THE MANIN CONSTANT IN THE SEMISTABLE CASE

KESTUTIS CESNAVICIUS

ABSTRACT. For an optimal modular parametrization Jo(n) — E of an elliptic curve E over Q
of conductor n, Manin conjectured the agreement of two natural Z-lattices in the Q-vector space
H°(E,Q"). Multiple authors generalized his conjecture to higher dimensional newform quotients. We
prove the Manin conjecture for semistable F, give counterexamples to all the proposed generalizations,
and prove several semistable special cases of these generalizations. The proofs establish general
relations between the integral p-adic étale and de Rham cohomologies of abelian varieties over p-adic
fields and exhibit a new exactness result for Néron models.
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1. INTRODUCTION

By the modularity theorem, every elliptic curve E over QQ arises as a quotient
w: Jo(n) » E

of the modular Jacobian Jy(n) with n equal to be the conductor of E. In this situation there are
two natural Z-lattices in the Q-vector space 7*(H°(E,Q')) generated, respectively, by the pullback
of a Néron differential wg and by the 1-form fr associated to the normalized newform determined
by the isogeny class of EI. The Manin constant ¢, € Q*, defined by

™ (wE) = ¢r - fE,

describes the difference between the two lattices and is the subject of the following conjecture of
Manin (see §1.5 for a review of the terminology used in its formulation).

Conjecture 1.1 ([Man71, 10.3]). For an elliptic curve quotient
w: Jo(n) » E
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that is new in the sense that n equals the conductor of E and optimal in the sense that Ker(m) is
connected, the two Z-lattices in 7*(H°(E,Q)) described above agree; in other words,

cp = +1.

Substantial computational evidence supports the conjecture; for instance, Cremona proved that
¢r = 11 whenever n < 390000, see [Crel6] (and also [ARS06, Thm. 2.6]). The main goal of this
paper is to settle Conjecture 1.1 for semistable E; more precisely, we prove the following result.

Theorem 1.2 (Theorem 2.13). For an n € Zx1, a subgroup H < GLQ(Z) with T1(n) € H < Ty(n),
a new elliptic optimal quotient m: Jg — E, and a prime p,

if p? fn, then ordy(cy) =0 andm induces a smooth morphism on Néron models over Z,.

In particular, Congecture 1.1 holds in the case when E is semistable (that is, when n is squarefree).

The proof of Theorem 1.2 is relatively short, does not rely on any previously known cases, is uniform
for all p, and is given in §2. The key idea is to translate multiplicity one results for differentials in
characteristic p into Hecke-freeness statements about the Lie algebra of the Néron model of Jy(n).
This provides control on congruences between the “ fg-isotypic” and the “(non- fg)-isotypic” parts of
this Lie algebra, which combines with comparisons between the modular degree and the congruence
number of E to imply the I'g(n) case of Theorem 1.2. The general case reduces to I'g(n).

Previous results [Maz78, Cor. 4.1], [AU96, Thm. A and (ii) on p. 270|, [ARS06, Thm. 2.7|, and
[60516, Thm. 1.5] cover many special cases of Theorem 1.2 (in particular, the case of an odd p).
Nevertheless, some semistable elliptic curves escape the net of these previous results: for instance,
this happens for 130.a2, 4930.01, 182410.a1, and many others in [LMFDB]. Beyond the semistable
case, Edixhoven proved in [Edi91, Thm. 3| that a new elliptic optimal quotient 7: Jy(n) - E and a
prime p > 11 for which Eg, does not have potentially ordinary reduction of Kodaira type II, III, or
IV satisfy ord,(cs) = 0.

1.3. Counterexamples to proposed generalizations. Generalizations of Conjecture 1.1 to
newform quotients of arbitrary dimension have been put forward by Conrad-Edixhoven—Stein
[CES03, Conj. 6.1.7], Joyce [Joy05, Conj. 2|, and Agashe-Ribet—Stein [ARS06, Conj. 3.12|. These
more general conjectures are supported by a handful of examples [FLSSSWO01, §4.2], [ARS06, p. 624]
and by the semistable case at odd p that follows from exactness properties of Néron models.

We prove in Theorem 5.10 that all these generalizations of the Manin conjecture fail (at the prime 2)
for a 24-dimensional optimal newform quotient of Jy(431) and also for a 91-dimensional optimal
newform quotient of .J(2089)." On the positive side, we prove a number of their semistable special
cases in Theorem 5.19, which show that in the semistable setting the failure of the generalizations
has to involve both the failure of mod p multiplicity one for Jy(n) and the failure of the maximality
of the order Of determined by the newform f (in the elliptic curve case Oy is always Z).

1.4. The interplay between integral étale and de Rham cohomologies. It is a natural idea
that relations between the integral étale and de Rham cohomologies of abelian varieties over p-adic
fields are relevant for the Manin conjecture: one guesses that the role of the optimality assumption
is to supply exactness on Hj (—, Z), whereas similar exactness on HJp(—/Z) would be related to
exactness on Néron models implied by the Manin conjecture (more precisely, the Manin conjecture
implies exactness on Fil'(H}y(—/Z)), that is, on Lie(—/Z)*). However, the required transfer of

Lour counterexamples to the generalizations of the Manin conjecture rely on the correct functioning of the [Sage]
commands used in the proof of Theorem 5.10.
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an integral étale assumption to an integral de Rham conclusion has been problematic in the past,
partly because comparisons of p-adic Hodge theory tend to fail integrally. The key novelty that
underlies our approach is the idea that an arithmetic duality result of Raynaud, when reformulated
as Theorem 3.4, supplies an integral link between the two cohomology theories.

Theorem 3.4 is very robust for our purposes and is the backbone of §§3-5. In addition to its role in
the proofs of the results mentioned in §1.3, it eventually supplies the exactness on H éR(* /Zy) in
Corollary 3.14 and Theorem 5.19 (that is, in the cases of the Manin conjecture and of its generalization
proved in this paper) and it leads to cohomology specialization results in the spirit of [BMS16] with
no restrictions on the reduction type (see Proposition 3.15), to relations between torsion multiplicities
in Jo(n) and Gorenstein defects of Hecke algebras (see Corollary 3.16), and to an exactness result
for Néron models equipped with a “Hecke action” (see Corollary 4.8).

1.5. Notation and conventions. For an open subgroup H c GLQ(Z), we denote the level H
modular curve over Z by Xy (see [Ces17, 6.1-6.3] for a review of X ), and we denote the Jacobian
of (Xu)g by Ju := Pic?XH)Q/Q. For an n € Z>1, we let Tg(n) (resp., I'1(n)) denote the preimage

of {(§ %)} < GL2(Z/nZ) (resp., of {(} )} = GL2(Z/nZ)) in GLy(Z), and we set Xo(n) := Xry(n)»
etc. For an H with I'1(n) ¢ H < T'g(n), a quotient 7: Jg — A is optimal (resp., new or newform)
if Ker 7 is connected (resp., if up to isogeny 7 arises from some newform f4). We say that f4 is
normalized if its g-expansion a;q + azq® + ... at the cusp “o0” has a; = 1. If 7 is new and optimal,
fa is normalized, and dim A = 1, then we let ¢, be the Manin constant defined by the equality
7*(wa) = ¢r - fa, where wy is a Néron differential on A and we have identified f4 with its associated
differential form on Jg. Up to a sign, ¢, does not depend on the choice of w4.

For a commutative ring T, a maximal ideal m < T, and a T-module M, we let M, denote the m-adic
completion of M and we let M[m®] denote the submodule of the elements of M killed by some
power of m. We often consider Z-torsion free T and M, for which we repeatedly abuse notation:

Mle] := M n Ker (e: Mg — My) for an idempotent e € Tq. (1.5.1)

We let ord, denote the p-adic valuation normalized by ord,(p) = 1. For a field K, we let K denote
a fixed algebraic closure of K. For a commutative ring R and a projective R-module P, we set
P* := Hompg(P, R). For a smooth group scheme G — S, we let G (resp., Lie G) denote its relative
identity component subfunctor (resp., its Lie algebra at the identity section), which in the situations
below will always exist as a scheme. For a scheme S and an S-scheme X, we let X®™ denote the
smooth locus of X. When denoting structure sheaves or sheaves of Kahler differentials, we omit
subscripts that may be inferred from the context. We let (—)“ denote the dual of an abelian variety,
or of a homomorphism of abelian varieties, or of a commutative finite locally free group scheme.

Acknowledgements. I thank Kevin Buzzard, Frank Calegari, Brian Conrad, John Cremona, Naoki
Imai, Bjorn Poonen, Michel Raynaud, Ken Ribet, Sug Woo Shin, and Preston Wake for helpful
conversations or correspondence. I thank William Stein for sending me the Sage code used to
compute the example in [ARS12, Rem. 3.7]. I thank the referee for helpful comments and suggestions.
I thank the Miller Institute for Basic Research in Science at the University of California Berkeley for
support during the preparation of this article.

2. THE SEMISTABLE CASE OF THE MANIN CONJECTURE

The main goal of this section is to prove the semistable case of the Manin conjecture in Theorem 2.11.
The path to this consists of the notational review in §2.1, of parts (i) and (ii) of Proposition 2.2, and
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then of the discussion in between §2.6 and Lemma 2.10. Modulo standard inputs from the literature,
the overall argument is brief.

