ B+
dR. (6.5.1)

For this, we use the basis of Xét consisting of the affine opens Spf(R) as in the “all possible coordi-
nates” setting of §5.17 and adopt the subsequent notation of §§5.17–5.40. To relate to §6.3, we set

A := R[1
p ], Ψ := {tσ}σ∈Σ ∪

⋃
λ∈Λ{tλ, rλ+1, . . . , tλ, d}, and Ξ :=

⋃
λ∈Λ{tλ, 1, . . . , tλ, rλ} (6.5.2)

(so that A◦ ∼= R and the tλ, 0 are omitted). We may descend the étale map (5.17.3) for λ ∈ Λ to
the ring of integers of a finite subextension W (k)[1

p ] ⊂ K ⊂ C (see (1.5.2)) and then obtain the
descended coordinate map (6.3.2) on the generic fiber. In addition, by enlarging K and using the
closed immersion (5.17.2), we may ensure that the descent has a closed immersion (6.3.4) (with
Ξ0 = ∅); we then enlarge Ψ by adjoining the image in (A◦)× of the resulting Ψ0. Thus, the above
choices of A, the enlarged Ψ, and Ξ satisfy the assumptions of §6.3: specifically, Spa(A,A◦) is an
element of the (refined) basis of (Xad

C )ét considered there, Ψ (resp., Ξ) contains tλ, i for rλ+1 ≤ i ≤ d
(resp., 1 ≤ i ≤ rλ), and Lemma 6.3.8 applies to (the enlarged) Ψ and Ξ. In conclusion, with these
choices, the entire §6.3 applies.

By using descents and [GR03, 7.3.15] as in the proof of Lemma 6.3.8, we see that the elements
[(p1/p∞ )qλ ]

Xtλ, 1 ···Xtλ, rλ
of DΨ,Ξ, n(A) lie in (DΨ,Ξ, n(A))◦. Thus, each (DΨ,Ξ, n(A))◦, so also DΨ,Ξ(A), is

naturally an algebra over the ring A�
Σ,Λ defined in (5.22.1). In fact, since each DΨ,Ξ, n(A) is a

Q-algebra in which ξm vanishes for m ≥ n and each Xa is a unit in DΨ,Ξ(A), the universal relations
(5.26.3) and (5.27.3) imply that each (DΨ,Ξ, n(A))◦, so also DΨ,Ξ(A), is naturally an algebra over

(A�
Σ,Λ ⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ] for λ0 ∈ Λ,

compatibly with the maps

(A�
Σ,Λ ⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ]

(5.26.4) and (5.27.4)
// // R and (DΨ,Ξ, n(A))◦ → A◦ ∼= R (6.5.3)

and the “change of λ0” isomorphisms (5.26.7). The resulting algebra structure map factors through
some (necessarily p-adically complete) ring of definition (DΨ,Ξ, n(A))0:

(A�
Σ,Λ ⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ]→ (DΨ,Ξ, n(A))0 ↪→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A),

64



so the map (DΨ,Ξ, n(A))0 → R is surjective. In addition, by [SP, 07GM], the kernel of the map
(DΨ,Ξ, n(A))◦ � R/p has a unique divided power structure, so we obtain a map

Djλ0
→ (DΨ,Ξ, n(A))◦ (6.5.4)

from the divided power envelope Djλ0
defined in §5.28. For a fixed n and modulo the ξm

m! with
m ≥ n, the kernel of the map (A�

Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ] � R/p is finitely generated and, due
to the surjectivity of (A�

Σ,Λ ⊗Ainf
A0

cris) ⊗Z[Q] Z[Pλ0 ] � R, the generating set may be arranged to
consist of p and a finite set of elements that vanish already in R. Thus, since Djλ0

is generated as
an ((A�

Σ,Λ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ])-algebra by the divided powers of the elements of this kernel, by
enlarging (DΨ,Ξ, n(A))0 we may factor the map (6.5.4) as follows:

Djλ0
→ (DΨ,Ξ, n(A))0 ↪→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A).

Consequently, we obtain independent of λ0 and compatible as n varies continuous maps

D̂jλ0

(5.29.1)∼= DΣ,Λ → (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A), so also DΣ,Λ → DΨ,Ξ(A). (6.5.5)

Via the last map, the Djλ0
-valued derivations ∂

∂ log(Xσ) for σ ∈ Σ and ∂
∂ log(Xλ, i)

for λ ∈ Λ and
1 ≤ i ≤ d of Djλ0

are compatible with the corresponding DΨ,Ξ(A)-valued derivations of DΨ,Ξ(A)

(see (6.5.2), §5.31, and §6.3). Thus, due to the density of Djλ0
in DΣ,Λ, the same compatibility

holds for the map DΣ,Λ → DΨ,Ξ(A), to the effect that we obtain a map of complexes

KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)
→ KDΨ,Ξ(A)

(
( ∂
∂ log(Xa))a∈Ψ∪Ξ

)
.

Its formation commutes with enlarging Σ and Λ (and, respectively, Ψ and Ξ), so we obtain the map

lim−→Σ,Λ

(
KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

))
→ lim−→Ψ,Ξ

(
Ω•
DΨ,Ξ(R[ 1

p
])/B+

dR

)
. (6.5.6)

The formation of this map is compatible with replacing R by a p-adically formally étale R-algebra
R′ equipped with data as in §5.17. The resulting map of complexes of presheaves gives rise
to the map of complexes of sheaves on Xét from the complex whose RΓ(Xét,−) is identified
with RΓlog cris(XOC/p/Acris) (see (5.23.3) and §5.32) to the pushforward of the complex whose
RΓ((Xad

C )ét,−) is identified with RΓcris(X
ad
C /B

+
dR) (see §6.3 and (6.3.12)). Thus, by applying

RΓ(Xét,−), we obtain the desired map (6.5.1):

RΓlog cris(XOC/p/Acris)→ RΓcris(X
ad
C /B

+
dR).

In addition, by its construction and Lemma 5.29, the map DΣ,Λ → DΨ,Ξ(R[1
p ]) of (6.5.5) is compat-

ible with the maps to R[1
p ] (see (6.5.3)). Thus, [BMS18, 13.13] used to obtain (6.3.10) implies that

the map (6.5.6) is compatible with the maps in the derived category to Ω•, cont

R[ 1
p

]/C
described in the

last display of §5.32 and (6.3.10). In conclusion, the map (6.5.1) fits into the commutative square:

RΓlog cris(XOC/p/Acris)

(5.23.2)
��

(6.5.1)
// RΓcris(X

ad
C /B

+
dR)

(6.2.6)
��

RΓlog dR(X/OC) // RΓdR(Xad
C /C).

