
MACAULAYFICATION OF NOETHERIAN SCHEMES

KĘSTUTIS ČESNAVIČIUS

Abstract. To reduce to resolving Cohen–Macaulay singularities, Faltings initiated the program of
“Macaulayfying” a given Noetherian scheme X. For a wide class of X, Kawasaki built the sought
Cohen–Macaulay modifications, with a crucial drawback that his blowing ups did not preserve
the locus CMpXq Ă X where X is already Cohen–Macaulay. We extend Kawasaki’s methods to
show that every quasi-excellent, Noetherian scheme X has a Cohen–Macaulay rX with a proper
map rX Ñ X that is an isomorphism over CMpXq. This completes Faltings’ program, reduces the
conjectural resolution of singularities to the Cohen–Macaulay case, and implies that every proper,
smooth scheme over a number field has a proper, flat, Cohen–Macaulay model over the ring of
integers.
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1. Macaulayfication as a weak form of resolution of singularities

The resolution of singularities, in Grothendieck’s formulation, predicts the following.

Conjecture 1.1. For a quasi-excellent,1 reduced, Noetherian scheme X, there are a regular scheme
rX and a proper morphism π : rX Ñ X that is an isomorphism over the regular locus RegpXq of X.
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1We recall from [EGA IV2, 7.8.2, 7.8.5] and [ILO14, I.2.10, I.7.1] that a scheme X is quasi-excellent if it is locally

Noetherian, for each x P X the geometric fibers of the map

Specp pOX, xq Ñ SpecpOX, xq

are regular (the fibers of this map are the formal fibers of X at x), and every integral X-scheme X 1 that is finite
over some affine open of X has a nonempty regular open subscheme U 1 Ă X 1. For such an X, the subset RegpXq of
the points x P X for which the local ring OX, x is regular is open. A quasi-excellent X is excellent if it is universally
catenary (see §2.1).
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The conjecture is interesting even without requiring π|π´1pRegpXqq to be an isomorphism, but this
condition is natural: for instance, if one wishes to find a proper and regular integral model of a
proper and smooth scheme Y over a number field, one does not want to have to modify Y .

When X is a Q-scheme Conjecture 1.1 is known by Temkin’s [Tem08, Thm. 1.1], which builds on
Hironaka’s work [Hir64] in a slightly more restrictive setting (such a generalization of op. cit. was
claimed in [EGA IV2, 7.9.6]). When X is of positive or mixed characteristic, the conjecture is open
apart from low dimensional cases and variants, such as alterations [dJ96]. In general, one may reduce
Conjecture 1.1 to the case when X is excellent and locally equidimensional, see Proposition 2.7.

It is natural to approach resolution of singularities by trying to gradually improve X: for instance, as
initiated by Faltings [Fal78], one may seek a weaker version of Conjecture 1.1 in which the regularity
of rX is weakened to Cohen–Macaulayness. It seems difficult to achieve this with the Hironaka style
methods based on blowing up regular centers: for example, to Macaulayfy a Buchsbaum singularity
in any characteristic one blows up the possibly nonreduced ideal generated by a system of parameters.

The main purpose of the present article is to establish the variant proposed by Faltings, and hence
to reduce the resolution of singularities to the Cohen–Macaulay case (for previous work on this, see
§1.12). In fact, for this, quasi-excellence, whose definition is modeled on regularity, is unnaturally
restrictive. We will replace it by the following weaker CM-quasi-excellence requirement.

Definition 1.2. A scheme X is CM-quasi-excellent if it is locally Noetherian and such that

(1) the formal fibers of the local rings of X are Cohen–Macaulay;

(2) every integral, closed subscheme X 1 Ă X has a nonempty, Cohen–Macaulay open subscheme;

a CM-quasi-excellent X is CM-excellent if, in addition, it is universally catenary.

CM-quasi-excellence (even (2) alone) implies the openness of the Cohen–Macaulay locus CMpXq
(see §2.8).

Example 1.3. Every quasi-excellent scheme is CM-quasi-excellent, and similarly for excellence. In
contrast to the existence of nonexcellent discrete valuation rings caused by the possible nonseparability
of the field extension obtained by completing the fraction field, every Dedekind scheme, that is, a
Noetherian normal scheme of dimension ď 1, is CM-excellent.

Remark 1.4. In fact, every Cohen–Macaulay scheme is CM-excellent. More generally, if a locally
Noetherian scheme X is quasi-Cohen–Macaulay in the sense that it has a coherent Cohen–Macaulay
OX -module M with SupppM q “ X, then any closed subscheme of X is CM-excellent: [EGA IV2,
6.3.8 and 6.11.9 (ii)] ensure (1) and (2), whereas the universal catenarity follows from the proof of
[EGA IV2, 6.3.7] that continues to work in the quasi-Cohen–Macaulay case.

Remark 1.5. If X is CM-quasi-excellent, then so is every localization of a locally finite type
X-scheme thanks to [EGA IV2, 7.4.4 (with 7.3.8)] for (1) and [EGA IV2, 6.11.9 (i)] for (2).

Our main result is the promised Cohen–Macaulay version of Conjecture 1.1:

Theorem 1.6 (Theorem 5.3, Remark 5.4). For every CM-quasi-excellent, Noetherian scheme X,
there are a Cohen–Macaulay scheme rX and a birational, projective morphism

π : rX Ñ X

that is an isomorphism over the Cohen–Macaulay locus CMpXq Ă X.
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Remark 1.7. For any fixed closed subscheme Z Ă X whose support is XzCMpXq, we may arrange
that, in addition, the (scheme-theoretic) preimage of Z in rX be a divisor (with support rXzCMpXq).
Indeed, since π is birational and rX has no embedded associated primes, the preimage of any divisor
in X is a divisor in rX, so it suffices to apply Theorem 1.6 with BlZpXq in place of X.

Theorem 1.6 is sharp in the sense that if each integral, closed subscheme of a locally Noetherian
scheme X admits a Macaulayfication, then X must be CM-quasi-excellent, see Proposition 5.5.

Since CM-quasi-excellence is weaker than quasi-excellence, Theorem 1.6 is new even for Q-schemes.
Nevertheless, it is of most interest in positive and mixed characteristic. For instance, it implies the
existence of proper, flat, Cohen–Macaulay integral models over rings of integers of number fields:

Corollary 1.8. For every integral Dedekind scheme S with the function field K and every proper,
Cohen–Macaulay K-scheme X, there is a proper, flat, Cohen–Macaulay S-scheme X with XK » X.
If X is projective over K, then one may choose X to be projective over S.

Since S is CM-excellent (see Example 1.3), Corollary 1.8 follows by applying Theorem 1.6 to the
schematic image X0 of X in a Nagata compactification over S (to use the Nagata compactification
[Del10, 1.6], one first spreads out X): indeed, since X0 has X as the K-fiber and is S-flat, so is the
resulting X ; for the projective aspect, one instead forms the schematic image in a projective space.

Remark 1.9. If X in Corollary 1.8 comes equipped with a finite family of coherent Cohen–Macaulay
modules (for instance, vector bundles), then, by using the finer version of Theorem 1.6 stated in
Theorem 5.3, one may arrange that, in addition, they extend to Cohen–Macaulay modules on X .

Another basic consequence of Theorem 1.6 (and Remark 1.4) is the following principalization result:

Corollary 1.10. For every Noetherian, Cohen–Macaulay scheme X and every closed subscheme
Z Ă X, there are a Cohen–Macaulay scheme rX and a projective morphism rX Ñ X such that the
(scheme-theoretic) preimage of Z in rX is a divisor and rX Ñ X is an isomorphism over the maximal
open subscheme U Ă X on which Z is already a divisor.

To obtain Corollary 1.10, one first notes that both X and BlZpXq are CM-excellent and locally
equidimensional (see Lemma 2.3 (b)), the map BlZpXq Ñ X is an isomorphism over U , and the
preimage of Z in BlZpXq is a divisor. One then applies Theorem 1.6 (in its more precise form 5.3)
to BlZpXq to obtain a Macaulayfying blowing up rX Ñ BlZpXq that is an isomorphism over U . The
preimage of Z in rX is locally principal and, as is checked away from the exceptional divisor of
rX Ñ BlZpXq, is a divisor.

By combining the Nagata compactification with Theorem 1.6 and Corollary 1.10, we obtain the
following consequence that concerns the existence of Cohen–Macaulay compactifications.

Corollary 1.11. For every CM-quasi-excellent Noetherian scheme S and every finite type, separated
S-scheme X that is Cohen–Macaulay, there is an open S-immersion X ãÑ X into a proper S-scheme
X that is Cohen–Macaulay such that XzX is a (possibly nonreduced) divisor in X.

1.12. Previous work on Macaulayfication. The key novelty of Theorem 1.6 is that its Macaulayfi-
cation map preserves the Cohen–Macaulay locus ofX as is crucial for the corollaries above. Previously
this has only been achieved in cases when the non-Cohen–Macaulay locus

XzCMpXq
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is a disjoint union of points, see [Fal78, Satz 2] and [Bro83a, §6.C], a situation intimately related to the
study of generalized Cohen–Macaulay rings (such as Buchsbaum rings) and of their Macaulayfications,
see [Got82, 1.1] and [Sch83, 4.2]. Without this isomorphy condition over CMpXq and under
suitable additional assumptions, birational Macaulayfications were constructed in [Fal78, Satz 3] and
[Bro83b, 1.1, 1.2] when dimpXzCMpXqq ď 1, in [Kaw98, 1.1] when dimpXzCMpXqq ď 2, and in
[Kaw00, 1.1] with complements in [Kaw02, 1.1] and [Kaw08, 1.2] when dimpXzCMpXqq is arbitrary;
another method, based on the idea of de Jong’s alterations, was exhibited in [Hon04, §4.1] (see also
[Hei14]). Macaulayfication of coherent modules was explored in [Mor99].

