
l-ADIC PERVERSE SHEAVES

KĘSTUTIS ČESNAVIČIUS

0.1. Introduction. The purpose of this expository note is to outline the construction of the abelian
category of perverse sheaves in the l-adic setting and to illustrate Deligne’s theory of weights in
this context. But even though we get to this at the very end, the bulk of the paper is devoted
to prerequisite constructions leading to it. We begin by constructing the abelian category of Ql-
sheaves on a scheme X (see section 0.3 for assumptions on X that are valid throughout), as well
as the corresponding triangulated "derived" category Db

cpX,Qlq. We then discuss the yoga of
Grothendieck’s six operations in this setting and introduce the standard and perverse t-structures
which lead to l-adic perverse sheaves on X. Finally, we move on to the theory of weights and
state the existence of a functorial weight filtration for mixed sheaves both in the usual and perverse
contexts.

To keep the exposition brief we were forced to omit most proofs but have attempted to give references
in such instances and hope that the reader seeking more detail will have no trouble locating it in
the literature.

0.2. Acknowledgements. This paper was written as a term paper for Carl Mautner’s class Per-
verse Sheaves in Representation Theory taught at Harvard University in Fall 2011. I wish to thank
Carl Mautner for useful and enjoyable lectures and for his suggestions for the material of this paper.

0.3. Conventions. Throughout X (or Y , etc.) will denote a finite type separated scheme over a
finite field Fq or over its fixed algebraic closure F “ Fq. Here q is a power of the characteristic p.
All sheaves that we are going to consider will be sheaves of abelian groups on the étale site of X
(or Y , etc.). We will fix a prime l ‰ p and denote by Ql be the field of l-adic numbers. E (or F ,
F 1) will stand for a finite extension E{Ql inside a fixed algebraic closure Ql. We will denote by o
the ring of integers of E with a uniformizer π P o. Sometimes we will be dealing with a tower of
(always finite) extensions F 1{F {E in which case the corresponding rings of integers will be O1{O{o
with uniformizers Π1, Π and π, respectively. We will write oi for o{πio, i ě 1, and similarly Oi for
O{ΠiO. When dealing with categories A we often slip and write F P A instead of F P ObpAq to
indicate that F is an object of A.

It should be noted that some constructions that we carry out can be made in a less stringent setting
than the one described in the previous paragraph. To be consistent we chose these conventions to
be valid throughout but the reader should have no trouble in locating instances where we do not
make full use of these assumptions.

1. Ql-sheaves

1.1. Constructible sheaves. Recall that a sheaf of sets F on X is called constructible if any of
the following equivalent conditions hold:

1



1. X can be written as a finite union of locally closed subschemes Xi such that each F |Xi is
finite locally constant, i.e., for each Xi there is an étale cover tUij Ñ XiujPJi , #Ji ă 8 such
that F |Uij are constant and F pUijq are finite.

2. F is a noetherian object in the abelian category of torsion sheaves on X. (Recall that a
sheaf G is called torsion if each element of G pUq is torsion; an object of an abelian category
is called noetherian if every increasing chain of its subobjects stabilizes.)

The proof of the equivalence can be found in [FK88, Proposition I.4.8]. Constructible sheaves form
an abelian subcategory of torsion sheaves: the zero sheaf, subobjects and quotients of constructible
sheaves are constructible using 2., a direct sum of two constructible sheaves is constructible using
1. (more generally, the full subcategory of noetherian objects in a locally noetherian abelian category
is an abelian subcategory).

1.2. Artin-Rees categories. A projective system of sheaves is a collection F “ pFiqiě1 of con-
structible sheaves of torsion o-modules together with structure morphisms Fi`1 Ñ Fi. A morphism
of projective systems F Ñ G is a collection of morphisms Fi Ñ Gi which together with the struc-
ture morphisms of F and G form an infinite commutative ladder. The category of all projective
systems is abelian, we will call it P. Given a projective system F one can form its shifts F rns,
n ě 0 by setting pF rnsqi “ Fn`i together with obvious structure morphisms. Shifts F rns come
equipped with morphisms F rns Ñ F obtained using the structure morphisms of F . A null sys-
tem is a projective system N such that N rns Ñ N is zero for big enough n; this means that
there is an n such that all composites of structure morphisms Ni`n Ñ Ni vanish. The full sub-
category N of null systems is a Serre subcategory of the abelian category P of projective systems:
indeed, if 0 Ñ G Ñ F Ñ H Ñ 0 is exact and G rns Ñ G , H rms Ñ H vanish then so does
F rn`ms Ñ F . The Artin-Rees category (A-R category for short) is the quotient abelian category
P{N . We remind the reader that the objects of P{N are those of P, while the set of morphisms
between F ,G P ObpP{N q is HomP{N pF ,G q “ lim

ÝÑ
HomPpF

1,G {G 1q where the colimit is taken
over all subobjects F 1 of F such that F {F 1 P N and all subobjects G 1 of G such that G 1 P N .

There is another description of the A-R category which is more useful in practice. Namely, one
can show that the class N of all morphisms of the form F rns Ñ F is both a left and a right Ore
system (in other terminology these morphisms admit a calculus of fractions); it is easy but somewhat
tedious to check the axioms, this is done in [SGA5, Exposé V, Proposition 2.4.1]. Therefore, the
localized category PrN´1s admits a particularly simple description: it’s objects are those of P, while
the set1 of morphisms between F ,G P ObpPrN´1sq is HomPrN´1s “ lim

ÝÑ
HomPpF rns,G q. Note that

since F {F rns is a null system we have a canonical functor F : PrN´1s Ñ P{N which is identity
on objects.

Proposition 1.2.1. The functor F induces an isomorphism of categories PrN´1s – P{N . In par-
ticular, the morphisms in the A-R category between F and G are equivalence classes of morphisms
F rns Ñ G , so that N – 0 in the A-R category if and only if N P N .

Proof. Consider the first functor in P Ñ PrN´1s F
ÝÑ P{N . For N P N it sends each N rns Ñ N

to an isomorphism. But for big enough n these morphisms are 0. In an additive category a zero
morphism can be an isomorphism only between zero objects. Thus each N – 0 in PrN´1s and the
universal property of P{N gives the functorG : P{N Ñ PrN´1s which using the universal properties
of P{N and PrN´1s is seen to be a strict inverse to F . (Alternatively, the same argument shows

1Here and in the sequel we do not worry about set theoretic issues. The usual yadda yadda applies: for instance,
one can use universes to avoid headaches.

2



that P{N satisfies the universal property of PrN´1s so that F is an equivalence; being identity on
objects it must be an isomorphism.) �

As all morphisms F rns Ñ F become isomorphisms in the A-R category P{N one sees that the
(co)kernel of a morphism F Ñ G in P{N can be computed by taking the (co)kernel of a representing
morphism F rns Ñ G .

1.3. π-adic sheaves. A π-adic sheaf is a projective system F “ pFiqiě1 such that πiFi “ 0
(effectively, each Fi is a sheaf of oi-modules) and the morphisms Fi`1 Ñ Fi are induced from
Fi`1{π

iFi`1 – Fi. Unfortunately, the category of π-adic sheaves is not abelian if one defines it in
the naïve way as a full subcategory of the category of projective systems because there is no reason
for the kernel of a morphism of π-adic sheaves to be π-adic. This can be fixed by declaring an
Artin-Rees (or A-R) π-adic sheaf to be a projective system G which is isomorphic to a π-adic sheaf
in the A-R category. In the view of 1.2.1 this means that there is a π-adic sheaf F and a morphism
F rns Ñ G whose kernel and cokernel are null systems. It is proved in [FK88, Proposition I.12.11]
that A-R π-adic sheaves form an abelian subcategory ShA-RpX, oq of the A-R category (strictly
speaking, in loc. cit. the claim is proved for A-R l-adic sheaves but the same argument applies to
the more general situation). The nontrivial part is in showing that kernels of morphisms of A-R
π-adic sheaves are again A-R π-adic; in loc. cit. this is done by reducing to the case of stalks and
then using Artin-Rees lemma.