(6.5.7)

Having constructed the map (6.5.1), we are ready for the following extension of [BMS18, 13.23].
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Theorem 6.6. If X is OC-proper, then the map (6.5.1) induces the identification

RΓlog cris(XOC/p/Acris)⊗L
Acris

B+
dR
∼= RΓcris(X

ad
C /B

+
dR) (6.6.1)

and the cohomology modules of RΓcris(X
ad
C /B

+
dR) are finite free over B+

dR. In particular, then

RΓ(Xét, AΩX)⊗L
Ainf

B+
dR
∼= RΓcris(X

ad
C /B

+
dR), (6.6.2)

compatibly with the identifications modulo ξ with RΓdR(Xad
C /C) given by (4.18.1) and (6.2.6).

Proof. By Corollaries 4.20 and 5.43, the object RΓlog cris(XOC/p/Acris) of D(Acris) is perfect and its
cohomology modules become finite free after inverting p. Therefore, due to (5.24.1) and the derived
p-adic completeness, we have the identification

RΓlog cris(XOC/p/Acris)⊗L
Acris
OC ∼

(5.23.2)
// RΓlog dR(X/OC) .

Consequently, both sides of (6.6.1) are derived ξ-adically complete (see (6.2.5)) and, due to (6.2.6)
and the commutativity of the diagram (6.5.7), the map (6.5.1) identifies their reductions modulo ξ.
In conclusion, (6.5.1) induces the desired identification (6.6.1) and the B+

dR-freeness claim follows
from the first sentence of the proof. The combination of (5.43.2) and (6.6.1) gives (6.6.2) and the
asserted compatibility follows from Proposition 5.41 and the commutativity of (6.5.7). �

6.7. The B+
dR-cohomology and the étale cohomology. For any proper, smooth adic space X

over C, in [BMS18, 13.1] Bhatt–Morrow–Scholze constructed the functorial in X identification

RΓcris(X/B
+
dR)⊗B+

dR
BdR

∼= RΓét(X,Zp)⊗Zp BdR. (6.7.1)

Due to the identification (6.2.8), when X ∼= X0⊗̂KC for a proper, smooth adic space X0 defined
over a complete, discretely valued subfield K ⊂ C that has a perfect residue field, the inverse of
(6.7.1) supplies the functorial in X0 de Rham comparison isomorphism

RΓét(X0⊗̂KC,Zp)⊗Zp BdR
∼= RΓdR(X0/K)⊗K BdR. (6.7.2)

If C ∼= K̂, then, by transport of structure, the identification (6.7.2) is Gal(K/K)-equivariant (with
Gal(K/K) acting trivially on RΓdR(X0/K)) and, by loc. cit., it recovers the isomorphism con-
structed in [Sch13a, 8.4]. In particular, in this case, (6.7.2) is compatible with filtrations, where
BdR is filtered by its discrete valuation and RΓdR(X0/K) (resp., RΓét(X0⊗̂KC,Zp)) is equipped
with the the Hodge (resp., trivial) filtration.

For proper X, we now have two ways to identify RΓ(Xét, AΩX)⊗L
Ainf

BdR with RΓét(X
ad
C ,Zp)⊗L

ZpBdR:
we can either base change (2.3.1) to BdR or combine (6.6.2) and (6.7.1). We now prove that the
two ways give the same identification; this will be important in the proof of Theorem 8.7.

Proposition 6.8. If X is OC-proper, then the map RΓcris(X
ad
C /B

+
dR) → RΓ(Xad

C ,Zp) ⊗Zp B
+
dR of

[BMS18, proof of 13.1] that underlies the identification (6.7.1) for X = Xad
C makes the diagram

RΓlog cris(XOC/p/Acris)

o (5.40.1)
��

(6.5.1)
// RΓcris(X

ad
C /B

+
dR)

��

RΓ(Xét, AΩX)⊗L
Ainf

Acris
[BMS18, 6.10]

// RΓét(X
ad
C ,Ainf,Xad

C
)⊗L

Ainf
B+

dR RΓ(Xad
C ,Zp)⊗L

Zp B
+
dR.∼

(2.3.2)
oo

commute; in particular, the identification of RΓ(Xét, AΩX) ⊗L
Ainf

BdR with RΓét(X
ad
C ,Zp) ⊗L

Zp BdR

that results from (2.3.1) (and is encoded by the bottom part of the above diagram) agrees with the
identification that results from (6.6.2) and (6.7.1) (and is encoded by the top part of the diagram).
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Proof. Since ϕ−1(µ) lies inW (m[) and is a unit in B+
dR, the discussion after Theorem 2.3 implies that

the map labeled “(2.3.2)” in the diagram is an isomorphism. In particular, due to [Sch13a, 5.1], the
object RΓét(X

ad
C ,Ainf,Xad

C
)⊗L

Ainf
B+

dR of D(B+
dR) is perfect. We will now review the definition given

in [BMS18, proof of 13.1] of the composition f of the right vertical map with this map “(2.3.2).”

Let Spa(A,A◦) be an element of the basis for the analytic topology of Xad
C discussed in §6.2. For

a large enough set Ψ as in §6.2, we consider the surjection C
〈
(X±1

u )u∈Ψ

〉 Xu 7→u−−−−→ A from (6.2.2),

as well as the perfectoid (
∏

Ψ Zp(1))-cover C
〈

(X
±1/p∞
u )u∈Ψ

〉
of C〈(X±1

u )u∈Ψ〉. Granted that Ψ

contains the images of the Ti under some étale coordinate map (6.2.1), the base change of this cover
to Spa(A,A◦) is a perfectoid (

∏
Ψ Zp(1))-cover

Spa(AΨ,∞, A
+
Ψ,∞)→ Spa(A,A◦). (6.8.1)

Each u ∈ Ψ has a canonical system u1/p∞ of p-power roots in A+
Ψ,∞, which gives the unit [u1/p∞ ]

in the B+
dR-algebra B+

dR(A+
Ψ,∞) (see Proposition 5.36). Since B+

dR(A+
Ψ,∞) may be viewed as a pro-

(infinitesimal thickening) of AΨ,∞, the map Xu 7→ [u1/p∞ ] extends to a continuous B+
dR-morphism

DΨ(A)→ B+
dR(A+

Ψ,∞) over A→ AΨ,∞. (6.8.2)

By construction, for each u ∈ Ψ, this morphism intertwines exp
(

log([ε]) · ∂
∂ log(Xu)

