
A MODULAR DESCRIPTION OF X0pnq
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Abstract. As we explain, when a positive integer n is not squarefree, even over C the moduli
stack that parametrizes generalized elliptic curves equipped with an ample cyclic subgroup of order
n does not agree at the cusps with the Γ0pnq-level modular stack X0pnq defined by Deligne and
Rapoport via normalization. Following a suggestion of Deligne, we present a refined moduli stack of
ample cyclic subgroups of order n that does recover X0pnq over Z for all n. The resulting modular
description enables us to extend the regularity theorem of Katz and Mazur: X0pnq is also regular
at the cusps. We also prove such regularity for X1pnq and several other modular stacks, some of
which have been treated by Conrad by a different method. For the proofs we introduce a tower of
compactifications E``m of the stack E`` that parametrizes elliptic curves—the ability to vary m in
the tower permits robust reductions of the analysis of Drinfeld level structures on generalized elliptic
curves to elliptic curve cases via congruences.
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1. Introduction

1.1. Algebraic stacks that refine X0pnq. The study of the compactification X0pnq of the coarse
moduli space of the algebraic stack Y0pnq that parametrizes elliptic curves equipped with a cyclic
subgroup of order n is key for many arithmetic problems, so one seeks to understand the arithmetic
properties of X0pnq, especially over Z. For this, it is desirable to conceptualize the construction of
X0pnq by realizing it as a coarse moduli space of an algebraic stack that compactifies Y0pnq.

The sought compactifying stack X0pnq was defined by Deligne and Rapoport in [DR73, IV.3.3] via a
normalization procedure. However, X0pnq lacks an a priori moduli interpretation, so instead one
often considers the stack X0pnq

naive that parametrizes generalized elliptic curves whose smooth locus
is equipped with a cyclic subgroup of order n that is ample, i.e., meets every irreducible component
of every geometric fiber. Even though X0pnq

naive is algebraic, has X0pnq as its coarse moduli space,
and agrees with X0pnq on the elliptic curve locus, it seems to have been overlooked that

If n is not squarefree, then X0pnq and X0pnq
naive are genuinely different, even over C.

1.2. Pathologies of X0pp
2qnaive. To explain the difference, we set n :“ p2 for some prime p, let

X p1q denote the stack that parametrizes those generalized elliptic curves whose geometric fibers are
integral, and consider the structure morphism

c : X0pp
2qnaive Ñ X p1q

which in terms of the moduli interpretation forgets the subgroup and contracts the generalized
elliptic curve with respect to the identity section. We claim that the morphism c is not representable.

To see this, let E be the standard p-gon over C and let ζp2 P Cˆ be a primitive root of unity of
order p2. Then Esm “ Gm ˆZ{pZ and each of the µp worth of automorphisms of E fixing Gm ˆ t0u
stabilizes the cyclic subgroup

@

pζp2 , 1q
D

of order p2. Each such automorphism contracts to the
identity, so c is not representable.

In contrast, the morphism
X0pp

2q ÑX p1q

is representable by construction, so the X p1q-stacks X0pp
2qnaive and X0pp

2q are not isomorphic.
The same p-gon example carried out over Fp shows that X0pp

2qnaive is not even Deligne–Mumford
(whereas X0pp

2q is), a pathology that has already been pointed out in [Edi90, 1.1.1.1] and [Con07].

1.3. A modular description of X0pnq. One of the main goals of this paper is to refine the
definition of X0pnq

naive to obtain a moduli interpretation of X0pnq even when n is not squarefree.
The elliptic curve locus needs no refinement, so the issue is to incorporate the cusps in a way that
avoids the nonrepresentability of c phenomenon. For this, we follow a suggestion of Deligne explained
in [Del15]. To present Deligne’s idea, we assume that n “ p2 for a prime p and work over Zr1p s.