Let us denote by ShpX, oq the full subcategory of ShA-RpX, oq spanned by π-adic sheaves. In fact,
as the notation might suggest, this subcategory is nothing else but the category of π-adic sheaves:

Proposition 1.3.1. The natural functor F from the category of π-adic sheaves to ShpX, oq is an
isomorphism of categories.

Proof. As F is identity on objects, in the view of 1.2.1 all we need to show is that for π-adic sheaves
F and G any morphism F rns Ñ G factors uniquely through a morphism F Ñ G . But indeed, as
Gm is annihilated by πm any morphism Fm`n Ñ Gm factors uniquely through Fm`n{π

mFm`n –

Fm Ñ Gm. �

Essentially by definition the category ShA-RpX, oq is equivalent to its full subcategory ShpX, oq.
Construct a fully faithful surjective functor Eo : ShA-RpX, oq Ñ ShpX, oq by choosing for each
G P ShA-RpX, oq an isomorphism G

„
ÝÑ F P ShpX, oq in such a way that for each G P ShpX, oq

the identity is chosen. Since HomShpX,oqpF ,G q is an o-module for any F ,G P ShpX, oq (because
in lim
ÐÝ

HompFi,Giq each HompFi,Giq is an oi-module), we can use functors Eo to view morphism
abelian groups in ShA-RpX, oq as o-modules.

Given a π-adic sheaf F no information is lost if we only consider every eth sheaf Gi :“ Fie with
transition morphisms for the projective system G “ pGiqiě1 induced from Gi`1{πieGi`1 – Gi; such G
will be called πe-adic sheaves. In more precise terms, the category of πe-adic sheaves G is equivalent
to the category of π-adic sheaves F . In particular, we can associate to a π-adic sheaf F the Πe-
adic sheaf G “ tFi bo Ouiě1 and hence a Π-adic sheaf rSO{opF q (cf. section 0.3 for the setup). It
is clear that rSO{o : ShpX, oq Ñ ShpX,Oq becomes an additive functor and that there are natural
isomorphisms rSo{o – Id, rSO1{O ˝ rSO{o – rSO1{o.

Using the functors rSO{o and Eo we get functors SO{o : ShA-RpX, oq Ñ ShA-RpX,Oq and the com-
patibilities for rSO{o translate into analogous compatibilities for SO{o.
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1.4. Ql-sheaves. The category ShpX,Eq of E-sheaves is constructed as follows: it has the same
objects as ShA-RpX, oq, and F P ShA-RpX, oq is denoted by F b E when viewed as an object of
ShpX,Eq; its morphism sets are HomShpX,EqpF b E,G b Eq “ HomShA-RpX,oqpF ,G q bo E (recall
from section 1.3 that HomShA-RpX,oqpF ,G q are o-modules). Composition of morphisms is defined by
composition in ShpX, oq on the first factor and by multiplication in E on the second. From functors
SO{o and inclusions E ãÑ F we get functors SF {E : ShpX,Eq Ñ ShpX,F q which are functorial in
the sense that there are natural isomorphisms SE{E – IdShpX,Eq, SF 1{F ˝ SF {E – SF 1{E .

We are now ready to define the category ShpX,Qlq of Ql-sheaves as a "direct limit" of categories
ShpX,Eq (and functors SF {E) in the following way: the objects of ShpX,Qlq are F bE P ShpX,Eq
with the understanding that F b E and its images SF {EpF b Eq represent the same object.
Thus any two objects of ShpX,Qlq can be represented by F b E,G b E P ShpX,Eq for some
E, and the set of morphisms between the corresponding objects of ShpX,Qlq is declared to be
lim
ÝÑF {E

HomShpX,F qpSF {EpF bEq, SF {EpG bEqq where the colimit is taken over all finite extensions
F {E and is independent of the choice of representatives.

2. Bounded derived category of constructible Ql-sheaves

2.1. Perfect complexes. Consider the bounded derived categoryDbpX, oiq of the category ShpX, oiq
of sheaves of oi-modules. As any derived category of an abelian category, it is triangulated. Its full
additive subcategory Db

cpX, oiq consisting of complexes with constructible cohomology sheaves is a
triangulated subcategory. Indeed, to see this one only needs to argue that whenever two vertices
of a distinguished triangle are in Db

cpX, oiq, so is the third. This can be done using the associated
long exact cohomology sequence because extensions of constructible sheaves are constructible (the
latter can be seen using 2. above coupled with Mitchell’s embedding theorem because an extension
of noetherian R-modules is noetherian for any ring R).

A sheaf K n of oi-modules is called flat if for each geometric point x Ñ X the stalk K n
x is a free

oi-module. A perfect complex is a complex K ‚ P Db
cpX, oiq which is bounded, meaning K n “ 0 for n

big enough or small enough (note that this condition is stronger than cohomologically bounded which
means that the same holds for cohomology sheaves HnpK ‚q), and all K n are constructible flat
sheaves of oi-modules. Let Db

ctf pX, oiq be the full subcategory of Db
cpX, oiq of complexes isomorphic

to a perfect complex2. It is a triangulated subcategory of Db
cpX, oiq; to see this one only needs

to argue that the cone construction can be done within Db
ctf pX, oiq and this follows by noticing

that the standard explicit construction of the mapping cone on the level of complexes preserves
boundedness, flatness, and constructibility.

2.2. Construction of Db
cpX, oq. As o “ lim

ÐÝ
oi, we want to define the bounded derived category

of cohomologically constructible "sheaves of o-modules" Db
cpX, oq as a "projective limit" of cat-

egories Db
cpX, oiq. For technical reasons, however, we will restrict our attention to Db

ctf pX, oiq

rather than working with all of Db
cpX, oiq. The precise construction is this: the objects of Db

cpX, oq
are the sequences of complexes K ‚ “ pK ‚

i qiě1, K ‚
i P Db

ctf pX, oiq together with isomorphisms
φK
i : K ‚

i`1 b
L
oi`1

oi
„
ÝÑ K ‚

i (we explain why ´ bL
oi`1

oi makes sense in the next paragraph). The
morphisms inDb

cpX, oq between K ‚ and L ‚ are given by systems tψi : K ‚
i Ñ L ‚

i uiě1 of morphisms

2The reader may be wondering what ’ctf’ stands for in Db
ctf pX, oiq. ’c’ = constructible, ’tf’ = finite Tor-dimension

(see [SGA4 III, Exposé XVII, Définition 4.1.9] for the latter).
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ψi in Db
ctf pX, oiq which are compatible in the sense that they render all the diagrams

K ‚
i`1 b

L
oi`1

oi
ψi`1b

L
oi`1

oi
//

φK
i

��

L ‚
i`1 b

L
oi`1

oi

φL
i

��

K ‚
i

ψi
// L ‚

i

commutative.