)
defined by the

formula (5.15.1) and viewed as a ring endomorphism of DΨ(A) with the action of the generator [ε]
of the u-th copy of Zp(1) on B+

dR(A+
Ψ,∞). In particular, letting γu denote this generator, we may

use the same formula as in (5.16.1) to define the morphism of complexes

Ω•
DΨ(A)/B+

dR

= KDΨ(A)

(
( ∂
∂ log(Xu))u∈Ψ

)
→ KB+

dR(A+
Ψ,∞)((γu − 1)u∈Ψ), (6.8.3)

whose formation is functorial in Ψ and, after passing to the direct limit over all Ψ, also in Spa(A,A◦).
The almost purity theorem identifies the cohomology of the sheaf of complexes determined by the
target of (6.8.3) with RΓét(X

ad
C ,Ainf,Xad

C
) ⊗L

Ainf
B+

dR (see loc. cit.). The cohomology of the sheaf
of complexes determined by the source of (6.8.3) is, by definition, RΓcris(X

ad
C /B

+
dR) (see §6.2).

Therefore, by passing to the direct limit over all Ψ, sheafifying, and forming cohomology, the maps
(6.8.3) produce the aforementioned composition f defined in loc. cit.

The same construction gives the morphisms (6.8.3) for the objects Spa(A,A◦) of the basis of the
étale topology of Xad

C considered in §6.2. Due to (6.2.7), this leads to the same map f . In addition,
we may generalize the construction of the morphisms (6.8.3) further by using the basis for the étale
topology of Xad

C considered in §6.3: the cover (6.8.1) gets replaced by the cover

Spa(AΨ,Ξ,∞, A
+
Ψ,Ξ,∞)→ Spa(A,A◦)

that is the base change of the perfectoid (
∏

Ψ Zp(1)×
∏

Ξ Zp(1))-cover C〈(X±1/p∞
u )u∈Ψ, (X

1/p∞
a )a∈Ξ〉

of C〈(X±1
u )u∈Ψ, (Xa)a∈Ξ〉 for large enough Ψ ⊂ (A◦)× and Ξ ⊂ A◦ ∩ A×, and the rest is (mildly)

modified accordingly. Due to (6.3.12), this variant of the construction gives the same map f .

In conclusion, since the construction of f may be carried out in the setting of §6.3 and follows the
same pattern as the construction of the map (5.40.1), namely, is based on the map as in (5.16.1),

67



all we need to check is that, in the notation of §6.5, the following diagram commutes:

DΣ,Λ

(5.38.1)
��

(6.5.5)
// DΨ,Ξ(A)

(6.8.2)
��

Acris(RΣ,Λ,∞)
(5.36.1)

// B+
dR(A+

Ψ,Ξ,∞).

(6.8.4)

For this desired commutativity, we may first replace B+
dR(A+

Ψ,Ξ,∞) by B+
dR(A+

Ψ,Ξ,∞)/ξn for a variable
n > 0, then replaceDΣ,Λ byDjλ0

for some λ0 ∈ Λ, and, finally, since B+
dR(A+

Ψ,Ξ,∞)/ξn is a Q-algebra
and Djλ0

is generated by divided powers, replace Djλ0
by (A�

Σ,Λ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ]. However,
each Xτ of (5.19.2) with either τ = σ for σ ∈ Σ or τ = (λ, i) for λ ∈ Λ and 1 ≤ i ≤ d maps to the
unit [X

1/p∞
τ ] ∈ (B+

dR(A+
Ψ,Ξ,∞))× under either of the two maps from (A�

Σ,Λ⊗Ainf
A0

cris)⊗Z[Q]Z[Pλ0 ] to
B+

dR(A+
Ψ,Ξ,∞)/ξn supplied by the diagram (6.8.4), so these two maps indeed agree, as desired. �

7. The Ainf-cohomology modules H i
Ainf

(X) and their specializations

In this section, we define and analyze the Ainf -cohomology groups H i
Ainf

(X) of an OC-proper X.
We show that each H i

Ainf
(X) is a Breuil–Kisin–Fargues module (see Theorem 7.4) and deduce that,

loosely speaking, the p-adic étale cohomology of Xad
C has at most the amount of torsion contained

in the logarithmic crystalline cohomology of Xk or the logarithmic de Rham cohomology of X (see
Theorems 7.9 and 7.12). Most of these results are variants of their analogues established in the
smooth case in [BMS18]. Their proofs, granted inputs from §2 and §§4–5, are generally similar to
those of op. cit. and in large part rely on commutative algebra over Ainf .

7.1. Properness of X. Throughout §7, we assume that X is proper and Xk is purely d-dimensional.

7.2. The Ainf-cohomology RΓAinf
(X). We use the object AΩX ∈ D≥0(Xét, Ainf) of §2.2 to set

RΓAinf
(X) := RΓ(Xét, AΩX) ∈ D≥0(Ainf) and H i

Ainf
(X) := H i(RΓ(Xét, AΩX)) for i ∈ Z.

Since Lη commutes with pullback along a flat morphism of ringed topoi (see [BMS18, 6.14]), the
object RΓAinf

(X) is contravariantly functorial in X: an OC-morphism X′ → X induces a morphism

RΓAinf
(X)→ RΓAinf

(X′) in D≥0(Ainf), so also H i
Ainf

(X)→ H i
Ainf

(X′) for i ∈ Z.

Corollary 4.20 ensures that RΓAinf
(X) is perfect, that is, isomorphic to a bounded complex of finite

free Ainf -modules. Moreover, by (2.3), (4.18.1), and (5.43.2), we have the following identifications:

RΓAinf
(X)⊗L

Ainf
Ainf [

1
µ ] ∼= RΓét(X

ad
C ,Zp)⊗L

Zp Ainf [
1
µ ];

RΓAinf
(X)⊗L

Ainf , θ
OC ∼= RΓlog dR(X/OC);

RΓAinf
(X)⊗L

Ainf
W (k) ∼= RΓlog cris(Xk/W (k)).

(7.2.1)

If Xk is k-smooth, then we may drop “log” from the subscripts (compare with (5.44.2)).

The Frobenius morphism (2.2.5) gives rise to the Frobenius morphism

RΓAinf
(X)⊗Ainf , ϕ Ainf → RΓAinf

(X) in D≥0(Ainf)

that becomes an isomorphism after inverting ϕ(ξ) (see (2.2.6)). Consequently the cohomology
modules H i

Ainf
(X) come equipped with the Ainf -module morphism

ϕ : H i
Ainf

(X)⊗Ainf , ϕ Ainf → H i
Ainf

(X)
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that becomes an isomorphism after inverting ϕ(ξ). We will prove in Theorem 7.4 that these mor-
phisms make each H i

Ainf
(X) a Breuil–Kisin–Fargues module in the following sense of [BMS18, 4.22].

