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Coarse base change fails for some modular curves

Kęstutis Česnavičius

Abstract

For a congruence level H ⊂ GL2(Ẑ), the formation of the modular curve XH , that is,
of the coarse moduli space of the level H modular stack XH , is known to commute
with arbitrary base change in a wide range of cases. We exhibit infinitely many H, for
instance H = Γ1(4), for which this coarse base change property fails. In our examples,
failure is witnessed for base change to F2 and for any Z(2)-fiberwise dense open substack
of XH . These examples fill in several open entries in a table in the book of Katz and
Mazur.

1. Introduction

1.1. Coarse base change for modular curves. In the study of modular forms modulo a
prime p, one often considers the Fp-fiber (XH)Fp of the modular curve XH over Z for an open
subgroup H ⊂ GL2(Ẑ). This Fp-fiber may be difficult to analyze—XH is defined as the coarse
moduli space of the level H modular stack XH , but there is no a priori reason why (XH)Fp should
be the coarse space of (XH)Fp if p = 2 or p = 3. If, however, (XH)Fp happens to be the coarse
space of (XH)Fp for every prime p, then one knows (say, from [Čes15, Lemma 3.3.1]) that coarse
base change holds for XH , that is, that (XH)S is the coarse space of (XH)S for every scheme
S. For instance, this is the case when H = GL2(Ẑ). The main goal of this paper is to show that
coarse base change fails for some XH .

1.2. Known results on coarse base change for modular curves. To put our examples
in perspective, we turn to known results, all of which confirm coarse base change for XH for
suitable H.

Only primes 2 and 3 may divide the order of the automorphism group of an elliptic curve
over a field, so it is a generality that (XH)S is the coarse moduli space of (XH)S whenever S
is a Z

[
1
6

]
-scheme (the essential observation is that the formation of the ring of invariants RG

for the action of a finite group G on a ring R commutes with arbitrary base change whenever
#G ∈ R×). As is explained in [Čes15, Proposition 6.4(b)], it then follows from the results of
Deligne–Rapoport and Katz–Mazur that the same holds whenever S is a Z[1/gcd(6, n)]-scheme
for any n ∈ Z>1 with Γ(n) ⊂ H, where Γ(n) := Ker

(
GL2(Ẑ)� GL2(Z/nZ)

)
.

There are also situations in which 2 or 3 divides the level and coarse base change continues to
hold (with XH 6∼= XH). For instance, by [DR73, VI, Corollaire 6.10] (with [Čes15, Lemma 3.3.1]
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as before), this is the case when H = Γ0(6) ∩ H ′ with an H ′ for which Γ(n) ⊂ H ′ for some
n ∈ Z>1 that is prime to 6.

One may also ask whether coarse base change holds generically, say, whether it holds for the
open substack U ⊂XH on which the j-invariant avoids the set {0, 1728,∞} (this automatically
disposes of the need to consider the F3-fiber). To address this, Katz and Mazur compiled a table
[KM85, 8.5.4] that confirms coarse base change for U for many common choices of H. The
examples of this paper fill in a “NO” for some open entries of this table.

1.3. The nature of our examples. We choose the subgroup H to be either

H = Γ1(4) ∩ Γ0(4n) for an n ∈ Z>1 or H = Γbal
1 (4) (1.1)

(see §§ 3–5 for a review of the definitions of these subgroups) and show that (XH)F2 is not the
coarse moduli space of (XH)F2 . For the sake of clarity, we first treat the simplest case H = Γ1(4)
in § 3 and then refine the argument in § 4 to include all H of the form Γ1(4)∩Γ0(4n). This family
of examples shows that coarse base change may fail for modular curves of arbitrarily high genus.

In our examples, the failure of coarse base change persists to fiberwise dense open substacks
(such as U of § 1.2) and results from the jumping of generic stabilizers: for H as in (1.1), the stack
(XH)Q is a scheme, whereas some open substack of (XH)F2 is a Z/2Z-gerbe over its coarse space.
The conclusion then results from the fact that over a fiberwise dense open subset of (XH)Z(2)

,
the coarse moduli space morphism

(XH)Z(2)
→ (XH)Z(2)

is flat (and hence, morally, finite, locally free of rank 1), as is ensured by the miracle flatness
theorem combined with an openness of the regular locus result of Nagata (in the form of [EGAIV2,
Corollaire 6.12.6]); see § 2, especially the proof of Theorem 2.1, for the details of this argument.