2.1. The Hecke algebra T. Throughout §2 we fix an n € Z>; and for primes ¢ { n and ¢ | n,
respectively, we let Ty and Uy be the endomorphisms of Jy(n) induced via “Albanese functoriality”
by their namesake correspondences (see [MW84, Ch. II, §§5.4-5.5]; in the notation there, we choose
Ty« and Upx). The pullback action of T, and U, on H?(Jp(n), Q') agrees with their “classical” action
on the space of weight 2 cusp forms, see [MW84, Ch. II, §5.8] (this is our reason for preferring the
Albanese functoriality). We let

T < Endg(Jo(n))

be the commutative Z-subalgebra generated by all the Ty and Uy, so T acts on various objects
naturally attached to Jy(n), e.g.,

e on the Néron model J over Z of Jy(n);
e on the tangent space Lie J of J at the identity section and on the dual H°(7,Q!) = (Lie J)*.

If p is a prime with p? { n, then, by [DR73, VL.6.7, VI1.6.9], the curve Xo(n)z, is semistable over Zj,
so that, by [BLR90, 9.7/2], we have

(Pick, /22, = T2,

In particular, by [BLR90, 8.4/1 (a)], [Con00, Cor. 5.1.3|, and [Con00, Thm. B.4.1] (applied over Q,),
we get the identifications

(Lie J)z, = H'(Xo(n)z,,0) and  H°(Jz,,Q') = H(Xo(n)z,, ) (2.1.1)

that are compatible with duality pairings, where {2 denotes the relative dualizing sheaf of X¢(n) 7, OVer
Z,. We transfer the T-action across these identifications to endow H'(Xo(n)z,, 0) and H%(Jz,, Q")
with a T-module structure.

The following result lies at the heart of our approach to the semistable case of the Manin conjecture.
Proposition 2.2. For a mazimal ideal m < T of residue characteristic p,
(i) if ordy(n) = 0; or

(ii) #f ordy(n) =1 and Up mod m lies in F; < T/m (the latter holds if m contains the kernel of
the map qr: T — Oy determined by some newform f of level T'g(n) because qf(Up) = +1); or

(iii) if ordy(n) =1 and p is odd,
then the following equivalent conditions hold:

(1) the Tw-module (Lie J)z, ®r, Tw is free of rank 1;

(2) the Twm-module H'(Xo(n)z,, O) Qr,, T is free of rank 1;

(3) multiplicity one for differentials holds at m in the sense that

dimy )y (H°(Xo(n)g,, 2)[m]) = 1.

Proof. The equivalence of (1) and (2) follows from (2.1.1). By the formalism of cohomology and
base change (see [I1105, 8.3.11]) and Grothendieck—Serre duality (see [Con00, Cor. 5.1.3]),

H'(Xo(n)z,,0) ®z, Fp = H (Xo(n)r,, 0) and H’(Xo(n)z,,Q) @z, Fp = H(Xo(n)r,,2);
4



the latter identification endows H%(Xo(n)r,, ) with the T-action used in (3). Therefore,
H'(Xo(n)z,,0)®r T/m is the Fp-linear dual of ~ H%(Xo(n)r,, 2)[m], (2.2.1)
and it follows that (2) implies (3). Conversely, if (3) holds, then, due to (2.2.1), the Nakayama
lemma supplies a Ty-module surjection
s: Tm — H'(Xo(n)z,, 0) ®r,, Trn- (2.2.2)

Since H'(Xo(n)z,, 0) ®r;, Tm is a faithful Ty-module (see (2.1.1)), the map s is also injective, and
hence is an isomorphism, which proves that (3) implies (2).

—_——

The arguments above also apply to the minimal regular resolution Xo(n)zp in place of Xo(n)z,, so

—_—

in the conditions (2)—(3) we could have instead used Xo(n) . Therefore, the results of [ARS12, §5.2]

(which use mzp), specifically, [ARS12, Lemma 5.20],” show that either (i) or (ii) implies (3).
Alternatively, (i) implies (1) by [Par99, Thm. 4.2].

The case (iii) will only be used in Remark 2.3 and Corollary 2.4, so the cases (i) and (ii) suffice
for the main results of the paper. To address the case (iii), we now assume that p is odd with
ord,(n) = 1, and we seek to show (1), that is, that (Lie J ) is free of rank 1 as a Ty-module. Let

Tforg s Tquot XO(”)Q = XO(%)Q

be the degeneracy morphisms characterized as follows in terms of the moduli interpretation on the
elliptic curve locus: 7o forgets the p-primary factor of the cyclic subgroup of order n, whereas
Tquot quotients the elliptic curve by this p-primary factor. We will consider the short exact sequence

((ﬂforg) %, (Tquot ) %)

0—>K—>J0(n)

Jo(%) X J(](%) — 0 (2.2.3)

in which (7org )« and (mquot )« are induced by the Albanese functoriality, the surjectivity follows from
[Rib84, Cor. 4.2|, and K is defined as the kernel. By loc. cit. and [LO91, Thm. 2|, the component
group scheme K /K is constant, whereas the identity component K° is identified with the p-new
subvariety of Jo(n). The maps (Tforg)s and (Tquot)s commute with the Hecke operators Ty and Uy
provided that ¢ # p, so they intertwine the actions of the “p-anemic” Hecke algebras

T < End(Jo(n))  and  TY), < End(Jo(2))
that are generated by these operators, and hence they define a surjective ring homomorphism

™ - TP, T,-T, Ui U (2.2.4)

Moreover, since p is odd and does not divide %, one knows from [Wil95, Lemma on p. 491] that

T, € Tj(f <))1d7 that is, that T;(f())ld is in fact the full Hecke algebra Tp1q < End(Jo()).

To determine the endomorphism of Jo(%) x Jo(}) that intertwines U, € End(Jo(n)), we regard
Yo(n)q as the coarse moduli space of pairs
(¢p: By — Eo,C c Ey),
n

where ¢ is a p-isogeny of elliptic curves and C' is a cyclic subgroup of order 7, 80 that the p-Atkin—
Lehner involution w), sends (¢, C) to (¢, ¢(C)). In terms of this interpretation, U, quotients E; by
a variable subgroup C’;, c FE; of order p such that CI’D N Ker ¢ = 0. Therefore, U, + w,, sends

(¢: By > Ep,Cc Ey)  to  >.(¢: By — By, '(C)  Ey),

2The key inputs to the proof of loc. cit. are an Eichler-Shimura type congruence relation for U, in the style of
[Wil80, §5] and arguments from [Wil95, proof of Lemma 2.2] that use the g-expansion principle as in [Maz77, pp. 94-95].
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where the sum runs over the isomorphism classes of all p-isogenies that cover F;. In particular,”
Up + wp = (Tquot)™ © (Tforg )+ inside End(Jy(n)).
Thus, since T) = (Tforg)« © (Tquot)* in End(Jo(3)) (the switch to “Picard functoriality” here does
not matter because (p, %) = 1, see [MW84, Ch. II, §5.4 (2)]) and (7quot )« © (Tquot)* = p + 1,
Up intertwines the endomorphism (z,y) — (Tpz —y,px) of Jo(3) x Jo(}). (2.2.5)

The p-new subvariety K is isogenous to a product of newform quotients (with multiplicities) of
variable Jo(n') for divisors n’ | n such that n{ 7, that is, such that p [ n’. Since the U, operator

commutes with the degeneracy maps towards such Jy(n’), it acts as +1 on each simple isogeny factor
of K°. In particular, since (Lie Jo(n))q, ~ Tq, as Tg,-modules (see [DDTI7, 1.34]), the factors Ty
of Tz, that meet the support of (Lie K)g, must satisfy either U, + 1 € m’ or U, — 1 € m’. By (ii),
we may assume Ty, is not such factor, to the effect that

(Lie K) ®r, Tm = 0. (2.2.6)

Since p is odd and K /K" is constant, the maps Jo(n) — Jo(n)/K° and Jo(n)/K°® — Jo(n)/K induce
smooth morphisms on Néron models over Z,, (see [BLRI0, 7.5/4 (ii) and its proof, 7.5/6]). Thus,
the sequence (2.2.3) induces a short exact sequence on Lie algebras of Néron models over Zy:

0 — (LieK)z, — (Lie J)z, — (Lie J' x Lie J')z, — 0.
The vanishing (2.2.6) then implies that
(Lie J)m — (Lie J’ x Lie J")m, (2.2.7)

so the maximal ideal m® := m A T® of T®) is such that (Lie J' x Lie J') ) # 0, to the effect that
m() is “p-old,” that is, is identified with a maximal ideal m?) < T, 44 via (2.2.4) (and the sentence
that follows (2.2.4)). Thus, the case (i) implies that the T®) /m(®)-vector space (Lie J’ x Lie J')/m(®)
is of dimension 2. Moreover, due to the formula (2.2.5), the U, operator does not act as a T®) /m®)-
scalar on this vector space, so the T/m-vector space (Lie J)/m, which, due to (2.2.7), is a further
quotient of (Lie J' x Lie J') /m(p), is of dimension < 1. It then follows from the Nakayama lemma
as in the paragraph after (2.2.2) that (Lie J)m is free of rank 1 as a Tyy-module, as desired. O

Remark 2.3. In [ARS12, §5.2.1], based on computational evidence, Agashe, Ribet, and Stein asked
whether (iii) implies (3) and showed that this is not the case if the parity condition is dropped in
(iii). There they also implicitly raised the question answered by part (iii) of the following corollary.

Corollary 2.4. For a maximal ideal m c T of residue characteristic p,
(i) if ordy(n) = 0; or
(ii) if ordp(n) =1 and Uy mod m lies in F) < T/m; or
(iii) if ordp(n) =1 and p is odd,
then the saturation T' := Tg n Endg(Jo(n)) of T agrees with T at m, that is,
T T,
In particular, if n is odd and squarefree, then the inclusion T — T’ is an isomorphism.