7.3. Breuil–Kisin–Fargues modules. A Breuil–Kisin–Fargues module is a finitely presented
Ainf -module M equipped with an Ainf [

1
ϕ(ξ) ]-module isomorphism

ϕM : (M ⊗Ainf , ϕ Ainf)[
1

ϕ(ξ) ]
∼−→M [ 1

ϕ(ξ) ]

such thatM [1
p ] is Ainf [

1
p ]-free. By [BMS18, 4.9 (i)], any suchM is perfect as an Ainf -module, that is,

M has a finite resolution by finite free Ainf -modules. A morphism of Breuil–Kisin–Fargues modules
is an Ainf -module morphism that commutes with the isomorphisms ϕM .

Theorem 7.4. Each (H i
Ainf

(X), ϕ) is a Breuil–Kisin–Fargues module and vanishes unless i ∈ [0, 2d].
In particular, each H i

Ainf
(X) is perfect as an Ainf-module and each (H i

Ainf
(X))[1

p ] is Ainf [
1
p ]-free.

Proof. Due to the relation with RΓét(X
ad
C ,Zp), each (H i

Ainf
(X))[ 1

pµ ] is a free Ainf [
1
pµ ]-module. More-

over, by Corollary 5.43, the cohomology modules of RΓAinf
(X) ⊗L

Ainf
Acris[

1
p ] are free over Acris[

1
p ].

Therefore, [BMS18, 4.20] applies and proves that each H i
Ainf

(X) is a finitely presented Ainf -module
that becomes free after inverting p, so (H i

Ainf
(X), ϕ) is a Breuil–Kisin–Fargues module.

Since RΓAinf
(X) is perfect, its top degree cohomology is finitely presented and of formation compat-

ible with base change. Thus, by the de Rham specialization of (7.2.1) and the Nakayama lemma,
H i
Ainf

(X) = 0 for i > 2d. The same holds for i < 0 because RΓAinf
(X) ∈ D≥0(Ainf). �

For completeness sake, we mention the following corollary, which may also be proved more directly.

Corollary 7.5. For each i ∈ Z, the rank of the finitely presented Zp-module H i
ét(X

ad
C ,Zp) is equal

to the rank of the finitely presented W (k)-module H i
log cris(Xk/W (k)), and is also equal to the rank

of the finitely presented OC-module H i
log dR(X/OC) := RiΓ(Xét,Ω

•
X/OC , log) (see also (7.10.1) below).

Proof. The finite presentation assertions follow, for instance, from the perfectness of RΓAinf
(X), the

comparisons (7.2.1), and the coherence of the ring OC . Due to Theorem 7.4 and the comparisons
(7.2.1), all the ranks in question are equal to the rank of the free Ainf [

1
p ]-module (H i

Ainf
(X))[1

p ]. �

7.6. Base change for individual H i
Ainf

(X). Since Ainf [
1
µ ] is Ainf -flat, (7.2.1) implies that

(H i
Ainf

(X))[ 1
µ ] ∼= H i

ét(X
ad
C ,Zp)⊗Zp Ainf [

1
µ ] for each i ∈ Z. (7.6.1)

In particular, since µ is a unit inW (C[) andW (C[) is Ainf -flat (the localization of Ainf at the prime
ideal (p) is a discrete valuation ring whose completion is W (C[))

H i
Ainf

(X)⊗Ainf
W (C[) ∼= H i

ét(X
ad
C ,Zp)⊗Zp W (C[). (7.6.2)

A similar de Rham comparison consists of exact sequences that result from (7.2.1) and [SP, 0662]:

0→ H i
Ainf

(X)⊗Ainf , θ OC → H i
log dR(X/OC)→ (H i+1

Ainf
(X))[ξ]→ 0 for each i ∈ Z. (7.6.3)

Similarly, by Theorem 7.4 and [BMS18, 4.9], we have a Frobenius-equivariant exact sequence

0→ H i
Ainf

(X)⊗Ainf
W (k)→ H i

log cris(Xk/W (k))→ Tor1
Ainf

(H i+1
Ainf

(X),W (k))→ 0 (7.6.4)

for each i ∈ Z. In particular, we have the top degree base changes

H2d
Ainf

(X)⊗Ainf , θ OC ∼= H2d
log dR(X/OC) and H2d

Ainf
(X)⊗Ainf

W (k) ∼= H2d
log cris(Xk/W (k)).
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Due to Theorem 7.4, the injections in the sequences (7.6.3)–(7.6.4) become isomorphisms after
inverting p. The same holds without inverting p in the case when H i+1

Ainf
(X) is Ainf -free. For such

freeness, we have the following consequence of Theorem 7.4 and [BMS18, §4.2].

Proposition 7.7. For each i ∈ Z, the OC-module H i
log dR(X/OC) is p-torsion free (equivalently,

free) if and only if theW (k)-module H i
log cris(Xk/W (k)) is p-torsion free (equivalently, free), in which

case H i
Ainf

(X) is free as an Ainf-module and H i
ét(X

ad
C ,Zp) is free as a Zp-module.

Proof. Due to Theorem 7.4, we may apply [BMS18, 4.18] and combine it with (7.2.1) to conclude
that H i

log dR(X/OC) is p-torsion free if and only if so is H i
log cris(Xk/W (k)). When these conditions

hold, the freeness of H i
Ainf

(X) and H i
ét(X

ad
C ,Zp) follows from [BMS18, 4.17] and (7.6.1). �

Remark 7.8. As was observed by Jesse Silliman and Ravi Fernando during the Arizona Winter
School 2017, the first assertion of Proposition 7.7 may be strengthened as follows: for each i ∈ Z,

dimk

(
H i

log dR(X/OC)tors ⊗OC k
)

= dimk

(
H i

log cris(Xk/W (k))tors ⊗W (k) k
)
, (7.8.1)

that is, H i
log dR(X/OC) and H i

log cris(Xk/W (k)) have the same number of cyclic summands (in the
sense of (7.10.1) below). Indeed, by Corollary 7.5, the ranks ofH i

log dR(X/OC) andH i
log cris(Xk/W (k))

agree and, by [Bei13b, (1.8.1)], so do the k-fibers of RΓlog dR(X/OC) and RΓlog cris(Xk/W (k)), so the
claim follows by descending induction on i from the following exact sequences supplied by [SP, 0662]:

0→ H i
log dR(X/OC)⊗OC k →H

i(RΓlog dR(X/OC)⊗L
OC k)→ TorOC1 (H i+1

log dR(X/OC), k)→ 0,

0→ H i
log cris(Xk/W (k))⊗W (k) k →H i(RΓlog cris(Xk/W (k))⊗L

W (k) k)→ H i+1
log cris(Xk/W (k))[p]→ 0.