The functor ´ boi`1 oi : ShpX, oi`1q Ñ ShpX, oiq is right exact and the class of flat sheaves of
oi`1-modules is easily seen to be an acyclic class for it in the sense that it satisfies the dual of
the conditions of [Hai06, Proposition 5.6]. What this means is that it makes sense to talk of
the left derived functor ´ bL

oi`1
oi : D

bpX, oi`1q Ñ DbpX, oiq and that resolutions of objects of
DbpX, oi`1q by complexes of flat sheaves can be used to compute its values. In particular, if
K ‚
i`1 P D

b
ctf pX, oi`1q then K ‚

i`1 b
L
oi`1

oi – K ‚
i`1 boi`1 oi P D

b
ctf pX, oiq, so that the φK

i in the
previous paragraph are interpreted as morphisms in Db

ctf pX, oiq. Also, if F ‚ P DbpX, oi`1q then
the natural morphism F ‚ Ñ F ‚ boi`1 oi gives rise to a morphism HnpF ‚q Ñ HnpF ‚ boi`1 oiq

of nth cohomology sheaves. Using this for a flat resolution (which exists because of loc. cit.) we
get a morphism HnpF ‚q Ñ HnpF ‚ bL

oi`1
oiq for F ‚ P DbpX, oi`1q. To see that the morphism

obtained is independent of the chosen resolution and is functorial one considers all flat resolutions
of F ‚ simultaneously, notes that they form a cofinal pro-system among all quasi-isomorphisms
G ‚

„
ÝÑ F ‚ (loc. cit.) and invokes Deligne’s definition of derived functors [SGA4 III, Exposé XVII,

Définition 1.2.1].

In the view of the discussion above, if we consider an object K ‚ P Db
cpX, oq then for each n P Z

we get a functorially associated projective system tHnpK ‚
i quiě1 which we call the nth cohomology

sheaf of K ‚. Indeed, the K ‚
i P D

b
cpX, oiq have constructible cohomology sheaves which are torsion

because each K ‚
i is a complex of sheaves of oi-modules (cf. section 1.2 for the definition of a

projective system). Actually, more is true:

Claim 2.2.1. Each tHnpK ‚
i quiě1 is an A-R π-adic sheaf. Moreover, it is zero for n big enough or

small enough.

The second part of the claim provides justification for the superscript b in Db
cpX, oq; also, it is in

showing this result that the advantages of using Db
ctf pX, oiq instead of Db

cpX, oiq when defining
Db
cpX, oq surface. The proof of the claim is technical and we will not carry it out here, see [KW01,

Lemma II.5.5] and the discussion preceding it for the argument. There is another important technical
condition that makes the proof work which we have suppressed throughout: one has to assume that
if the scheme X is over a field k and k1{k is a finite separable extension with the absolute Galois
group G “ Galppk1qs{k1q then all Galois cohomology groups HnpG,Z{lZq are finite. In our case
k is either finite or algebraically closed and thus so is k1. The condition is clearly verified in the
algebraically closed case; in the finite case one uses that finite fields are C1 (Chevalley-Warning
theorem) and hence of cohomological dimension ď 1, moreover, H1pG,Aq is finite for finite A, see
[Ser02, II.§3 and III.§4 Proposition 8].

The reader may wonder what is wrong with the naïve definition of Db
cpX, oq as some sort of subcat-

egory of the derived category of the abelian category ShA-RpX, oq of A-R π-adic sheaves. A major
disadvantage of such approach is that ShA-RpX, oq does not have enough injectives which hinders
the development of a good theory of derived functors.
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2.3. Construction of Db
cpX,Qlq. Recall that E{Ql is a finite extension with the ring of integers

o and a uniformizer π P o. Let us define Db
cpX,Eq by declaring its objects to be those of Db

cpX, oq.
We will write K ‚ b E when we view K ‚ P Db

cpX, oq as an object of Db
cpX,Eq. Note that for

K ‚,L ‚ P Db
cpX, oq the set of morphisms HomDb

cpX,oq
pK ‚,L ‚q is naturally an o-module (this is

because each HomDb
cpX,oiq

pK ‚
i ,L

‚
i q is an oi-module). We let the morphism sets be the localizations

HomDb
cpX,Eq

pK ‚ b E,L ‚ b Eq “ HomDb
cpX,oq

pK ‚,L ‚q bo E. The composition is defined by
composition in Db

cpX, oq on the first factor and multiplication on the second. Effectively, what is
achieved with this definition is that in Db

cpX,Eq all morphisms f of Db
cpX, oq such that πnf “ 0 for

some n ě 1 become zero.

For F {E (cf. section 0.3) we wish to construct a functor TF {E : Db
cpX,Eq Ñ Db

cpX,F q. To begin with
we construct a functor Db

cpX, oq Ñ Db
cpX,Oq

e, where Db
cpX,Oq

e is defined in an analogous manner
to Db

cpX,Oq except that for L ‚ P Db
cpX,Oq

e each L ‚
i P D

b
ctf pX,Oieq and one uses ´bL

Opi`1qe
Oie to

define the φL
i . To an object K ‚ P Db

cpX, oq one associates L ‚ P Db
cpX,Oq

e with3 L ‚
i “ K ‚

i b
L
oiOie,

and the structure morphisms φL
i : pK ‚

i`1 b
L
oi`1

Opi`1qeq b
L
Opi`1qe

Oie Ñ K ‚
i b

L
oi Oie obtained from

φK
i bL

oi Oie after taking into account natural isomorphisms p´bL
oi`1

Opi`1qeqb
L
Opi`1qe

Oie – ´b
L
oi`1

Oie – p´ b
L
oi`1

oiq b
L
oi Oie which are "composition of derived functors vs. derived functor of the

composition" isomorphisms that can be argued by computing both sides for a flat resolution (in
which case one uses that, e.g., ´ boi`1 Opi`1qe brings flat sheaves of oi`1-modules to flat sheaves
of Opi`1qe-modules). The effect of this construction on morphisms being clear, we get a functor
Db
cpX, oq Ñ Db

cpX,Oq
e and in fact this gives rise to a functor Db

cpX, oq Ñ Db
cpX,Oq by observing

that given L ‚ P Db
cpX,Oq

e one can "fill in the gaps between multiples of e" by using the functors
´bL

Oie
Oie´1,´b

L
Oie´1

Oie´2, . . . (the new φL
j will be identities for j not a multiple of e) and arguing

a natural isomorphism p¨ ¨ ¨ p´ bL
Oie

Oie´1q b
L
Oie´1

¨ ¨ ¨ q bL
Opi´1qe`1

Opi´1qe – ´b
L
Oie

Opi´1qe similarly
to how we did before. The fact that this operation of "filling in the gaps" is functorial as well as full
and faithfull is clear; it is also essentially surjective but this is far less obvious. What one needs to
show is that the K ‚

i (for i not divisible by e, say, though this doesn’t matter) in K ‚ P Db
cpX,Oq can

be replaced by isomorphic ones in a manner that gives an isomorphic L ‚ – K ‚. This can indeed
be done but the proof uses the finiteness assumptions that we discussed at the end of section 2.2,
see [KW01, Note at the bottom of p. 96]. To sum up, we get a functor TO{o : Db

cpX, oq Ñ Db
cpX,Oq

which is seen to be functorial in the sense that there are natural isomorphisms To{o – IdDb
cpX,oq

,
TO1{O ˝ TO{o – TO1{o.