1.13. The inductive method. Our technique extends that of Kawasaki used in [Kaw00], which in
turn builds on the one of Faltings used in [Fal78]. After an initial reduction to locally equidimensional
schemes based on an inductive construction of an “(S2)-ificaiton,” we use Noetherian induction to
reduce to Macaulayfying a projective X-scheme Y Ñ X in the case when X is the spectrum of
a complete, Noetherian, local ring and x P X is the closed point. By induction, Y zYx is already
Cohen–Macaulay, and we need to find a Macaulayfying blowing up with the center contained in a
thickening of Yx. For this, it is key to allow the center to meet CMpY q X Yx: for instance, to resolve
Yx itself, we would choose a Kawasaki-style center constructed from well-chosen hypersurfaces that
cut out a Cohen–Macaulay global complete intersection in Yx. Since instead we need to resolve Y ,
we first make a preliminary blowing up to make Yx Ă Y into a divisor; we then choose hypersurfaces
on Y whose restrictions to Yx are like in Kawasaki’s method. The key trick is to complement these
with a large power of the ideal IYx considered as an additional hypersurface, and then to build a
Kawasaki-style center from this larger collection. This is legitimate because IYx is locally principal
and Cohen–Macaulayness is also local. By regarding the power of IYx as the “first” hypersurface in
the collection, we can keep the constructed center disjoint from Y zYx.

1.14. Notation and conventions. For a coherent module M on a locally Noetherian scheme X,
its support is the closed subscheme SupppM q Ă X cut out by the annihilator ideal AnnOX

pM q Ă OX

(the latter is coherent because M is finitely generated). For n P Z, such an M is (Sn) if

depthOx
pMxq ě minpn, dimpSupppMxqqq for all x P X

(we recall from [EGA IV1, 0.14.1.2] that dimpHq “ ´8). For instance, M is (S1) if and only if it
has no embedded associated primes (see [EGA IV2, 5.7.5]). Moreover, M is Cohen–Macaulay if it is
(Sn) for every n, that is, if

depthOx
pMxq “ dimpSupppMxqq for all x P X.

A scheme X is (Sn) or Cohen–Macaulay if it is locally Noetherian and OX has the respective property
as an OX -module. We let |X| denote the underlying topological space of a scheme X.

For a scheme X, the height of an x P X is the dimension of the stalk dimpOX,xq; the coheight of x
is the dimension of the closure txu Ă X. We denote the subset of points of height i by Xpiq. The
codimension of a closed subscheme Y Ă X is the infimum of the heights of points of X that lie on Y
(compare with [EGA IV2, 5.1.3]). We denote the X-scheme obtained by blowing up Y by BlY pXq;
for the quasi-coherent ideal I Ă OX that cuts out Y , we also write BlI pXq for BlY pXq. We freely
use that BlY pXq has a universal property (see [SP, 0806]), commutes with flat base change in X
(see [SP, 0805]), and is projective over X when I is of finite type (see [EGA II, 5.5.2]).

For a module M over a commutative ring R and an ideal r Ă R, we write Mxry for the r-torsion
submodule. We write Mxr8y for

Ť

ną0Mxr
ny and simply Mxry, etc. when r “ prq is principal. For

a submodule M 1 ĂM , we use the colon notation M 1 :M r to denote the preimage of pM{M 1qxry in
M . If R is local and Noetherian, we let pR denote its completion with respect to the maximal ideal.
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2. (S2)-ification of coherent modules

The principal goal of this section is to reduce our search of a Macaulayfication to the case of locally
equidimensional and CM-excellent (in particular, universally catenary) schemes, a case to which we
will extend Kawasaki’s approach in §4. This is a natural, even if not an entirely canonical, initial
reduction because every Cohen–Macaulay (or even quasi-Cohen–Macaulay) scheme satisfies these
conditions (see [EGA IV1, 0.16.5.4] and Remark 1.4). For the resolution of singularities conjecture
1.1, the corresponding reduction is simpler, so our first goal is to explain it in Proposition 2.7.

2.1. Catenarity. We recall from [EGA IV2, 5.6.3 (ii)] that a scheme X is universally catenary if
it is locally Noetherian and every scheme X 1 that is locally of finite type over X is catenary in
the sense that any two saturated chains of specializations of points of X 1 with the same endpoints
have the same length (any such chain is contained in every affine open of X 1 that contains the
endpoint of larger height). We already mentioned in Remark 1.4 that every closed subscheme of
a quasi-Cohen–Macaulay scheme, is universally catenary. This implies, in particular, that every
complete, Noetherian, local ring is universally catenary.

2.2. Equidimensionality. We say that a scheme X is locally equidimensional if it is locally
Noetherian and each of its local rings OX,x is equidimensional in the sense that all the irreducible
components of SpecpOX,xq have the same dimension. Moreover, similarly to [EGA IV2, 7.1.1], we
say that a scheme X is formally equidimensional (or quasi-unmixed in other terminology) if it is
locally Noetherian and the completion pOX,x is equidimensional for every x P X. We recall from
[HIO88, 18.17] that, by a result of Ratliff, a locally Noetherian scheme X is formally equidimensional
if and only if it is locally equidimensional and universally catenary.

The principal advantage of formal equidimensionality for the purpose of improving singularities is its
pleasant interaction with blowing up. We now review this critical ingredient to our arguments.

Lemma 2.3. Let X be a formally equidimensional scheme and let I Ă OX be a coherent ideal.

(a) If I is locally principal of height ą 0, then SpecpOX{I q is formally equidimensional.

(b) The blowing up BlI pXq is formally equidimensional.

Proof. Part (a) is a special case of [HIO88, 18.20]. Alternatively: the maximal saturated chains
of primes of pOX,x all have the same length, the completion of the local ring at x P SpecpOX{I q

is pOX,x{Ix
pOX,x, and, by [EGA IV2, 2.3.4], the principal ideal Ix

pOX,x Ă
pOX,x either vanishes

or any minimal prime containing it has height 1, so the maximal saturated chains of primes of
pOX,x{Ix

pOX,x also all have the same length. Part (b) follows from [HIO88, 18.26]. �

The following standard lemma will be useful for us on several occasions.
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Lemma 2.4. For a Noetherian, local ring R with (Sn) formal fibers and an R-scheme X such that
both X and X

pR
are locally Noetherian, a coherent OX-module M is (Sn) if and only if 2 so is M |X

pR
.

Proof. Each fiber of the flat map X
pR
Ñ X is the base changes of a fiber of Specp pRq Ñ SpecpRq to a

possibly larger field, and hence is (Sn). Thus, the claim is a special case of [EGA IV2, 6.4.2]. �

Thanks to the result of Ratliff reviewed in §2.2, the following lemma is a useful source of catenarity.

Lemma 2.5. An (S2) scheme whose local rings have (S2) formal fibers is formally equidimensional.

Proof. By Lemma 2.4, the completions of the local rings are (S2). By §2.1, they are also catenary.
Thus, [EGA IV2, 5.10.9] implies that these completions are equidimensional. �

Remark 2.6. The assumption on the formal fibers cannot be dropped in Lemma 2.5: indeed,
Noetherian, noncatenary, normal, local domains exist by [Ogo80, Appendix] or [Hei82].

We are ready for the reduction of Conjecture 1.1 to the excellent and locally equidimensional case.

Proposition 2.7. For a quasi-excellent, reduced scheme X, the normalization morphism rX Ñ X is
a finite map that is an isomorphism over RegpXq, and rX is excellent and formally equidimensional.

Proof. The X-finiteness of rX is a minor improvement to [EGA IV2, 7.8.6 (ii)], which was written
for excellent X (see [ILO14, I, §6] for a stronger such improvement). To obtain it, we first note that
the Nagata criterion [EGA IV2, 7.7.3] ensures that the coordinate rings of the affine opens of X are
universally Japanese and then apply the definition of the normalization [EGA II, 6.3.4, 6.3.8]. Since
rX inherits quasi-excellence, Lemma 2.5 implies its formal equidimensionality, and so excellence. �

For the analogous reduction of the Macaulayfication problem to the CM-excellent case, the prin-
cipal complication is the absence of a canonical “(S2)-ification” morphism that would replace the
normalization (for instance, [Bro86, 3.9–3.11] confirms such absence). Indeed, even for (S1) schemes,
the naive approach of pushing forward the structure sheaf from the open (S2) locus does not work
because such pushforward may fail to be coherent: this happens, for instance, in the case of a
2-dimensional, Noetherian, local ring that has an irreducible component of dimension 1. We will
build a noncanonical (S2)-ification in Corollary 2.14 after the following preparations.