In vague terms, the idea is to subsume the automorphisms causing the nonrepresentability of c into
the moduli problem. To make this possible, the data being parametrized will involve algebraic stacks
and not merely schemes. In precise terms, the moduli problem that in Chapter 5 will be proved to
recover X0pp

2qZr 1
p
s assigns to every Zr1p s-scheme S the groupoid of tuples

pE Ñ S, G, Sp1q, Sppq, Spp2q, Gp1q, Gppq, Gpp2qq
consisting of

‚ A generalized elliptic curve E Ñ S;

‚ A cyclic subgroup G Ă ES´S8 of order p2 over the elliptic curve locus S ´ S8;
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‚ Open subschemes Sp1q, Sppq, and Spp2q of S that cover S, have S ´ S8 as their pairwise
intersections, and such that the degenerate geometric fibers of ESp1q and ESppq are 1-gons and
those of ES

pp2q
are p2-gons;

‚ Ample cyclic subgroups Gp1q Ă Esm
Sp1q

and Gpp2q Ă Esm
S
pp2q

of order p2 that recover G over S´S8;

‚ An ample cyclic subgroup Gppq Ă Esm
ppq of order p

2 of the universal generalized elliptic curve
Eppq whose degenerate geometric fibers are p-gons and whose contraction is ESppq , subject to
the requirement that Gppq recovers G over S ´ S8 (over which Eppq is identified with E).

In essence, the moduli problem parametrizes generalized elliptic curves equipped with an ample
cyclic subgroup of order p2 with the caveat that over the part of the degeneracy locus prone to
the nonrepresentability of c the subgroup has been upgraded to live inside a suitable universal
“decontraction” Eppq (which is an algebraic stack and not a scheme). The role of the Sppiq is to
remember the subdivision of the degeneracy locus S8—without Sp1q and Sppq we cannot single out
those 1-gon degenerate geometric fibers of E that were “meant” to be p-gons but had to be “upgraded”
in order to avoid the nonrepresentability of c.

1.4. Incorporating bad characteristics. After the work of Drinfeld and of Katz and Mazur,
the extension of the above modular description of X0pp

2qZr 1
p
s to X0pp

2q is a matter of technique.
However, new difficulties at the cusps in characteristic p force us to impose an additional coherence
requirement on Gppq, a requirement that holds automatically away from p and also on the elliptic
curve locus (see §5.5 and Lemma 5.6) and that seems well suited for the analysis of Gppq even over
Zr1p s. With this proviso, we prove that for any n the analogue of the moduli problem described in
§1.3 gives a moduli interpretation for X0pnq. We then use this moduli interpretation to prove the
following extension of a regularity theorem of Katz and Mazur:

Theorem 1.5 (Theorem 5.13 (a)). The Deligne–Mumford stack X0pnq is regular.

In fact, X0pnqZr 1
n
s is even Zr 1

n s-smooth by [DR73, IV.6.7], whereas the elliptic curve locus Y0pnq is
regular by [KM85, 5.1.1], so Theorem 1.5 was known away from the closed substack of the cusps
that lies in characteristics dividing n.

In the proof of Theorem 1.5, the eventual source of regularity is the combination of [DR73, V.4.13]
and [KM85, 5.1.1] that proves the regularity of another modular stack X pnq. The reduction to
X pnq rests on the moduli interpretation of X0pnq and on the regularity of Y0pnq. In particular, no
stage of the argument requires any computations with universal deformation rings, other than what
comes in from [KM85, Ch. 5–6] through our reliance on the regularity of Y pnq and Y0pnq.

We use Theorem 1.5 and the moduli interpretation of X0pnq to prove that the coarse moduli space
X0pnq is regular in a neighborhood of the cusps (see Theorem 6.7). This regularity is not new (see
the introduction of Chapter 6) but our proof seems more conceptual.

1.6. The compactifications E``m. We have been vague about the base of the universal “decon-
traction” Eppq. For the construction of this base in general (beyond n “ p2), it is natural to fix
an m P Zě1 and to consider the Z-stack E``m that parametrizes those generalized elliptic curves
whose degenerate geometric fibers are m-gons. We prove in Theorem 3.1.6 that E``m is algebraic, as
well as proper and smooth over Z, albeit is not Deligne–Mumford unless m “ 1. Thus, each E``m
compactifies the stack E`` that parametrizes elliptic curves, and E``1 is the compactification that is
sometimes called M1,1.
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As we describe in section 3.2, the compactifications E``m form an infinite tower, with transition
maps given by contractions of generalized elliptic curves. This tower is the backbone of our study
of X0pnq and of several other “classical” modular curves. For these curves, the most important
moduli-theoretic phenomenon that is not seen on the elliptic curve locus is the fact that “forgetful”
contractions change generalized elliptic curves that underlie level structures. The ability to vary m
in the tower tE``mum|m1 allows us to isolate the part of this phenomenon that has nothing to do
with level structures. The remaining part that is specific to the level structure at hand may then be
studied via “congruences” that reduce to the elliptic curve case.

