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Grothendieck–Lefschetz for vector bundles

Kęstutis Česnavičius

Abstract

According to the Grothendieck–Lefschetz theorem from SGA 2, there are no nontrivial
line bundles on the punctured spectrum UR of a local ring R that is a complete inter-
section of dimension at least 4. Dao conjectured a generalization for vector bundles V
of arbitrary rank on UR: such a V is free if and only if depthR(EndR(Γ(UR,V ))) > 4.
We use deformation-theoretic techniques to settle Dao’s conjecture. We also present ex-
amples showing that its assumptions are sharp and draw consequences for the splitting
of vector bundles on complete intersections in projective space.

1. The conjecture of Dao

1.1. The Grothendieck–Lefschetz theorem. A key result in local commutative algebra,
proved by Grothendieck in SGA 2, says that for a Noetherian local ring R that is a complete in-
tersection (in the sense of Section 1.6) of dimension at least 4, every line bundle on the punctured
spectrum UR is trivial, that is, Pic(UR) = 0 (see [SGA2new, XI, Théorème 3.13(ii)]). In contrast,
nontrivial vector bundles V may exist on UR even when R is regular. Nevertheless, a conjecture
of Dao [Dao13, Conjecture 7.2.2] predicts that

if a vector bundle V on UR satisfies depthR(EndR(Γ(UR,V ))) > 4, then V is free , (1.1.1)

in which case the depth in question equals dim(R). When V is a line bundle, we have an iso-
morphism R

∼−→ EndR(Γ(UR,V )) (see Lemma 2.2), so the prediction (1.1.1) generalizes the
Grothendieck–Lefschetz theorem recalled above. The main goal of the present paper is to estab-
lish Dao’s conjecture (in Theorem 2.3 and to deduce the following consequence for vector bundles
on complete intersections in projective space.

Theorem 1.2 (Theorem 4.1). For a field k and a global complete intersection X ⊂ Pnk of di-
mension at least 3, a vector bundle E on X is a direct sum of powers of O(1) if and only if

H1(X,E ndOX
(V )(i)) = H2(X,E ndOX

(V )(i)) = 0 for every i ∈ Z . (1.2.1)

Remark 1.3. Results similar to Theorem 1.2 were obtained for X = PnC by Luk and Yau in
[LY93, Theorem B], for X = Pnk by Huneke and Wiegand in [HW97, Theorem 5.2], and for odd-
dimensional hypersurfaces of dimension at least 3 by Dao in [Dao13, Corollary 8.3.4]. In these
previous results, the condition (1.2.1) is weaker: one does not assume the vanishing of H2.
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1.4. The method of proof. Our argument for (1.1.1) is built on the strategy used by Gro-
thendieck for line bundles and rests on the Lefschetz algebraization theorems from SGA 2. More
precisely, we begin by using local cohomology to show that the depth assumption implies unob-
structed deformations for V and then, after replacing R with its completion, use this to lift V
to the formal completion along a hypersurface of the punctured spectrum of a complete inter-
section cut out by fewer hypersurfaces. A Lefschetz theorem from SGA 2 allows us to algebraize
the lift and, after taking care to retain the depth assumption, we proceed inductively to even-
tually reduce to regular R. To conclude, we use a theorem of Huneke–Wiegand: if R is regular
and depthR(EndR(Γ(UR,V ))) > 3, then V is free. Examples coming from Knörrer periodicity
for maximal Cohen–Macaulay modules over local hypersurfaces show that the depth assumption
in (1.1.1) is optimal; see Section 3.2.

1.5. A previously known case. When, in addition to depthR(EndR(Γ(UR,V ))) > 4, we also
have depthR(Γ(UR,V )) > 3, the conjecture (1.1.1) was established by Dao in [Dao13, Proposi-
tion 7.2.3]. In this case, the assumption on Γ(UR,V ) allows one to transform the depth condition
on EndR(Γ(UR,V )) into

Ext2R(Γ(UR,V ),Γ(UR,V )) = 0 .