2.8. Openness of the (Sn)-loci. For a locally Noetherian scheme X and a coherent OX -module
M , the subset

UpS1qpM q Ă X

of points at which the stalk of M is (S1) is open: indeed, the restriction of UpS1qpM q to any affine
open of X is the complement of the union of the closed subschemes cut out by the embedded
associated primes of M (see [EGA IV2, 6.11.7 (i) and its proof]). In contrast, the subset

UpSnqpM q Ă X

of points at which the stalk of M is (Sn) need not be open for n ą 1, see [FR70, 3.5] (which answered
the question raised in [EGA IV2, 6.11.9 (ii)]). However, [EGA IV2, 6.11.6] ensures that UpSnqpM q is
open in X for every M if every integral, closed subscheme X 1 Ă X has a nonempty open subscheme

2Even though the ‘if’ direction does not require the assumption on the formal fibers (see [EGA IV2, 6.4.1 (i)]), the
‘only if’ does even when n “ 1: indeed, [FR70, 3.3] (which answered a question raised in [EGA IV2, 6.4.3]) exhibited a
2-dimensional Noetherian local ring that is (S1) (even a domain) whose completion is not (S1).
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that is (Sn), for instance, if X is CM-quasi-excellent. Similarly, [EGA IV2, 6.11.8] ensures that the
subset

CMpM q Ă X

of points of X at which the stalk of M is Cohen–Macaulay is open for every coherent OX -module
M if every X 1 as above contains a nonempty open subscheme that is Cohen–Macaulay, for instance,
if X is CM-quasi-excellent.

For brevity, we often write U(Sn)pXq and CMpXq in place of UpSnqpOXq and CMpOXq, respectively.

Bearing the openness of U(S1)pM q in mind, one may easily build an (S1)-ification of M as follows.

Theorem 2.9. For a coherent module M on locally Noetherian scheme X,

M 1 :“ Im
´

M Ñ j˚pM |U(S1)pM qq

¯

, where j : U(S1)pM q ãÑ X

is the indicated open immersion, is an (S1)-ification of M : it is a coherent OX-module that is (S1)
and agrees with M on U(S1)pM q.

Proof. By construction, M 1 is coherent, agrees with M on U(S1)pM q, and has no nonzero local
sections that vanish on U(S1)pM q. Thus, the supports of M and M 1 agree topologically (both are
equal to the closure of the generic points of SupppM q) and M 1 has no embedded associated primes,
that is, is (S1) (see §1.14). �

2.10. (Sn)-quasi-excellence. For n P Z, a scheme X is (Sn)-quasi-excellent if it is locally Noether-
ian and such that

(1) the formal fibers of the local rings of X are (Sn);

(2) every integral, closed subscheme X 1 Ă X has a nonempty, (Sn) open subscheme;

an (Sn)-quasi-excellent X is (Sn)-excellent if, in addition, it is universally catenary.

By §2.8, condition (2) implies that the (Sn) locus U(Sn)pM q Ă X is open for every coherent OX -
module M . Evidently, a CM-quasi-excellent (resp., CM-excellent) scheme is (Sn)-quasi-excellent
(resp., (Sn)-excellent) for every n. The references used in Remark 1.5 imply that (Sn)-quasi-excellence
is stable under localization and ascends along morphisms that are locally of finite type.

We will build (S2)-ifications of (S2)-quasi-excellent schemes X in Theorem 2.13. For this, we begin
with the following auxiliary lemma that treats the technically simpler case of (S2)-excellent X.

Lemma 2.11. For an open immersion j : U ãÑ X of Noetherian, (S2)-excellent schemes, any
coherent OU -module M that is (S1) (resp., (S2)) extends to a coherent OX-submodule

M 1 Ă j˚pM q (2.11.1)

that is (S1) (resp., a finite direct sum of (S2) modules); if M underlies a commutative OU -algebra,
then M 1 may be chosen to be an algebra extension of M (with the direct sum that of OX-algebras).
Moreover, if M is (S2) and for each x P SupppM qzSupppM q of height ě 2 in SupppM q the
punctured spectrum of O

SupppM q, x
has no isolated points, then M 1 may be chosen to itself be (S2).

Proof. By replacing X by the schematic image of SupppM q, we may assume that

SupppM q “ U

and U is dense in X (the formation of the schematic image commutes with localization by [EGA I,
9.5.8]). Noetherian induction on XzU and spreading out allow us to localize at a generic point of
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XzU to assume that X is local, U is the (nonempty) complement of the closed point, and, by passing
to direct summands in the (S2) case if needed, that M is (S1) (resp., (S2), not merely a direct sum).

In the case dimX “ 1, we use [EGA I, 9.4.7] to find a coherent OX -submodule

M 1 Ă j˚pM q

extending M ; by construction, M 1 has no embedded associated primes, so is (S1), and hence also
(S2). If dimX “ 1 and M is a commutative OU -algebra, we proceed differently: we use Zariski’s
main theorem [EGA IV4, 18.12.13] and the fact that dimpUq “ 0 to extend M to a commutative
OX -algebra M 2 that is coherent as an OX -module; we then let M 1 be the image of the map

M 2 Ñ j˚pM q

to obtain a desired commutative OX -algebra extension that is (S1), so also (S2).

In the remaining case dimX ě 2, we write

U – U0
Ů

Uě1

where U0 (resp. Uě1) is the union of the isolated points (resp., of the irreducible components of
dimension ě 1) of U . The module M decomposes accordingly:

M – M |U0

À

M |Uě1 .

The schematic image of U0 in X is 1-dimensional and local, so the settled dimX “ 1 case supplies a
desired extension of M |U0 . We may therefore assume that

SupppM q “ Uě1

(in the (S2) case, this step is the reason for a direct sum in the statement; in the (S1) case, no direct
sum issue arises because (2.11.1) alone implies that M 1 has no embedded associated primes and
hence is (S1)). For such M , we set

M 1 :“ j˚pM q

and aim to show that the OX -module M 1 is coherent. It will then follow from [EGA IV2, 5.10.5]
that M 1 is (S2).

For the coherence of j˚pM q, we will use Kollár’s criterion [SP, 0BK3] (or [Kol17, Thm. 2]) that
gives a necessary and sufficient condition (for similar earlier results, see [EGA IV2, 5.11.4, 7.2.2] and
[SGA 2new, VIII, 2.3]). We need to check that for every associated prime u P U of M and the closed
point x of X, the coheights of the associated primes of pO

tuu, x
are all ě 2. Since O

tuu, x
inherits

(S2)-quasi-excellence from X (see §2.10) and is a domain, by Lemma 2.4, its completion pO
tuu, x

is
(S1), and hence has no embedded associated primes. Thus, since, by a result of Ratliff [SP, 0AW6],
the universal catenarity of X implies that pO

tuu, x
is equidimensional, the coheights in question are all

equal to dimpO
tuu, x

q. Since M is (S1) and Uě1 is its support, u is a generic point of Uě1, so that

dimpO
tuu, x

q ě 2. �

Remark 2.12. The (S2)-excellence of X in Lemma 2.11 may be weakened to the combination
of §2.10 (2) with n “ 2 and strict formal catenarity.3 Indeed, §2.10 (2) ensures the openness of
U(S2)pM q Ă X, whereas strict formal catenarity ensures that pO

tuu, x
is (S1) and equidimensional.

3Building on [EGA IV2, 7.2.1, 7.2.6], we call a scheme X strictly formally catenary if it is locally Noetherian and
every integral, closed subscheme of X 1

Ă X is strictly formally equidimensional in the sense that for every x P X 1 the
completed local ring pOX1, x is equidimensional and has no embedded associated primes.
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Theorem 2.13. For an open immersion j : U ãÑ X of Noetherian, (S2)-quasi-excellent schemes, an
(S2), finite U -scheme rU , and finitely many (S2), coherent O

rU
-modules Mi with |SupppMiq| “ |rU |,

there are an (S2), finite X-scheme rX and (S2), coherent O
rX
-submodules M 1

i Ă pj| rXq˚pMiq such that

rX|U – rU and M 1
i |rU “ Mi

and, in addition, |SupppM 1
i q| “ | rX| and O

rX
ãÑ j˚pO

rU
q, so that O

rX
is (S1) as an OX-module.

Proof. The inclusion O
rX

ãÑ j˚pO
rU
q shows that the associated primes of the OX -module O

rX
coincide

with those of the OU -module O
rX
|U – O

rU
, so our O

rX
will necessarily be (S1) as an OX -module.

By replacing X by the schematic image of rU , we may assume that SuppOU
pO

rU
q “ U and U is dense

in X. As in the proof of Lemma 2.11, we may then localize at a generic point of XzU to assume
that X is local (necessarily of dimension ą 0) and U is the complement of the closed point.

We then combine formal patching [FR70, 4.2] with the commutativity of j˚p´q with flat base change
to assume that X is complete (to descend the coherence and the (S2) property from the completion we
use [SGA 1new, VIII, 1.10] and Lemma 2.4). In particular, since X is now (S2)-excellent, Lemma 2.11
applied to the coordinate algebras of the connected components of rU supplies a desired rX such that
its connected components correspond bijectively to those of rU via pullback. Another application of
Lemma 2.11, this time over rX, then supplies the desired (S2) extensions M 1

i of the Mi. �

Corollary 2.14. Every Noetherian, (S2)-quasi-excellent scheme X has an (S2)-ification: there is
a finite birational map rX

π
ÝÑ X that is an isomorphism over U(S2)pXq such that rX is (S2), locally

equidimensional, (S2)-excellent, and has U(S2)pXq as a dense open.