In view of the results of this paper, the remaining open entries in the table [KM85, 8.5.4]
are those of [Γ1(N)] with N = 8, 16, 32, . . . and those of [Γ0(2n; a, b)] with a > 3 and b = 0 (the
assumption a > b loses no generality and [Γ0(2n; a, 1)] = [Γ0(2n; a, 0)]).

It would be interesting to understand whether coarse base change may also fail at individual
closed points. More precisely, it would be interesting to answer the following question.

Question 1.4. Are there an open subgroup H ⊂ GL2(Ẑ) and a prime p ∈ {2, 3} such that
coarse base change holds for some Z(p)-fiberwise dense open substack V ⊂ (XH)Z(p)

but fails
for (XH)Z(p)

itself? In particular, can coarse base change fail for (XH)Z(3)
?

1.5. Notation and conventions. For an open subgroup H ⊂ GL2(Ẑ), we let XH denote
the level H Deligne–Mumford modular stack over Z defined in [DR73, IV, Définition 3.3] by
normalization (we also rely on the agreement discussed in [Čes15, Proposition 6.3] with the
definitions used in [KM85]). Replacement of X by Y —for instance, of XH by YH—indicates
the elliptic curve locus. Level structures are in the sense of Drinfeld—for instance, a finite, locally
free S-subgroup G ⊂ E of an elliptic curve E → S is cyclic of order n if locally on S for the
faithfully flat of finite presentation (fppf) topology, it admits a Drinfeld Z/nZ-structure (the
needed definitions are reviewed in [Čes15, Definitions 4.2.2, 4.2.6, and 4.2.8]). For an n ∈ Z>1,
we let Γ(n) ⊂ GL2(Ẑ) be as in § 1.2, and we write X (1) for XΓ(1) (that is, for X

GL2(Ẑ)
). For a

prime p, we let (−)(p) denote localization at p.

445



K. Česnavičius

2. The effect on coarse base change of the jumping of the generic stabilizer

The following criterion is the source of our examples of the failure of coarse base change.

Theorem 2.1. Suppose that H ⊂ GL2(Ẑ) is an open subgroup for which there exists an open
substack

U ⊂ (YH)Z(2)

such that

(i) the automorphism groups of the geometric points of UQ are trivial (that is, UQ is a scheme,
cf. [Čes15, Remark 4.1.4]);

(ii) there is a nonempty open substack U ′ ⊂ UF2 whose inertia stack is the constant {±1}
U ′ .

Then the base change
πF2 : (XH)F2 → (XH)F2

of the coarse moduli space morphism π : XH → XH is not the coarse moduli space morphism
of (XH)F2 ; in fact, for the coarse moduli space U := πZ(2)

(U ) of U , the map

(πF2)|UF2
: UF2 → UF2

is not a coarse moduli space morphism.

Remark 2.2. In practice, we will have U = (YH)Z(2)
. However, Theorem 2.1 with an arbitrary U

includes the claim that in presence of conditions (i) and (ii), the failure of coarse base change
for XH cannot be remedied by removing a Z-quasi-finite closed substack of XH (such as the
preimage of the sections j = 0, j = 1728, and j =∞ of the j-line P1

Z).

Proof. We replace U by U \ (UF2 \ U ′) to be able to assume U ′ = UF2 . Also, it suffices to
establish the last claim, so we may work over U and, in particular, within the elliptic curve locus.

The flat relative Z(2)-curve U inherits normality from (XH)Z(2)
, so, by [EGAIV2, Corollai-

re 6.12.6], the curve U is regular away from finitely many closed points of residue characteristic 2.
We remove these points from U and remove their preimages from U to assume for the rest of
the proof that U is regular.

Let n ∈ Z>1 be such that Γ(n) ⊂ H, let p be an odd prime that does not divide n, and
consider YH∩Γ(p). The Z(2)-base change (YH∩Γ(p))Z(2)

is a scheme because the same holds already
for (YΓ(p))Z(2)