Due to results of Auslander–Ding–Solberg [ADS93], the vanishing of this Ext2 implies that, after
we replaceR with its completion, theR-module Γ(UR,V ) lifts to a regular ring, and Dao concludes
by using the resulting Tor-rigidity of Γ(UR,V ). In contrast, we bypass any additional hypotheses
on Γ(UR,V ) by deforming over UR instead of over R.

1.6. Notation and conventions. A Noetherian local ring (R,m) is a complete intersection if
its m-adic completion is a quotient of a regular local ring by a regular sequence; as is well known,
such an R is Cohen–Macaulay. For a local ring (R,m), we let UR denote its punctured spectrum:

UR := Spec(R) \ {m} .

We use the definition of the condition (Sn) given in [EGAIV2, Définition 5.7.2]:
a finite module M over a Noetherian ring R is (Sn) if for every prime ideal p ⊂ R, one has

depthRp
(Mp) > min(n, dim(Mp)) .

We will mostly use this definition when the support of M is Spec(R), when dim(Mp) = dim(Rp).

2. The Grothendieck–Lefschetz theorem for vector bundles of arbitrary rank

In order to implement our deformation-theoretic reduction of Dao’s conjecture (1.1.1) to the case
of a regular R, we need to show that V deforms and that the deformation inherits the depth
assumption. The following lemma uses the Lefschetz theorems from [SGA2new] to achieve this.

Lemma 2.1. Let
(
R̃, m̃

)
be a complete local ring that is a complete intersection, let f ∈ m̃ be

a nonzerodivisor, set R := R̃/(f), let V be a vector bundle on UR, and consider j : UR ↪→ Spec(R).

(a) If dim(R) > 3 and j∗(E nd(V )) is (S3), then for any lift Ṽ of V to a vector bundle on an
open neighborhood Ũ of the closed subscheme UR ⊂ UR̃, we have

Γ
(
Ũ ,E nd

(
Ṽ
))
/fΓ

(
Ũ ,E nd

(
Ṽ
)) ∼−→ Γ(UR,E nd(V )) .
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(b) If dim(R) > 3 and j∗(E nd(V )) is (Sn) with n > 3, then for any lift Ṽ as in part (a), the
pushforward j̃∗

(
E nd

(
Ṽ
))

along j̃ : Ũ ↪→ Spec
(
R̃
)
is also (Sn).

(c) If dim(R) > 4 and j∗(E nd(V )) is (S4), then a lift Ṽ as in part (a) exists for some Ũ .

Proof. By our assumptions, R is a complete intersection of dimension at least 3, and so are its
thickenings

Rn := R̃/
(
fn
)

for n > 1 .

By the finiteness theorem [SGA2new, VIII, Corollaire 2.3], both j∗
(
E nd

(
V
))

and j̃∗
(
E nd

(
Ṽ
))

are coherent.

(a) Let Vn := Ṽ /fn be the pullback of Ṽ to URn (so that V1
∼= V ), and let V̂ ∼= lim←−n Vn be

the formal f -adic completion of Ṽ . The formal f -adic completion
(
E nd

(
Ṽ
))̂ is then identified

with lim←−n E nd(Vn), and each E nd(Vn) is a successive extension of copies of E nd(V ). Moreover,
since the finite R-module Γ(UR,E nd(V )) is of depth at least 3, we have

H1(UR,E nd(V )) ∼= H2
m(R,Γ(UR,E nd(V ))) = 0, so also H1(URn ,E nd(V )) = 0 (2.1.1)

for every n > 0 (see [SGA2new, III, Proposition 3.3(iv)]. It follows that

Γ
(
UR,

(
E nd

(
Ṽ
))̂)/fΓ

(
UR,

(
E nd

(
Ṽ
))̂)

∼=
(

lim←−
n

Γ(UR,E nd(Vn))
)
/f
(

lim←−
n

Γ(UR,E nd(Vn))
)

∼= lim←−
n

(Γ(UR,E nd(Vn))/fΓ(UR,E nd(Vn)))

∼= Γ(UR,E nd(V )).