The following variant of [BMS18, 14.5 (ii)] strengthens the relationship between the freeness of
H i

ét(X
ad
C ,Zp) and that of H i

log cris(Xk/W (k)) supplied by Proposition 7.7.

Theorem 7.9. For every i ∈ Z and n ∈ Z≥0, we have

lengthZp((H
i
ét(X

ad
C ,Zp)tors)/p

n) ≤ lengthW (k)((H
i
log cris(Xk/W (k))tors)/p

n),

lengthZp(H
i
ét(X

ad
C ,Z/pnZ)) ≤ lengthW (k)(H

i
log cris(Xk/Wn(k))).

(7.9.1)

Proof. The proof of the first inequality is analogous to the proof of loc. cit. Namely, by Corollary 7.5,
we may drop the subscripts “tors” and, by Theorem 7.4, (7.6.2), and [BMS18, 4.15 (ii)], we have

lengthZp(H
i
ét(X

ad
C ,Zp)/pn) ≤ lengthW (k)((H

i
Ainf

(X)⊗Ainf
W (k))/pn). (7.9.2)

Since lengthW (k)(Q/p
n) = lengthW (k)(Tor

W (k)
1 (Q,W (k)/pn)) for everyW (k)-moduleQ that is finite

and torsion, the short exact sequence (7.6.4) yields the inequality

lengthW (k)((H
i
Ainf

(X)⊗Ainf
W (k))/pn) ≤ lengthW (k)(H

i
log cris(Xk/W (k))/pn),

and the first inequality in (7.9.1) follows. Due to the short exact sequences

0→ H i
ét(X

ad
C ,Zp)/pn →H i

ét(X
ad
C ,Z/pnZ)→ (H i+1

ét (Xad
C ,Zp))[pn]→ 0,

0→ H i
log cris(Xk/W (k))/pn →H i

log cris(Xk/Wn(k))→ (H i+1
log cris(Xk/W (k)))[pn]→ 0

that result from [SP, 0662], the second inequality in (7.9.1) follows from the first. �

The de Rham analogue of Theorem 7.9 is Theorem 7.12 below and uses the following formalism.
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7.10. The normalized length. Let o be a valuation ring of rank 1 and mixed characteristic (0, p).
We normalize its valuation valo by requiring that valo(p) = 1. By the structure theorem [SP, 0ASP]
(see also [GR03, 6.1.14]), every finitely presented o-module M is of the form

M ∼=
⊕n

i=1 o/(ai) with ai ∈ o. (7.10.1)

If M is, in addition, torsion, to the effect that the ai are nonzero, then we set

valo(M) :=
∑n

i=1 val(ai).

More intrinsically, valo(M) is the valuation of any generator of the 0th Fitting ideal Fitt0(M) ⊂ o
of M , so it depends only on M . If o is a discrete valuation ring for which p is a uniformizer, then
valo(M) = lengtho(M). In general, valo has the advantage of being invariant under the extension
of scalars to a larger o. Any short exact sequence

0→M1 →M2 →M3 → 0

of finitely presented, torsion o-modules gives rise to the equality Fitt0(M2) = Fitt0(M1) Fitt0(M3)
(see [GR03, 6.3.1 and 6.3.5 (i)]), so the assignment valo(−) satisfies

valo(M2) = valo(M1) + valo(M3). (7.10.2)

The following lemma is the de Rham version of [BMS18, 4.14], which gave the inequality (7.9.2).

Lemma 7.11. For a finitely presented Wn(O[C)-module M for some n ≥ 1, we have

valW (C[)(M ⊗Ainf
W (C[)) = valOC (M/ξM)− valOC (M [ξ]). (7.11.1)

Proof. Since the ring Wn(O[C) is coherent (see [BMS18, 3.24]), the Wn(O[C)-module M [ξ] is finitely
presented. Moreover, due to (7.10.2), the flatness of Ainf →W (C[) (see §7.6), and the snake lemma,
both sides of (7.11.1) are additive in short exact sequences. Therefore, we may assume that n = 1

and, due to the structure theorem [SP, 0ASP], that M = O[C/(x) for some x ∈ O[C .

If x = 0, then both sides of (7.11.1) are equal to 1. If x 6= 0, then the left side vanishes, and so does
the right side because M [ξ] ∼= Tor1

O[C
(M,OC/p) and the following sequence is exact:

0→ Tor1
O[C

(O[C/(x),OC/p)→ OC/p
θ([x])−−−→ OC/p→M/ξM → 0. �

Theorem 7.12. For every i ∈ Z and n ∈ Z≥0, we have (recall from §7.10 that valZp = lengthZp)

valZp((H
i
ét(X

ad
C ,Zp)tors)/p

n) ≤ valOC ((H i
log dR(X/OC)tors)/p

n),

valZp(H
i
ét(X

ad
C ,Z/pnZ)) ≤ valOC (RiΓ(XOC/pn, ét,Ω

•
XOC/pn/(OC/p

n), log)).
(7.12.1)

Proof. The proof is analogous to that of Theorem 7.9. Namely, by Corollary 7.5, we may drop the
subscripts “tors” and, by Theorem 7.4, (7.6.2), and Lemma 7.11, we have

valZp(H
i
ét(X

ad
C ,Zp)/pn) ≤ valOC (H i

Ainf
(X)/(pn, ξ)).

The presentation (7.10.1) implies that valOC (Q/pn) = valOC (TorOC1 (Q,OC/pn)) for every finitely
presented, torsion OC-module Q, so the short exact sequence (7.6.3) yields the inequality

valOC (H i
Ainf

(X)/(pn, ξ)) ≤ valOC (H i
log dR(X/OC)/pn).

This proves the first inequality in (7.12.1) and, analogously to the proof of Theorem 7.9, the second
one follows from the first. �

The results above, specifically, (7.8.1) and Theorems 7.9 and 7.12 prompt the following question.
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Question 7.13. Are there examples of OC-proper X satisfying the assumptions of §1.5 for which

valW (k)(H
i
log cris(X/W (k))tors) 6= valOC (H i

log dR(X/OC)tors)?