3Compare with the formula in [Rib90, proof of Prop. 3.7] that used the “Picard functoriality” Hecke operators.
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Proof. Since T’ acts on Lie J faithfully and T-linearly, T}, acts on
. 2.2
(Lie J)z, ®r,, T = T
faithfully and Ty,-linearly, and the desired conclusion follows. O
Remark 2.5. When n is a prime, the last claim of Corollary 2.4 also follows from [Maz77, 11.9.5].

For our purposes, the significance of Proposition 2.2, especially of its case (ii), is the resulting control
of the congruence module congy;, 7 introduced in Definition 2.7 with the following setup.

2.6. A modular elliptic curve. For the rest of §2 we
e fix a new elliptic optimal quotient 7: Jo(n) — E;
o let f e H(Xo(n)g, Q') be the normalized newform determined by 7;
e let ey € Tg be the idempotent that cuts out the factor of Tg that corresponds to f;
e let ef1 :=1— ey be the complementary idempotent in Tq.
The idempotents ey and ef1 decompose every T-module M rationally:
Mg = Mgley] ® Mgleys.].
The following congruence module measures the failure of an analogous integral decomposition.

Definition 2.7. The congruence module of a Z-torsion free T-module M is the quotient (see (1.5.1))
._ M
CONEM = MlefJ+MTe,1]"
Example 2.8. With the choice M =[], H, élt(Jo(n)@, Zyp), the congruence module cong,, is isomor-
phic to (Z/deg; 7)%, where the modular degree deg; is the positive integer that equals o 7" in
Endg(FE) (so that ef = %). Indeed, this follows from the optimality of 7 and from the observation
that H, élt((—)@, Zy) carries short exact sequences of abelian varieties to those of finite free Z,-modules.

This example leads to the following lemma, whose proof is a variant of the proof of [DDT97, Lem. 4.17|
(the quotient O/ns, used there is a congruence module). The lemma is well known and also follows
from [AU96, Lem. 3.2], [CK04, Thm. 1.1], or [ARS12, Thm. 2.1].

Lemma 2.9. In the setup of §2.6, we have degy | #(congy).

Proof. For every prime p, the Tg,-module Hélt(Jg(n)@, Qp) is free of rank 2 (see [DDT97, Lem. 1.38-
1.39]), so the module

Hélt (JO (n)@v Zp)
Hét(‘]o(n)@v Zp)[ef]

is free of rank 2 over (T/Tlef])z, = Zp.

In particular, cong%2 surjects onto Congp1 (jo(n)s, 7,) and the claim follows from Example 2.8. [
P é ’

We are ready to exploit Proposition 2.2 in the proof of the following key lemma, which will give us
the semistable case of the Manin conjecture in Theorem 2.11 and whose proof will simultaneously
reprove [ARS12, Thm. 2.1|. An alternative route would be to deduce Theorem 2.11 from the results
of §5, e.g., from Theorem 5.19, that are valid for newform quotients of arbitrary dimension.
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Lemma 2.10. For every prime p such that p* { n,

ordyp (#(congye 7)) = ordp(degy), (2.10.1)
the map (Lie J)z, — (Lie€)z, is surjective, and ((Liew")(Lie€))z, —— (Lie J)z,[es1].

Proof. The formation of the T-module

Lie J
(Liej)[ef]Jr(LieJ)[efl]

commutes with (flat) base change to Zj, so we let n range over the maximal ideals of T of residue
characteristic p and decompose Tz, = [Ty

Let m < T be the preimage of pZ under the surjection T — Z determined by f. The image of ef in
Tq, lies in (Tw)g,, so for every n # m the “(T,)g,-coordinate” of e vanishes, to the effect that

Ty = Taley] and (Lie J) ®r,, Tn = ((Lie J) ®r,, Tn)[ey]
for every such n. Consequently,

Lie J ~ (Lie 7)m 22 Ty,
((Liej)[ef]—&-(LieJ)[efl]) ®z Zp = (Lie T)mlef]+(Lie N)mle;1] = Tmlep]+Tmle,1]

so that

lle

('Jl‘[ef]E?l‘[efl]) ®z Ly,

ordy(#(congre 7)) = ordy(#(congy)).
When combined with Lemma 2.9, this gives the inequality “=" in (2.10.1).

For the converse inequality, we let £ denote the Néron model of E over Z, observe that the injection

. LieJ : : Lie J Lief . _Z
Lier: (Lie?)[ef] — Lie& grves (Liej)[ef]Jrl(eLieﬂV)(LieS) - degfl"eLieS = deg, 20
and conclude by using the inclusion (Lie7")(Lie&) < (Lie J)[efL]. O

Theorem 2.11. For a new elliptic optimal quotient 7w: Jo(n) — E, the Manin constant c, satisfies

ordy(cr) =0 for every prime p  such that p*{n.

0 1
Proof. By Lemma 2.10, the map (Lie J)z, — (Lie &)z, is surjective. Thus, %
"

free, that is, that the pullback 7*(wg) of a Néron differential of E is not divisible by p in H(Jz,, ").

is torsion

The p-Atkin—Lehner involution sends f to +f, so f lies in

(2.1.1)
H°(Xo(n)z,,Q) = HJgz,, Q)

(see [Ces16, 2.7-2.8]). Moreover, by definition, 7*(wg) = ¢x - f and, by [Edi91, Prop. 2], we have
¢r € Z. Thus, since 7 (wg) is not divisible by p in H°(Jz,,Q'), the desired ordy(cy) = 0 follows. [

We end §2 with the semistable case of the analogue of the Manin conjecture for parametrizations by
modular curves intermediate between Xi(n) and Xo(n) (see Theorem 2.13). The following variant
of [Cesl6, Lem. 4.4] (or of [GV00, Prop. 3.3]) reduces this analogue to the Manin conjecture itself.

~

Lemma 2.12. Let H,H' < GL2(Z) be subgroups such that T'1(n) ¢ H < H' < T'g(n) for some
n € Z=1, and let

m:Jg - F and 7' Jy — E
8



be new elliptic optimal quotients such that E and E' are isogenous over Q. There is a unique isogeny
e making the diagram

JH i» E
ljv l (2.12.1)

commute, where jV is the dual of the pullback map j: Jgr — Jg. The kernel Ker e is constant and
is a subquotient of the Cartier dual of the Shimura subgroup ¥(n) < Jo(n). The Manin constants cy
and c are nonzero integers related by the equality

¢ = ¢y - # Coker (Liee: Lie€ — Lie&’), (2.12.2)

where £ and E' are the Néron models over Z of E and E’', respectively.

Proof. The existence (resp., uniqueness) of e follows from the multiplicity one theorem (resp., from
the surjectivity of 7). For the rest, we loose no generality by assuming that H' = T'g(n). Then
Ker(e)Y is a subgroup of

X(n) := Ker(Jo(n) — Ji(n)).

Since Y(n) is of multiplicative type (see [LO91, Thm. 2|), the claims about Kere follow. The
formation of the normalized newform f € H?(Jg/, Q') determined by the isogeny class of E is
compatible with pullback by 7Y (see [éesl(ﬁ, 2.8]), so the comparison of the two ways to pull back a
Néron differential of E’ to Jy in (2.12.1) gives (2.12.2). For the integrality of ¢, it then suffices to
assume that H = I';(n) and to apply [Ste89, Thm. 1.6]. O

Theorem 2.13. For an n € Z=1, a subgroup H < GLa(Z) such that T1(n) = H = To(n), and a new
elliptic optimal quotient w: Jy — E, if p is a prime with p*> { n, then the Manin constant c, satisfies
ordy(cr) = 0 and 7 induces a smooth morphism (Ju)z, — €z, between the Néron models over Z,.

Proof. Let 7’: Jy(n) — E’ be the new elliptic optimal quotient for which E’ is isogenous to E and
let e: E — E’ be the isogeny supplied by Lemma 2.12. By Theorem 2.11, ord,(c,/) = 0, so, since
cx € Z, (2.12.2) implies that ord,(c,) = 0. Thus, since the elements of HY(Jy,Q!) have integral
g-expansions (see [CES03, proof of Lem. 6.1.6]), it follows that the pullback 7*(wg) of a Néron
differential of E is not divisible by p in H°((Jp)z,,2"). Consequently, (Lie Jx)z, — (Lie&)z, is
surjective and the smoothness claim follows. O

One consequence of Theorem 2.13 is the following additivity of Faltings height.

Corollary 2.14. For an H as in Theorem 2.13 and a new elliptic optimal quotient 7: Jg — E
such that E is semistable, the Faltings height h(—) over Q satisfies

h(Jg) = h(Kern) + h(E).
Proof. Theorem 2.13 applies at every p, so it implies that the map Jy — & is smooth and hence, by
[BLR90, 7.1/6], that the Néron model K over Z of Kerr is its kernel. It follows that the sequences
0 — LieK — Lie Jy — Lie€ -0 and 0 — HY&,QY - HY(Jy,QY) - HY(K, QY -0

are short exact, so the arguments from [Ull00, proof of Prop. 3.3] give the conclusion. O
9



3. A LINK BETWEEN THE INTEGRAL p-ADIC ETALE AND DE RHAM COHOMOLOGIES

We will analyze the semistable case of a generalization of the Manin conjecture to higher dimensional
newform quotients in §5, and this will rest on the present section which establishes relations between
the integral p-adic étale and de Rham cohomologies of abelian varieties over p-adic fields. Our point
of view is that arithmetic duality in the form of a result of Raynaud [Ray85, Thm. 2.1.1], which we
recast and mildly generalize in Theorems 3.4 and 3.6, is capable of supplying such relations.

3.1. The field K. Throughout §3 we fix a mixed characteristic (0, p) complete discretely valued
field K whose residue field k is perfect. We denote the ring of integers of K by O and we denote
Néron models over O by calligraphic letters: for instance, A and B are the Néron models over O of
abelian K-varieties A and B, whereas A" is the Néron model of the dual abelian variety A".