(cf. [DR73, IV, Corollaire 2.9]). By [DR73, IV, proof of Proposition 3.9],1

YH∩Γ(p) = YH ×Y (1) YΓ(p) ,

so, by [DR73, IV, paragraph after Définition 2.4],

(YH∩Γ(p))Z(2)
→ (YH)Z(2)

is a GL2(Z/pZ)-torsor, (2.1)

and hence is finite étale of degree # GL2(Z/pZ). Moreover, if

V ⊂ (YH∩Γ(p))Z(2)

denotes the preimage of U ⊂ (YH)Z(2)
(equivalently, of U), then the regularity of U and the

miracle flatness theorem [EGAIV2, Proposition 6.1.5] ensure that the finite morphism V → U is
locally free. Due to the Z(2)-flatness of U , the degree of this morphism may be read off over Q,

1Even though the statement of [DR73, IV, Proposition 3.9] is incorrect (see [Čes15, Example 4.5.3] for a coun-
terexample), its proof justifies the analogous claim over the elliptic curve locus.
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and hence, thanks to condition (i) and (2.1), equals # GL2(Z/pZ). For the sought conclusion, we
will show that, in contrast, the map

VF2 → U ′

toward the coarse moduli space U ′ of UF2 is finite, locally free of degree 1
2 ·# GL2(Z/pZ).

Due to condition (ii), the space U ′ identifies with the rigidification U ′( {±1} (cf. [AOV08,
Theorem A.1] or [Rom05, Theorem 5.1], as well as [LM00, Corollaire 8.1.1]), so VF2 → U ′ is finite,
locally free. To verify that twice its degree equals the claimed # GL2(Z/pZ), it remains to work
étale locally on U ′ to first obtain an isomorphism

U ′ ' B(Z/2Z
U ′)

with a classifying stack and to then base change the resulting GL2(Z/pZ)-torsor

VF2 → B(Z/2Z
U ′)

along the étale atlas U ′ → B(Z/2Z
U ′) that corresponds to the trivial Z/2Z

U ′-torsor.

Remark 2.3. The proof shows that the comparison morphism from the coarse moduli space
of U ′ toward UF2 ∩ πF2(U ′) is finite, locally free of rank 2 over a dense open subscheme of
UF2 ∩ πF2(U ′). It is a generality that this morphism is necessarily a universal homeomorphism
(cf. [Ryd13, Theorem 6.12]).

For H discussed below, the construction of suitable open substacks U ′ rests on the following
known lemmas.

Lemma 2.4 ([Del75, Proposition 5.3(III)]). If S is a scheme and E → S is an elliptic curve whose
fibral j-invariants differ from 0 and 1728, then the automorphism functor of E is the constant
{±1}

S
.

Lemma 2.5. Let p be a prime, and let E → S be an elliptic curve over an Fp-scheme S.

(a) ([KM85, Lemma 12.2.5]). For every n ∈ Z>1, the S-subgroup E[pn] ⊂ E is cyclic of order
p2n, and its standard cyclic subgroup of order pn is the kernel of the n-fold relative Frobenius
of E → S.

(b) If p = 2 and G ⊂ E is a cyclic S-subgroup of order p2 such that its standard cyclic
subgroup Gp of order p is of multiplicative type and G/Gp is étale, then G = E[p].

Proof. The indicated reference supplies part (a). For part (b), we may use limit arguments to
assume that S is connected, so [KM85, Theorem 13.3.3] shows that G agrees with the kernel of
the composite isogeny

E
FrobE // E(p)

∼
ι // Ẽ(p)

Ver
Ẽ // Ẽ

for some elliptic curve Ẽ → S and some S-isomorphism ι. By Lemma 2.4, any S-automorphism of
E(p) is multiplication by ±1, so it remains to show that E ' Ẽ étale locally on S, which follows
from [KM85, Theorem 13.3.5(4)] after endowing E and Ẽ with compatible (étale local on S)
(Z/3Z)2-structures (the p = 2 assumption ensures that the (p − 1)st infinitesimal neighborhood
of the diagonal in loc. cit. coincides with the diagonal itself).
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3. Coarse base change fails for X1(4)

In this section, we choose the level H to be

Γ1(4) =
{(

a b
c d

)
∈ GL2(Ẑ) | a ≡ 1 mod 4, c ≡ 0 mod 4

}
and seek to show that the formation of the coarse moduli space of X1(4) := XΓ1(4) does not
commute with base change to F2. We will obtain this from Theorem 2.1, so we first explain how
we choose the open substack

U ′ ⊂ Y1(4)F2

of the elliptic curve locus over F2 (we will choose U to be Y1(4)Z(2)
).

