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Abstract. The B`dR-affine Grassmannian was introduced by Scholze in the context of the geometric
local Langlands program in mixed characteristic and is the Fargues–Fontaine curve analogue of the
equal characteristic Beilinson–Drinfeld affine Grassmannian. For a reductive group G, it is defined
as the étale (equivalently, v-) sheafification of the presheaf quotient LG{L`G of the BdR-loop group
LG by the B`dR-loop subgroup L`G. We combine algebraization and approximation techniques
with known cases of the Grothendieck–Serre conjecture to show that the analytic topology suffices
for this sheafification, more precisely, that the B`dR-affine Grassmannian agrees with the analytic
sheafification of the aforementioned presheaf quotient LG{L`G.

1. The B`dR-affine Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. The modular description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. The analytic topology suffices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1. The B`dR-affine Grassmannian

For a reductive group G over a ring R, the Beilinson–Drinfeld affine Grassmannian GrG plays
an important role in the geometric Langlands program, as well as in other fields that feature
reductive groups and their torsors. Letting LG (resp., L`G) be the loop functor (resp., its positive
loop subfunctor) that sends a variable R-algebra A to GpApptqqq (resp., to GpAJtKq), the affine
Grassmannian GrG is defined as the étale (equivalently, fpqc) sheafification of the presheaf quotient
LG{L`G. By the recent results [Čes24, Theorems 2.5 and 3.4], based on the study of G-torsors over
P1
A, Zariski sheafification gives the same result and, if G is totally isotropic (for instance, quasi-split),

then no sheafification is needed at all: then GrG already agrees with the presheaf quotient LG{L`G.

In his Berkeley lectures [SW20], Scholze adapted the definition of Beilinson–Drinfeld to the then-
emergent geometric local Langlands program, and subsequently with Fargues applied it in their
elaboration of this program in [FS24]. To review his definition, we let K be a nonarchimedean local
field, let G be a smooth affine group scheme defined either over K or over its ring of integers OK , and
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recall that the B`dR-affine Grassmannian Gr
B`dR
G is a functor on the category of perfectoid OK-algebra

pairs pA,A`q. For such a pair, we let pA5, A5`q denote its tilt, let $5 P A5` be a pseudouniformizer
such that ω :“ pω5q7 satisfies ωp | p in A` (see [SW20, Lemma 6.2.2] or [ČS24, Section 2.1.2]), let
WOK

pA5`q denote the OK-ramified Witt vectors of A5`, and let

I :“ Ker
`

WOK
pA5`q� A`

˘

be the kernel of the Fontaine OK-algebra map sending any Teichmüller ras to a7 (compare with [ČS24,
Equation (2.1.1.1)]). In the B`dR context, the role of the formal power series ring AJtK is played by

B`dRpAq :“ lim
ÐÝn

pWOK
pA5`qr 1

rω5s
s{Inq

compare with [SW20, page 138]. This notation is slightly abusive because B`dRpAq does depend on
K, although not on A` nor on $5. The ideal I is functorial in pA,A`q, principal, and generated by
a nonzerodivisor ξ, and the role of the Laurent power series ring Apptqq is played by

BdRpAq :“ B`dRpAqr
1
I s.

In the following special cases, we can be slightly more explicit.

(1) The field K is of characteristic 0 and A is a K-algebra: then we may choose $5 such that $p

is a unit multiple of p (see [ČS24, Section 2.1.2]), so B`dRpAq and BdRpAq are K-algebras.

(2) The fieldK is of characteristic 0 and A is an algebra over its residue field k: then A5` – A`, so
I “ pπq where π P OK is a uniformizer, and B`dRpAq “WOK

pAq with BdRpAq “WOK
pAqr 1

π s.

(3) The field K is of characteristic p ą 0. Then OK » kJζK, the functorWOK
p´q is the completed

the tensor product over k with kJζK, and B`dRpAq » AJπ ´ ζK with BdRpAq » Appπ ´ ζqq,
where π P OK is a uniformizer; in terms of this presentation, the ideal I is generated by π´ ζ.
For the sake of uniformity of discussion, we do not exclude this case, but it will offer nothing
new relative to the setting of the Beilinson–Drinfeld affine Grassmannian reviewed above.

We stress that the cases (1)–(3) are nonexhaustive, see, for instance, [SW20, Example 6.1.5 4.].

In the B`dR context, the loop functor (resp., its positive loop subfunctor) is defined by

LG : pA,A`q ÞÑ GpBdRpAqq (resp., by L`G : pA,A`q ÞÑ GpB`dRpAqqq,

granted either that G is defined over OK or that one restricts to pA,A`q with A a K-algebra. We
have reused the notation LG and L`G because the power series context will henceforth play no role.