The following de Rham lattice H éR(— /O) constructed by Mazur and Messing will be key for our
purposes. In order to emphasize its functoriality, we review its definition.

3.2. The integral H 5R of an abelian variety. Let A be an abelian variety over K. By [MM74,
[.5.1], the Néron model A of the dual abelian variety AV is identified with the fppf sheaf
Ext' (A, G,,) defined by S — Ext}(A%, (G,n)s)

on the category of smooth O-schemes S, where Ext} (A2, (G,,)s) is the abelian group of extensions
0— (Gp)s > €& — Ag — 0 of fppf sheaves of abelian groups.” One also considers the sheaf

Extrigh(A°,G,y) defined by S — Extrigg(A2, (G,)s)

on the category of smooth O-schemes S, where Extrigh (A%, (G,,)s) is the abelian group of extensions
as before that are, in addition, equipped with an S-morphism r, a rigidification, that fits into a
commutative diagram

Spec(040/72,,)
£ / AY

in which 7 is the first infinitesimal neighborhood of the identity section of A%. By [MM74, 1.5.2], the
functor &xtrigt(A°, G,,) is representable by a smooth O-group scheme that fits into a short exact
sequence

0——r (Gm)s 0

0 — V(Lie A) — &xtrigh(A°,G,,) — AV — 0 (3.2.1)
in which V(Lie A) is the affine smooth O-group scheme that represents the finite free O-module
(Lie A)* (see [SGA 31 pew, I, 4.6.3.1]). By [MM74, 1.2.6.7|, the K-base change of the sequence (3.2.1)
is identified with the universal vector extension of AV, so

Lie(&xtrigh (A%, Gp)k)  is identified with — HJz(A/K).
Therefore, the finite free O-module
HIz(A/O) := Lie(&xtrigh(A°, G,,))

is a natural integral structure on Hly(A/K). If A has good reduction, that is, if A is an abelian
scheme, then, by [MM74, L.§4, esp., 1.3.2.3 a), 1.4.2.1, and 1.4.1.7], the O-module H}y(A/O) is
identified with the first de Rham cohomology group of A over O. By construction, the formation

4For the sheaf condition of Ext'(A°,G,), it is key that every 0 — (G,,)s — £ — A2 — 0 has no nonidentity
automorphisms, as may be checked over Sk due to the O-flatness of S (each &£ is necessarily a smooth S-scheme).
10



of (3.2.1) and of H}(A/O) is contravariantly functorial in A and so is the formation of the exact
sequence

0 — (Lie A)* — Hig(A/O) — Lie AY — 0 (3.2.2)
of finite free O-modules obtained from (3.2.1).

3.3. The normalized length valp(—). For a finitely generated torsion O-module M, we set

valp(M) = m -lengthy (M), where e(K/Qyp) := lengthy(O/p)

is the absolute ramification index of K. For a bounded complex (M,,ds) of finitely generated
O-modules such that (M,)x is exact, we set

1 Ker di: Mi—>Mi,
valo(M.) = ,(—1)* - valo (s fetlos ) (3.3.1)

We prefer the formalism of normalized length valp(—) to that of length length,(—) because the
former is insensitive to base change to the ring of integers of a finite extension of K.

We are ready for the following variant of [Ray85, Thm. 2.1.1] that (through the proof of loc. cit.) uses
arithmetic duality results of Bégueri [Bég80]. In its formulation, with an eye towards applications to
modular Jacobians, we keep track of an action of a “Hecke algebra” T; the basic case is T = Z.

Theorem 3.4. Let T be a commutative ring that is finite free as a Z-module, let A and B be abelian
varieties over K endowed with a T-action, and let f: A — B be a T-equivariant K-isogeny. For
every mazimal ideal m < T of residue characteristic p, we have
Hélt(A?7 Zp)m ) _ ( H(}R(A/O)m > .
vals, (7 2 ) = vlo (7 5 07 ) (34.1)
in addition, both sides of this equality are equal to ord,(#(Ker f)[m*]).

Proof. Since H} (A, 7Z,) is identified with the Z,-linear dual of the p-adic Tate module T),(Az)
compatibly with the Tz, -action, and likewise for B3, the left side of (3.4.1) equals ord,, (# (Ker f)[m™]).

If we ignore the T-action, more precisely, if we take T = Z, then [Ray85, Thm. 2.1.1] gives
valo (WM) +valo (W) — valo (15 py7) = ordy(#(Ker f)). (3.4.2)
Thus, in the T = Z case (3.4.1) follows from (3.4.2) and from the commutative diagram
0 —— (Lie B)* —— H}z (B/O) —— Lie BY ——0
(Lie f)* ¥ Lie(f¥) (3.4.3)
0 — (LieA)* —— Hlg(A/O) —— Lie AY —— 0.

In the general case, both sides of (3.4.1) are additive in composites of isogenies, so we factor f to
assume that Ker f, and hence also the left side of (3.4.1), is supported entirely at m. Then we use the
decomposition Tz, = [ ], Ty, where n ranges over the maximal ideals of T of residue characteristic
p, to find a t € T that kills Ker f but pulls back to a unit in every T, with n # m and to a unit in
Tz, for some fixed auxiliary prime ¢ # p. This f-adic assumption ensures that multiplication by ¢
is a self-isogeny of A (of degree prime to ¢), whereas the inclusion Ker f < Kert translates into a
factorization t = g o f for some isogeny g: B — A. It then follows from the choice of ¢ that for every
n # m the injection
f HéR(B/O)n - HéR(A/O)n

1
must be surjective. In conclusion, the quotient % is also supported entirely at m, to the
dR
effect that (3.4.1) follows from its special T = Z case. O
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Remark 3.5. Both sides of (3.4.1) are additive in composites of isogenies and are equal for the
multiplication by n, so “<” in (3.4.1) implies the equality. In the good reduction case this inequality
may be deduced from integral p-adic Hodge theory (instead of arithmetic duality [Ray85, Thm. 2.1.1]):

Tapt™  at in the key T = Z
m al 1n € Key case

realizes the quotient on the right side of (3.4.1) as a spec1ahzat10n of that on the left side.

one may use the results of [BMS16] to build an A;ys-module

In order to make Theorem 3.4 applicable more broadly, we turn to its following variant.

Theorem 3.6. Let

di* di
Ag=...> A1 =5 A4; 5 Ajy — ..,

where d; o d;—1 = 0 for every i, be a complex of abelian varieties over K. Suppose that
(i) the complex Ao is bounded in the sense that A; = 0 for all but finitely many i; and
(i) the complex A, is exact up to isogeny in the sense that Imd;_ 1 = (Kerd;)? for every i.
Under these assumptions, with the notation of (3.3.1) we have
valz, (H% (A, Zp)) = valo (Hig(A./O)) , (3.6.1)

where the compler H} ((Ad)z, Zp) has the term H ((Ai)g Zp) in degree i and similarly for
Hlgp (Ad/O); in addition, both sides of (3.6.1) are equal to

(-1 ordy (# (Eg ),

so that, in particular, if Ae is exact, then both sides of (3.6.1) vanish.

The reduction of Theorem 3.6 to Theorem 3.4 rests on the following lemma, which, in addition,
shows that after inverting p the étale and the de Rham complexes appearing in (3.6.1) are exact.

Lemma 3.7. For an A. that satisfies (1) and (ii), there is a K-morphism
for (A ds) — (As,du)

such that each f; is an isogeny and A, is a split compleac of abelian varieties over K in the sense
that there are K-isomorphisms A Kerd x i Ker dl+1 that are compatible with the differentials d

Proof. The maps d;: A; — Imd; are surjective, so the Poincaré complete reducibility theorem (see
[Con06, Cor. 3.20]) supplies an abelian subvariety B; < A; for which (d;)|p,: B; — Imd,; is an
isogeny. By letting f; be the sum of (d;—1)|p,_, and of B; < A;, we obtain the commutative diagram

d:
..—— B; 4 XKBz%Bz XKBi+14)...

J{fi lfzﬁrl
d;

Ai Ai+1—>...

whose top row is the candidate ,Z._ Each Ker f; is finite because so is each Imd;_1 n B;, and for
every ¢ we have

dim A; = dim B; + dim B;_1.

In conclusion, each f; is an isogeny. ([l
12



Proof of Theorem 3.6. Lemma 3.7 supplies a spht bounded complex A, of abelian varieties over K
and a K-isogeny f,: A. — A.. For this split A., both sides of (3.6.1) vanish. Thus, the additivity
of valz, (—) and valp(—) in short exact sequences of complexes and Theorem 3.4 give (3.6.1). It also
follows that the étale side of (3.6.1) is

25i(=1)"" ordy (#(Ker f3)),
which is the negative of the value of the expression
>..(—1)tord, (# (%)) for (Ker fo,ds).

Since this expression is additive in short exact sequences of complexes, the claim about the value of
both sides of (3.6.1) follows. O

Remarks.

3.8. In Theorem 3.6, suppose that the A; are endowed with an action of a commutative ring T that
is finite free as a Z-module and that the d; are T-equivariant. Then, under the assumption
that each Im d;_1 has a T-stable isogeny complement B; < A;, the proof of Theorem 3.6 gives
a T-equivariant conclusion: for a maximal ideal m < T of residue characteristic p, we have

valz, (H},((Ae)z, Zp)m) = valo (Hig(As/O)m) -
3.9. The étale and the de Rham complexes of Theorem 3.6 are exact after inverting p and perfect,
so, as in [KM76, Ch. II, esp. pp. 47-48]|, they have associated Cartier divisors
Div(Hg (As, Zy)) on  SpecZ, and Div(H}z(A./O)) on SpecO.