To conclude, we use the local Lefschetz theorem [SGA2new, X, Exemple 2.1(i)] to obtain

Γ
(
Ũ ,E nd

(
Ṽ
)) ∼−→ Γ

(
UR,

(
E nd

(
Ṽ
))̂) .

(b) The complement of Ũ in U
R̃

is a union of finitely many closed points of U
R̃
: indeed,

the complement of Ũ in Spec
(
R̃
)
is of the form Spec

(
R̃/I

)
with

(
R̃/I

)
/f
(
R̃/I

)
Artinian, so

dim
(
R̃/I

)
6 1 (see [BouAC, VIII.25, Corollary 2(a)]). Thus, since R̃ is Cohen–Macaulay and the

finite R̃-module M̃ := Γ
(
Ũ ,E nd

(
Ṽ
))

is free on Ũ , we need to show that for every prime p ⊂ R

outside Ũ ,

depth
R̃p

(
M̃p

)
> min

(
n,dim

(
R̃p

))
. (2.1.2)

Scaling by f is injective on j̃∗(E nd(Ṽ )) because it is so locally over Ũ , so f is a nonzerodivisor
for M̃ . Moreover, by part (a), the R-module M̃/fM̃ is identified with M := Γ(UR,E nd(V )).
Thus, by [EGAIV1, 0, Proposition 16.4.10(i)] and the (Sn) assumption on M ,

dim
(
R̃
)
− depth

R̃

(
M̃
)

= dim(R)− depthR(M) 6 dim(R)−min(n,dim(R)) . (2.1.3)

The inequality (2.1.2) for p = m̃ follows:

depth
R̃

(
M̃
)
> min(n, dim(R)) + 1 > min

(
n,dim

(
R̃
))
.
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Thus, we may assume that p ∈ Spec
(
R̃
)
\
(
Ũ ∪ m̃

)
, so that dim

(
R̃p

)
= dim

(
R̃
)
− 1 = dim(R).

The upper semicontinuity of codepth [EGAIV2, Proposition 6.11.2(i)] and (2.1.3) then give the
desired

depth
R̃p

(
M̃p

)
= dim(R)−

(
dim

(
R̃p

)
− depth

R̃p

(
M̃p

))
> min(n,dim(R)) = min

(
n, dim

(
R̃p

))
.

(Alternatively, we could have finished the argument by applying [EGAIV2, Proposition 5.12.2].)
The coherent R-module Γ(UR,E nd(V )) is of depth at least 4, so, analogously to (2.1.1), we

have

H2(UR,E nd(V )) ∼= H3
m(R,Γ(UR,E nd(V ))) = 0 . (2.1.4)

Consequently, since f ∈ R̃ is a nonzerodivisor, there is no obstruction to deforming V to UR2 (see,
for instance, [Ill05, Theorem 8.5.3(b)]), to the effect that V lifts to a vector bundle V2 on UR2 .
The obstruction to deforming V2 to UR3 is again controlled by H2(UR,E nd(V )), so V2 lifts to
a vector bundle V3 on UR3 . Proceeding in this way, we lift V to a vector bundle V̂ := lim←−n Vn on
the formal f -adic completion of U

R̃
. The local Lefschetz theorem [SGA2new, X, Exemple 2.1(ii)]

then algebraizes V̂ to a desired Ṽ .

Geometrically, the depth condition of (1.1.1) amounts to the (S4) requirement for j∗(E nd(V )).

Lemma 2.2. For a Noetherian local ring R that is of dimension at least 2 and whose completion R̂
is (S2), and for vector bundles V and V ′ on UR,

the R-modules Γ(UR,V ) and HomR(Γ(UR,V ),Γ(UR,V
′)) are finite and (S2) ,

with associated coherent sheaves j∗(V ) and j∗(H om(V ,V ′)), where j : UR ↪→ Spec(R).