8. A functorial lattice inside the de Rham cohomology

To a proper, smooth scheme X over a complete, discretely valued extension K of Qp with a perfect
residue field, in Example 8.6 we functorially associate an OK-lattice

LidR(X) ⊂ H i
dR(X/K) for every i ∈ Z.

In fact, LidR(X) functorially depends only on H i
ét(XK ,Zp) and its construction, which relies on

the theory of Breuil–Kisin–Fargues modules, proceeds along familiar lines of integral p-adic Hodge
theory, compare, for instance, with [Liu17, §4]. The work of the preceding sections allows us to
interpret LidR(X) geometrically: we show in Theorem 8.7 that if X has a proper, flat, semistable
OK-model X for which H i

log dR(X/OK) and H i+1
log dR(X/OK) are OK-free, then

LidR(X) = H i
log dR(X/OK) inside H i

dR(X/K).

We do not know whether the same holds “modulo torsion” if one drops the OK-freeness assumption.

8.1. The base field K. Throughout §8, we assume that C ∼= K̂ for a fixed complete, discretely
valued field K that is of mixed characteristic (0, p) and has a perfect residue field k0. We set

G := Gal(K/K),

so that G acts continuously on C, and hence also on Ainf . The continuous maps ϕ and θ are
G-equivariant, and the ideals (ξ), (ϕ(ξ)), and (µ) of Ainf are G-stable (see §2.1).

If X is a p-adic formal OK-scheme for which X := X⊗̂OKOC satisfies the assumptions of §1.5, then,
by the functoriality of RΓAinf

(X) (see §7.2), G acts Ainf -semilinearly on each H i
Ainf

(X).

8.2. The Fargues equivalence. By [BMS18, 4.26], for any Breuil–Kisin–Fargues module (M,ϕM )
(see §7.3), its étale realization, namely,

Mét := (M ⊗Ainf
W (C[))ϕM⊗ϕ= 1,

is a finitely generated Zp-module that comes equipped with an identification

M ⊗Ainf
W (C[) ∼= Mét ⊗Zp W (C[) under which M ⊗Ainf

Ainf [
1
µ ] ∼= Mét ⊗Zp Ainf [

1
µ ].

Thus, Mét is Zp-free if M is Ainf -free and, for any (M,ϕM ), we have M ⊗Ainf
BdR

∼= Mét ⊗Zp BdR,
so that Mét comes equipped with a B+

dR-sublattice (recall that M [1
p ] is Ainf [

1
p ]-free, see §7.3)

M ⊗Ainf
B+

dR ⊂Mét ⊗Zp BdR.

By a theorem of Fargues [BMS18, 4.28], the category of Ainf -free Breuil–Kisin–Fargues modules
(M,ϕM ) is equivalent to that of pairs (T,Ξ) consisting of a finite free Zp-module T and a B+

dR-
lattice Ξ ⊂ T ⊗Zp BdR via the functor

(M,ϕM ) 7→ (Mét,M ⊗Ainf
B+

dR).

8.3. Breuil–Kisin–Fargues G-modules. Due to the origin of our C (see §8.1), we may consider
Breuil–Kisin–Fargues G-modules, that is, Breuil–Kisin–Fargues modules (M,ϕM ) equipped with an
Ainf -semilinear G-action onM for which ϕM is G-equivariant. A morphism of Breuil–Kisin–Fargues
G-modules is a G-equivariant Ainf -module morphism that commutes with the isomorphisms ϕM .
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For instance, if an X as in §8.1 is proper, then each H i
Ainf

(X) is a Breuil–Kisin–Fargues G-module
(see Theorem 7.4). The étale realization Mét of a Breuil–Kisin–Fargues G-module (M,ϕM ) carries
the induced Zp-linear G-action.

Proposition 8.4. The category of Ainf-free Breuil–Kisin–Fargues G-modules (M,ϕM ) is equivalent
to that of pairs (T,Ξ) consisting of a finite free Zp-module T equipped with a G-action and a G-stable
B+

dR-lattice Ξ ⊂ T ⊗Zp BdR via the functor

(M,ϕM ) 7→ (Mét,M ⊗Ainf
B+

dR).

Proof. The claim follows from the Fargues equivalence reviewed in §8.2. �

8.5. An étale lattice determines a de Rham lattice. Let T be a finite free Zp-module endowed
with a continuous G-action for which the G-representation T [1

p ] is de Rham, so that there is a G-
equivariant identification

T ⊗Zp BdR
∼= DdR(T )⊗K BdR, where DdR(T ) := (T ⊗Zp BdR)G.

For such T , the B+
dR-lattice DdR(T )⊗K B+

dR is evidently G-stable in T ⊗Zp BdR. Thus, by Proposi-
tion 8.4, the pair (T,DdR(T )⊗KB+

dR), so T , determines an Ainf -free Breuil–Kisin–Fargues G-module

(M(T ), ϕM(T ))

that depends functorially on T . The de Rham realization

M(T )dR := M(T )⊗Ainf , θ OC of (M(T ), ϕM(T ))

is an OC-lattice in

(M(T )⊗Ainf
B+

dR)/ξ ∼= (DdR(T )⊗K B+
dR)/ξ ∼= DdR(T )⊗K C.

Therefore, functorially in T , we obtain the OK-lattice

(M(T )dR)G inside the K-vector space DdR(T ).

Example 8.6. We fix a K-scheme X (or even a K-rigid space, which we view as an adic space, see
[Hub96, 1.1.11 (d)]) that is proper and smooth, and set

Liét(X) := H i
ét(XK ,Zp)/H

i
ét(XK ,Zp)tors

∼= H i
ét(XC ,Zp)/H i

ét(XC ,Zp)tors for i ≥ 0.

As is well known and follows from (6.7.2), the G-representation (Liét(X))[1
p ] is de Rham and

DdR(Liét(X)) ∼= (Liét(X)⊗Zp BdR)G
(6.7.2)∼= (H i

dR(X/K)⊗K BdR)G ∼= H i
dR(X/K) (8.6.1)

functorially in X. Thus, using the discussion of §8.5, we obtain the OK-lattice

LidR(X) := (M(Liét(X))dR)G ⊂ H i
dR(X/K)

that is functorial inX (even in Liét(X)). Its definition implies that for a finite Galois extensionK ′/K,

LidR(X) = (LidR(XK′))
Gal(K′/K) inside H i

dR(X/K) = (H i
dR(XK′/K

′))Gal(K′/K).