Therefore, [KM76, Thm. 3 (vi)] reformulates (3.6.1) into the following relation between the
degrees of those divisors:

e(K/Qp) - degy, (Div(H ((As) g, Zp))) = dego(Div(Hjg(Al/O))).
3.10. The étale side of (3.6.1) (or of (3.4.1)) is invariant under passage to a finite extension of K.
Thus, even though the Néron models may change, the de Rham side is invariant as well.
Example 3.11. By Theorem 3.6, for a short exact sequence
0-A—->B—->C—-0

of abelian varieties over K, both sides of (3.6.1) vanish. Thanks to the filtrations (3.2.2), this
vanishing of the de Rham side means that

Ker(Lie BoLieC)\ _ Lic A Ker(Lie BY —Lie AY)
].engtho (711’11(]_4188)) lengtho ( € EleA € ) = lengtho <41m(flelgv))_lengtho ( e eLier e ) )

It is explained in [LLR04, proof of Thm. 2.1] how one associates a smooth finite type k-group scheme
D (resp., D') to the morphism B — C (resp., BY — AY) in such a way that

D(k) = Coker(B(Osh) — C(Oh))  (resp.,  D'(K) = Coker(B" (Oh) — AY (Osh))),
where 651 denotes the completion of the strict Henselization of O. From this optic, by [LLR04,
Thm. 2.1 (b)] and [BLR90, 7.1/6], Theorem 3.6 proves the equality

dim D = dim D'.
Example 3.11 together with the exactness results [BLR90, 7.5/4 (ii)|] and [AU96, Thm. A.1] of

Raynaud leads us to the following corollary (compare with [AU96, Cor. A.2|).
13



Corollary 3.12. Suppose that e(K/Q,) < p—1 and let
0>A—->B—->C—-0

be a short exact sequence of abelian varieties over K such that B has semiabelian reduction. Then
the sequences

0 — Lie A — Lie B — LieC and 0 — LieCY — Lie BY — Lie AY

are left exact and both % and % are of the form (O/pO)" with the same r € Z=o. O

Remark 3.13. In Corollary 3.12, suppose that A, B, and C are endowed with an action of a
commutative ring T that is finite free as a Z-module, that the sequence is T-equivariant, and that
there is a T-stable abelian subvariety C’ < B that maps isogenously to C. Then Remark 3.8 leads
to a further T-equivariant conclusion: for a maximal ideal m < T of residue characteristic p,

Coker ((Lie B)ym — (LieC)w) ~ Coker ((Lie BY ) — (Lie AY )m)

Corollary 3.12 gives the following consequence of the semistable case of the Manin conjecture. For
odd p, this consequence also follows from exactness properties of Néron models [BLR90, 7.5/4].

Corollary 3.14. For a new elliptic optimal quotient w: Jo(n) — E and a prime p, if p?> { n, then w
(resp., ) induces a smooth morphism (resp., a closed immersion) on Néron models over Z, and
the sequence

0 — Hir(E/Zy) = Hir (T /Zy) — Hir(K/Zp) — 0 (3.14.1)
is short exact, where £, J, and KC denote the Néron models over Z,, of E, Jo(n), and Ker .

Proof. Theorem 2.13 gives the claim about 7. It then follows from Corollary 3.12 that the map
Jo(n)¥ — (Kerm)" also induces a smooth morphism on Néron models over Z,. Thus, by [BLR9O,
7.1/6], the map 7" induces a closed immersion. Then the Lie algebra complexes that (via (3.2.2))
comprise the graded pieces of the Hodge filtration of (3.14.1) are short exact, so (3.14.1) must
be, too. O]

The proof of the following result illustrates Theorem 3.6 beyond isogenies and short exact sequences.

Proposition 3.15. Let A be an abelian variety over K endowed with an action of a commutative
ring T that is finite free as a Z-module. For every ideal n < T such that n € n for some n € Zx1,

Hy, (Ag: Zp) HL,(A/O)
valz, (Wf}i)) < valo (W) : (3.15.1)

The following heuristic suggests (3.15.1): one may hope that a suitable formalism of integral p-adic
Hodge theory would realize the quotient on the right side of (3.15.1) as a specialization of the one
on the left side, and (normalized) length cannot decrease under specialization. In the good reduction
case, one can indeed prove Proposition 3.15 in this way by using the results of [BMS16].

Proof. We choose generators ni,...,n, € T of n and consider the complex of abelian varieties
A ACILULLON | | ) 50, where @ is defined to be the cokernel of the first map.

This complex is exact up to isogeny because the kernel of the first map is killed by n. Therefore,
Theorem 3.6 applies and gives the following equality, which implies (3.15.1):

er((ni,...,n s [, H} —H}
valy, (L) — salo (D) — valo <K (0, mm)*: T iy (A/O) HdRM/O)))‘ -

wHL (A Zp) n-HL (A/O) a* (H iR (Q/0))
14



We end §3 by applying Proposition 3.15 in the context of modular curves to exhibit a relation (3.16.1)
between the multiplicity of the mod m torsion of a modular Jacobian and the Gorenstein defect of
the m-adic completion of the Hecke algebra. In a variety of settings, relations of this sort that are
sharper than (3.16.1) are known—see [KWO08, §§1-2] for an overview. Nevertheless, Corollary 3.16,
especially its case (ii), seems to cover some situations that are not addressed in the literature.

Corollary 3.16. Fiz an n € Zz1, let T < Endg(Jo(n)) be the Hecke algebra defined in §2.1, let
m c T be a mazimal ideal of residue characteristic p, and let J be the Néron model of Jy(n) over Z.
Suppose that (Lie J)w is free of rank 1 as a Ty-module, e.qg., that either of the following holds:

(i) pfn; or

(ii) p?tn and p is odd; or

(iii) ordy(n) =1 and U, mod m lies in F; < T/m.
Then

it (Jo (1) []) < ditig o (T/oT) m]) + 1 (3.16.1)

and Ty, is Gorenstein if and only if Hét(Jo(n)@, Zp)m 1is free (of rank 2) as a Ty-module if and only
if Hig(J/Zp)m is free (of rank 2) as a Tw-module.

Proof. Proposition 2.2 shows that either of (i)—(iii) implies the assumed Tpy-freeness of (Lie J )m.

Let w denote the Atkin—Lehner involution of Jy(n), so that the induced action of T on Jy(n)" is
identified with the action of wTw on Jy(n) via the isomorphism

T 2% o Tw and the inverse Jo(n)Y — Jo(n)

of the canonical principal polarization (see [MW84, Ch. II, §5.6 (c)]). The automorphism
Liew: Lie 7 = Lie J
intertwines the actions of T and of wTw, so the freeness of (Lie J)y implies that of (Lie 7" )n.” The
filtration (3.2.2) then gives a (necessarily split) extension
0 — Homg, (Tw, Zp) — Hig(T/Zp)m — T — 0 (3.16.2)
of Ty-modules, which proves that

. H (J/Z .
it (BT = ditmg o (T/T) m]) + 1. (3.16.3)

The modified Weil pairing (z,y) — (@, wy)ye; shows that Hgt(Jo(n)@, Zp) is Tz,-equivariantly
isomorphic to its own Z,-linear dual (see [DDT97, Lem. 1.38]), so
. H}, (Jo(n)g, Z,) :
dlm’ﬂ‘/m (W) = dlmT/m(Jo(n) [m]) (3164)
The combination of (3.16.3), (3.16.4), and Proposition 3.15 implies (3.16.1). If Hélt(JO(n)@, Zp)m 18
free as a Ty-module (necessarily of rank 2, see [DDT97, Lem. 1.39]), then
TE? ~ (Homgz, (T, Zp))®*  as Tw-modules,

so Ty is Gorenstein. Conversely, if Ty, is Gorenstein, then, due to (3.16.2), the Ty-module
Hlg(J/Zp)w is free of rank 2, and hence, by Proposition 3.15 and the Nakayama lemma (compare
with the paragraph that follows (2.2.2)), so is Hélt(Jo(n)@, Zp)m. O

Remarks.

5To stress the Hecke functoriality we let 7V denote the Néron model of Jo(n)¥ over Z, even though J" =~ 7.
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3.17. We are not aware of examples in which the inequality (3.16.1) is sharp.

3.18. Corollary 3.16 leads to examples of non-Gorenstein Ty,. For instance, if an odd n is squarefree
and dimr(Jo(n)[m]) > 2 for some m (as happens for n = 19 - 41 and an Eisenstein m of
residue characteristic 5, see [Yool6, Ex. 4.7]), then, by Corollary 3.16, the ring Ty, is not
Gorenstein.

4. THE ETALE AND THE DE RHAM CONGRUENCES

The goal of this section is to use the results of §3, especially Theorem 3.4, to derive an exactness
result for Néron models in Corollary 4.8 in the setting of an abelian variety equipped with a “Hecke
action.” This exactness result and its applicability criterion given by Proposition 4.10 will be useful
in §5 for proving new cases of the generalization of the Manin conjecture to higher dimensional
newform quotients. To capture the relevant axiomatics, we begin with an abstract local setup.

4.1. An abelian variety equipped with rational idempotents. Throughout §4, we fix
e a mixed characteristic (0, p) complete discretely valued field K whose residue field k is perfect;
e an abelian variety A over K and its Néron model A over the ring of integers O of K;
e idempotents e, ea € Endg (A) ®7 Q that satisfy e; + eg = 1;
e a commutative subring T < Endg(A) whose elements commute with e; and es.
As in §3, we let calligraphic letters indicate Néron models over O (see §3.1).