The B`dR-affine Grassmannian Gr
B`dR
G is defined as the étale sheafification of the presheaf quotient

LG{L`G, compare with [SW20, Definition 19.1.1]. Our goal in this article is to show that for reductive

G, the sheafification for the much coarser analytic topology gives the same result, namely, that Gr
B`dR
G

agrees with the analytic sheafification of the presheaf quotient LG{L`G, see Theorem 3.1 below.

In the view of the analogy with the Beilinson–Drinfeld affine Grassmannian, it could be that, at least
for totally isotropic G, no sheafification is needed at all, namely, that Gr

B`dR
G is the presheaf quotient

LG{L`G. However, we do not know how to approach this, nor how to find a counterexample.

2. The modular description

Our proof that the analytic sheafification suffices will hinge on the following modular description
of the B`dR-affine Grassmannian. This modular description has already been given in [SW20,
Proposition 19.1.2], although we prefer the slightly different argument for it given below.
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Proposition 2.1. For a nonarchimedean local field K and a smooth affine group scheme G defined
either over K or over OK , letting pA,A`q range over perfectoid OK-algebra pairs (resp., such that A
is a K-algebra if G is only defined over K), we have the following functorial modular interpretation:

Gr
B`dR
G pAq –

#

pE , ιq :
E is a G-torsor over B`dRpAq,

ι P EpBdRpAqq is a trivialization over BdRpAq

+

{ „ .

Moreover, Gr
B`dR
G is a sheaf for the v-topology and it contains the presheaf quotient LG{L`G as the

subfunctor that parametrizes those pairs pE , ιq for which E is a trivial torsor.

Proof. Let us temporarily write Gr1G for the functor defined by the displayed modular description.
Since LG parametrizes the possible ι for the trivial G-torsor and L`G parametrizes the automor-
phisms of the trivial G-torsor over B`dRpAq, the presheaf quotient LG{L`G is identified with the
subfunctor of Gr1G that parametrizes those pE , ιq for which E is a trivial G-torsor. Thus, all we need
to show is that Gr1G is a v-sheaf (in particular, an étale sheaf) and that each pE , ιq lies in LG{L`G
étale locally on SpapA,A`q, in other words, that E trivializes étale locally on SpapA,A`q.

For the latter, of course, E inherits smoothness over B`dRpAq (and also affineness) from G, so to
trivialize E over B`dRpA

1q for a perfectoid OK-algebra pair pA1, A1`q over pA,A`q, it suffices to
arrange that EpA1q ‰ H, that is, to trivialize E |A1 . In other words, we need to trivialize E |A étale
locally on SpapA,A`q, knowing that, by the A-smoothness of E |A, the latter trivializes étale locally
on SpecpAq. By [SAG, Proposition 1.2.3.4], the étale topos pShvpSpecpAqétq,OSpecpAqét

q ringed by
the structure sheaf is final among all the strictly Henselian locally ringed topoi pX ,OX q equipped
with a ring homomorphism AÑ ΓpX ,OX q. Since the strictly local rings of an adic space are strictly
Henselian, by [SAG, Remark 1.2.2.10] (with [Hub96, Propositions 2.5.5 and 2.5.17]), the étale topos
pShvpSpapA,A`qétq,OSpapA,A`qét

q of the adic space SpapA,A`q ringed by the structure sheaf is an
example of an pX ,OX q as above. It follows that there is a morphism of ringed topoi

pShvpSpapA,A`qétq,OSpapA,A`qét
q Ñ pShvpSpecpAqétq,OSpecpAqét

q.

Thus, an étale cover of SpecpAq that trivializes E |A pulls back to an étale cover of SpapA,A`qét, to
the effect that E |A also trivializes locally on SpapA,A`qét, as desired.1

For the remaining v-sheaf property of Gr1G, we will use the trivialization ι. Firstly, thanks to ι and
the ideal I from §1 being generated by a nonzerodivisor, the objects of the prestack in groupoids

pA,A`q ÞÑ

#

pE , ιq :
E is a G-torsor over B`dRpAq,

ι P EpBdRpAqq is a trivialization over BdRpAq

+

1A more concrete way to trivialize E |A étale locally on SpapA,A`qét is as follows. For a fixed x P SpapA,A`q, let
SpapAi, A

`
i q Ă SpapA,A`q range over the rational opens containing x. By, for example, [Sch22, Example 5.2], the

residue pair pkx, k`x q is perfectoid and, letting $ P A` be a pseudouniformizer, k`x –
´

lim
ÝÑi

A`i

¯^

with kx – k`x r
1
$
s,

where the completion is $-adic. Since kx is a field and E is smooth and nonempty, Eprkq ‰ H for some finite separable
field extension rk{kx. Each A`i is $-Henselian and Ai – A`i r