IfX extends to a proper, flat, semistableOK-scheme X such thatH i
log dR(X/OK) andH i+1

log dR(X/OK)

are OK-free (where X is endowed with the log structure OX , ét∩(OX , ét[
1
p ])×), then, by the following

Theorem 8.7 (and GAGA techniques, similarly to Remark 4.19),

LidR(X) = H i
log dR(X/OK) inside H i

dR(X/K);

in particular, if X ′ is another such OK-model of X, then

H i
log dR(X/OK) = H i

log dR(X ′/OK) inside H i
dR(X/K). (8.6.2)
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Theorem 8.7. Let X be a proper, flat p-adic formal OK-scheme endowed with the log structure
OX , ét∩(OX , ét[

1
p ])× such that X has an étale cover by affines U each of which has an étale morphism

U → Spf(OK{t0, . . . , tr, tr+1, . . . , td}/(t0 · · · tr − π)) for some nonunit π ∈ OK \ {0} (8.7.1)

(where d, r, and π depend on U). If H i
log dR(X/OK) and H i+1

log dR(X/OK) are OK-free, then

LidR(X ad
K ) = H i

log dR(X/OK) inside H i
dR(X ad

K /K); (8.7.2)

in fact, then, setting X := X⊗̂OKOC , we have the identification

M(Liét(X ad
K )) ∼= H i

Ainf
(X) (8.7.3)

of Breuil–Kisin–Fargues G-modules.

Proof. By working locally on U , in the target of (8.7.1) we may replace each ti by t±1
i for r+1 ≤ i ≤ d,

so X satisfies the assumptions of §1.5. Moreover, by the Grothendieck comparison theorem and flat
base change (compare with Remark 4.19), for j = i and j = i+ 1, we have

Hj
log dR(X/OC) ∼= Hj

log dR(X/OK)⊗OK OC , so Hj
log dR(X/OK) ∼= (Hj

log dR(X/OC))G. (8.7.4)

Thus, by Proposition 7.7, the Breuil–Kisin–Fargues G-modules H i
Ainf

(X) and H i+1
Ainf

(X) (see §8.3)
are Ainf -free. By (7.6.2), we have the G-equivariant identification of the étale realization:

(H i
Ainf

(X))ét
∼= H i

ét(X ad
C ,Zp),

which, consequently, is Zp-free. By Proposition 6.8, the BdR-base change of this identification agrees
with the identification H i

Ainf
(X)⊗Ainf

BdR
∼= H i

ét(X ad
C ,Zp)⊗Zp BdR that results by combining

H i
Ainf

(X)⊗Ainf
B+

dR

(6.6.2)∼= H i
cris(X ad

C /B+
dR)

(6.2.8)∼= H i
dR(X ad

K /K)⊗K B+
dR

and

H i
dR(X ad

K /K)⊗K BdR

(6.7.2)∼= H i
ét(X ad

C ,Zp)⊗Zp BdR.

This compatibility and §8.5 (see also (8.6.1)) supply the desired G-equivariant identification (8.7.3):

M(Liét(X ad
K )) ∼= H i

Ainf
(X).

Under this identification, by Theorem 6.6 and the sentence after (6.2.8), the identifications

M(Liét(X ad
K ))⊗Ainf , θ C

(8.6.1)∼= H i
dR(X ad

C /C) and H i
Ainf

(X)⊗Ainf , θ C
(4.18.1)∼= H i

dR(X ad
C /C)

agree. Thus, (7.6.3) implies the following equality inside H i
dR(X ad

C /C):

M(Liét(X ad
K ))dR = M(Liét(X ad

K ))⊗Ainf , θ OC = H i
Ainf

(X)⊗Ainf , θ OC = H i
log dR(X/OC),

which, together with the second identification in (8.7.4), gives the desired (8.7.2). �

Remark 8.8. In the proof above, we have seen that both H i
Ainf

(X) and H i+1
Ainf

(X) are Ainf -free, so,
by (7.6.4), we have the G-equivariant and Frobenius-equivariant identifications

H i
Ainf

(X)⊗Ainf
W (k) ∼= H i

log cris(Xk/W (k))
(5.44.1)∼= H i

log cris(Xk/W (k)),

and hence also the Frobenius-equivariant identification

(H i
Ainf

(X)⊗Ainf
W (k))G ∼= H i

log cris(Xk0/W (k0)). (8.8.1)

In particular, (8.7.3) and (8.8.1) show that, under the assumptions of Theorem 8.7, the integral
p-adic étale cohomology H i

ét(X ad
C ,Zp) endowed with its Galois action functorially determines the

integral logarithmic crystalline cohomology H i
log cris(Xk0/W (k0)) endowed with its Frobenius.
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9. The semistable comparison isomorphism

Our final goal is to deduce the semistable comparison isomorphism for suitable proper, “semistable”
formal schemes (see Theorem 9.5). This extends [BMS18, 1.1 (i)], which treated the good reduction
case (see also [TT15, 1.2] for a result “with coefficients” over an absolutely unramified base), and
is similar to the semistable comparison established by Colmez–Niziol [CN17, 5.26]. More precisely,
loc. cit. also includes cases in which the log structures are not “vertical.”

9.1. The ring Bst. We consider the log PD thickenings Acris/p
n of OC/p (see §5.2) and set

Jn := Ker(Acris/p
n � OC/p) and J := lim←−n≥1

Jn ∼= Ker(Acris � OC/p).

The element p ∈ OC \ {0} belongs to the log structure of OC/p (see §1.6 (1)), so its preimage in
the log structure of Acris/p

n is a (1 + Jn,×)-torsor, which is necessarily trivial20 (compare with
[Bei13b, §1.1, Exercises, (iii)]). Consequently, as n varies, these torsors comprise a trivial (1+J,×)-
torsor τ0, whose base change along the logarithm map (1 + J,×)→ (J,+) ⊂ (Acris,+) furnished by
the divided power structure on J is a trivial (Acris,+)-torsor τ , the Fontaine–Hyodo–Kato torsor
(compare with [Bei13b, §1.15, p. 23]). The functor which to an Acris-algebra A assigns the underlying
set of the (A,+)-torsor τ ×(Acris,+) (A,+) is represented by the Acris-algebra Ast, so Ast is the initial
Acris-algebra over which the Fontaine–Hyodo–Kato torsor is canonically trivialized.