Proof. By [EGAIV2, Corollaire 5.10.8], the (S2) assumption implies that Spec(R̂) has no ir-
reducible component of dimension at most 1. Thus, since the formation of j∗(−) commutes
with the flat base change to R̂, the finiteness assertion follows from [SGA2new, VIII, Corol-
laire 2.3(ii)⇔(iv)] (see also [SGA1new, VIII, Proposition 1.10]). Since R itself is (S2) (see [EGAIV2,
Proposition 6.4.1(i)]), the (S2) assertion and the claim about j∗(V ) then follow from [EGAIV2,
Théorème 5.10.5]. In general, if a finite R-module M is of depth at least 2, then so is any
HomR(M ′,M): if f ∈ R is a nonzerodivisor for M , then

HomR(M ′,M)/f HomR(M ′,M) ⊂ HomR(M ′,M/fM) ,

so that any g ∈ R that is a nonzerodivisor for M/fM is also a nonzerodivisor for

HomR(M ′,M)/f HomR(M ′,M) .

In particular, we conclude that HomR(Γ(UR,V ),Γ(UR,V
′)) is of depth at least 2. Then, by

loc. cit.,

HomR(Γ(UR,V ),Γ(UR,V
′))

∼−→ Γ(R, j∗(H om(V ,V ′))) .

We are ready for the promised extension of the Grothendieck–Lefschetz theorem.

Theorem 2.3. Let (R,m) be a local ring that is a complete intersection of dimension at least 4,
and consider the open immersion j : UR ↪→ Spec(R). A vector bundle V on UR is free if and only
if j∗(E nd(V )) is (S4) (that is, if and only if depthR(EndR(Γ(UR,V ))) > 4; see Lemma 2.2).
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Proof. By Lemma 2.2, both j∗(V ) and j∗(E nd(V )) are coherent. If V is free, then so is E nd(V ),
so that j∗(E nd(V )) is a direct sum of copies of OSpec(R) and hence is (Sn) for any n because R
is Cohen–Macaulay. For the converse, we assume that j∗(E nd(V )) is (S4).

To establish the freeness of V , we will argue that j∗(V ) is free. Flat base change to R̂ commutes
with j∗(−), preserves the depth assumption, and descends freeness, so we may assume that R
is m-adically complete. Then R ∼= S/(f1, . . . , fn) for a complete regular local ring (S, n) and a
regular sequence f1, . . . , fn ∈ n. We will argue by induction on n, the case n = 0 being supplied
by [HW97, Corollary 2.9].

Suppose that n > 1, and set R̃ := S/(f1, . . . , fn−1). By Lemma 2.1, the vector bundle V lifts
to a vector bundle Ṽ defined on some open neighborhood Ũ of UR in U

R̃
, and the pushforward

j̃∗
(
E nd

(
Ṽ
))

along j̃ : Ũ ↪→ Spec
(
R̃
)
is (S4). We saw in the proof of Lemma 2.1(b) that the

complement of Ũ in U
R̃

consists of finitely many prime ideals p ⊂ R̃ with dim
(
R̃p

)
= dim(R).

The inductive hypothesis applies to the completion of each such R̃p equipped with the restriction
of Ṽ to U

R̃p
, to the effect that the restriction of j̃∗

(
Ṽ
)
to U

R̃
is a vector bundle. Another

application of the inductive assumption, this time to R̃ equipped with
(
j̃∗
(
Ṽ
))
|U

R̃
, then proves

that j̃∗
(
Ṽ
)
is free. It follows that Ṽ is free as well, and hence that so is its base change V .

Remark 2.4. For a further variant of Theorem 2.3, see [Asg19, Corollary 8.4].

3. The sharpness of the assumptions

The following examples illustrate the optimality of the assumptions of Theorem 2.3.