3.1. The choice of U ′. By [KM85, 3.2] (see also [Čes15, Theorem 4.4.4(c)]), the Deligne–
Mumford stack Y1(4) parametrizes pairs

(E → S, α : Z/4Z→ E(S))

consisting of an elliptic curve E → S over a variable base scheme S and a Drinfeld Z/4Z-
structure α onE. Consider the stack Y1(4)F2 together with its universal elliptic curve E → Y1(4)F2 ,
and let G ⊂ E be the finite, locally free Y1(4)F2-subgroup of order 4 generated by the universal α.
The locus U ′′ of Y1(4)F2 over which G is of multiplicative type is open, and we let

U ′ ⊂ U ′′

be the open locus on which the j-invariant satisfies j 6= 0.

Theorem 3.2. The F2-base change of the coarse space morphism of X1(4) is not the coarse space
morphism of X1(4)F2 . The same holds for any Z(2)-fiberwise dense open substack of X1(4).

Proof. The claim will follow from Theorem 2.1 once we explain why

U := Y1(4)Z(2)
and U ′ of Section 3.1

satisfy its assumptions (i) and (ii). The assumption (i) follows from the rigidity of Y1(4)Z[ 1
2

],
that is, from [KM85, Corollary 2.7.4 and Lemma 1.5.3]. For assumption (ii), we start with the
nonemptiness of U ′, which follows from that of U ′′ guaranteed by the fact that the ordinary
locus of Y (1)F2 is the forgetful image of U ′′ (cf. Lemma 2.5(a)).

Lemma 2.4 ensures that the automorphism stack of EU ′ is the constant {±1}
U ′ , so it remains

to show that [−1]E preserves α for every (E → S, α) classified by U ′′, that is, that 2 · α(1) = 0
for every such (E,α). For this, if G denotes the finite, locally free subgroup of order 4 generated
by α and G2 ⊂ G denotes its standard cyclic subgroup of order 2, then it suffices to show that the
image of α(1) in G/G2 vanishes. However, by [KM85, Theorem 6.7.4], this image generates G/G2,
so it remains to recall that, by [KM85, Theorem 6.1.1], the subscheme of generators

(G/G2)× ⊂ G/G2

is finite, locally free of rank 1 and that, by [KM85, Lemma 12.2.1 and its proof], the subscheme
(G/G2)× contains the zero section of G/G2 because G/G2 is the Frobenius kernel of E/G2.

Remark 3.3. We could have analogously constructed a larger U ′ by allowing U ′′ to also contain
the open locus of Y1(4)F2 over which the standard cyclic subgroup G2 ⊂ G of order 2 is of
multiplicative type and G/G2 is étale. Over this locus, G = E [2] by Lemma 2.5(b), so 2 ·α(1) = 0,
too.
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Remark 3.4. By combining Remarks 2.3 and 3.3, we conclude that the comparison morphism from
the coarse moduli space of Y1(4)F2 to Y1(4)F2 is finite, locally free of rank 2 over a dense open
subset of the locus over which G has a nontrivial multiplicative part and is a universal homeomor-
phism over the entire Y1(4)F2 . In contrast, this morphism is an isomorphism over the locus over
which G is étale because there Y1(4) is rigid by [KM85, Corollary 2.7.4 and Proposition 1.10.12].

4. Coarse base change fails for XΓ1(4)∩Γ0(4n)

We seek to explain how a variant of the construction of § 3 leads to an infinite family of modular
curves that violate coarse base change. We fix any (possibly even) integer n ∈ Z>1, set

Γ0(4n) :=
{(

a b
c d

)
∈ GL2(Ẑ) | c ≡ 0 mod 4n

}
,

and seek to show that the formation of the coarse moduli space of XΓ1(4)∩Γ0(4n) does not com-
mute with base change to F2. The genus of the coarse moduli space of (XΓ1(4)∩Γ0(4n))Q grows
unboundedly with n because the same holds already for the coarse moduli space of (XΓ0(4n))Q.

As in § 3, we first describe YΓ1(4)∩Γ0(4n) in modular terms and explain how we choose U ′.

4.1. The choice of U ′. By [KM85, Definition 7.9.4 and Theorems 7.9.6 and 7.4.2] (with [Čes15,
Proposition 6.3(a)]),2 the stack YΓ1(4)∩Γ0(4n) parametrizes triples

(E → S, G, α : Z/4Z→ (E/Gn)(S))

consisting of an elliptic curve E → S over a variable base scheme S, a cyclic S-subgroup G ⊂ E
of order 4n, and a Drinfeld Z/4Z-structure α on the S-subgroup G/Gn ⊂ E/Gn, where Gn ⊂ G
is the standard cyclic subgroup of order n.