We may noncanonically trivialize τ0 (for instance, [p1/p∞ ] is a trivialization, see (5.2.1)) to obtain
an isomorphism Ast ' Acris[T ], which, upon adjusting the trivialization by an a ∈ 1 + J , gets

postcomposed with the Acris-automorphism Acris[T ]
T 7→T+log(a)−−−−−−−−→ Acris[T ]. The Acris-derivation − d

dT
respects these automorphisms, so it induces a canonical Acris-derivation, the monodromy operator,

N : Ast → Ast for which (Ast)
N=0 = Acris

(ourN agrees with that of op. cit., see [Bei13b, §1.15, Remarks (i)]; compare also with [Tsu99, 4.1.1]).

By [Bei13b, (1.15.2)], the Frobenius pullback of τ0 is isomorphic to the p-fold self-product of τ0, and
hence likewise for the base change τ of τ0 to (Acris,+). Thus, we have an Acris-semilinear Frobenius

ϕ : Ast → Ast (9.1.1)

that in terms of an isomorphism Ast ' Acris[T ] obtained by trivializing τ0 is described by T 7→ pT .
The interaction of ϕ and N is described by the formula Nϕ = pϕN .

Since µ and log([ε]) are unit multiples of each other in Acris (see §5.14) and ϕ(log([ε])) = p log([ε]),
the Frobenius (9.1.1) and, evidently, also the derivation N induce their counterparts on

B+
st := Ast[

1
p ] and Bst := Ast[

1
pµ ].

The relation Nϕ = pϕN continues to hold for B+
st and Bst. As is explained in [Bei13b, §1.17], the

Acris-algebras B+
st and Bst reviewed above agree with the ones constructed in [Fon94, §3].

For us, the significance of the period ringB+
st lies in the following comparison between the logarithmic

crystalline cohomology of Xk over W (k) and of XOC/p over Acris (compare with [BMS18, 13.21]).

Proposition 9.2. If X is OC-proper, then

RΓlog cris(Xk/W (k))⊗L
W (k) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st , (9.2.1)

20Quasi-coherent cohomology of affine schemes vanishes, so, for a finitely generated, and hence nilpotent, ideal
J ′ ⊂ Jn of Acris/p

n, the étale sheaf on Spec(Acris/p
n) associated to (1 + J ′,×) has no nontrivial torsors. The filtered

direct limit of these sheaves is the analogous sheaf associated to (1 + Jn,×), so it, too, has no nontrivial torsors.
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where the log structures are those of §1.6 (2), §5.2, and §5.42. In particular, if X is OC-proper
and Y is a descent of XOC/p to a proper, log smooth, fine log O/p-scheme of Cartier type for some

discrete valuation subring O ⊂ OC with a perfect residue field k0 and C ∼=
(
O[1

p ]
)̂ (where O/p is

equipped with the log structure associated to the chart O \ {0} → O/p), then we have the following
identification that is compatible with the actions of ϕ and N (described in the proof):

RΓlog cris(Yk0/W (k0))⊗L
W (k0) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st , (9.2.2)

where W (k0) is endowed with the log structure associated to N≥0
1 7→ 0, 0 7→ 1−−−−−−−→W (k0).

Proof. A descent Y exists (see the proof of Corollary 5.43), so (9.2.2) follows from [Bei13b, (1.16.2)
and (1.18.5)] and, due to (5.44.1), it implies (9.2.1). On the left side of (9.2.2), the operator N
combines the monodromy of RΓlog cris(Xk0/W (k0)) and B+

st , so is “N ⊗ 1 + 1⊗N ”; on the right, N
is the monodromy of B+

st . On both sides of (9.2.2), the Frobenius ϕ acts on both factors. �

Remark 9.3. One may eliminate the dependence of (9.2.2) on the choice of Y by forming a direct
limit over all the possible Y, see [Bei13b, §1.18, Remarks (i)].

9.4. The base field K. For the rest of §9, we assume that C = K̂ for a fixed complete, dis-
cretely valued subfield K ⊂ C with a perfect residue field k0, set G := Gal(K/K), and endow OK
(resp., OK/p) with the log structure associated to the chart OK \{0} ↪→ OK (resp., its base change).
By functoriality, G acts on Acris, Ast, B+

st , and, since the ideal (µ) does not depend on the choice of
ε (see §2.1), also on Bst. These G-actions commute with ϕ and N . When O of Proposition 9.2 is our
OK , the identification (9.2.2) is G-equivariant granted that G acts on both sides by functoriality.

Theorem 9.5. Let X be a proper p-adic formal OK-scheme that has an étale cover by affines U
each of which has an étale OK-morphism

U → Spf(OK{t0, . . . , tr, tr+1, . . . , td}/(t0 · · · tr − π)) for some nonunit π ∈ OK \ {0}

(where d, r, and π depend on U) and endow X with the log structure OX , ét ∩ (OX , ét[
1
p ])×. There is

the following natural, G-equivariant isomorphism that is compatible with the actions of ϕ and N :

RΓét(X ad
C ,Zp)⊗L

Zp Bst
∼= RΓlog cris(Xk0/W (k0))⊗L

W (k0) Bst, (9.5.1)

where W (k0) is endowed with the log structure associated to N≥0
1 7→ 0, 0 7→ 1−−−−−−−→W (k0). In particular,

the G-representation H i
ét(X ad

C ,Qp) is semistable for every i ∈ Z.

Proof. We set X := X⊗̂OKOC , so that X meets the requirements of §1.5. By Claims 1.6.1 and 1.6.3
and [Kat89, 4.8], the base change XOK/p is fine, log smooth, and of Cartier type over OK/p, so
Proposition 9.2 applies to it and gives the G-equivariant (see §9.4) identification

RΓlog cris(Xk0/W (k0))⊗L
W (k0) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st

(5.43.2)∼= RΓ(Xét, AΩX)⊗L
Ainf

B+
st

that is compatible with ϕ and N . In addition, by (2.3.1), we have the G-equivariant identification

RΓ(Xét, AΩX)⊗L
Ainf

Bst
∼= RΓ(Xad

C ,Zp)⊗L
Zp Bst

∼= RΓ(X ad
C ,Zp)⊗L

Zp Bst

that is trivially compatible with N and is compatible with ϕ by the discussion after Theorem 2.3.
The desired (9.5.1) follows by combining the displayed identifications. �
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Remark 9.6. The isomorphism (9.5.1) is compatible with filtrations in the following sense: by
[Fon94, §4.2], there is a (noncanonical) Acris-algebra homomorphism Bst → BdR and, by the proof
above and Proposition 6.8, the BdR-base change of the isomorphism (9.5.1) is identified with the
de Rham comparison isomorphism (6.7.2) (with X0 = X ad

K ) that is compatible with filtrations.
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