1.7. Other modular curves. To illustrate the utility of E``m, let us consider the stack X pnqnaive

that parametrizes pairs consisting of a generalized elliptic curve E Ñ S with n-gon degenerate
geometric fibers and a Drinfeld pZ{nZq2-structure on Esmrns. (In the end, X pnqnaive agrees with
X pnq mentioned earlier and gives X pnq a moduli interpretation.) Using the work of Katz and
Mazur, we prove via “mod n congruences with elliptic curves” that the forgetful map

X pnqnaive Ñ E``n
is representable and finite locally free of rank # GL2pZ{nZq. It follows that X pnqnaive is algebraic,
proper and flat over Z, and even Cohen–Macaulay. Other proofs of these properties of X pnqnaive

have been given by Conrad in [Con07]: the proof of the algebraicity used Hilbert schemes via
tricanonical embeddings, whereas the Cohen–Macaulay property required a detailed analysis of the
universal deformation rings at the cusps (in addition to the work of Katz and Mazur on the elliptic
curve locus).

The relations with E``m together with the “congruence method” that crucially uses the work of Katz
and Mazur allow us to reprove the main results of [Con07] in Chapter 4. These include the moduli
interpretations and the regularity of the modular stacks X pnq and X1pnq (as well as some variants)
and the construction of Hecke correspondences for X1pnq. The latter takes advantage of the theory
of isogenies of generalized elliptic curves developed in Chapter 2. Away from the level, the moduli
interpretations and the regularity have been proved by Deligne and Rapoport in [DR73, IV.3.5 and
IV.4.14]; away from the cusps, they have been proved by Katz and Mazur in [KM85, 5.1.1]. Prior
to the work of Conrad, [Con07], the moduli interpretations and the regularity of X pnq and X1pnq
(among others) have been considered in an unfinished manuscript of Edixhoven [Edi01, esp. 2.1.2].

1.8. Reliance on the literature. For what concerns generalized elliptic curves and Drinfeld level
structures on them, we wish to explicate the logical dependence of our work on the three main
references that we use: [DR73], [KM85], and [Con07].

‚ We rely on [DR73] almost in its entirety; the sections of op. cit. that are logically independent
from the work of this paper are [DR73, II.§3, V.§2–3, VI.§2–6, and VII.§3–4].

‚ We make essential use of the results of [KM85, Ch. 1–6] and extend some of them to
generalized elliptic curves (see, in particular, section 4.2), but have no need for the results of
[KM85, Ch. 7–14] (other than for comparison in Proposition 6.3 and Remarks 6.5 and 6.8).

‚ We use some auxiliary general results from the introductory sections 2.1 and 2.2 of [Con07]
but the rest of op. cit. is logically independent from our work (as mentioned in §1.7, we give
different proofs to the main results of [Con07]).

1.9. Notation and conventions. We let E`` denote the Z-stack that, for variable schemes S,
parametrizes elliptic curves E Ñ S. More precisely, for a scheme S, the objects (resp., the morphisms)
of the groupoid E``pSq are the elliptic curves E Ñ S (resp., the isomorphisms between elliptic curves
over S) and, for a scheme morphism S1 Ñ S, the induced functor E``pSq Ñ E``pS1q is E ÞÑ E ˆS S

1.
4



We use the analogous meaning of ‘parametrizes’ when defining other stacks. Other than in the
introduction, we use the notation XΓ0pnq (resp., XΓ1pnq, etc.) introduced in §4.1.2 for stacky modular
curves defined via normalization and the notation X0pnq (resp., X1pnq, etc.) for stacks defined in
terms of a moduli problem; once we prove that XΓ0pnq “ X0pnq (and similarly in the other cases),
we use the two notations interchangeably.

We use the definition of an fpqc cover for which all Zariski covers are fpqc; explicitly, S1 Ñ S is an
fpqc cover if it is flat and every affine open U Ă S is the union of images of finitely many affine
opens of S1. An S-scheme S1 is an fppf cover (or simply fppf) if S1 Ñ S is faithfully flat and locally
of finite presentation. For a scheme S, we let Sred denote its associated reduced scheme. For an
S-group algebraic space G, we let G0 denote the subsheaf of sections that fiberwise factor through
the identity component. We let X sm and ∆X {S denote the smooth locus and the diagonal of a
morphism X Ñ S. For a field k, we let k denote a choice of its algebraic closure. A geometric point
is the spectrum of an algebraically closed field. For an n P Zě1, we set φpnq :“ #pZ{nZqˆ.