Having defined TO{o we get TF {E : Db
cpX,Eq Ñ Db

cpX,F q by setting TF {EpK ‚bEq “ TO{opK
‚qbF

and letting TF {E : HomDb
cpX,oq

pK ‚,L ‚q bo E Ñ HomDb
cpX,Oq

pTO{opK
‚q, TO{opL

‚qq bO F be TO{o
on the first factor and the inclusion E ãÑ F on the second (here we are using that TO{o on morphisms
is compatible with multiplication by elements of o). From the compatibility of the functors TO{o
we immediately get the compatibility of TF {E in the sense that there are natural isomorphisms
TE{E – IdDb

cpX,Eq
, TF 1{F ˝ TF {E – TF 1{E .

Now we are ready to define Db
cpX,Qlq as a "direct limit" of categories Db

cpX,Eq (and functors
TF {E). In fact, the construction is very similar to what we have already seen when constructing
Ql-sheaves in section 1.4. Namely, the objects of Db

cpX,Qlq are the objects K ‚bE P Db
cpX,Eq for

varying E with the identification of K ‚ bE and all TF {EpK ‚ bEq. The morphisms in Db
cpX,Qlq

3Notice that the functor ´ boi Oie is exact (because O is a free o-module and hence Oie is a free oi-module) so
that we could write ´boi Oie instead of ´bL

oi Oie. We stick to the latter, however, mostly for consistency reasons
because in other situations that we often find ourselves in, like that of ´bL

oi`1
oi, one cannot drop the L.
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between two objects represented by K ‚bE,L ‚bE P Db
cpX,Eq are lim

ÝÑF {E
HomDb

cpX,F q
pTF {EpK

‚b

Eq, TF {EpL
‚ b Eqq where the colimit is taken over all finite extensions F {E and the definition is

independent of the choice of representatives K ‚ b E and L ‚ b E. We sometimes write K ‚ b Ql

when we view K ‚ b E as an object of Db
cpX,Qlq; other times we simply write K ‚ to denote an

object of Db
cpX,Qlq.

2.4. Cohomology objects. We have already seen in 2.2.1 that any K ‚ P Db
cpX, oq gives rise to

cohomology sheaves tHnpK ‚
i quiě1 P ShA-RpX, oq which vanish for almost all n. In this section we

want to extend this construction to Db
cpX,Qlq.

First of all, we will find it much more convenient to assume that the cohomology sheaves of K ‚ P

Db
cpX, oq are actual π-adic sheaves. We will therefore modify them up to an isomorphism by

postcomposing the cohomology functors with the functor Eo constructed in section 1.3. This will be
implicitly assumed from now on when we talk of cohomology and the resulting cohomology functors
will still be denoted Hnp´q. With this caveat we observe the natural isomorphism of functors
HnpTO{op´qq – SO{opH

np´qq which results from the fact that ´boi Oie is exact (see the footnote
on the previous page) so that ´boi Oie commutes with taking cohomology. Passage to E-sheaves
involves applying ´ bo E to morphisms which gives us Hnp´q : Db

cpX,Eq Ñ ShpX,Eq and the
natural isomorphism above translates to

HnpTF {Ep´qq – SF {EpH
np´qq. (2.4.1)

This allows us to define the desired cohomology functors Hnp´q : Db
cpX,Qlq Ñ ShpX,Qlq and in

this context the second part of 2.2.1 says that for each K ‚bQl P D
b
cpX,Qlq almost all cohomology

sheaves HnpK ‚ bQlq P ShpX,Qlq are zero.

2.5. The six operations. Having constructed Db
cpX,Qlq we would like to have the standard yoga

of Grothendieck’s six operations in this context to be able to work with it. The good news is
that there are constructions fulfilling this desideratum. The bad news is that those constructions,
when carried out in detail, are lengthy and we cannot do them justice here. Therefore, we content
ourselves with a sketch of the theory and point the reader to the references for details.

Suppose f : X Ñ Y is a morphism (cf. section 0.3 for assumptions on X and Y ). There are the
following functors:

‚ Rf˚ : Db
cpX,Qlq Ñ Db

cpY,Qlq,

‚ f˚ : Db
cpY,Qlq Ñ Db

cpX,Qlq,

‚ Rf! : D
b
cpX,Qlq Ñ Db

cpY,Qlq,

‚ f ! : Db
cpY,Qlq Ñ Db

cpX,Qlq,

‚ RH omp´,´q : Db
cpX,Qlq

op ˆDb
cpX,Qlq Ñ Db

cpX,Qlq,

‚ ´ bL ´ : Db
cpX,Qlq ˆD

b
cpX,Qlq Ñ Db

cpX,Qlq.

Rf˚ and f˚ should be thought of as derived pushforward and pullback, respectively. They are
adjoint, i.e., there is a natural bijection

HomDb
cpX,Qlq

pf˚K ‚,L ‚q – HomDb
cpY,Qlq

pK ‚,Rf˚L
‚q. (2.5.1)

Rf! should be thought of as derived pushforward with proper supports. Recall the definition in the
simpler setting of a torsion sheaf F (an actual sheaf): one chooses a compactification of X Ñ Y ,
i.e., a factorization X j

ÝÑ X
g
ÝÑ Y of f into an open immersion j followed by a proper morphism g

7



which exists by Nagata’s theorem (cf. [Con07]). One then extends F to X by zero outside of X to
get a sheaf j!F on X. Finally, one sets Rf!F :“ Rg˚pj!F q. Of course, one has to check that the
definition is independent of the compactification chosen and this is done in [SGA4 1

2
, Arcata, IV.5].

The functor f ! can be interpreted formally as a right adjoint to Rf!. That is, there is a natural
bijection

HomDb
cpY,Qlq

pRf!K
‚,L ‚q – HomDb

cpX,Qlq
pK ‚, f !L ‚q. (2.5.2)

RH omp´,´q and ´ bL ´ should be thought of as the derived sheaf-hom and derived tensor
product. We state the following "adjunction" relating them, even though we don’t need it later:

RH ompK ‚ bL L ‚,M ‚q – RH ompK ‚,RH ompL ‚,M ‚qq. (2.5.3)

As far as the actual constructions go, they follow the usual pattern that we have seen several
times already: first do the construction for Db

ctf pX, oiq, make sure it behaves well with respect to
´ bL

oi`1
oi and ´ bL

oi Oie so that you get a construction for Db
cpX, oq compatibly with passing to

a field extension, pass to Db
cpX,Eq, and finally put the constructions for each Db

cpX,Eq together
to get a desired construction for Db

cpX,Qlq. At the initial stage of Db
ctf pX, oiq you of course start

with the corresponding derived functor. The details, however, are intricate. For one thing, to get
started with, say, Rf˚ one has to prove that the derived functor Rf˚ : D`pX, oiq Ñ D`pY, oiq
sends Db

ctf pX, oiq to D
b
ctf pY, oiq. Part of what this is saying is that for a constructible sheaf F of

oi-modules all Rif˚F are constructible which is a nontrivial theorem in étale cohomology proved
by Deligne in [SGA4 1

2
, Th. finitude].

References where the constructions are carried out are [SGA4 1
2
, Th. finitude] where the "base cases"

are done and [KW01, II.7-10, Theorem II.12.2, Appendices A and D]. See also [Eke90] for a different
approach.