1
$
s (resp., kx – k`x r

1
$
s), so lim

ÝÑi
A`i is $-Henselian with

lim
ÝÑi

Ai – plimÝÑi
A`i qr

1
$
s. Thus, by [BČ22, Corollary 2.1.20] (with B :“ lim

ÝÑi
Ai and B1 :“ $plim

ÝÑi
A`i q there) and a

limit argument as in [KL15, Remark 1.2.9], there are an i and a finite étale Ai-algebra rA with rAbAi kx »
rk. The

restriction of scalars rE :“ Res
rA{Ai

pE
rAq is a smooth affine Ai-scheme, see [BLR90, Section 7.6, Propositions 2 and 5,

Theorem 4], and, by construction, rEpkxq – Eprkq ‰ H. Therefore, by [BČ22, Theorem 2.2.2], at the cost of enlarging i,
also rEpAiq – Ep rAq ‰ H. This implies the desired triviality of E over some étale neighborhood of x.
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have no nontrivial automorphisms. Thus, it suffices to show that this prestack is a v-stack, in fact,
that v-descent is uniquely effective for its objects. To this end, we consider maps

pA,A`q Ñ pA1, A1`q Ñ pA2, A2`q

of perfectoid OK-algebra pairs such that the first one induces a v-cover on adic spectra whose
self-(fiber product) is SpapA2, A2`q, and we consider a pair pE 1, ι1q over B`dRpA

1q equipped with a
descent datum with respect to this cover. Since the ideal I is functorial in pA,A`q (see §1), the
reduction modulo I of this descent datum equips the G-torsor E 1|B`dRpA

1q{I over A1 with a descent
datum with respect to the v-cover pA,A`q Ñ pA1, A1`q. By the Tannakian formalism for G-torsors
over perfectoid spaces [SW20, Theorem 19.5.2] combined with the v-descent for vector bundles
on perfectoid spaces [SW20, Corollary 17.1.9], this last descent datum is uniquely effective, so
E 1|B`dRpA

1q{I descends to a unique G-torsor E over A.

The invariance under Henselian pairs for G-torsors [BČ22, Theorem 2.1.6]2 ensures that E lifts
uniquely to a G-torsor E over B`dRpAq and, by uniqueness, E |B`dRpA

1q
» E 1 compatibly with the

canonical identification modulo I. A choice of this G-torsor isomorphism over B`dRpA
1q allows us to

transfer the descent datum of E 1 to a descent datum of E |B`dRpA
1q
. Exhibiting E as a unique G-torsor

descent of E 1 becomes the task of finding a unique G-torsor automorphism α of E |B`dRpA
1q
that reduces

to the identity modulo I such that precomposition with α matches the transferred descent datum
with the canonical descent datum of E |B`dRpA

1q
. The G-torsor automorphisms of (base changes of) E

are parametrized by a reductive B`dRpAq-group scheme G that is a twist of G, in particular,

GpB`dRpA
1qq – lim

ÐÝną0
GpB`dRpA

1q{Inq with surjective transition maps,

so that it suffices to uniquely construct α inductively modulo In for all n ą 0. More precisely,
using the surjectivity of the transition maps and the inductive hypothesis, it suffices to show that
every descent datum of E |B`dRpA

1q{In`1 that reduces to the canonical descent datum modulo In may
be transformed to the canonical descent datum of E |B`dRpA

1q{In`1 by precomposing with a uniquely
determined G-torsor automorphism of E |B`dRpA

1q{In`1 that reduces to the identity modulo In. By
deformation theory [Ill05, Theorem 8.5.9 (a)], the G-torsor automorphisms of E |B`dRpA

1q{In`1 that
reduce to the identity modulo In are parametrized by H0pA1,LieG bA In{In`1q, and similarly over
A2, etc. Thus, the task becomes showing the following for the Čech cohomology groups of our v-cover:

Ȟ1
v pA

1{A,LieG bA In{In`1q – 0 and Ȟ0
v pA

1{A,LieG bA In{In`1q – LieG bA In{In`1.

Since LieG bA1 In{In`1 is a finite projective A-module, both of these desired identifications follow
by combining the Čech-to-derived spectral sequence with the vanishing of the higher v-cohomology
of the structure sheaf on affinoid perfectoids [SW20, Theorem 17.1.3].