For what concerns algebraic stack and algebraic space conventions, we follow [SP], except that
‘representable’ stands for ‘representable by algebraic spaces.’ In particular, quasi-compactness or
separatedness of the diagonal are not part of the definition, but in practice end up being present
(along with even stronger properties). An algebraic stack is Deligne–Mumford if its diagonal is
unramified—for the equivalence with the étale atlas definition in the presence of quasi-compactness
and separatedness of the diagonal, see [LMB00, 8.1]. The relative dimension (at a point) of a smooth
morphism of algebraic stacks is the difference of the relative dimensions (at a lift of the point) of the
morphisms from a smooth atlas of the source, cf. [LMB00, bottom of p. 98].

Acknowledgements. I thank Pierre Deligne for correspondence about the moduli interpretation in
the Γ0pnq case and for permitting me to make his letter [Del15] available. The modular description
of X0pnq presented in Chapter 5 is inspired by the ideas explained there. I thank the referee
for a very careful reading of the manuscript and for numerous helpful suggestions. I thank the
MathOverflow community—the reading of several anonymous discussions has been useful while
working on some aspects of this paper. I thank Rebecca Bellovin, George Boxer, Brian Conrad,
Bas Edixhoven, Benedict Gross, Dino Lorenzini, Martin Olsson, Ken Ribet, and Sug Woo Shin for
helpful conversations or correspondence. I thank the Miller Institute for Basic Research in Science
at the University of California Berkeley for its support.

2. Isogenies of generalized elliptic curves

The main goal of this chapter is to expose a robust theory of isogenies of generalized elliptic curves.
This theory is the subject of section 2.2 and will be useful on several occasions, particularly, for
algebraizing homomorphisms of formal generalized elliptic curves in section 3.4 and for constructing
Hecke correspondences for X1pnq in section 4.7. In order to prepare for the study of isogenies, in
section 2.1 we review several basic concepts, such as that of a homomorphism of generalized elliptic
curves, and record some general results that will be useful throughout the paper.

2.1. Homomorphisms between generalized elliptic curves

In this section, we review basic definitions and properties of generalized elliptic curves, building up
to the notion of a homomorphism, which will be studied in section 2.2. We assume that the reviewed
concepts are familiar, so we concentrate on those aspects that will be used later. We begin with
the notion of an n-gon, which is needed in order to define generalized elliptic curves. Informally, an
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n-gon is the curve obtained by gluing n-copies of P1 in a cyclic manner: the point 0 of the ith copy
gets identified with the point 8 of the pi` 1qst copy.

Definition 2.1.1. For an n P Zě1 and an scheme S, the standard n-gon over S is the coequalizer of
Ů

Z{nZ S �� //
� � // Ů

Z{nZ P1
S ,

where the top (resp., the bottom) closed immersion includes the ith copy of S as the 0 (resp., the 8)
section of the ith (resp., pi ` 1qst) copy of P1

S . A Néron n-gon over S (or an n-gon over S) is an
S-scheme isomorphic to the standard n-gon over S. (We often omit ‘over S’ if the base is implicit.)

Remark 2.1.2. Even though colimits usually do not exist in the category of schemes, the ones used
in Definition 2.1.1 do exist and their formation commutes with base change in S. To see this, one
checks directly (or with the help of [Fer03, 4.3]) that for n ě 2 the sought coequalizer is the base
change to S of the gluing of

Ů

iPZ{nZ SpecZrXi, Yis{pXiYiq

obtained by identifying the opens

SpecZrYi, 1
Yi
s and SpecZrXi`1,

1
Xi`1

s

via Yi “ 1
Xi`1

for every i P Z{nZ, and one treats the n “ 1 case by realizing the standard 1-gon as
the Z{nZ-quotient of the standard n-gon, cf. [Con07, top of p. 215].

We recall the definition of a generalized elliptic curve, which is a central notion for this paper.

Definition 2.1.3. A generalized elliptic curve over a scheme S is the data of

‚ A proper, flat, finitely presented morphism E Ñ S each of whose geometric fibers is either a
smooth connected curve of genus 1 or a Néron n-gon for some n ě 1, and

‚ An S-morphism Esm ˆS E
`
ÝÑ E that restricts to a commutative S-group scheme structure

on Esm for which ` becomes an S-group action,

such that via pullback of line bundles the action ` induces the trivial action of Esm on Pic0
E{S .