3. t-structures and perverse sheaves

3.1. Triangulated structure on Db
cpX,Qlq. We have seen in section 2.1 that the categories

Db
ctf pX, oiq are triangulated. We want to put their triangulated structures together to get a tri-

angulated structure on Db
cpX, oq. First of all, the shift functor p´qr1s will be defined by sending

K ‚ P Db
cpX, oq to K ‚r1s :“ pK ‚

i r1sqiě1. This is legitimate because the functors ´ bL
oi`1

oi used
to define structure morphisms of K ‚ are triangulated (being derived functors of additive functors)
and hence commute with shifts. Secondly, we declare the triangle K ‚ Ñ L ‚ Ñ M ‚ Ñ K ‚r1s to
be distinguished if all its constituents K ‚

i Ñ L ‚
i Ñ M ‚

i Ñ K ‚
i r1s, i ě 1 are distinguished.

Proposition 3.1.1. With these definitions Db
cpX, oq becomes a triangulated category.

Proof. The only nontrivial axioms to verify are extension of morphisms, existence of mapping cones
and the octahedral axiom. One has to use the finiteness condition discussed at the end of section 2.2.
Using it one proves that all morphism sets HomDb

ctf pX,oiq
pK ‚

i ,L
‚
i q are finite (cf. [KW01, Theorem

II.5.4]).

To see that every "morphism on two vertices"

K ‚ //

��

L ‚ //

��

M ‚ //

��

K ‚r1s

��

ĂK ‚ // ĂL ‚ // ĂM ‚ //// ĂK ‚r1s

8



extends to a morphism of triangles as depicted, one knows that at every level i there is a finite
nonempty set Si of possible extensions, so that one can simply pick an element of lim

ÐÝ
Si ‰ H to

get a desired extension. The argument for the octahedral axiom is completely analogous.

The existence of a cone for a morphism K ‚ Ñ L ‚ is seen by picking a cone M ‚
i at each level,

applying ´bL
oi`1

oi to the triangle on the pi`1qst level to obtain a triangle that maps to the triangle
on the ith level at two vertices, using the extension of morphisms to get φM

i on the third vertex and
invoking the five lemma for triangulated categories to conclude that φM

i is an isomorphism. �

The journey towards a triangulated structure on Db
cpX,Qlq now follows the familiar pattern. One

has a natural functor Db
cpX, oq Ñ Db

cpX,Eq which is identity on objects. Using it one declares a
triangle in Db

cpX,Eq to be distinguished if it is isomorphic to the image of a distinguished triangle
in Db

cpX, oq. Verification of the axioms is effortless because if needed one can multiply appropriate
morphisms by powers of π (multiplication by π is invertible by construction of Db

cpX,Eq) to reduce
to appropriate axioms for Db

cpX, oq.

For a finite extension F {E the functor TO{o : Db
cpX, oq Ñ Db

cpX,Oq was constructed in section 2.3
using triangulated functors ´bL

oi Oie and therefore is triangulated. Since TO{o is triangulated so is
TF {E .

Now we are ready to introduce the triangulated structure on Db
cpX,Qlq. The shift functor is defined

taking a representing object in some Db
cpX,Eq and applying the shift functor there; distinguished

triangles are those which can be represented by a distinguished triangle in some Db
cpX,Eq (and

hence in every F {E). The axioms are immediately verified by reducing them to the axioms for
some Db

cpX,F q because all transition functors TF {E are triangulated.

3.2. The standard t-structure. The standard t-structure on Db
cpX, oq is defined by the pair of

full subcategories
Dď0pX, oq “ tK ‚ P Db

cpX, oq |H
npK ‚q “ 0, n ą 0u,

Dě0pX, oq “ tK ‚ P Db
cpX, oq |H

npK ‚q “ 0, n ă 0u.

Note that this is in complete analogy with how the standard t-structure on the derived category
of an abelian category is defined in terms of vanishing of cohomology objects. By now the reader
will have guessed the following result. Before stating it we recall that the heart of a t-structure
pDď0, Dě0q on a triangulated category D is D♥ :“ Dď0 XDě0 and is an abelian category.

Theorem 3.2.1. The pair pDď0pX, oq, Dě0pX, oqq is a t-structure on Db
cpX, oq. By definition its

heart is
Db
cpX, oq

♥ “ tK ‚ P Db
cpX, oq |H

npK ‚q “ 0 for n ‰ 0u.

The functor H0p´q induces an equivalence of categories between the heart Db
cpX, oq

♥ and the abelian
category ShA-RpX, oq of A-R π-adic sheaves.

Proof. See [KW01, Theorem II.6.4]. �

The full subcategories Dď0pX,Eq, Dě0pX,Eq Ă Db
cpX,Eq are defined analogously and it follows

formally from the theorem above that they define the standard t-structure on Db
cpX,Eq:

‚ Dě1pX,Eq Ă Dě0pX,Eq andDď´1pX,Eq Ă Dď0pX,Eq is a matter of unwinding definitions.
9



‚ HompDď0pX,Eq, Dě1pX,Eqq “ 0 follows from the corresponding axiom for Db
cpX, oq: in-

deed, pick a morphism f which you want to show to be zero. It suffices to show that some
πnf “ 0. For big enough n this morphism will come from a morphism g in Db

cpX, oq.
The source (resp., target) of g has a property that its cohomology sheaves in degrees ą 0
(resp., ă 1) vanish in ShpX,Eq. Only finitely many of them are nonzero in ShA-RpX, oq
anyway ( 2.2.1), so the conclusion follows from the following proposition.

Proposition 3.2.2. A sheaf F P ShA-RpX, oq is zero in ShpX,Eq if and only if it is torsion
in the sense that πnF – 0 in ShA-RpX, oq for some n ě 0.

Proof. An object in a (pre)additive category is zero if and only if its identity morphism is
zero. The identity morphism of a sheaf F P ShA-RpX, oq becomes zero in ShpX,Eq if and
only if for some n ě 0 πn idF “ 0, i.e., if and only if the image of the map F

πn

ÝÑ F is zero.
This image, however, is πnF . �

‚ The existence of truncation triangles follows from the corresponding axiom for Db
cpX, oq

because the natural functor F : Db
cpX, oq Ñ Db

cpX,Eq is triangulated (see section 3.1) and
F pDď0pX, oqq Ă Dď0pX,Eq, F pDě1pX, oqq Ă Dě1pX,Eq (on cohomology if an o-sheaf is
zero then so is its corresponding E-sheaf).

3.2.1 also allows us to characterize the heart Db
cpX,Eq

♥:

Proposition 3.2.3. The functor H0p´q induces an equivalence of categories between the heart
Db
cpX,Eq

♥ of the standard t-structure on Db
cpX,Eq and ShpX,Eq.

Proof. There is a commutative (up to natural isomorphism) diagram of categories and functors

Db
cpX, oq

♥ H0p´q
//

��

ShpX, oq

��

Db
cpX,Eq

♥H
0p´q
// ShpX,Eq

The top arrow is an equivalence by 3.2.1. The effect of both vertical arrows is known: identity on
objects, ´bo E on morphisms, moreover, the right one is surjective. Therefore, it suffices to show
that the left arrow is essentially surjective. To do this pick an object downstairs, it comes from an
object upstairs (possibly not from the heart), multiply that object by a sufficiently high power of
π to get an object in the heart (cf. 3.2.2), at this point you have found a desired object upstairs
lifting the one that you’ve picked downstairs (up to isomorphism). �

The functors TF {E preserve t-structures because of (2.4.1). Therefore, it makes sense to define full
subcategories

Dď0pX,Qlq “ tK
‚ P Db

cpX,Qlq |H
npK ‚q “ 0, n ą 0u “ tL ‚ bQl |L

‚ b E P Dď0pX,Eq for some Eu,

Dě0pX,Qlq “ tK
‚ P Db

cpX,Qlq |H
npK ‚q “ 0, n ă 0u “ tL ‚ bQl |L

‚ b E P Dě0pX,Eq for some Eu.