We are primarily interested in the case when ej, ey ¢ Endg(A)—then various “rational objects,”
e.g., p-adic étale and de Rham cohomologies, attached to A decompose into summands cut out
by the e;, but their integral counterparts typically do not decompose, which produces interesting
congruences. As we will see in §5, Jacobians of modular curves provide a rich supply of examples of
the situation above. Similarly to Theorem 3.4, remembering T leads to finer statements than with
T = Z, and this will be important in applications to newform quotients of modular Jacobians.

4.2. The étale congruences. The étale congruence module is the finite quotient
Hélt(AF7 Zp)
H (A, Zp)ler] + Hy (Ag, Zy)[e2]
(see (1.5.1) for the (—)[e;] notation), and the étale congruence number is its order. The ring Tz,

acts, and the étale congruence module decomposes compatibly with the decomposition Tz, = [T,
where m < T ranges over the maximal ideals of residue characteristic p.

4.3. The de Rham congruences. The de Rham congruence module is the finite quotient
HY (4/0)
Hig (A/O)[e1] + Hg (A/O)]e2]
that we temporarily denote by M (see §3.2 for a review of the lattice HJp (A/O) < Hl (A/K)),

and the de Rham congruence number is p¥oM) with valp(+) of §3.3. Like its étale counterpart, M
decomposes into m-primary pieces compatibly with Tz, = [ ] Tx.

We will see in Corollary 4.8 that relations between the étale and the de Rham congruence numbers
are intricately linked to exactness properties of Néron models and in Remark 4.9 that the two
numbers differ in general. We begin with a key comparison result.
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Theorem 4.4. In the setting of §4.1, for every mazimal ideal m < T of residue characteristic p,

HY, (Ag. Z,) Hip (A4/0)
valz, ((Fromz s i vz ) ©Ts, Tn) 2 valo ((H;R(A/@[§5+H;R<A/O>[e21) ®1,, Tn)

The following notation will be useful for the proof of Theorem 4.4 and for the subsequent discussion.

4.5. The abelian varieties A; and @;. For an i € {1, 2},
e we let A; A be the image of A under any Z--multiple of e; that lies in Endg(A);
o we set Q; := A/A;.

Effectively, A; is the abelian subvariety of A “cut out by e;” and is T-stable, so A; and (); inherit a
T-action. The inclusion and quotient homomorphisms j;: A; — A and ¢;: A — Q; are T-equivariant.

Remark 4.6. Any abelian subvariety B — A is cut out (in the sense of §4.5) by some idempotent
e € Endg(A) ®z Q. Indeed, this property is isogeny invariant—if f: A — A’ is an isogeny and
e cuts out B, then @ - foeo f' cuts out f(B), where f': A’ — A is the isogeny such that
f'o f =deg f—and it clearly holds for the abelian variety B x x A/B that is isogenous to A.

Proof of Theorem 4.4. By construction,
q;k(Hé}t((Qi)fv Lp)) = Hgt(A?7 Zyp)leil,

so Theorem 3.4 applied to the isogeny A a=lam), Q1 X i Q2 proves that

HY (A, Z,) B HYL (A/0)
valz, <<H§t<Af, Zy)le I+ L (A zp>[e2]> ®T, Tm) = valo (<qf<H5R<Ql/5§3+q§<H§R(Qg/o>>) ®rs, T“‘) :

Hlp (4/0) g : Hlp, (A/0)
I (AO) [er 1+ Hy (AJO)[ea] 18 & Auotient of owrr e F T (070

Remark 4.7. It follows from the proof and from the last claim of Theorem 3.4 that the m-primary
factor of the étale congruence number equals #((A; N Az)[m™]).

0

It remains to note that

Corollary 4.8. In Theorem 4.4, if the equality holds:

H}, (As, Zp) _ Hg (A/O)
valz, ((H;AAf, Zo)(en ] L, (A Z»[eﬂ) ®rs, T“‘) = valo ((H3R<A/O>[35+H3R<A/O>[ez]) ®rs, Tm) )

then the maps (Lie A)y, — (Lie Q;)m are surjective. In particular, if the displayed equality holds for
every m, then the O-morphisms A — Q; (resp., A; — A) are smooth (resp., closed immersions).

Proof. By the proof of Theorem 4.4, the displayed equality holds if and only if the sequences
0 — Hip(Qi/O)m — Hip(A/O)n — Hi(Ai/O)n  for i€ {1,2}
are left exact. Due to the filtrations (3.2.2), this exactness implies the left exactness of the sequences
0 — (Lie Q)1 — (Lie A): — (Lie A;)x,
and hence also the surjectivity of (Lie A)ym — (Lie Q;)m. For the last claim, it remains to recall that

A — Q; is smooth if and only if Lie A — Lie Q; is surjective and that the smoothness of A — Q;
implies that A; — A is a closed immersion (see [BLR90, 7.1/6]). O

Remark 4.9. Corollary 4.8 implies that the étale and the de Rham congruence numbers differ in
general. Indeed, in the case when e(K/Qp,) > p — 1, there are examples of inclusions A; < A of
abelian varieties (with good reduction) that fail to induce closed immersions on Néron models over
O (see [BLR90, 7.5/8]) and, by Remark 4.6, any such A; arises from some e; (with T = Z).
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We end §4 with a criterion for the étale and the de Rham congruence numbers to be equal.

Proposition 4.10. In the setup of §4.1, suppose that m < T be a maximal ideal of residue charac-
teristic p for which there exists an r € Z=q such that

(i) the (Twm ®z, O)-module Hip (A/O)w is free of rank r; and
(ii) the (Tw ®z, Qp)-module H} (A%, Qp) ®r,, T is free of rank r.

Then the Ty-module Hélt(A?, Zp)m is free of rank v and the equality holds in Theorem 4.4:

HY, (A7) - HYL (A/0)
valz, ((H i Zy)ler T+ (A zp>[e2]) &y, T““) = valo ((H;R<A/O>[§5+H;R<A/O>[ez]) O, T“") :

Proof. The assumption on HJp (A/O)n gives the equality

Hl (A/O .
valo (m-ﬁi(A/T(;)) = r - dimg, (T/m).

Therefore, by Proposition 3.15,

. HL (A=, 7Zp)
ét K ~p
dimy/y <m.Hé1t(Af, zy) ST

to the effect that, by the Nakayama lemma, H élt (A, Zp)m is generated by 7 elements as a Ty-module.

Due to (ii), these r elements are Ty-independent, so the desired H}, (A%, Zp)m ~ (Tm)®" follows.
Consequently, both sides of the claimed equality are equal to

T
L ValZp (Tm[e1]+'ﬂ'm[e2]) : .

Remark 4.11. Modular Jacobians endowed with their Hecke action tend to satisfy (ii) (see [DDT97,
Lem. 1.38-1.39]). Thus, loosely speaking, for them Proposition 4.10 proves that the Hecke-freeness of
the integral de Rham cohomology implies the Hecke-freeness of the integral p-adic étale cohomology.

5. THE SEMISTABLE CASE OF THE HIGHER DIMENSIONAL MANIN CONJECTURE

The Manin conjecture has been generalized to newform quotients of arbitrary dimension (see Conjec-
ture 5.2), and our goal is to address this generalization. More precisely, we prove in Theorem 5.10
that in the higher dimensional case the conjecture fails even at a prime of good reduction and we
prove many of its semistable cases in Theorem 5.19. Our techniques also supply general relations
between the modular degree and the congruence number (see Corollary 5.9 and Theorems 5.15
and 5.17) and determine the endomorphism rings of suitable newform quotients (see Corollary 5.18).

5.1. A newform of level I'y(n). Throughout §5,
e we fix an n € Z>1 and let J be the Néron model over Z of Jy(n);
e asin §2.1, we let T < Endg(Jo(n)) be the Z-subalgebra generated by all the T, and Uy;

e we fix a normalized weight 2 newform f of level I'y(n), let ey € Tg be the idempotent that
cuts out the factor of Tg determined by f, and set ey =1 — ey;

o we set Oy := T/T[ef] (see (1.5.1)), so that Oy is an order in a totally real number field;

e we let mp: Jo(n) - Ay be the optimal newform quotient determined by f, so that
Of — Endg(A4y);

o we let Ay, A]Y, K, and £V be the Néron models over Z of Ay, AJ‘{, Kermy, and (Kermy)Y;
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e we let So(T'o(n), Z) be the module of those weight 2 cusp forms of level I'g(n) whose g-expansion
at the cusp “o0” lies in Z[q], and for a commutative ring R we set

SQ(F()(’I’L), R) = SQ(F()(TZ), Z) ®Z R.

The Manin conjecture for Ay is the following generalization of Conjecture 1.1.

Conjecture 5.2 ([Joy05, Conj. 2| or [ARS06, Conj. 3.12|). In the setting of §5.1 (see also (1.5.1)),
THH(Af, Q) = 55(To(n), Z)[epr]  inside  H°(Jo(n), Q') = S5(To(n), Q).
Remark 5.3. As in [Edi91, proof of Prop. 2], since “00” extends to a Z-point of Xy(n)*™, the Néron

property gives the inclusion
THH(Ay, Q1)) < S2(To(n), Z)[es1],
so Conjecture 5.2 amounts to the vanishing of the finite quotient

S2(To(n),Z)[e;1 ]
T (HO(Af, Q1Y)

Due to the following standard lemma and the exactness property [BLR90, 7.5/4 (ii) and its proof]
of Néron models, the p-primary part of this quotient vanishes for every odd prime p with p? { n
(compare with [ARS06, Cor. 3.7]). We will see in Theorem 5.10 that, in contrast, the 2-primary part
need not vanish even when 2t n.