Remarks.

2.1.4. Our definition of a generalized elliptic curve is equivalent to the one given in [DR73, II.1.12]:
the difference is that we have imposed the requirement that Esm acts trivially on Pic0

E{S at
the outset. Loc. cit. replaces this with the a priori milder requirement that on degenerate
geometric fibers every translation by a smooth point induces a rotation on the underlying
n-gon, which ends up being equivalent due to [DR73, II.1.7 (ii) and II.1.13].

The requirement about the triviality of the induced action on Pic0
C{S holds automatically on

a large part of Esm, namely, it always holds on the relative identity component pEsmq0—to
see this, we apply [DR73, II.1.14]1 to Pic0

E{S ˆSE
sm to get the openness of the locus of Esm

where the induced action on Pic0
E{S is trivial, note that this locus is closed under the group

1We could also apply [Con07, 2.2.1] to avoid using the representability of Pic0E{S by a scheme. On the other
hand, such representability may be proved as follows: by [Art69, 7.3], the functor Pic0E{S is an algebraic space, so
[DR73, II.2.6 (i)] proves that the map

pEsm
q
0
Ñ Pic0E{S defined by t ÞÑ OEptq b OEpeq

´1

is an open immersion (where e P EpSq denotes the identity section), and the representability of Pic0E{S by a scheme
follows from [BLR90, 6.6/2 (b)] applied to Pic0E{S acting on itself by translation (see also Remark 2.1.16).

6



law of Esm, and conclude by noting that it contains the zero section. In particular, every
elliptic curve is a generalized elliptic curve, and a generalized elliptic curve E Ñ S is an
elliptic curve over the open of S over which E is smooth.

2.1.5. The standard n-gon is canonically a generalized elliptic curve: due to its description recalled
in Remark 2.1.2, its smooth locus is Gm ˆ Z{nZ and the translation action of this group
scheme on itself extends to an action on the n-gon. By the previous remark, the triviality of
the induced action on Pic0 may be checked on the geometric fibers using [DR73, II.1.7 (ii)].
For later use, we now describe the automorphism functor of this generalized elliptic curve.

Lemma 2.1.6. For a fixed n P Zě1, let E Ñ SpecZ be the standard n-gon generalized elliptic curve.
There is the following identification of the automorphism functor of E:

AutpEq – µn ˆ Z{2Z,

where the generator of Z{2Z acts as inversion on Esm and, for a scheme S and an index i P Z{nZ,
a section ζ P µnpSq acts on the ith component of Esm

S – pGmqS ˆ Z{nZ as scaling by ζi.

Proof. By [DR73, II.1.10], we have

AutpEq – µn ¸ Z{2Z

with µn and Z{2Z acting as described above, so we need to argue that Z{2Z is central in AutpEq.
For this, due to the Z-universal schematic density of Esm in E supplied by [EGA IV3, 11.10.10],
it suffices to note that every generalized elliptic curve automorphism of a base change of E must
commute with inversion on Esm. �

We turn to the closed subschemes Esing Ă E and S8,π Ă S that measure the degeneration of E.

Definition 2.1.7. The subscheme of nonsmoothness of a generalized elliptic curve E π
ÝÑ S is

the closed subscheme Esing Ă E defined by the first Fitting ideal sheaf Fitt1pΩ
1
E{Sq Ă OE . The

degeneracy locus of E π
ÝÑ S is the schematic image S8,π Ă S of Esing.

Remarks.

2.1.8. The closed subscheme Esing is supported at those points of E at which π is not smooth and
its formation commutes with arbitrary base change in S, see [SGA 7I, VI, 5.3 and 5.4]. Even
though the formation of schematic images often does not commute with nonflat base change,
the formation of S8,π does commute with arbitrary base change, see [Con07, 2.1.12].

2.1.9. By [DR73, II.1.15], we have

S8,π “
Ů

ně1 S
8,π,n

for closed subschemes S8,π,n Ă S such that only finitely many of the S8,π,n meet a given
affine open of S and such that ES8,π,n is fppf locally on S8,π,n isomorphic to the standard
n-gon (which was discussed in Remark 2.1.5). In particular, every generalized elliptic curve
E

π
ÝÑ S is, Zariski locally on S, projective because, by [DR73, II.1.20] and [KM85, 1.2.3], over

the open
S ´

Ů

n‰n1 S
8,π,n

the n1-torsion subscheme Esmrn1s Ă E is a π-ample relative effective Cartier divisor.