3.1. The dimension requirement is sharp. For a field k, consider the local ring

R := (k[x, y, z, t]/(xy − zt))(x,y,z,t)
that is a complete intersection of dimension 3. We claim that Pic(UR) ∼= Z, to the effect that
the condition of Theorem 2.3 that the dimension be at least 4 cannot be weakened to at least 3:
indeed, for any line bundle L on UR, we have OUR

∼−→ E nd(L ), so j∗(E nd(L )) is (Sn) for
every n, but L need not be OUR

.
The equation xy − zt cuts out X := P1

k × P1
k sitting in P3

k via its Segre embedding. Since
Pic(X) ∼= Z⊕ Z, with the hyperplane class spanning the diagonal copy of Z (see [Har77, Exam-
ple II.6.6.2]), we conclude that the Picard group of the punctured spectrum of the local ring of
the vertex of the affine cone over X ⊂ P3

k is Z (see [Har77, Exercise II.6.3]). Since this local ring
is R, we obtain the claimed isomorphism Pic(UR) ∼= Z.

3.2. The (S4) requirement is sharp. For every n > 1 and every algebraically closed field k of
characteristic different from 2, following a suggestion of Hailong Dao, we will construct a nonfree
finitely generated module Mn over the local, (2n− 1)-dimensional, complete intersection ring

Rn := kJx, y, u1, v1, . . . , un−1, vn−1K/(xy + u1v1 + · · ·+ un−1vn−1)

such thatMn is Cohen–Macaulay of depth 2n−1 (that is,Mn is “maximal Cohen–Macaulay”) and
the Rn-module EndRn(Mn) is (S3). Since URn is regular, the Auslander–Buchsbaum formula will
ensure that Mn defines a vector bundle Vn on URn . For n > 2, the pushforward (jn)∗(Vn) along
jn : URn ↪→ Spec(Rn) will be given byMn (see [EGAIV2, Théorème 5.10.5]), so Vn will be nonfree
but (jn)∗(E nd(Vn)) will be (S3) (see Lemma 2.2). Thus, for n > 3 (when dim(Rn) > 4), this will
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show that the (S4) requirement in Theorem 2.3 cannot be weakened to (S3) (even when j∗(V )
itself is (Sn) for every n).

For n = 1, we set M1 := kJyK with R1 = kJx, yK/(xy), so that M1 is a nonfree maximal
Cohen–Macaulay R1-module, EndR1(M1) is (S3) (equivalently, (S1)), and M1 admits the free
resolution

· · · y−→ kJx, yK/(xy)
x−→ kJx, yK/(xy)

y−→ kJx, yK/(xy)
x−→ kJx, yK/(xy) .

This resolution shows that

Ext2i−1R1
(M1,M1) = 0 and Ext2iR1

(M1,M1) ∼= k for i > 1 . (3.2.1)

To construct the remainingMn fromM1, we will use the Knörrer periodicity theorem [Knö87,
Theorem 3.1]: for every n > 1, the stable category MCM(Rn) of maximal Cohen–Macaulay Rn-
modules1 is equivalent to its counterpart MCM(Rn+1). Explicitly, in terms of matrix factoriza-
tions,

R̃an
ϕ−→ R̃an

ψ−−→ R̃an with ψ ◦ ϕ = ϕ ◦ ψ = xy + u1v1 + · · ·+ un−1vn−1

with R̃n := kJx, y, u1, v1, . . . , un−1, vn−1K, Knörrer’s functor maps the maximal Cohen–Macaulay
module Coker(ϕ) to Coker

((
un ψ
ϕ −vn

))
, where

(
un ψ
ϕ −vn

)
is a map in the matrix factorization

R̃an+1 ⊕ R̃an+1

(
un ψ
ϕ −vn

)
−−−−−−−→ R̃an+1 ⊕ R̃an+1

(
vn ψ
ϕ −un

)
−−−−−−−→ R̃an+1 ⊕ R̃an+1 of xy + u1v1 + · · ·+ unvn .