At this point the following theorem will come to the reader as no surprise.

Theorem 3.2.4. pDď0pX,Qlq, D
ě0pX,Qlqq defines a t-structure on Db

cpX,Qlq called the standard
t-structure. H0p´q : Db

cpX,Qlq
♥ Ñ ShpX,Qlq is an equivalence of categories.
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Proof. Only the second assertion requires proof. But it follows from 3.2.3 because in the commu-
tative (up to natural isomorphisms) diagrams

Db
cpX,Eq

♥H
0p´q
//

TF {E
��

ShpX,Eq

SF {E

��

Db
cpX,F q

♥H
0p´q
// ShpX,F q

the horizontal arrows are equivalences. �

A t-structure pDď0, Dě0q on a triangulated category D defines truncation functors τďn, τěn (right,
resp., left adjoints to inclusions Dď0r´ns “ Dďn Ñ D, resp., Dě0r´ns “ Děn Ñ D). In the case
D “ Db

cpX,Qlq equipped with the standard t-structure those truncation functors will be denoted
simply τďn, τěn. For K ‚ P Db

cpX,Qlq we identify pτďnτěnK ‚qrns “ τď0τě0pK ‚rnsq with HnpK ‚q

(a legitimate thing to do due to 3.2.4) and observe that for each distinguished triangle

K ‚ Ñ L ‚ Ñ M ‚ Ñ K ‚r1s

in Db
cpX,Qlq the general theory of t-structures gives the corresponding long exact cohomology

sequence

¨ ¨ ¨ Ñ H´1pL ‚q Ñ H´1pM ‚q Ñ H0pK ‚q Ñ H0pL ‚q Ñ H0pM ‚q Ñ H1pK ‚q Ñ H1pL ‚q Ñ ¨ ¨ ¨

(3.2.5)

3.3. Duality. The adjunctions (2.5.1) and (2.5.2) admit "sheafified" versions analogous to (2.5.3).
We explicate the one relating Rf! and f !. The references for this section are the ones given at the
end of section 2.5.

Theorem 3.3.1 (Relative Poincaré duality). For a morphism f : X Ñ Y there is an isomorphism

RH ompRf!K
‚,L ‚q – Rf˚RH ompK ‚, f !L ‚q (3.3.2)

in Db
cpY,Qlq which is natural in K ‚ P Db

cpX,Qlq and L ‚ P Db
cpY,Qlq.

Proof. The proof follows the usual pattern but we will not give it here. The "base case" is [SGA4

III, Exposé XVIII, Proposition 3.1.10]. �

Let us illustrate with a computation why we are calling this relative Poincaré duality. Suppose that
Y “ Spec k where k is an algebraically closed field, for instance, k could be F. Suppose also for
simplicity that instead of Db

cpX,Qlq we are dealing with Db
cpX, oiq (and similarly for Y ). Then let

K ‚ “ F be a constructible sheaf F of oi-modules and set L ‚ “ oiY to be a constant sheaf on Y .
Under these assumptions let us compute the ith cohomology on both sides of (3.3.2). The left hand
side becomes

H ipRH ompRf!F , oiY qq – H ipHomoipRf!F , oiqq – HomoipH
´ipRf!F q, oiq “ pH

´i
c pX,F qqq,

where we have used that k is algebraically closed so that the category of sheaves of oi-modules on
Spec k is equivalent to the category of oi-modules and oi is an injective oi-module4, i.e., Homoip´, oiq

4To show this use the ideal criterion: let pπk
q Ă oi be an ideal, we need to see that every oi-homomorphism

h : pπk
q Ñ oi extends to oi. This will be the case once we know that hpπk

q is a multiple of πk. But it must be because
πi´khpπk

q “ 0.
11



is an exact functor. The cohomology with compact supports of F is by definition the cohomology
of Rf!F . Letting DF denote RH ompF , f !oiY q the right hand side becomes

H ipRf˚pDF qq “ H ipX,DF q.

We conclude that (3.3.2) is giving us an isomorphism

pH´ic pX,F qqq – H ipX,DF q,

which is of similar nature to Poincaré duality isomorphisms. In fact, if f is smooth and X is con-
nected and one works out what f !oiY is one recovers the Poincaré duality isomorphism encountered
in étale cohomology (after replacing i by i´ 2n; here n “ dimX).

Motivated by the computation let s : X Ñ Spec k be the structure morphism (k “ Fq or k “ F,
cf. section 0.3) and for K ‚ P Db

cpX,Qlq let us define DXK ‚ :“ RH ompK ‚, s!Qlq. Here Ql is a
constant sheaf which could be thought of as represented by the projective system of flat constant
sheaves concentrated in degree zero

!

Z{liZ
)

iě1
P Db

cpSpec k,Qlq. We call s!Ql P D
b
cpX,Qlq the

dualizing complex and DX : Db
cpX,Qlq

op Ñ Db
cpX,Qlq the dualizing functor or the duality functor.

The name is justified by the following:
Theorem 3.3.3. The canonical natural transformation Id Ñ DX ˝ DX is an isomorphism of func-
tors. In particular, DX : Db

cpX,Qlq
op Ñ Db

cpX,Qlq is an equivalence of categories.

Proof. See [KW01, II.10]. �

Suppose f : X Ñ Y is a morphism of k-schemes. The following lemma shows that with this notion
of duality the functors Rf˚ and Rf! as well as f˚ and f ! are dual to each other.
Lemma 3.3.4. There are the following natural isomorphisms of functors

1. DY ˝Rf! – Rf˚ ˝ DX , or equivalently Rf! ˝ DX – DY ˝Rf˚;

2. DX ˝ f ! – f˚ ˝ DY , or equivalently f ! ˝ DY – DX ˝ f˚.

Proof. The equivalence in both cases follows from 3.3.3. Let us first show 2. assuming 1. is known.
By uniqueness of adjoints it suffices to show that DX ˝ f ! ˝ DY is left adjoint to Rf˚. This is
demonstrated observing the following natural bijections:

HomDb
cpX,Qlq

pDXpf !pDY pK ‚qqq,L ‚q – HomDb
cpX,Qlq

pDXpf !pDY pK ‚qqq,DXpDXpL ‚qqq

– HomDb
cpX,Qlq

pDXpL ‚q, f !pDY pK ‚qqq

– HomDb
cpY,Qlq

pRf!pDXpL ‚qq,DY pK ‚qq

– HomDb
cpY,Qlq

pDY pRf˚pL ‚qq,DY pK ‚qq

– HomDb
cpY,Qlq

pK ‚,Rf˚pL
‚qq.

To show 1. we let t : Y Ñ Spec k be the structure morphism of Y (recall that s is the structure
morphism of X) and note that s! – f ! ˝ t! because both are right adjoint to Rs! – Rt! ˝ Rf!
(this natural isomorphism is a by-product of the construction of Rf! which we haven’t carried out
and the corresponding identity in the "base case"). Put L ‚ “ t!Ql in (3.3.2) to get the natural
isomorphisms

DY pRf!K ‚q – RH ompRf!K
‚, t!Qlq – Rf˚RH ompK ‚, f !pt!pQlqqq

– Rf˚RH ompK ‚, s!pQlqq – Rf˚pDXpK ‚qq.