We record a basic relationship between Esing and its schematic image S8,π in the following lemma:
7



Lemma 2.1.10. For a generalized elliptic curve E Ñ S, the map

Esing Ñ S8,π

is finite étale; it has degree n over S8,π,n.

Proof. The map in question exists by the definition of S8,π and its formation commutes with base
change in S by Remark 2.1.8. We may therefore assume that S “ S8,π,n and that E is the standard
n-gon. But in this case Esing is a disjoint union of n copies of S and there is nothing to prove. �

Degenerate generalized curves possess canonical finite subgroups of multiplicative type and their
torsion subgroups are amenable to scrutiny. We make this precise in the following lemma:

Lemma 2.1.11. For every generalized elliptic curve E π
ÝÑ S with Sred “ pS8,πqred and every

d P Zě1, the d-torsion pEsmq0rds is a finite locally free S-group scheme of order d that is étale locally
on S isomorphic to µd. The S-group scheme

Esmrds{pEsmq0rds

is étale and if m P Zě1 divides both d and the number of irreducible components of each geometric
fiber of E, then pEsmrds{pEsmq0rdsqrms is étale locally on S isomorphic to Z{mZ.

Proof. Due to the fibral criterion for flatness [EGA IV3, 11.3.11], the quasi-finite, finitely presented,
separated S-groups pEsmq0rds and Esmrds are flat. The fibers of pEsmq0rds Ñ S have degree d, so,
due to [DR73, II.1.19], the S-group pEsmq0rds is finite locally free of rank d. Due to [Con14, B.4.1
and B.3.4], the claim about the étale local structure of pEsmq0rds reduces to case of geometric fibers.

Thanks to the settled claims about pEsmq0rds, [EGA IV3, 8.11.2] and [SGA 3I new, V, 4.1] imply
that Esmrds{pEsmq0rds is a separated, quasi-finite, finitely presented, flat S-scheme. By inspecting
geometric fibers we see that Esmrds{pEsmq0rds is étale. The étale local structure of

pEsmrds{pEsmq0rdsqrms

may be seen over the strict Henselizations of S, and hence even on geometric fibers. �

The focus of Chapter 2 is generalized elliptic curve homomorphisms. We recall their definition.

Definition 2.1.12. A homomorphism between generalized elliptic curves E Ñ S and E1 Ñ S is an
S-morphism

f : E Ñ E1 with fpEsmq Ă E1sm

that intertwines the group laws of Esm and E1sm. Its kernel is the S-subscheme Ker f :“ Eˆf,E1, e1 S
of E, where ˆf,E1, e1 denotes the base change along f of the identity section e1 : S Ñ E1.

Remarks.

2.1.13. Due to the S-universal schematic density of Esm in E supplied by [EGA IV3, 11.10.10] and
the separatedness of E1 Ñ S, a homomorphism f necessarily also intertwines the group
actions Esm ˆ E Ñ E and E1sm ˆ E1 Ñ E1.

2.1.14. If a homomorphism f is surjective, then f |Esm is flat and Ker f Ă Esm, as may be checked on
geometric fibers using the fibral criterion for flatness [EGA IV3, 11.3.11]. In this case, Ker f
is a finite locally free S-subgroup scheme of Esm.
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Example 2.1.15. The constant morphism that factors through e1 is a homomorphism, the “zero
homomorphism.” Any elliptic curve isogeny is also a homomorphism. For a d P Zě1, the map

P1
S Ñ P1

S given on homogeneous coordinates by rx : ys ÞÑ rxd : yds

respects 0 and 8, so it induces an S-morphism from the standard 1-gon over S to itself. This
morphism restricts to the dth power map on the pGmqS of the smooth locus of the 1-gon, so it is a
homomorphism with kernel pµdqS .