In conclusion, E is actually a unique descent of E 1 relative to the descent datum that we started
from. It remains to argue that ι1 descends uniquely as well, for which it now suffices to show that

EpBdRpAqq Ñ EpBdRpA
1qq Ñ EpBdRpA

2qq

is an equalizer diagram. For this, since E inherits affineness from G, it suffices to show that

BdRpAq Ñ BdRpA
1q Ñ BdRpA

2q

is an equalizer diagram. Since the ideal I is functorial and principal, it suffices to show the same for

B`dRpAq Ñ B`dRpA
1q Ñ B`dRpA

2q.

2Or already its earlier version [GR03, Theorem 5.8.14].
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This, however, may be checked modulo powers of I, where, since I is generated by a nonzerodivisor,
it follows from the structure presheaf being a v-sheaf on perfectoid spaces [Sch22, Theorem 8.7]. �

3. The analytic topology suffices

We are ready for our promised main result that the analytic sheafification suffices in the forming of
the B`dR-affine Grassmannian. This hinges on algebraization and approximation techniques from
[BČ22, Section 2] and on the discrete valuation ring case of the Grothendieck–Serre conjecture.

Theorem 3.1. For a nonarchimedean local field K and a reductive group scheme G defined either
over K or over OK as in §1, the B`dR-affine Grassmannian Gr

B`dR
G is the sheafification of the presheaf

quotient LG{L`G with respect to the analytic topology on perfectoid OK-algebra pairs pA,A`q.

We recall that the analytic topology is the one whose covers tpA,A`q Ñ pAj , A
`
j qujPJ are characterized

by the maps SpapAj , A
`
j q Ñ SpapA,A`q being jointly surjective open immersions.

Proof. By Proposition 2.1, the B`dR-affine Grassmannian Gr
B`dR
G is a sheaf for the analytic topol-

ogy (even for the v-topology) and contains the presheaf quotient LG{L`G as a subfunctor that
parametrizes those pairs pE , ιq in which E is a trivial torsor. Thus, we only need to show that for
every perfectoid OK-algebra pair pA,A`q and every G-torsor E over B`dRpAq that becomes trivial
over BdRpAq, each x P SpapA,A`q lies in some rational open subset SpapA1, A1`q Ă SpapA,A`q
such that E |B`dRpA

1q
is trivial. For this, since B`dRpA

1q is complete with respect to the kernel of its

surjection onto A1, by the smoothness of E inherited from G (or by [BČ22, Theorem 2.1.6]), it suffices
to show that for each x P SpapA,A`q, the G-torsor E :“ E |A trivializes over some A1 as above.

To find the desired A1, we first let SpapAi, A
`
i q Ă SpapA,A`q range over all the rational open subsets

containing x and consider the perfectoid residue pair pkx, k`x q with

k`x –
´

lim
ÝÑi

A`i

¯^

and kx – k`x r
1
$ s,

where $ P A` is a pseudouniformizer and the completion is $-adic. Each A`i is $-Henselian (even
$-adically complete) and Ai – A`i r

1
$ s, so lim

ÝÑi
A`i is $-Henselian (see [SP, Lemma 0FWT]) with

lim
ÝÑi

Ai – plimÝÑi
A`i qr

1
$ s. The algebraization and approximation [BČ22, Corollary 2.1.22 (c)]3 gives

lim
ÝÑi

H1pAi, Gq – H1plim
ÝÑi

Ai, Gq
„
ÝÑ H1pkx, Gq

(for the first isomorphism in this display, see, for instance, [Čes15, Lemma 2.1]).4 Thanks to this,
all that remains is to show that the G-torsor E|kx is trivial granted that we know that it lifts to a
G-torsor over B`dRpkxq, namely, to E |B`dRpkxq

, that becomes trivial over BdRpkxq.

However, B`dRpkxq is a discrete valuation ring and G is reductive, so the Nisnevich case of the
Grothendieck–Serre conjecture [Nis82, Chapter II, Theorem 4.2], [Nis84, théorème 2.1] (see also
[Guo22, Theorem 1]) implies that no nontrivial G-torsor over B`dRpkxq trivializes over BdRpkxq. �

Remark 3.2. The only way in which we used the assumption that our group G is reductive, as
opposed to, say, merely smooth and affine, is to apply the Grothendieck–Serre type result that no
nontrivial G-torsor over the discrete valuation ring B`dRpkxq trivializes over BdRpkxq. Granted that

3Or already its earlier version [GR03, Theorem 5.8.14].
4In fact, we will only use the injectivity of the displayed map, which also follows from the Elkik-style approximation

result [BČ22, Theorem 2.2.2], or already from its earlier version [GR03, Proposition 5.4.21].
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this input is obtained, the same argument would give Theorem 3.1 for other classes of smooth affine
groups, for instance, it would be interesting to know whether the same holds for parahoric G.
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