Proof. Theorem 2.13 applied to U “ rU “ U(S2)pXq supplies a candidate rX that is (S2) and for
which O

rX
is (S1) as an OX -module. Since rX inherits (S2)-quasi-excellence, Lemma 2.5 implies that

it is formally equidimensional and (S2)-excellent. Due to the (S1) property of O
rX
, the generic points

of rX lie over U(S2)pXq, over which π is an isomorphism, so π matches them up with those of X. �

3. Ubiquity of Cohen–Macaulay blowing ups

In general, it is difficult to determine whether the blowing up BlIpRq of an ideal I Ă R in a
Noetherian ring is Cohen–Macaulay. For instance, even if R is Cohen–Macaulay, the same need
not be true for its blowing up at a maximal ideal (see [HIO88, 14.11]) in spite of such centers
being “nice,” in particular, normally flat, equimultiple, normally Cohen–Macaulay, etc. Strikingly,
Kawasaki constructed a broad class of ideals I for which BlIpRq is Cohen–Macaulay. His ideals are
the backbone of the results of this paper, so the goal of this section is to review them in Theorem 3.14.
Such I are built out of the following “CM-secant” sequences (see also Remark 3.4).

Definition 3.1. For a finite moduleM over a Noetherian, local ring pR,mq, a sequence r1, . . . , rs P m

(i) is secant for M (in the sense of [BouAC, VIII, §3, no. 2, Def. 1]) if for every 1 ď i ď s we have

dimpSupppM{pr1, . . . , riqMqq ă dimpSupppM{pr1, . . . , ri´1qMqq

(since dimpHq “ ´8 (see §1.14), only the empty sequence is secant when M “ 0);
9



(ii) is CM-secant for M if it is secant for M , the R-module M{pr1, . . . , rsqM is Cohen–Macaulay,
and for every 1 ď i ď s we have

ri P
ź

jădimpSupppM{pr1, ..., ri´1qMqq

AnnR
`

Hj
mpR,M{pr1, . . . , ri´1qMq

˘

(so that, informally and imprecisely, ri vanishes to a high enough order on the non-Cohen–
Macaulay locus of M{pr1, . . . , ri´1qM ; see Lemma 3.6 (b) for a precise such statement).

Remarks.

3.2. A sequence is secant for M if and only if it is a part of a sequence of parameters for M :
indeed, for every 1 ď i ď s, we have

dimpSupppM{pr1, . . . , ri´1qMqq ´ 1 ď dimpSupppM{pr1, . . . , riqMqq,

so r1, . . . , rs is secant if and only if

dimpSupppM{pr1, . . . , rsqMqq “ dimpSupppMqq ´ s.

Thus, any permutation of a secant for M sequence r1, . . . , rs is still secant for M , as is
any r1, . . . , ri´1, rirj with 1 ď i ď j ď s (neither ri nor rj vanishes at any point of
SupppM{pr1, . . . , ri´1qMq of maximal coheight). Any M -regular sequence is secant if M ‰ 0.

3.3. By a result of Schenzel [Sch82, 2.4.2], the product ideals in the definition of a CM-secant
sequence control the failure of the sequence to be regular as follows: for a finite module M
over a Noetherian, local ring pR,mq and any secant for M sequence r1, . . . , rs P m with s ě 1,
the rs-torsion of M{pr1, . . . , rs´1qM is killed by the ideal

ź

jădimpSupppMqq

AnnRpH
j
mpR,Mqq

(if M is Cohen–Macaulay, then this reconfirms that any such r1, . . . , rs is M -regular).

3.4. If r1, . . . , rs is a system of parameters forM , then the 0-dimensionalM{pr1, . . . , rsqM is always
Cohen–Macaulay. Thus, in this case, r1, . . . , rs is CM-secant for M if and only if rs, . . . , r1
is a p-standard system of parameters for M in the sense of [NTC95, 2.4] or, equivalently, a
p-standard system of parameters of type s´ 1 in the sense of [Kaw00, 2.6]. Conversely, any
CM-secant for M sequence r1, . . . , rs can be extended to a CM-secant sequence of parameters
for M because M{pr1, . . . , rsqM is, by assumption, Cohen–Macaulay.

Our next goal is the aforementioned Lemma 3.6 that will be key for the constructions in §4.

3.5. Dualizing complexes. We recall from [SP, 0A7B] that for a Noetherian ring R, a complex ω‚R
of R-modules is dualizing if its cohomology modules are finitely generated, its image in the derived
category DpRq is isomorphic to a finite complex of injective R-modules (so ω‚R P D

b
cohpRq), and

R
„
ÝÑ RHomRpω

‚
R, ω

‚
Rq in DpRq.

The resulting property that justifies the name ‘dualizing’ is [SP, 0A7C]: namely, the functor

RHomRp´, ω
‚
Rq : D

b
cohpRq Ñ Db

cohpRq is an involutive antiequivalence of categories.

For us, ω‚R will only be important through its image in DpRq, so we will abuse terminology and call
the later a dualizing complex, even without choosing an actual complex representing it.
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If R has a dualizing complex ω‚R, then the latter is unique in DpRq up to tensoring with an object
that Zariski locally on R is a shift of R (see [SP, 0A7F]). The formation of ω‚R commutes with
localization (see [SP, 0A7G]), and also with quotients as follows: for any R� R1, the object

RHomRpR
1, ω‚Rq P DpR

1q

is dualizing (see [SP, 0A7I]). Thus, if R is local with residue field k, then

RHomRpk, ω
‚
Rq is isomorphic to k placed in some degree n P Z,

and we say that ω‚R is normalized if this n is 0 (so, in general, ω‚Rrns is normalized).

By [Kaw02, 1.4] (which settled Sharp’s conjecture [Sha79, 4.4]), a Noetherian ring R has a dualizing
complex if and only if it is a quotient of a finite dimensional Gorenstein ring. We will only use the
simpler ‘if’ implication [SP, 0DW7], in particular, that any complete, Noetherian, local R has a
dualizing complex. As follows from the above criterion and Remark 1.4 (and is better seen directly
[SP, 0AWY, 0DW9, and 0A80]), an R that has a dualizing complex is CM-excellent. If, in addition,
R is local, then it is Cohen–Macaulay if and only if ω‚R is concentrated in a single degree [SP, 0AWS].

Lemma 3.6. Let pR,mq be a Noetherian local ring that has a normalized dualizing complex ω‚R.

(a) For every finite R-module M and every j P Z,

AnnRpH
j
mpR,Mqq “ AnnRpH

´jpRHomRpM,ω‚Rqqq.

(b) For every finite R-module M with equidimensional support, the ideal
ź

jădimpSupppMqq

AnnRpH
j
mpR,Mqq “

ź

jădimpSupppMqq

AnnRpH
´jpRHomRpM,ω‚Rqqq

cuts out a closed subscheme of SpecpRq whose complement is the Cohen–Macaulay locus of M .

Proof.

(a) Let E be the injective hull over R of the residue field R{m. The local duality theorem
[Har66, V, 6.2] (or [Sch82, 1.3.4]) gives an identification

RΓmpR,Mq – RHomRpRHomRpM,ω‚Rq, Eq,

which is natural in M . Since E is injective, the functor HomRp´, Eq is exact and the previous
identification gives

Hj
mpR,Mq – HomRpH

´jpRHomRpM,ω‚Rqq, Eq.

Thus, it suffices to show that for every finite R-module M 1, the inclusion

AnnRpM
1q Ă AnnRpHomRpM

1, Eqq

is an equality. By the Nakayama lemma, a nonzero M 1 always has R{m as a quotient, and
R{m Ă E. Thus, HomRpM

1, Eq “ 0 is equivalent to M 1 “ 0. Since the functor HomRp´, Eq
is exact, it remains to apply it to each sequence

0 ÑM 1xry ÑM 1 rÝÑM 1 ÑM 1{rM 1 Ñ 0.

(b) For a prime p Ă R of coheight δppq, by [SP, 0A7Z], the dualizing for Rp complex

pω‚R|Rpqr´δppqs

is normalized. Moreover, due to the finite generation of the R-modules

H´jpRHomRpM,ω‚Rqq,
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the formation of the product of their annihilator ideals commutes with localization at p. Thus,
a p P SupppMq does not belong to the closed subset in question if and only if

H´jpRHomRppMp, pω
‚
R|Rpqr´δppqsqq “ 0

for every
j ă dimpSupppMqq ´ δppq “ dimpSupppMpqq,

where we used the equidimensionality of SupppMq and the catenarity of R (see §3.5) for the
last equality. By [SP, 0A7U], this vanishing amounts to the Cohen–Macaulayness of Mp. �

Remark 3.7. More generally, if the support of M in Lemma 3.6 (b) is arbitrary, then, by [Sch82,
2.4.6], the product ideal in question cuts out a closed subscheme that set-theoretically equals

tp P SupppMq | depthRp
pMpq ` dimpR{pq ă dimpSupppMqqu Ă SpecpRq

and, in particular, contains each irreducible component of SupppMq of nonmaximal dimension.

Kawasaki established many pleasant properties of CM-secant sequences, some of which will be
reviewed in Proposition 3.11. In particular, he proved that they satisfy the following weak version,
which originates with Huneke [Hun82], of the definition of a regular sequence.

Definition 3.8. For a module M over a commutative ring R, a sequence r1, . . . , rs P R is a
d-sequence for M if for every i ě 1 scaling by ri is injective on the submodule

pr1, ..., rsqM
pr1, ..., ri´1qM

Ă M
pr1, ..., ri´1qM

.