By [Buc87, Theorem 4.4.1(3)], the category MCM(Rn) is naturally triangulated, with the trans-
lation being given by the syzygy functor Coker(ϕ) 7→ Coker(ψ) (that is, by (ϕ,ψ) 7→ (ψ,ϕ) on
matrix factorizations), which is its own inverse. Thus, the commutativity of the diagram

R̃an+1 ⊕ R̃an+1

∼
(

0 1
−1 0

)
��

(un ϕ
ψ −vn

)
// R̃an+1 ⊕ R̃an+1

∼
(
0 −1
1 0

)
��

( vn ϕ
ψ −un

)
// R̃an+1 ⊕ R̃an+1

∼
(

0 1
−1 0

)
��

R̃an+1 ⊕ R̃an+1

(
vn ψ
ϕ −un

)
// R̃an+1 ⊕ R̃an+1

(
un ψ
ϕ −vn

)
// R̃an+1 ⊕ R̃an+1

shows that the Knörrer equivalence commutes with translations.
In summary, the image ofM1 under the (n−1)-fold Knörrer equivalence is a maximal Cohen–

Macaulay Rn-module Mn such that the “stabilized” Ext groups defined as in [Buc87, Defini-
tion 6.1.1] by

ExtiRn
(M,M ′) := HomMCM(Rn)(M,M ′[i])

satisfy
ExtiRn

(Mn,Mn) ∼= ExtiR1
(M1,M1) for every i and n .

Since eachMn is maximal Cohen–Macaulay, [Buc87, Corollary 6.4.1(i)] ensures that for i > 0, the
stabilized Ext groups in question agree with their usual nonstable counterparts, so that (3.2.1)
gives

Ext2i−1Rn
(Mn,Mn) = 0 and Ext2iRn

(Mn,Mn) 6= 0 for every n, i > 1 .

1 The objects of MCM(Rn) are the maximal Cohen–Macaulay Rn-modules, and the morphisms are given by

HomMCM(Rn)(M,M ′) := HomRn(M,M ′)/{f : M → M ′ such that f factors through a finite free Rn-module} ;

see [Buc87, Definitions 2.1.1 and 4.2.1] for more details.
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In particular, Ext2Rn
(Mn,Mn) 6= 0, so each Mn is nonfree. On the other hand, the vanishing of

Ext1Rn
(Mn,Mn) implies that EndRn(Mn) fits into an Rn-module exact sequence

0→ EndRn(Mn)→M⊕r1n →M⊕r2n →M⊕r3n → Q→ 0 .

Since Mn is Cohen–Macaulay, it follows that Hj
m(Rn,EndRn(Mn)) = 0 for n > 2 and j 6 2 (see

[SGA2new, III, Proposition 3.3]), so that EndRn(Mn), which is free over URn , is (S3), as desired.

Remark 3.3. The dimensions of the rings Rn are odd. Thus, the failure of the freeness of the
modules Mn should be contrasted with the following result [Dao13, Theorem 7.2.5]: for a local
ring R of even dimension at least 4 whose completion is a quotient of an either equicharacteristic
or unramified regular local ring by a nonzerodivisor, a vector bundle V on UR is free if and only
if depthR(EndR(Γ(UR,V ))) > 3.

4. Vector bundles on global complete intersections

We are ready for the promised splitting criterion for vector bundles on global complete intersec-
tions.

Theorem 4.1. For a field k and a global complete intersection X ⊂ Pnk of dimension d > 3,
a vector bundle V on X is a direct sum of powers of O(1) if and only if

H1(X,E ndOX
(V )(i)) ∼= H2(X,E ndOX

(V )(i)) ∼= 0 for every i ∈ Z . (4.1.1)

Proof. By the definition of a global complete intersection, X is the Proj of the graded ring

R := k[x0, . . . , xn]/(f1, . . . , fn−d) for some homogeneous elements fi ∈ k[x0, . . . , xn] .