This is the desired DY ˝Rf! – Rf˚ ˝ DX . �
12



3.4. Perverse sheaves. In section 3.2 we have defined the standard t-structure onDb
cpX,Qlq which

gave rise to cohomology functors Hnp´q : Db
cpX,Qlq Ñ ShpX,Qlq (recall 3.2.4). There is another

t-structure ppDď0pXq, pDě0pXqq on Db
cpX,Qlq which gives rise to different cohomology functors

and has an advantage of being self-dual in the sense that K ‚ P pDď0pXq (resp., K ‚ P pDě0pXq) if
and only if DXpK ‚q P pDě0pXq (resp., DXpK ‚q P pDď0pXq). It is called the perverse t-structure
and is described as follows:

pDď0pXq “ tK ‚ P Db
cpX,Qlq | dim suppH´ipK ‚q ď i, for all i P Zu,

pDě0pXq “ tK ‚ P Db
cpX,Qlq | dim suppH´ipDXpK ‚qq ď i, for all i P Zu.

Here by supp F we mean the support of the Ql-sheaf F which is defined as follows: for each
geometric point j : x Ñ X consider j˚F P Shpx,Qlq. This makes sense because j˚ is an exact
functor so it induces a functor from (A-R) π-adic sheaves on X to (A-R) π-adic sheaves on x and
hence a functor j˚ : ShpX,Qlq Ñ Shpx,Qlq because pull-back commutes with tensor products. Now
supp F is the closure of the set of all jpxq for which j˚F ‰ 0.

Theorem 3.4.1. With the definitions above ppDď0pXq, pDě0pXqq defines a t-structure on Db
cpX,Qlq.

Proof. The proof is not very complicated but we won’t give it here. The main ingredient is the
glueing lemma which says that given an open embedding j : U Ñ X with closed complement
i : Y Ñ X and t-structures on Db

cpU,Qlq and Db
cpY,Qlq they can be "glued" to give a t-structure

on Db
cpX,Qlq. More precisely, this t-structure is defined by

Dď0pXq :“ tK ‚ P Db
cpX,Qlq | j

˚K ‚ P Dď0pUq, i˚K ‚ P Dď0pY qu,

Dě0pXq :“ tK ‚ P Db
cpX,Qlq | j

˚K ‚ P Dě0pUq, i!K ‚ P Dě0pY qu.

Here pDď0pUq, Dě0pUqq and pDď0pY q, Dě0pY qq are the given t-structures on U and Y , respectively.
The glueing lemma can be used to reduce to the case where X Ñ Spec k is smooth in which case
the perverse t-structure is closely related to the standard t-structure. For the full argument see
[KW01, III.2-3]. �

The claimed self-duality of the perverse t-structure is immediate from the definition and 3.3.3. We
will denote Db

cpX,Qlq by pDb
cpX,Qlq when we think about it as being equipped with the perverse

t-structure and we will denote by pτďn, pτěn the corresponding truncation functors.

The heart of the perverse t-structure is the abelian category PervpXq :“ pDb
cpX,Qlq

♥ “ pDď0pXqX
pDě0pXq, the category of perverse sheaves on X. Note, however, that in general a perverse sheaf
(an object of PervpXq) is not a sheaf but rather a complex of sheaves. The resulting cohomology
functors

pHn “ pτďn
pτěnpp´qrnsq :

pDb
cpX,Qlq Ñ PervpXq

for each distinguished triangle
K ‚ Ñ L ‚ Ñ M ‚ Ñ K ‚r1s

in Db
cpX,Qlq give the corresponding long exact perverse cohomology sequence

¨ ¨ ¨ Ñ pH´1pL ‚q Ñ pH´1pM ‚q Ñ pH0pK ‚q Ñ pH0pL ‚q Ñ pH0pM ‚q Ñ pH1pK ‚q Ñ pH1pL ‚q Ñ ¨ ¨ ¨

in PervpXq.

4. Weights

From now on we will let X0 (or Y0, etc.) denote a finite type separated scheme over Fq.
13



4.1. The Frobenius automorphism. For a finite field Fq with an algebraic closure F the geometric
Frobenius automorphism is F P GalpF{Fqq such that F´1psq “ sq for s P F. As F is a topological
generator for the profinite group GalpF{Fqq the fixed field of F is Fq.

Let |X0| denote the set of closed points of X0. For x P |X0| the residue field kpxq of x is a finite
extension of Fq of order Npxq :“ #kpxq and we let j : SpecF “ xÑ X0 be a geometric point over
x. We let Fx P GalpF{kpxqq be the geometric Frobenius of kpxq.

Suppose F P ShpX0,Qlq. When we discussed supp F in section 3.4 we have observed that j˚F P

Shpx,Qlq makes sense. If we think of j˚F as being represented by a π-adic sheaf in Shpx, oq then
the stalk of F at x is the finite dimensional (because we are dealing with constructible sheaves)
Ql-vector space Fx :“ j˚F bo Ql. It is defind up to isomorphism and does not depend on o that
was used. The geometric Frobenius Fx induces an automorphism of x which fixes the morphism
x Ñ Spec kpxq induced by j. It therefore acts Ql-linearly on the stalk Fx and since we set F to
be a fixed algebraic closure of Fq this action only depends on x (there is a unique choice for j). In
particular, the eigenvalues of Fx are well-defined and they will play a major role in the sequel.

4.2. Purity and mixedness. Fix an isomorphism ι : Ql – C (algebraically closed fields are classi-
fied by characteristic and cardinality). When we talk of an absolute value of y P Ql we always mean
|ιy| where |¨| is the usual absolute value on C. A Ql-sheaf F on X0 is called ι-pure of weight β if
for each x P |X0| all eigenvalues α of Fx acting on the stalk Fx have absolute value |ια| “ Npxqβ{2

(note that α ‰ 0 as Fx is invertible). A Ql-sheaf F is called ι-mixed if it admits a finite filtration
0 “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fk “ F whose associated graded pieces Fj{Fj´1, 1 ď j ď k are ι-pure of
weights βj . The βj corresponding to nonzero quotients Fj{Fj´1 are called the (ι-)weights5 of F .
This definition is independent of the chosen filtration as the following proposition shows.

Proposition 4.2.1. The weights of a ι-mixed sheaf F are

Wx :“ t2 logNpxq |ια| : α is an eigenvalue of Fxu

for any x P |X0|.

Proof. Let j : x Ñ X0 be a geometric point over x as in section 4.1. Then a filtration 0 “ F0 Ă

F1 Ă ¨ ¨ ¨ Ă Fk “ F as above induces a filtration

0 “ pF0qx Ă pF1qx Ă ¨ ¨ ¨ Ă pFkqx “ Fx

of Ql-vector spaces because ´bo Ql is exact as well as j˚ (the latter can be seen using the second
part of 1.2.1 because the pullback of ordinary sheaves is exact and commutes with shifts p´qrns).
This filtration is stable under the action of Fx and therefore the set of eigenvalues of Fx acting
on Fx is the union of the eigenvalues of induced actions on pFjqx{pFj´1qx – pFj{Fj´1qx. This
gives the desired claim because the eigenvalues of Fx acting on pFj{Fj´1qx are all of absolute value
Npxqβj{2 because Fj{Fj´1 is ι-pure of weight βj . �

Proposition 4.2.2. ι-pure sheaves of weight β and ι-mixed sheaves on X0 are stable under subob-
jects, quotients and extensions. In particular, both span abelian subcategories of ShpX0,Qlq.