Remarks.

3.9. The definition implies that the ri-torsion and the riri1-torsion submodules of
M

pr1, ..., ri´1qM

agree for every 1 ď i ď i1 ď s. This property is often taken as the definition of a d-sequence.
The resulting notion agrees with that of Definition 3.8, see [HIO88, 38.6 b) and its proof].

3.10. Set r :“ pr1, . . . , rsq Ă R. Definition 3.8 says that for i ě 1 no element of rM maps to a
nonzero ri-torsion element of M

pr1, ..., ri´1qM
. This gives the first of the equalities

ppr1, . . . , ri´1qM :M riq X rnM “ pr1, . . . , ri´1qM X rnM “ pr1, . . . , ri´1qr
n´1M (3.10.1)

that hold for every n ě 1 and 1 ď i ď s: indeed, by increasing induction on n and decreasing
induction on i the second one follows from its trivial cases i “ s ` 1 and n “ 1 as follows.
Only “Ă” needs an argument and for n ě 2 and i ď s the inductive assumptions give

pr1, . . . , ri´1qM X rir
n´1M

3.8
“ rippr1, . . . , ri´1qM X rn´1Mq “ ripr1, . . . , ri´1qr

n´2M.

Consequently, they also give both inclusions in the desired

pr1, . . . , ri´1qM X rnM Ă pr1, . . . , ri´1qM X pr1, . . . , riqr
n´1M Ă pr1, . . . , ri´1qr

n´1M.

The equality (3.10.1) is due to Goto and Yamagishi and is also proved in [Kaw00, 2.2].

The “amplification by induction” technique of the proof of the equality (3.10.1), whose n “ 1 case
amounts to a definition, is emblematic of the arguments that go into the following key result.

Proposition 3.11 (Kawasaki). For a finite module M over a Noetherian local ring pR,mq, any
initial subsequence r1, . . . , rs of a CM-secant for M sequence r1, . . . , rs, rs`1, . . . , r

rs with s ď rs
satisfies the following conditions (i)–(iii), where we set

Ij :“
śj
i“1pr1, . . . , riq Ă R.
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(i) For any secant for M{pr1, . . . , rsqM sequence r11, . . . , r
1
s1 P m with M 1 :“M{pr11, . . . , r

1
s1qM ,

rs, . . . , r1 is a d-sequence for M 1.

(ii) For any secant for M{pr1, . . . , rsqM sequence r11, . . . , r
1
s1 P m with M 1 :“M{pr11, . . . , r

1
s1qM ,

for m,n ą 0, the rms -torsion and the pr1, . . . , rsq-torsion of M 1{Ins´1M
1 coincide

(when s ď 1, the claim holds vacuously), in particular, this rms -torsion does not depend on m.

(iii) For any secant for M{pr1, . . . , rsqM sequence r11, . . . , r
1
s1 P m with M 1 :“M{pr11, . . . , r

1
s1´1qM ,

if rs1 is pM 1{pr1, . . . , rsqM
1q-regular, then it is M 1-regular and pM 1{InsM

1q-regular for n ą 0.

Proof. Assertion (i) is a special case of [Kaw00, 2.10] (see also Remark 3.4) and is the shortest one to
prove: one deduces it from a slightly more general [Kaw00, 2.9], which is a consequence of the result
of Schenzel that we reviewed in Remark 3.3. In turn, the assertions (ii) and (iii) are special cases
of [Kaw00, 3.2] and [Kaw00, 3.3], respectively, and lie deeper, even though their proofs do not use
any external inputs other than the already mentioned result of Schenzel. These proofs rest on the
key [Kaw00, 3.1], which presents five statements pAijq, . . . , pEijq whose flavor is similar to that of
(3.10.1), and then proves them by a somewhat lengthy interwoven induction on the difference j ´ i.
The base case i “ j comes from the already mentioned [Kaw00, 2.9–2.10] and the Goto–Yamagishi
result (3.10.1). We saw the main technique of the proofs in Remark 3.10: by an inductive assumption,
one first gets a slightly weaker statement and then bootstraps using the definition of a d-sequence.

Even though we do not reproduce the cited proofs here, we stress that they are written clearly and
are not difficult to follow: one only needs to read [Kaw00, §2 and §3] (and we already covered much
of [Kaw00, §2]). In addition, we are always in the simplest case of “p-standard sequences of type
d´1” (see Remark 3.4), so we have no need for “d`-sequences” that are relevant for the more general
types of p-standard sequences. To aid the reading, we mention some harmless misprints:

(1) in the last line of the proof of [Kaw00, 2.8], the ‘ns`1, . . . , xd’ should be ‘ns`1, . . . , nd’;

(2) in the line before [Kaw00, (3.1.5)], the ‘yu P apM{qkMq’ should be ‘yu P apM{qkMq or
yu P apMq’—this is needed in order to be able to apply pEi`1, jq at the end of Step 6 of the
proof of [Kaw00, 3.1] and is not necessary when the p-standard sequence is of type d´ 1;4

(3) the change (2) should also be made before the last display of Step 3 of the proof of [Kaw00, 3.1];

(4) in [Kaw00, (3.1.6)], the ‘y1, . . . , yu´1’ should be ‘y1, . . . , yu’;

(5) in the last line of [Kaw00, 3.3], the ‘k ď i ď j’ should be ‘k ď i ď j ď d.’ �

Remark 3.12. For a finite module M over a Noetherian local ring pR,mq, the conditions (i)–(iii)
are such that if a sequence r1, . . . , rs P m satisfies them, then it continues to do so once M is replaced
by M{pr11, . . . , r1s1qM for any secant for M{pr1, . . . , rsqM sequence r11, . . . , r1s1 P m.

3.13. Blowing up modules. For a scheme X, a quasi-coherent OX -module M , and a quasi-
coherent ideal I Ă OX , we consider the quasi-coherent OBlI pXq-module

BlI pM q associated to the graded p
À

ně0 I nq-module
À

ně0 I nM .

Concretely, for an affine open SpecpRq Ă X with

I :“ ΓpR,I q and M :“ ΓpR,M q,

4The same correction is made in [Kaw02, 3.6], which contains a slightly more general version of [Kaw00, 3.1].
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and an i P I, the homogeneous localization Rpiq is the R-subalgebra of Rr1i s generated by the i1

i

with i1 P I, and ΓpRpiq,BlI pM qq is the Rpiq-submodule Mpiq ĂM r1i s generated by the image of M .
In particular, i is Mpiq-regular, so BlI pM q has no nonzero sections supported on the exceptional
divisor. There is a natural surjection

M |BlI pXq � BlI pM q

that corresponds to the multiplication map

Rpiq bRM �Mpiq,

which is an isomorphism away from the vanishing locus of I . Due to the preceding paragraph, its
kernel consists of the local sections of M |BlI pXq supported on the exceptional divisor. Consequently,
BlI pM q is nothing else but the strict transform of M in the sense of [RG71, I.5.1.1 (ii)].

By [SP, 080A], for any additional quasi-coherent ideal I 1 Ă OX , we have canonical X-isomorphisms

BlI ¨I 1pXq – BlI ¨OBlI 1 pXq
pBlI 1pXqq – BlI 1¨OBlI pXq

pBlI pXqq. (3.13.1)

The relation with the strict transform gives the corresponding identifications

BlI ¨I 1pM q – BlI ¨OBlI 1 pXq
pBlI 1pM qq – BlI 1¨OBlI pXq

pBlI pM qq. (3.13.2)

The following result of Kawasaki is our eventual source of Cohen–Macaulayness.

Theorem 3.14 (Kawasaki). For a finite module M over a Noetherian, local ring pR,mq and a
CM-secant for M sequence r1, . . . , r

rs P m, the product ideal I :“
ś

rs
i“1pr1, . . . , riq is such that

BlIpMq is a Cohen–Macaulay module on BlIpRq.

Proof. We loosely follow the proof of [Kaw00, 4.1]. Since BlIpMq injects into its restriction to the
complement of the exceptional divisor of BlIpRq (see §3.13), the support of BlIpMq is the schematic
image in BlIpRq of

SupppMqzpSupppMq X SpecpR{Iqq.

By the universal property of blowing up (or by [SP, 080E] directly), this schematic image is the
blowing up of SupppMq at the restriction of I. In particular, by [HIO88, 12.14], its dimension
is ď dimpSupppMqq. Consequently, since Cohen–Macaulayness is stable under localization (see
[EGA IV1, 0.16.5.10 (i)]), it suffices to show that the depth of BlIpMq at each closed point of its
support is ě dimpSupppMqq.

For flexibility in subsequent reductions, we will argue this under more general assumptions: instead of
requiring that r1, . . . , r

rs P m be CM-secant forM , we only require that each of its initial subsequences
r1, . . . , rs with s ď rs satisfy the properties (i), (ii), and (iii) of Proposition 3.11 and that the quotient

M :“M{pr1, . . . , r
rsqM

be Cohen–Macaulay. Due to Remark 3.12, this property of the sequence r1, . . . , r
rs persists if one

replaces M by M{r1M for some M -regular r1 P m. Moreover, Proposition 3.11 (iii) and the snake
lemma applied to the short exact sequence

0 Ñ
À

ně0 I
nM Ñ

À

ně0M Ñ
À

ně0M{I
nM Ñ 0

show that r1 is p
À

ně0 I
nMq-regular with

p
À

ně0 I
nMq{r1p

À

ně0 I
nMq

„
ÝÑ

À

ně0 I
npM{r1Mq.