Lemma 5.4. In the setting of §5.1, if p is a prime with ptn, then
S2(To(n), Zy) = H'(TJz,, Q") inside  H(Jo(n)g,, ) = S2(Lo(n), Qp);
if p is a prime with p* { n, then
SQ(FO(TL),ZP)[efL] = HO(ij,Ql)[efL] inside HO(JO(n)Qp,Ql) ~ S5(To(n), Qp).

Proof. 1f p 1 n, then, due to [Edi06, 2.5] and (2.1.1),
S2(To(n), Zp) = H*(Tz,, ).
By loc. cit., if p | n but p? { n, then
S2(To(n), Zy) = HO (U, QY),

where U* < Xo(n)z, is the open complement of the irreducible component of Xo(n)r, that does not
contain the reduction of the cusp “00.” Thus, since the p-Atkin-Lehner involution w), interchanges
the two irreducible components of Xo(n)r, and acts as 1 on S2(T'o(n), Zy)[es1], we get

S2(To(n), Zy)[es1] = HO(Xo(n)z,, Q)[eg:]
(see [Ces16, proof of Lem. 2.7]). The claim then follows from another application of (2.1.1). O
Similarly to the elliptic curve case discussed in §2, the strategy of our analysis of Conjecture 5.2 is

to relate it to a comparison of the congruence number and the modular degree of f. We use the
following standard lemma to introduce these numbers in Definition 5.6.

Lemma 5.5.
(a) The composition A} o, Jo(n)Y = Jo(n) is T-equivariant.

(b) The finite Q-group scheme my (Aj) N Kermy carries a perfect alternating bilinear pairing for
which the action of T is self adjoint.
19



Proof.

(a) The Atkin-Lehner involution w of Jy(n) acts as +1 on Ay. Moreover, under the canonical

principal polarization 6: Jo(n) — Jy(n)V, the action of a t € T corresponds to that of wt¥w
(see [MW84, Ch. II, §5.6 (c)]), so the claimed T-equivariance follows.

(b) Let A\ :=7po0f0 1o 7y be the pullback of 6~! to a polarization of A}, so that A} [A] caries
a perfect alternating bilinear Weil pairing (see [Pol03, §10.4, esp. Prop. 10.3]). Since A is

T-equivariant, [Oda69, Cor. 1.3 (ii)| ensures that the action of any ¢t € T is self adjoint with
respect to this pairing. It remains to observe that

AF[A] = 7 (A¥) n Kermy. O

Definition 5.6 (Compare with [ARS12, §3|). The congruence number cong; of f and the modular
degree degy of f are the positive integers (see (1.5.1) and Lemma 5.5 (b))

cong 1= # <T[6f]+‘[eju]> and degy := (# <7rJY(A}/) N Kerﬂf» *

for a maximal ideal m < T, the m-primary factors congy ,, and degy , are the positive integers

cong s 1= 7 (WM) and degy = (# ((W}/(A}/) N Kerwf) [Wloo]))é .

Remark 5.7. One may view degfc’m as (a factor of) an étale congruence number: the abelian
subvariety of Jo(n) cut out by ey (resp., by e.) as in §4.5 is identified with 7y (A}) (resp., Kery),
SO

degf,m = # (Hélt(Jo(n)Q,Zp)m[ef]JrHélt(Jo(n)Q,Zp)m[efl]

> with  p := char(T/m). (5.7.1)

In particular,

2 H, (Jo(n)g, Zyp)
degf - H # (Hélt(Jo(n)Q, Zp)[ef]+Hét(J0(n)Q7Zp)[efJ_]) .

primes p

Agashe, Ribet, and Stein proved in [ARS12, Thm. 3.6] that the exponent of Ty (A;) N Ker ¢ divides

the exponent of ﬁw

p with p? { n. As a key step towards the semistable case of Conjecture 5.2, we wish to complement
these results with relations between congy and deg; themselves.

and that both exponents have the same p-adic valuation for every prime

Proposition 5.8. If m < Oy is a maximal ideal of residue characteristic p with p? tn, then

degy = congy , - # Coker ((Lie J)m — (Lie Af)m) - (5.8.1)

Proof. Corollary 3.12 gives the left exact sequences
0 — (LieK)z, — (Lie J)z, — (Lie Af)z, and 0 — (LieAj)z, — (LieJ)z, — (LieK")z,,
which give the following identifications:
(LieK)z, = (Lie J)z,[ey] and (LieAY)z, = (Lie J)z,[efL].

Therefore, Theorem 3.4 and (3.4.3) applied to the T-equivariant (see Lemma 5.5 (a)) isogeny
Kermy x A} — Jo(n) give the equality

deg?ﬂm =# (((LieJ)[ef]Lf({ieJ)[efLD &t Tm) i ((%W) ®T Tm> . (5.8.2)
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By Proposition 2.2 (i)—(ii), we have (Lie J)n >~ Ty, so the first factor on the right side of (5.8.2)
equals congy . In addition, by Remark 3.13,

# Coker ((Lie J)m — (Lie Af)m) = # Coker ((Lie J)m — (Lie KXY )m) ,

so, since the kernels of these maps are (Lie J)m[ey] and (Lie J )m[efL], respectively, the second factor
on the right side of (5.8.2) equals

(# Coker ((Lie T)m — (Lie Af)n))” - # Coker ((Lie J)n — s @ plisfie—)

It remains to observe the short exact sequence

(T _, _(LieJ)m (Lie N)m  (my)—z—y (Lie J)m _
0 — (Lie J)m Tie Nles] D Wie Tmle 1] (Tie Nmlef]+Tie Tmle, 1] 0
and recall that (Lie J)m ~ Th. O

Corollary 5.9. If p is a prime with p? { n, then

ord,(degs) = ordy(congy) + ordy, (# Coker (Lie J — Lie Ay)); (5.9.1)
in particular, if, in addition, p is odd, then ord,(degy) = ordy(congy).
Proof. The product of the equalities (5.8.1) over all m of residue characteristic p gives (5.9.1). In

the case when p is odd, [BLR90, 7.5/4 (ii) and its proof| ensure the smoothness of Jz, — (Ay)z,, so
the second summand of the right side of (5.9.1) vanishes. O

With Corollary 5.9 in hand, we are ready to present a counterexample to Conjecture 5.2.

Theorem 5.10. Conjecture 5.2 fails for a 24-dimensional optimal newform quotient of Jy(431) and

also for a 91-dimensional optimal newform quotient of Jy(2089) (both 431 and 2089 are primes).

Proof. By [ARS06, Rem. 3.7|, there is a weight 2 newform f of level I'g(431) with dim Ay = 24 and
degy =2"-6947  and  cong; = 2'0-6947.

The following Sage code [Sage| confirms these values deg ¢ and congg.

J = JO0(431) .decomposition();

degf = J[5] .modular_degree();

C = ModularSymbols(431).cuspidal_subspace() .decomposition();

congf = C[5].congruence_number (C[5].complement () .cuspidal_subspace());

Alternatively, the following Magma code [Magma| computes deg? with a faster runtime.

C := NewformDecomposition(CuspidalSubspace(ModularSymbols(431)));
degf2 := #ModularKernel(C[6]);

These means also give us a weight 2 newform f of level I'g(2089) with dim Ay = 91 and
degpy =2%-3-5-11-19-73-139  and  congp =27 -3-5-11-19-73-139.

By Corollary 5.9, the map
(Lie J)z, — (Lie Af)z,

0 1
is not surjective, to the effect that W}k(go((ﬁ%27)91)) has nontrivial 2-torsion. Since, by Lemma 5.4,
Ho(jzw Ql) = S2(T0(431), Zy) and 52(Lo(431), Z2) is torsion free,

52 (To(431), Za)le 1]

we get that
W?(HO(AJC7QI)) 7 SQ(F0(431)7 Z)[efl]
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(and likewise for f’), contrary to Conjecture 5.2. O
Remarks.

5.11. Theorem 5.17 below and [Kil02] suggest considering the levels I'g(431), T'9(503), and I'y(2089).

5.12. For the f considered in the proof of Theorem 5.10, let 7: J1(431) — /Aff be the resulting
optimal newform quotient of J;(431). As in the proof of Lemma 2.12, there is a commutative
diagram

Jl (431) l» gf

| )
Jo(431) —L A
in which a is an isogeny and Ker a is a quotient of the Cartier dual of the Shimura subgroup

¥(431) < Jp(431). Moreover, by [LO91, Cor. 1 to Thm. 1], we have 2 t #3(431), so Liea is
an isomorphism on Lie algebras of Néron models over Zs, and hence Lie 7y is not surjective

on such Lie algebras. Then, as in the proof of Theorem 5.10, the quotient (%;2:&(04(?}??1))

nontrivial 2-torsion, where A ¢ denotes the Néron model over Z of A ¢ and [CES03, Lem. 6.1.6
supplies the inclusion

has

(F)*(H (A7, Q") < S5(T1(431),2).

This is a counterexample to the analogue [CES03, Conj. 6.1.7| of Conjecture 5.2 for newform
quotients of Ji(n).

In the case when Ay is an elliptic curve, one knows that degs | congy (see Lemma 2.9). Even though
this divisibility fails in the higher dimensional case (see the proof of Theorem 5.10), we wish to
generalize it as follows.

Proposition 5.13. For a mazimal ideal m < Oy of residue characteristic p such that (Of)m is a
discrete valuation ring, degy v, | congy . In particular, if the order Oy is mazimal, then degy | cong.

Proof. 1t will suffice to mildly generalize the proof of Lemma 2.9. Namely,
Hgt(Jo(n)@, Qp) ®1y, T is a free Tm[%]—module of rank 2

(see [DDT97, Lem. 1.38-1.39]) and Oy = T/T|[ey], so, since (Of)n is a discrete valuation ring, we
check over (Of)m[%] that
Hélt (JO (n)@, Zp)m
H (Jo(n)g Zp)mley]

Then the further quotient

is a free (Of)m-module of rank 2.