5We have resisted the temptation of dropping all the ι’s and talking of pure or mixed (instead of ι-pure or ι-mixed)
sheaves instead only because in the literature this means something else. Namely, one speaks of a pure (resp., mixed)
sheaf when it is ι-pure (resp., ι-mixed) for all isomorphisms ι : Ql

„
ÝÑ C. Even though we never use this other notion

(we might as well fix an isomorphism once and forget about it) we have decided to keep the ι’s fearing to be confusing
otherwise. However, when talking of ι-weights we usually drop the ι if it is clear that we are talking about ι-weights
of a ι-pure or a ι-mixed sheaf.
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Proof. Both subcategories contain the zero sheaf which is ι-pure of every weight and ι-mixed with
an empty set of weights. Taking stalks is exact (see the proof of 4.2.1), so subobjects, quotients
and extensions of ι-pure sheaves of weight β are ι-pure of weight β. This shows the claim for ι-pure
sheaves of weight β.

Fixing a filtration of a ι-mixed sheaf and looking at the stalks, the stability of ι-mixedness under
taking subobjects follows from the following triviality from linear algebra: suppose you have sub-
spaces V1 Ă V2 of a vector space V and another subspace W Ă V so that V1, V2,W are all stable
under a linear operator T : V Ñ V , then the natural map V2 XW {V1 XW Ñ V2{V1 is injective
and compatible with the endomorphisms induced by T . In a similar vein, stability of ι-mixedness
under quotients can be reduced to the natural map V2{V1 Ñ pV2 `W q{pV1 `W q being surjective
and compatible with the endomorphisms induced by T (if Fi are the pieces of a filtration for F we
take pFi ` G q{G for the pieces of a filtration for F {G ). Stability of ι-mixedness under extensions
is trivial because one can simply combine the filtrations for the subobject and the quotient to get
a desired filtration for the extension. �

A priori there is no reason to expect for the weights of a ι-pure (hence also of a ι-mixed) sheaf F
to be integers. The following remarkable theorem of Deligne says (among other things) that in the
case when they are integers and F is ι-mixed and smooth (see below) it admits a particularly nice
filtration. Before stating it let us define an A-R π-adic sheaf to be smooth if it is isomorphic in the
A-R category to a π-adic sheaf F for which all the Fi are locally constant.

Theorem 4.2.3 (Deligne). Let F be a ι-mixed sheaf on X0.

1. There is a direct sum decomposition

F –
à

bPR{Z
F pbq

in which each F pbq is ι-mixed and has all its weights in b. This decomposition is functorial
and all but finitely many F pbq are zero.

2. If moreover all the weights of F are integers and F is smooth then F has a unique finite
(Fi “ 0 for i small enough, Fj “ F for j big enough) filtration

¨ ¨ ¨ Ă Fi´1 Ă Fi Ă Fi`1 Ă ¨ ¨ ¨ Ă F

where each Fi{Fi´1 is ι-pure of weight i and all Fi are smooth subsheaves of F . This
filtration is called the weight filtration and is functorial in F .

Proof. See [Del80, Théorème 3.4.1]. �

4.3. Weights and perverse sheaves. An element K ‚ of Db
cpX0,Qlq is called ι-mixed if all its

cohomology sheaves HnpK ‚q are ι-mixed. We consider the full subcategory

DmpX0q :“ tK ‚ P Db
cpX0,Qlq |K

‚ is ι-mixedu

spanned by the ι-mixed complexes. It is a triangulated subcategory of Db
cpX,Qlq: indeed, it is an

additive subcategory closed under shifts so to see that the cone construction can be done within
DmpX0q it is sufficient to check that if two vertices of a triangle are ι-mixed then so is the third;
this follows from the associated long exact cohomology sequence (3.2.5) and 4.2.2.

Proposition 4.3.1. Suppose f : X0 Ñ Y0 is a morphism. Then the operations Rf!,Rf˚, f˚, f !,bL,D
preserve ι-mixedness.
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Proof. The claim for f˚ is easy because pullback is exact, commutes with tensor products, and
preserves flatness, so that one can show6 that the claim for f˚ boils down to showing that f˚F is
ι-mixed if F P ShpY0,Qlq is ι-mixed. This is clear because the stalk of f˚Fj{f

˚Fj´1 at a geometric
point j is the stalk of Fj{Fj´1 at the geometric point f ˝ j.

Given we know the claim for D Lemma 3.3.4 then yields the conclusion for f ! – DX0 ˝ f
˚ ˝ DY0 .

The other parts are much harder. For one thing, the claim thatRf! preserves ι-mixedness is deduced
from Deligne’s generalization of the Riemann hypothesis part of the Weil conjectures in [Del80]. The
full argument can be found in [KW01, Theorem II.12.2]. �

Proposition 4.3.2. The perverse truncation operators pτďn, pτěn preserve ι-mixedness, i.e., pτďnK ‚,
pτěnK ‚ P DmpX0q if K ‚ P DmpX0q.

Proof. We will not give the proof here, see [KW01, Lemma III.3.2]. The main ingredient is the
glueing lemma described in the proof of 3.4.1. �

In the view of the preceding proposition and 3.4.1 we see that the perverse t-structure onDb
cpX0,Qlq

gives rise to a t-structure on DmpX0q given by ppDď0pX0q X DmpX0q,
pDě0pX0q X DmpX0qq. Its

heart pDmpX0q
♥ “ DmpX0q X PervpX0q is the abelian category of ι-mixed perverse sheaves.

For a ι-mixed sheaf F P ShpX0,Qlq let wpF q denote its maximal weight, or 8 if the set of
weights of F is empty. For a ι-mixed complex K ‚ P DmpX0q we define the weight of K ‚ to be
wpK ‚q :“ maxnpwpH

npK ‚qq ´ nq (recall that only finitely many HnpK ‚q can be nonzero). For
any real number β this allows to define two full subcategories of DmpX0q:

DďβpX0q “ tK
‚ P DmpX0q |wpK

‚q ď βu,

DěβpX0q “ tK
‚ P DmpX0q |wpDX0pK

‚qq ď ´βu

The complexes in DďβpX0q XDěβpX0q are called ι-pure of weight β.

We conclude these notes with the following theorem which in the spirit of 4.2.3 claims the existence
of a weight filtration in the setting of perverse sheaves.

Theorem 4.3.3. Let P P PervpX0qXDmpX0q be a ι-mixed perverse sheaf on X0. There is a finite
weight filtration of P

0 “ P0 Ă P1 Ă ¨ ¨ ¨ Ă Pk “ P

by perverse sheaves Pi P PervpX0q whose graded pieces Pi{Pi´1 are ι-pure of weight βi. Here the
weights βi satisfy βi ă βj for i ă j and the nonzero graded pieces Pi{Pi´1 are uniquely determined.
The weight filtration is functorial in the sense that given any map f : P Ñ R one can refine the
weight filtrations of P and R by inserting finitely many degenerate pieces (so that nonzero graded
pieces do not change) to make f respect the refined filtrations.

Proof. See [BBD, Théorème 5.3.5] or [KW01, III.9 Lemma III]. �

Among other things the previous theorem is saying that a simple (having no proper subobjects)
ι-mixed perverse sheaf on X0 is ι-pure.

6We don’t have means to show this, however, because we haven’t constructed the truncation operators τďn, τěn

explicitly and therefore don’t have a handle on how taking cohomology interacts with f˚.
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