Thus, since r1 lies in m, and hence vanishes at every closed point of BlIpRq, we may replace M by
M{r1M without losing any generality (see Remark 3.2). By iterating this process, we reduce to the
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case when M{pr1, . . . , r
rsqM is 0-dimensional, to the effect that we seek to show that the depth of

BlIpMq at every closed point of its support is ě rs. For this, we set

Is :“
śs
i“1pr1, . . . , rsq for 0 ď s ď rs

and seek to show by induction on s that the depth of BlIspMq at each closed point of its support is
at least s. Any such point lies above m, so the ri vanish at it.

The base case s “ 0 is trivial, and the case s “ 1 follows from §3.13, which implies that r1 is not a
zero divisor on

BlI1pMq –M{Mxr81 y.

Thus, we suppose that s ě 2. By (3.13.1), we have the R-map

Blpr1, ..., rsqpBlIs´1pRqq – BlIspRq Ñ BlIs´1pRq

and the induced map on local rings
R2 Ð R1

to the local ring R2 of BlIspRq at a closed point of SupppBlIspMqq in question from the local ring R1
of BlIs´1pRq at the image of this point. We let m2 Ă R2 and m1 Ă R1 be the maximal ideals and let
M2 and M 1 be the corresponding stalks of BlIspMq and BlIs´1pMq. Since M 1 ‰ 0 (see, for instance,
[EGA I, 9.5.5]), we may assume by induction that for any M that satisfies the assumptions (we
induct on s for all possible M simultaneously) we have

depthR1pM
1q ě s´ 1, and seek to show that depthR2pM

2q ě s. (3.14.1)

By (3.13.1) once more,
BlIs´1pRq – Blpr1, ..., rs´1qpBlIs´2pRqq,

so there is an 1 ď i ď s´ 1 such that ri generates the ideal pr1, . . . , rs´1qR1 and is both R1-regular
and M 1-regular (see §3.13). Consequently,

pr1, . . . , rsqR
1 “ pra, rbqR

1 with ta, bu “ ti, su.

Thus, due to the explicit affine cover of Blpra,rbqpR
1q given by affine blowing up algebras (see

[SP, 0804]), we may assume that R2 is the localization of the subring R1r rarb s Ă R1r 1rb s at a maximal
ideal whose R1-preimage is m1. Explicitly, since each maximal ideal of pR1{m1qrT s is generated by a
monic polynomial, there is a monic fpT q P R1rT s such that

R2 » pR1rT s{prbT ´ raqqpm1, fpT qq{prb-torsionq

and
M2 (3.13.2)

» pM 1 bR1 R
2q{prb-torsionq

with the preimage of m2 in R1rT s generated by m1 and fpT q. The spectral sequence for local
cohomology [SP, 0BJC] (with [SP, 0955]), the modified Čech complex interpretation of local
cohomology [SP, 0A6R], and the rb-torsion freeness of M2 give the identifications

Hj
m2pR

2,M2q – Hj´1
m2 pR

2, H1
prbq
pR2,M2qq

[SP, 0BJB]
– Hj´1

pm1, fpT qqpR
1rT s, H1

prbq
pR1rT s,M2qq. (3.14.2)

The Čech complex interpretation also shows that Hě1
prbq

vanishes on r8b -torsion modules, so

H1
prbq
pR1rT s,M2q – H1

prbq
pR1rT s,M 1 bR1 pR

1rT s{prbT ´ raqqpm1, fpT qqq (3.14.3)

In the last identification, we may take the localization p´qpm1, fpT qq out of the cohomology (see [SP,
0ALZ]) and, since the coefficients is an R1rT s{prbT´raq-module and prbq “ pra, rbq in R1rT s{prbT´raq,
replace H1

prbq
by H1

pra, rbq
. Therefore, the combination of (3.14.2) and (3.14.3) gives the identification

Hj
m2pR

2,M2q – Hj´1
pm1, fpT qqpR

1rT s, H1
pra, rbq

pR1rT s, pM 1 bR1 R
1rT sq{prbT ´ raqqq. (3.14.4)
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We seek the vanishing of the left side of (3.14.4) for j ă s (see (3.14.1) and [SGA 2new, III, 3.3 (iv)]).
The right side is in terms of M 1, so we will deduce the vanishing from the following claims.

Claim 3.14.5. Both ri and rs kill H1
pri, rsq

pR1,M 1q.

Claim 3.14.6. We have Hj
m1pR

1, Hj1

pri, rsq
pR1,M 1qq “ 0 for j ă s´ 2 and any j1.

To deduce the promised vanishing we will use the sequence

0 ÑM 1 bR1 R
1rT s

rbT´ra
ÝÝÝÝÝÑM 1 bR1 R

1rT s Ñ pM 1 bR1 R
1rT sq{prbT ´ raq Ñ 0, (3.14.7)

which is exact because either ra or rb is M 1-regular (the one with the index i).5 By flat base change,

Hj
m1pR

1rT s, Hj1

pra, rbq
pR1rT s,M 1 bR1 R

1rT sqq – Hj
m1pR

1, Hj1

pra, rbq
pR1,M 1qq bR1 R

1rT s, (3.14.8)

so scaling by the monic fpT q is injective on these groups. Thus, the spectral sequence [SP, 0BJC] gives

Hj
pm1, fpT qqpR

1rT s,ĂMq – H1
pfpT qqpR

1rT s, Hj´1
m1 pR

1rT s,ĂMqq with ĂM “ Hj1

pra, rbq
pR1rT s,M 1bR1R

1rT sq.

By combining this with (3.14.8), we therefore conclude from Claim 3.14.6 that

Hj
pm1, fpT qqpR

1rT s, Hj1

pra, rbq
pR1rT s,M 1 bR1 R

1rT sqq “ 0 for j ă s´ 1 and any j1. (3.14.9)

On the other hand, Claim 3.14.5 and the version of (3.14.8) for Hj1

pra, rbq
alone imply that

multiplication by raT ´ rb is the zero map on H1
pra, rbq

pR1rT s,M 1 bR1 R
1rT sq. (3.14.10)

Moreover, since pra, rbq “ prbT´ra, rbq in R1rT s, the Čech complex interpretation shows the vanishing

H2
pra, rbq

pR1rT s, pM 1 bR1 R
1rT sq{prbT ´ raqq “ 0. (3.14.11)

The cohomology with supports H˚
pra, rbq

pR1rT s,´q sequence that arises from (3.14.7) combines with
(3.14.9), (3.14.10), and (3.14.11) to show the desired vanishing of the left side of (3.14.4) for j ă s:
namely, for j ă s´ 1 we have

Hj
pm1, fpT qqpR

1rT s, H1
pra, rbq

pR1rT s, pM 1 bR1 R
1rT sq{prbT ´ raqqq “ 0.

To conclude the proof we will argue Claims 3.14.5 and 3.14.6 by using the inductive assumption and
the properties (i)–(ii), which each initial subsequence of r1, . . . , rs was assumed satisfy.

Proof of Claim 3.14.5. The coherent module BlIs´1pMq is associated to the graded p
À

ně0 I
n
s´1Rq-

module p
À

ną0 I
n
s´1Mq: indeed, we may omit the summand in degree 0 (or in any initial segment of

degrees) by [EGA II, 2.5.4, 2.5.6]. The property (i) ensures that rs, . . . , r1 is a d-sequence for M , so
rs is p

À

ną0 I
n
s´1Mq-regular, and hence also M 1-regular. Thus, by the spectral sequence [SP, 0BJC],

H1
pri, rsq

pR1,M 1q – H0
priq
pR1, H1

prsq
pR1,M 1qq

[SP, 0A6R]
– lim

ÝÑ
mą0

H0
priq
pR1,M 1{rms M

1q, (3.14.12)

where the transition maps are induced by multiplication by rs. We will conclude by arguing that
both ri and rs kill each H0

priq
pR1,M 1{rms M

1q. For this, we begin with the short exact sequence

0 Ñ
à

ną0

pIns´1Mq :M rms
Ins´1M ` p0 :M rms q

rms
ÝÝÑ

à

ną0

Ins´1M

rms I
n
s´1M

Ñ
à

ną0

ˆ

Ins´1

ˆ

M

rms M

˙˙

Ñ 0 (3.14.13)

of graded p
À

ně0 I
n
s´1Rq-modules. The property (i) ensures that ri, . . . , r1 is a d-sequence for

M{rms M and pr1, . . . , riq is a factor of Is´1, so ri is
´

À

ną0

´

Ins´1

´

M
rms M

¯¯¯

-regular (actually, we

5In fact, both ra and rb are M 1-regular, see the proof of Claim 3.14.5.
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will only use that ri is a nonzerodivisor on the stalk at m1 of the corresponding sheaf, which follows
from §3.13). Consequently, it suffices to show that both ri and rs kill

pIns´1Mq :M rms
Ins´1M ` p0 :M rms q

for n ą 0.