The sequence f1, . . . , fn−d is k[x0, . . . , xn]-regular: indeed, on the local rings of Pnk at the closed
points of X, this follows from the dimension requirement, and this then implies the same on
each prime localization of k[x0, . . . , xn] due to the gradedness of the kernel of the multiplication
by fi on k[x0, . . . , xn]/(f1, . . . , fi−1) (the annihilator of this kernel is homogeneous, so if a prime p
contains it, then so does the prime generated by the homogeneous elements of p, see also [EGAII,
§ 2.2.1]). In particular, the local rings of R are complete intersections. In fact, due to the vanishing
properties of the cohomology of projective spaces [EGAIII1, Corollaire 2.1.13], the homogeneous
coordinate ring of X is R:

R ∼=
⊕
m>0

Γ(X,OX(m)), compatibly with the gradings . (4.1.2)

We consider the graded R-module M :=
⊕

m∈Z Γ(X,V (m)), whose associated OX -module is V
(see [EGAII, Théorème 3.4.4]). Letting m := (x0, . . . , xn) ⊂ R denote the irrelevant ideal, we
deduce that M defines a vector bundle on Spec(R) \ {m}: indeed, on homogeneous localizations
of R, this follows from V being a vector bundle, and, by [EGAII, § 2.2.1], this then implies the
same on the corresponding usual localizations. Moreover, by [EGAIII1, (1.4.3.2) and (2.1.5.2)],
the R-moduleM agrees with the pushforward of its restriction to Spec(R)\{m}. Thus, Lemma 2.2
ensures that the R-modules M and EndR(M) are finite and (S2) and that EndR(M), like M ,
agrees with the pushforward of its restriction to Spec(R) \ {m}. The OX -module associated with
EndR(M) is EndOX

(V ) (see [EGAII, Proposition 3.2.6]), so [EGAIII1, (1.4.3.1) and (2.1.5.1)]
supply the identification

Hj+1
m (R,EndR(M)) ∼=

⊕
i∈Z

Hj(X,E ndOX
(V )(i)) for every j > 1 . (4.1.3)
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Suppose that V is a direct sum of powers of O(1), so thatM is a direct sum of shifts of the graded
R-module

⊕
m∈Z Γ(X,OX(m)). By using the vanishing properties [EGAIII1, Corollaire 2.1.13] of

the cohomology of the projective space once more, we deduce from (4.1.2) that this R-module
is free of rank 1. Then EndR(M) is a free R-module and (4.1.3) together with the fact that
depth(Rm) > 4 (because Rm is a complete intersection of dimension at least 4) gives (4.1.1).

Conversely, suppose that (4.1.1) holds. Then (4.1.3) implies that Hj
m(R,EndR(M)) = 0 for

j = 2 or j = 3. Since EndR(M) is (S2), this vanishing also holds for j 6 1. It follows that we have
depthRm

((EndR(M))m) > 4 (see [SGA2new, III, Proposition 3.3(iv)]). Theorem 2.3 then implies
thatMm is Rm-free, so thatM is a finite projective R-module. SinceM is also graded, the graded
Nakayama lemma [BBH91, Proposition I.1.1(2)] implies that M is generated by a homogeneous
lift of any R/m-basis of M/mM . Since X is connected, the rank of M is constant, and it follows
that M is R-free as a graded module. In other words, M is isomorphic to a direct sum of shifts
of R, to the effect that V is isomorphic to a direct sum of powers of O(1), as desired.

Acknowledgements

I thank Hailong Dao for very helpful correspondence. I thank Ekaterina Amerik for encouraging
me to include Theorem 4.1.

References

ADS93 M. Auslander, S. Ding, and Ø. Solberg, Liftings and weak liftings of modules, J. Algebra 156
(1993), no. 2, 273–317; doi:10.1006/jabr.1993.1076.

Asg19 M. Asgharzadeh, Reflexivity revisited, 2019, arXiv:1812.00830v4.
BBH91 C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, The geometry of supermanifolds, Mathe-

matics and its Applications, vol. 71 (Kluwer Acad. Publ. Group, Dordrecht, 1991); doi:10.
1007/978-94-011-3504-7.

BouAC N. Bourbaki, Éléments de mathématique. Algèbre commutative, Chapitres 8 et 9 (Springer-
Verlag, Berlin, 2006); doi:10.1007/3-540-33980-9.

Buc87 R.-O. Buchweitz, Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein
rings, 1987, available at https://www.researchgate.net/publication/268205854.