We let

E → (YΓ1(4)∩Γ0(4n))F2

be the universal elliptic curve in characteristic 2 and let G ⊂ E be the universal G. The locus U ′′

of (YΓ1(4)∩Γ0(4n))F2 over which G is of multiplicative type is open, and we let

U ′ ⊂ U ′′ be the open locus on which the j-invariant satisfies j 6= 0 .

Theorem 4.2. The F2-base change of the coarse space morphism of XΓ1(4)∩Γ0(4n) is not the
coarse space morphism of (XΓ1(4)∩Γ0(4n))F2 . The same holds for any Z(2)-fiberwise dense open
substack of XΓ1(4)∩Γ0(4n).

Proof. Similarly to the proof of Theorem 3.2, it suffices to explain why Theorem 2.1 applies with

U := (YΓ1(4)∩Γ0(4n))Z(2)
and U ′ of § 4.1.

The validity of assumption (i) is again supplied by [KM85, Corollary 2.7.4].
For assumption (ii), the nonemptiness of the open substack U ′′, and hence also of U ′, follows

from Lemma 2.5(a), which ensures that the ordinary locus of Y (1)F2 lies in the forgetful image
of U ′′. Thanks to Lemma 2.4, it remains to show that 2 · α(1) = 0 for every (E,G, α) classified
by U ′′. Since G/Gn ⊂ E/Gn is of multiplicative type and cyclic of order 4, this follows the same
way as in the proof of Theorem 3.2.

2We implicitly also use [KM85, Propositions 1.7.2 and 7.3.1] to decompose into primary parts.
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5. Coarse base change fails for X bal
1 (4)

In order to complete an open entry in the table [KM85, 8.5.4], we investigate coarse base change
for one other level. More precisely, in this section we choose the level H to be

Γbal
1 (4) :=

{(
a b
c d

)
∈ GL2(Ẑ) | a, d ≡ 1 mod 4, c ≡ 0 mod 4

}
and seek to show that the formation of the coarse moduli space of

X bal
1 (4) := XΓbal

1 (4)

does not commute with base change to F2. To again apply Theorem 2.1, we first explain how we
choose U ′.

5.1. The choice of U ′. By [KM85, 3.3] (with [KM85, Theorem 7.4.2(2)] and [Čes15, Proposi-
tion 6.3(a)]), the stack Y bal

1 (4) parametrizes triples

(E → S, α : Z/4Z→ E(S), β : Z/4Z→ (E/Gα)(S))

consisting of an elliptic curve E → S over a variable base scheme S, a Drinfeld Z/4Z-structure α
on an S-subgroupGα ⊂ E, and a Drinfeld Z/4Z-structure β on the S-subgroup E[4]/Gα ⊂ E/Gα.

Similarly to § 3.1, we consider the universal elliptic curve

E → Y bal
1 (4)F2

in characteristic 2 and let G ⊂ E be the universal Gα. The locus U ′′ of Y bal
1 (4)F2 over which the

standard cyclic subgroup G2 ⊂ G of order 2 is of multiplicative type and G/G2 is étale is open,
and we let

U ′ ⊂ U ′′ be the open locus on which the j-invariant satisfies j 6= 0 .

Theorem 5.2. The F2-base change of the coarse space morphism of X bal
1 (4) is not the coarse

space morphism of X bal
1 (4)F2 . The same holds for any Z(2)-fiberwise dense open substack

of X bal
1 (4).

Proof. It suffices to explain why Theorem 2.1 applies with

U := Y bal
1 (4)Z(2)

and U ′ of § 5.1 .

The assumption (i) follows from the rigidity of Y bal
1 (4)Z[ 1

2
] supplied by [KM85, Corollary 2.7.4].

For assumption (ii), similarly to the proof of Theorem 3.2, we have to show that U ′′ 6= ∅
and that α(1) and β(1) are 2-torsion for every (E,α, β) classified by U ′′. The latter requirement
follows from Lemma 2.5(b), which ensures that GU ′′ = EU ′′ [2]. The nonemptiness, on the other
hand, follows from Lemma 2.5(a), which ensures that the forgetful image of U ′′ in Y (1)F2 contains
the ordinary locus.
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