This follows from the property (ii): indeed, it implies that scaling by any element of pr1, . . . , rsq Ă R
brings pIns´1Mq :M rms inside Ins´1M . �

Proof of Claim 3.14.6. The claim is that the Ejj
1

2 -entries with j ă s´ 2 of the spectral sequence

Ejj
1

2 “ Hj
m1pR

1, Hj1

pri, rsq
pR1,M 1qq ñ Hj`j1

m1 pR1,M 1q

vanish. Due to the Čech complex interpretation of Hj1

pri, rsq
pR1,´q, this vanishing holds for j1 ą 2.

Due to the M 1-regularity of ri, the same holds for j1 “ 0. Thus, we only need to handle j1 “ 1

and j1 “ 2. By the inductive assumption (3.14.1) on M 1, the abutment Hj`j1

m1 pR1,M 1q vanishes for
j ` j1 ă s´ 1, so the case j1 “ 2 alone would suffice. To handle it, similarly to (3.14.12), we have

H2
pri, rsq

pR1,M 1q – H1
priq
pR1, H1

prsq
pR1,M 1qq – lim

ÝÑ
mą0

´

H1
priq
pR1,M 1{rms M

1q

¯

. (3.14.14)

For eachm ą 0, letM 1
pmq be the stalk at m1 of the sheaf that corresponds to the graded p

À

ně0 I
n
s´1Rq-

module
À

ną0

´

Ins´1

´

M
rms M

¯¯

. As we saw in the proof of Claim 3.14.5, due to (ii), scaling by ri kills
the kernel term of the short exact sequence (3.14.13). Thus, this sequence gives the identification

H1
priq
pR1,M 1{rms M

1q – H1
priq
pR1,M 1

pmqq for every m ą 0. (3.14.15)

By combining (3.14.14) and (3.14.15), we get

Hj
m1pR

1, H2
pri, rsq

pR1,M 1qq – lim
ÝÑ
mą0

Hj
m1pR

1, H1
priq
pR1,M 1

pmqqq

– lim
ÝÑ
mą0

˜

lim
ÝÑ
m1ą0

Hj
m1pR

1,M 1
pmq{r

m1

i M 1
pmqq

¸

.
(3.14.16)

The inductive assumption (3.14.1) applies to each M 1
pmq (see Remark 3.12), so

Hj
m1pR

1,M 1
pmqq “ 0 for j ă s´ 1 and m ą 0.

Consequently, since ri is M 1
pmq-regular (see §3.13), we also have

Hj
m1pR

1,M 1
pmq{r

m1

i M 1
pmqq “ 0 for j ă s´ 2 and m1 ą 0,

and the claim follows from (3.14.16). � �

4. Macaulayfication in the local case

The key step of the inductive Macaulayfication procedure is to treat an X that is projective over
a complete Noetherian local ring pR,mq with XzXR{m already Cohen–Macaulay and XR{m Ă X a
divisor. In such a situation, Proposition 4.4 exhibits a Macaulayfying blowing up rX Ñ X whose
center does not meet XzXR{m. The crucial trick is to regard XR{mn Ă X for n ą 0 as a hypersurface
and to use it in building a center to be blown up whose localizations are as in Theorem 3.14. Since
the latter is applied locally, the local principality of IXR{mn – pIXR{m

qn is enough to make this work.
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4.1. Biequidimensionality. We recall from [EGA IV1, 0.14.3.3]6 that a scheme X is biequidimen-
sional if it is Noetherian, of finite dimension, and the saturated chains of specializations of its points
all have the same length, necessarily equal to dimpXq. Evidently, every biequidimensional X is
locally equidimensional (see §2.2). For an example, by [EGA IV2, 5.2.1], every connected, locally
equidimensional X that is of finite type over a field is biequidimensional.

If X is biequidimensional, then so is every nowhere dense closed subscheme X 1 Ă X whose coherent
sheaf of ideals is locally principal. Conversely, if such an X 1 in a Noetherian, catenary, locally
equidimensional X contains all the closed points of X and is biequidimensional, then X is also
biequidimensional because all of its closed points have the same height equal to dimpX 1q ` 1.

4.2. Dualizing complexes on schemes. We recall from [SP, 0A87] that for a Noetherian scheme
X, an object

ω‚X P D
b
cohpOXq

is a dualizing complex if its restriction to every affine open SpecpRq Ă X is the image of a dualizing
complex in DpRq (see §3.5). If X has a dualizing complex, then, by [SP, 0AA3] and the Nagata
compactification [Del10, 1.6], so does every finite type, separated X-scheme X 1.

A pleasant case is when a Noetherian X that has a dualizing complex ω‚X is biequidimensional.
Then, due to [SP, 0AWF], there is a unique n P ΓpX,Zq such that for any x P X with coheight δpxq,
the dualizing for OX,x complex pω‚X |OX, x

qr´δpxq ` npxqs is normalized in the sense reviewed in §3.5.
If n “ 0, as may be arranged by a unique locally constant shift, then we call ω‚X normalized.

In the proof of Proposition 4.4, we will use the following version of the avoidance lemma.

Lemma 4.3 ([GLL15, 5.1]). For a Noetherian ring R, a projective R-scheme X, a closed subscheme
Y Ă X that does not contain any positive dimensional irreducible component of any R-fiber of X,
points x1, . . . , xn P XzY , and a very R-ample line bundle L on X, there are an N ą 0 and an
f P ΓpX,L bN q such that the closed subscheme of X cut out by the coherent ideal

Im
´

pL bN q´1
f
ÝÑ OX

¯

Ă OX

contains Y but does not contain any of the x1, . . . , xn. �

Proposition 4.4. For a complete, Noetherian, local ring pR,mq, a locally equidimensional, projective
R-scheme X such that XR{m Ă X is a divisor and XzXR{m is Cohen–Macaulay, and finitely many
coherent OX-modules M with M |XzXR{m

Cohen–Macaulay and |SupppM q| “ |X|, there is a closed
subscheme Z Ă XR{mn for some n ą 0 such that BlZpXq is Cohen–Macaulay and its coherent
modules BlZpM q (see §3.13) are also all Cohen–Macaulay.

Proof. By including OX among M , we reduce to arranging the Cohen–Macaulayness of the BlZpM q.

By [EGA III1, 5.5.1], the R-properness ofX ensures that the pR{mq-fiber of each connected component
of X is connected. By passing to such a component, we assume that both X and XR{m are connected
(so nonempty). By Lemma 2.3 (a) (with §2.2), the divisor XR{m inherits local equidimensionality
from X. Then §4.1 ensures that XR{m, and then also X, is biequidimensional.

By §4.2 and §3.5, the biequidimensional, proper R-scheme X has a normalized dualizing complex
ω‚X . Since

RH omOX
pM , ω‚Xq P D

b
cohpOXq,

6Recall from [ILO14, XIV, §2.4, footnote (i)] that [EGA IV1, 0.14.3.3 b)] should read “X est caténaire, équidimen-
sionnel, et ses composantes irréductibles sont équicodimensionnelles” (see also [Hei17, §3]).
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for every M the following ideal is coherent:

IM :“
ś

jădimpXqAnnOX
pH´jpRH omOX

pM , ω‚Xqqq Ă OX .

Due to biequidimensionality, for an x P X with coheight δpxq, we have

dimpOX,xq ` δpxq “ dimpXq,

so
pIM qx

3.6 (a)
“

ś

jădimpOX, xq
AnnOX, x

pHj
mpxqpOX,x,Mxqq,

where mpxq Ă OX,x is the maximal ideal. In particular, by Lemma 3.6 (b), the ideal IM cuts out a
closed subscheme of X whose open complement is CMpM q. Thus, there is an N0 ą 0 such that

J1 :“ pIXR{m
qN0 Ă IM Ă OX for every M .

We will construct a decreasing sequence X Ą X1 Ą X2 Ą . . . Ą Xd of biequidimensional closed
subschemes of X of strictly decreasing dimension starting with X1 :“ SpecpOX{J1q as follows.

Assume that Xm has already been constructed. If each M |Xm is Cohen–Macaulay, then set d :“ m
and stop. Otherwise, consider the dualizing complex

ω‚Xm
:“ RH omOX

pOXm , ω
‚
Xq on Xm

that is automatically normalized (see [SP, 0AX1]). Analogously to the case of IM , for every M the
ideal

IM ,m :“
ś

jădimpXmq
AnnOXm

pH´jpRH omOXm
pM |Xm , ω

‚
Xm
qqq Ă OXm

is coherent and, by Lemma 3.6 (a), for every x P Xm, its stalk is

pIM ,mqx “
ś

jădimpOXm, xq
AnnOXm, x

pHj
mpxqpOXm, x, pM |Xmqxqq.

By [SP, 0BJB] (with [SP, 0955]), if we identify IM ,m with its preimage in OX , then this stalk becomes

pIM ,mqx “
ś

jădimpOXm, xq
AnnOX, x

pHj
mpxqpOX,x, pM |Xmqxqq. (4.4.1)

In particular, by Lemma 3.6 (b), the ideal IM ,m cuts out a closed subscheme YM ,m Ă Xm

whose complement is CMpM |Xmq, so that YM ,m does not contain any generic point of Xm. Thus,
by Lemma 4.3, for a fixed very R-ample line bundle L on X, there are an Nm ą 0 and an
fm P ΓpX,L bNmq such that the closed subscheme of X cut out by the locally principal ideal

Jm`1 :“ Im
´

pL bNmq´1
fm
ÝÝÑ OX

¯

Ă OX

contains each YM ,m but does not contain any generic point of Xm. We let Xm`1 be the scheme-
theoretic intersection of Xm and the closed subscheme cut out by Jm`1. Since Xm`1 is nowhere
dense in Xm, it inherits biequidimensionality by §4.1. For dimension reasons, the process stops.