Dao13 H. Dao, Some homological properties of modules over a complete intersection, with ap-
plications, in Commutative Algebra (Springer, New York, 2013), 335–371; doi:10.1007/
978-1-4614-5292-8_10.

EGAII A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. II. Étude globale élé-
mentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961),
5–205; doi:10.1007/BF02699291.

EGAIII1 , Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I,
Inst. Hautes Études Sci. Publ. Math. 11 (1961), 5–159; doi:10.1007/BF02684273.

EGAIV1 , Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de
schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 5–251; doi:10.1007/BF02684747.

EGAIV2 , Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de
schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 5–223; doi:10.1007/BF02684322.

EGAIV4 , Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes
de schémas. IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5–333; doi:10.1007/
BF02732123.

Har77 R. Hartshorne, Algebraic geometry, Grad. Texts in Math., vol. 52 (Springer-Verlag, New York –
Heidelberg, 1977); doi:10.1007/978-1-4757-3849-0.

510

https://doi.org/10.1006/jabr.1993.1076
https://arxiv.org/abs/1812.00830v4
https://doi.org/10.1007/978-94-011-3504-7
https://doi.org/10.1007/978-94-011-3504-7
https://doi.org/10.1007/3-540-33980-9
https://www.researchgate.net/publication/268205854
https://doi.org/10.1007/978-1-4614-5292-8_10
https://doi.org/10.1007/978-1-4614-5292-8_10
https://doi.org/10.1007/BF02699291
https://doi.org/10.1007/BF02684273
https://doi.org/10.1007/BF02684747
https://doi.org/10.1007/BF02684322
https://doi.org/10.1007/BF02732123
https://doi.org/10.1007/BF02732123
https://doi.org/10.1007/978-1-4757-3849-0


Grothendieck–Lefschetz for vector bundles

HW97 C. Huneke and R. Wiegand, Tensor products of modules, rigidity and local cohomology, Math.
Scand. 81 (1997), no. 2, 161–183; doi:10.7146/math.scand.a-12871.

Ill05 L. Illusie, Grothendieck’s existence theorem in formal geometry (with a letter of Jean-Pierre
Serre), in Fundamental Algebraic Geometry, Math. Surveys Monogr., vol. 123 (Amer. Math.
Soc., Providence, RI, 2005), 179–233.

Knö87 H. Knörrer, Cohen–Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987),
no. 1, 153–164; doi:10.1007/BF01405095.

LY93 H. S. Luk and S. S.-T. Yau, Cohomology and splitting criterion for holomorphic vector bundles
on CPn, Math. Nachr. 161 (1993), 233–238; doi:10.1002/mana.19931610117.

SGA1new A. Grothendieck and M. Raynaud, Revêtements étales et groupe fondamental (SGA 1), Sémi-
naire de géométrie algébrique du Bois Marie 1960–61, Doc. Math. (Paris), vol. 3 (Soc. Math.
France, Paris, 2003) (updated and annotated reprint of the 1971 original).

SGA2new , Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux
(SGA 2), Séminaire de Géométrie Algébrique du Bois Marie 1962, Doc. Math. (Paris), vol. 4
(Soc. Math. France, Paris, 2005) (revised reprint of the 1968 original, with a preface; edited by
Y. Laszlo).

Kęstutis Česnavičius kestutis@math.u-psud.fr
CNRS, UMR 8628, Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 91405 Orsay,
France

511

https://doi.org/10.7146/math.scand.a-12871
https://doi.org/10.1007/BF01405095
https://doi.org/10.1002/mana.19931610117
mailto:kestutis@math.u-psud.fr

	The conjecture of Dao
	The Grothendieck–Lefschetz theorem
	The method of proof
	A previously known case
	Notation and conventions

	The Grothendieck–Lefschetz theorem for vector bundles of arbitrary rank
	The sharpness of the assumptions
	The dimension requirement is sharp
	The (S_4) requirement is sharp

	Vector bundles on global complete intersections
	References