Hélt(‘jo(n)@7 ZP)“‘ . : : Tm 2
3 7 Py P 7. O 0 P Py admits a surjection from (—Tm [ef]JrTm[efL]) )
and the desired conclusion follows from (5.7.1). O

Remark 5.14. Proposition 5.13 implies that for the newform f used in the proof of Theorem 5.10, the
order Oy is nonmaximal. Indeed, according to [Ste99, Table 2|, O has index 4 in its normalization.

As we will see in Theorem 5.19, the following consequence of the work above proves the semistable
case of Conjecture 5.2 under the assumption that Oy ®z Zs is regular. Furthermore, its freeness
aspect supplies additional information that seems new in the case of an odd p.
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Theorem 5.15. If m < Oy is a maximal ideal of residue characteristic p with p? { n such that either
p is odd or (Of)m is a discrete valuation ring, then

(Lie J)m — (Lie Af)n

is surjective, degs = congy , and (Lie Ay)w is free of rank 1 as an (Of)m-module.

(i),

(Lie T )m =~ Tr as Ty-modules.
If p is odd, then the surjectivity of (Lie J)m — (Lie Af)n follows from the smoothness of the map
Jz, — (Ay)z, supplied by [BLR90, 7.5/4 (ii) and its proof]. If (Oy)y is a discrete valuation ring,
then the surjectivity follows by combining Propositions 5.8 and 5.13. Therefore, in both cases

Proof. In both cases, by Proposition 2.2 (i)

degy = cong #.m and (Lie Af)n is isomorphic to
To/Tmlef] = (Of)m

as a Ty-module (so also as an (Of)m-module). O

Our next aim is to show in Theorem 5.17 that conclusions like those of Theorem 5.15 may also
be drawn if the assumption on (Of)n is replaced by the Gorensteinness of Tr. To put the latter
condition into context, we now review some cases in which it is known to hold.

5.16. Multiplicity one. In the setting of §5.1, suppose that p? { n, let m = O ¢ be a maximal ideal
of residue characteristic p, and let

pmi Gal(Q/Q) — GLy(O;/m)
be the associated semisimple modular mod m Galois representation. By Corollary 3.16 and (3.16.4),
T is Gorenstein if and only if dimep/ (Jo(n)[m]) = 2.
Therefore, Ty, is Gorenstein in any of the following cases:
(1) if ordy(n) = 0 and py, is absolutely irreducible, except possibly when, in addition, p = 2, the
ideal m contains 75 — 1, the restriction of py to Gal(Qy/Q2) is unramified, and pm(Frobs)

lies in the center of GLy(T/m), see [Rib90, Thm. 5.2 (b)], [Edi92, Thm. 9.2] (and possibly
also [Gro90, Thm. 12.10 (1)]), and [RS01, Thm. 6.1] in the appendix by Buzzard;

(2) if ordy(n) = 1 and py is absolutely irreducible and not of level n/p, see [MRI1, Main Thm.|;
(3) if ordy(n) = 1 with p odd, py is irreducible, U, ¢ m, and the semisimplification

(Pl Gal(Q,/Qp) )%
is not of the form @y for some character x: Gal(Q,/Qp) — (T/m)*, see [Wil95, Thm. 2.1 (ii)].

In addition, in the case when n is a prime, Ty, is also Gorenstein when m is Eisenstein, see
[Maz77, 16.3]. Also, in contrast to (1), if p = 2, then even when n is a prime Ty, need not be
Gorenstein—see |Kil02]; alternatively, the possible failure of Gorensteinness in such situations may
be deduced by combining the examples in the proof of Theorem 5.10 with the following result.

Theorem 5.17. If m < Oy is a mazximal ideal of residue characteristic p with p? {n such that Ty,
is Gorenstein (see §5.16), then
(Lie J)m — (Lie Af)m
is surjective, degy y = congy n, the (Of)m-modules (Lie Af)w and (Lie AY)5 are free of rank 1,
where (—)* denotes the Zy-linear dual, and the (Of)m-module HéR(AJX/Zp)m is free of rank 2.
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Proof. By Proposition 2.2 (i)—(ii),
(Lie J)m ~ Ty as Ty-modules,
80, since Ty, is Gorenstein, also
(Lie J)m ~ Ty as Ty-modules
and, by the proof of Corollary 3.16,
(Lie JY)m ~ Ty as Ty-modules.’

The filtration (3.2.2) then proves that H}g(J/Zp)m is free of rank 2 as a Typ-module. Therefore,
Proposition 4.10 and Remark 4.11 imply that the m-primary parts of the étale and the de Rham
congruence numbers of Jo(n)Qp formed with respect to the idempotents ey and e;. are equal. Thus,
since the abelian subvariety of Jo(n) cut out by e (resp., by ey1) as in §4.5 is identified with 7 (A})
(resp., with Kerm¢), Corollary 4.8 proves the surjectivity of the maps

(Lie J)m — (Lie Af)m and (Lie T )m — (Lie LY ).
Proposition 5.8 then gives degy , = congy ,, and Corollary 3.12 gives the short exact sequences
0 — (Lie )m — (Lie J)m — (LieAf)m — 0 and 0— (LieKY); — (LieJ ")y — (Lie A )y — 0,
which show that
(Lie )m = (Lie I )mlef] and (Lie KY)5 = (Lie T )nlef]-

= (
Since Ty, is Gorenstein, (Lie J )y inherits Tr-freeness from (Lie J Y )m, and it follows that (Lie Af)m
and (Lie A} )7, are free of rank 1 as (Of)m-modules. The filtration (3.2.2) then gives the claim about

H&R('Af [Zp)m.- ]
The following corollary supplies information about endomorphism rings of newform quotients of
Jo(n) (we leave the explication of its “one m at a time” generalization to an interested reader).

Corollary 5.18. If n is squarefree and for every maximal ideal m < Oy of residue characteristic 2
either (Of)m is a discrete valuation ring or Tw is Gorenstein, then the inclusion Oy — Endg(Ay) is
an isomorphism.

Proof. Theorems 5.15 and 5.17 imply that the Oy-module Lie Ay is locally free of rank 1, to the
effect that the inclusion Oy < Endo, (Lie Ay) is an isomorphism. Since the action of End@(A £) on
Lie Ay is faithful and Oy-linear, the desired conclusion follows. ]
We are ready to put the preceding results together to prove suitable semistable cases of Conjecture 5.2.
Theorem 5.19. In the setting of §5.1, suppose that p is a prime with p* { n such that either

(i) p is odd, or

(ii) for every mazimal ideal m < Oy of residue characteristic p, either (Of)m is a discrete valuation
ring or Ty is Gorenstein.

Then the p-primary aspect of Conjecture 5.2 holds for Ay in the sense that
S2(To(n), Z)[e;1 ]
p# (st

(see Remark 5.3); in addition, the map 7¢: Jz, — (Af)z, is smooth, the map 7y : (AY)z, — (JT)z,
1$ a closed immersion, and the sequence
0 — Hgg(Ay/Zy) — Hig (T /Zy) — Hig(K/Zp) — 0 (5.19.1)
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s short exact.

Proof. By Theorems 5.15 and 5.17, the map
(Lle j)Zp e (Lie.Af)Zp

H(Jz,, Q1)
T H((Af)zy, )

TH(HO(Af)z,, Q1) = H(Tz,, OY)[eju].

is p-torsion free, to the effect that

is surjective, so Jz, — (Ay)z, is smooth and

Since

H(Tz,, 2)egs] = Sa(To(n), Zy)legu],
the claim about Conjecture 5.2 follows. The additional claims then follow from Corollary 3.12,
similarly to the proof of Corollary 3.14. (|

Remark 5.20. The short exactness of the sequence (5.19.1) fails in the counterexamples of The-
orem 5.10 when p = 2. Indeed, due to (3.2.2), such exactness would imply the surjectivity of the
map

(Lie J)z, — (LieKY)z,,

that is, by Corollary 3.12, the surjectivity of the map
(Lie J)z, — (Lie Af)z,

In [CES03, Conj. 6.1.7], Conrad, Edixhoven, and Stein proposed an analogue of Conjecture 5.2
for newform quotients of Ji(n). We now deduce several special cases of their conjecture from
Theorem 5.19 (Remark 5.12 exhibited a counterexample to the general case).

Corollary 5.21. Let p be a prime as in Theorem 5.19, fix a subgroup H < GLQ(i) such that
I'i(n) c H < To(n), and let 7: Jg — A be the optimal newform quotient that is isogenous to Ay.

Then < D]
2 Fo Z)|e, 1
pt# (m)
and T (JH)ZP — Azp is smooth, where Jg and A denote the Néron models over Z of Jg and A.

Proof. As in Lemma 2.12, the multiplicity one theorem supplies a unique isogeny a such that
Jg——» A
l la (5.21.1)
Jo(n) —L» Ay

commutes. The analogous statement also holds with Jy(n) replaced by Jy for some H < H' < T'y(n),
so the inclusion

T (H°(A, Q") < S5(To(n), Z)[es:]
supplied by [CES03, Lem. 6.1.6] in the case H = I'1(n) implies this inclusion for general H. Moreover,
(5.21.1) gives the equality

S2(To(n), Z)[e;r]\ S2(To(n), Z)[ep1 ]\ Lie A;
# < TF(HO(A7, Q1)) > =# ( T (HO(A, QL) ) 7 ((Liea)(LieA)) )
so the claim follows from Theorem 5.19. O

Remark 5.22. The proof of Corollary 5.21 also shows that the induced map Az, = (Ay)z, is étale.
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