For each x P X and 1 ď m ď d, let jm,x P OX,x be a generator of the ideal pJmqx Ă OX,x and,
for the sake of convenience, set jd`1, x :“ 1 P OX,x. Let mx be the smallest 0 ď m ď d such that
jm`1, x P OˆX,x. By construction, the sequence j1, x, . . . , jmx, x is secant for OX,x (see Definition 3.1 (i))
and OX,x{pj1, x, . . . , jmx, xq is the local ring of Xmx at the point x. Since jmx`1, x P OˆX,x, we have

x P CMpM |Xmx
q for every M .

Consequently, by construction and (4.4.1), the sequence

j1, x, . . . , jmx, x P mpxq is CM-secant for every Mx

(see Definition 3.1 (ii)). Thus, since the coherent ideal

J :“
śd
i“1pJ1, . . . ,Jiq
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satisfies
Jx “

śmx
i“1pj1, x, . . . , ji, xq Ă OX,x for every x P X,

Theorem 3.14 implies that BlJ pM q is Cohen–Macaulay for every M . It remains to set

Z :“ SpecpOX{J q and n :“ N0 ¨ d. �

5. Macaulayfication in the global case

We are ready to use Proposition 4.4 and Noetherian induction to obtain a global Macaulayfication.

Lemma 5.1. For a Noetherian scheme S, a closed subscheme Z Ă S, the blowing up BlZpSq
b
ÝÑ S,

and a closed subscheme Z 1 Ă BlZpSq, there is a closed subscheme Z2 Ă S such that∣∣Z2∣∣ “ |Z|Y bp
∣∣Z 1∣∣q

and there are S-identifications
BlZ2pSq – BlZ1pBlZpSqq

and, for any quasi-coherent OS-module M

BlZ2pM q – BlZ1pBlZpM qq.

Proof. The claim is a special case of [SP, 080B], except for the aspect about the modules. The latter
follows by interpreting both BlZ2pM q and BlZ1pBlZpM qq as strict transforms, see §3.13. �

Proposition 5.2. For every CM-excellent, locally equidimensional, Noetherian scheme X and
finitely many coherent OX-modules M with |SupppM q| “ |X|, there is a closed subscheme

Z Ă X that is disjoint from the dense open (see §2.8) CMpXq X p
Ş

M CMpM qq

such that BlZpXq is Cohen–Macaulay, and its coherent modules BlZpM q are also all Cohen–Macaulay.

Proof. The claim is evidently true in the case when X and M are all Cohen–Macaulay: one chooses
Z “ H. In general, given an open subscheme U Ĺ X that contains

CMpXq X p
Ş

M CMpM qq

and for which the claim holds with some closed subscheme Z Ă U , we need to argue that the claim
also holds for some strictly larger open. For this, we first use [EGA I, 9.4.7] to extend Z to a closed
subscheme rZ Ă X. We will show that there is a closed subscheme of Bl

rZ
pXq that is disjoint from

pBl
rZ
pXqq|U – BlZpUq,

whose blowing up is Cohen–Macaulay over an open neighborhood of a fixed generic point of XzU , and
for which the corresponding strict transforms of the modules Bl

rZ
pM q are also all Cohen–Macaulay

over this neighborhood. By Lemma 5.1, this will allow us to enlarge U .

For the remaining claim about Bl
rZ
pXq, due to [EGA I, 9.4.7] again and a limit argument based on

the openness of the Cohen–Macaulay loci of CM-excellent schemes (see §2.8), we may localize at
the fixed generic point of XzU to assume that X is local and U is the complement of the closed
point. Then X “ SpecpRq for a Noetherian, local pR,mq and to simplify notation, we let Y be the
projective R-scheme Bl

rZ
pXq that comes equipped with the finitely many coherent modules

ĂM :“ Bl
rZ
pM q

of set-theoretically maximal support (see §3.13). By assumption, the open subscheme YU is Cohen–
Macaulay, and so are its coherent modules ĂM |U . We seek a closed subscheme Z Ă Y that is disjoint
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from YU such that BlZpY q and BlZp ĂM q are all Cohen–Macaulay, so, thanks to Lemma 5.1, we may
precompose Y Ñ SpecpRq with BlYR{mpY q Ñ Y to assume that

YR{m Ă Y is a divisor.

By assumption, X is formally equidimensional (see §2.2), so, by Lemma 2.3 (b), the blowing up Y
pR

of pR is locally equidimensional. By Lemma 2.4, the base change YU
pR
and its modules ĂM |YU

pR
inherit

Cohen–Macaulayness. Thus, Proposition 4.4 applies to

Y
pR
Ñ Specp pRq

and gives a closed subscheme Z Ă YR{mn for some n ą 0 such that BlZpY
pR
q and its coherent modules

BlZp ĂM |Y
pR
q are all Cohen–Macaulay. Since blowing up commutes with flat base change,

BlZpY
pR
q – pBlZpY qq

pR
and BlZp ĂM |Y

pR
q – BlZp ĂM q|Y

pR
,

so Lemma 2.4 implies that BlZpY q and its modules BlZp ĂM q are all Cohen–Macaulay, as desired. �

Theorem 5.3. For every CM-quasi-excellent, Noetherian scheme X equipped with finitely many
coherent OX-modules M with |SupppM q| “ |X|, there are a composition

rX :“ BlZpX
1q Ñ X 1

π1
ÝÑ X

and for each M a coherent OX 1-module M 1 for which |SupppM 1q| “ |X 1| such that rX is Cohen–
Macaulay, its coherent modules BlZpM

1q are also all Cohen–Macaulay, and

(i) X 1 is CM-excellent and locally equidimensional;

(ii) π1 is finite, birational, and is an isomorphism over the open

U :“ U(S2)pXq X
`
Ş

M U(S2)pM q
˘

Ă X

(see §2.8) that is dense in both X and X 1 and for which M 1|U – M |U ;

(iii) Z Ă X 1 is a closed subscheme that is disjoint from the dense open

U 1 :“ CMpX 1q X p
Ş

M CMpM 1qq ;

(iv) U 1 is also dense in BlZpX
1q, so that, in particular, the map rX Ñ X is birational;

if X itself is CM-excellent and locally equidimensional, then we may choose X 1 “ X and M 1 “ M .

Proof. Theorem 2.13 supplies an (S2), finite, birational X-scheme X 1 with X 1|U
„
ÝÑ U such that U

is dense both in X and X 1, as well as (S2), coherent OX 1-modules M 1 such that

M 1|U – M |U and
∣∣SupppM 1q

∣∣ “ ∣∣X 1∣∣ .
By Lemma 2.5 (with §2.2), the CM-quasi-excellent, (S2) scheme X 1 is CM-excellent and locally
equidimensional. If X itself is CM-excellent and locally equidimensional, then instead we choose

X 1 :“ X and M 1 :“ M .

Proposition 5.2 applies to X 1 and supplies a closed subscheme Z Ă X 1 that is disjoint from U 1 such
that BlZpX

1q and its coherent modules BlZpM
1q are all Cohen–Macaulay. The generic points of

BlZpX
1q lie away from the divisor given by the preimage of Z, so U 1 is also dense in BlZpX

1q. �

Remark 5.4. The map rX Ñ X in Theorem 5.3 is projective, see [EGA II, 5.5.5 (ii) and 6.1.11].

We conclude with the following converse result, an analogue of Grothendieck’s [EGA IV2, 7.9.5].
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Proposition 5.5. Let X be a locally Noetherian scheme. If for every integral, closed subscheme
X 1 Ă X there are a Cohen–Macaulay scheme ĂX 1 and a proper map ĂX 1 Ñ X 1 that is an isomorphism
over a nonempty open subscheme of X 1 (so that ĂX 1 is a Macaulayfication of X 1), then X is CM-
quasi-excellent.

Proof. The argument is similar to that of loc. cit. Namely, the assumption implies that each X 1
contains a nonempty open that is Cohen–Macaulay, so we only need to check that the local rings of
X have Cohen–Macaulay formal fibers. For this, we may assume that X “ SpecpRq for a local ring
R and then, since the formal fibers of a local X are exhausted by those of its irreducible components,
that X is also integral. By passing to the closure of the point of X at which the formal fiber is
taken, we then reduce further to checking that the generic formal fiber of X is Cohen–Macaulay.

Let π : rX Ñ X be a proper map with rX Cohen–Macaulay and π an isomorphism over a nonempty
open subscheme of X. By the latter condition, it suffices to show that rX

pR
is Cohen–Macaulay. Thus,

since rX
pR
inherits CM-excellence, and so also the openness of the Cohen–Macaulay locus (see §2.8),

from pR, it suffices to show that the local rings of rX
pR
at the closed points are Cohen–Macaulay. Due

to the X-properness of rX, these closed points lie over the closed point of Specp pRq, and analogously for
rX, so they are identified with those of rX. Moreover, for a closed point px P rX

pR
with the image x P rX,

by [EGA IV2, 7.9.3.1], the completions pO
rX

pR
, px

and pO
rX,x

are identified. Since Cohen–Macaulayness
ascends to and descends from the completion (see [EGA IV2, 6.3.5]), the claim follows. �
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