Remark 2.1.16. Generalized elliptic curves are susceptible to limit arguments that reduce to a
Noetherian base. More precisely, by [EGA IV2, 8.8.2 (ii), 8.10.5 (xii), 11.2.6 (ii)], Zariski locally
on S, the underlying relative curve E Ñ S is the base change of a proper and flat relative curve
E0 Ñ S0 for which S0 is of finite type over Z. Thus, since the formation of Esm

0 commutes with base
change, Esm is necessarily of finite presentation. Moreover, by [EGA IV2, 8.8.2 (i)], after enlarging
S0, the commutative S-group action

Esm ˆS E
`
ÝÑ E descends to a commutative S0-group action Esm

0 ˆS0 E0
`
ÝÑ E0.

The degenerate geometric fibers of E0 Ñ S0 are Néron n-gons: indeed, [DR73, II.1.3] applies because
the condition of having only ordinary double points as singularities is equivalent to the unramifiedness
of Esing

0 , whose formation commutes with base change (see Remark 2.1.8), whereas the triviality
of the relative dualizing sheaf may be descended from an overfield using specialization techniques.
Using Remark 2.1.4 to infer the triviality of the induced action of Esm

0 on Pic0
E0{S0

, we conclude that
E0 Ñ S0 is a generalized elliptic curve that descends E Ñ S to a Noetherian base. Similarly, Zariski
locally on S, elliptic curve homomorphisms are defined over a base that is of finite type over Z.

By the limit arguments above, the open immersion S ´ S8,π ãÑ S is always quasi-compact.

2.2. Quotients of generalized elliptic curves by finite locally free subgroups

Even though homomorphisms between generalized elliptic curves are useful in practice, their structural
properties are not immediately apparent. Moreover, guided by the theory of isogenies of elliptic
curves, one suspects that for any finite locally free S-subgroup scheme G Ă Esm with E Ñ S a
generalized elliptic curve, there should be an essentially unique homomorphism E Ñ E1 with kernel
G. If G intersects the identity components of the degenerate geometric fibers of E Ñ S trivially,
then the translation action of G on E is free, the fppf sheaf quotient E{G is a generalized elliptic
curve, and

E Ñ E{G

is the sought “isogeny.” This special case is already useful—for instance, such isogenies are discussed
in [Con07, 2.1.6] and exploited in several key proofs of op. cit.

The goal of this section is to explain how to make sense of isogenies of generalized elliptic curves in
general. Theorem 2.2.4 and its proof explain how to build the desired “quotient by G” homomorphism
E Ñ E{G, and we arrive at the concept of an isogeny in Definition 2.2.8. With Theorem 2.2.4 in
hand, structural properties of arbitrary homomorphisms are susceptible to scrutiny and are detailed
in Propositions 2.2.9 and 2.2.10.

We begin with an example that illustrates what E{G should be in a certain degenerate situation.

Example 2.2.1. Let E be the standard n-gon over Z, and consider the subgroup µd Ă pEsmq0 for
some d P Zě1. We would like to build a generalized elliptic curve homomorphism

fd : E Ñ E1 with kernel µd.
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By Remark 2.1.13, any such fd is µd-equivariant, so it factors through the categorical quotient E{µd,
which exists because E is projective and µd is finite. We claim that

E Ñ E{µd

is already the desired fd : E Ñ E1.

This claim follows from the description of E recalled in Remark 2.1.2. More precisely, if n ě 2, then
on Spec

´

ZrXi,Yis
pXiYiq

¯

the action of µd “ Spec
´

ZrT s
pT d´1q

¯

is determined by

Xi ÞÑ Xi b T and Yi ÞÑ Yi b T,

so the ring of invariants is the Z-subalgebra of ZrXi,Yis
pXiYiq

generated by Xd
i and Y d

i , and hence E{µd is
the standard n-gon with the quotient map E Ñ E{µd induced by the dth power map on each P1

Z.
The same description holds if n “ 1, as the same computation performed Z{mZ-equivariantly on the
m-gon cover for some m ě 2 proves. Thus, the map E Ñ E{µd is a homomorphism whose kernel is
µd, and it is initial among such homomorphisms, so it is the desired fd.

Remarks.

2.2.2. Example 2.2.1 may be carried out over any base scheme S, which shows that the formation
of fd commutes with arbitrary base change. In particular, the formation of the categorical
quotient E{µd commutes with arbitrary (possibly nonflat) base change.

2.2.3. For d ą 1, the “isogeny” E Ñ E{µd constructed in Example 2.2.1 is not flat at the singular
points, as the formal criterion for flatness [BouAC, III, §5, n˝ 2, Thm. 1] reveals. In contrast,
every isogeny between elliptic curves is flat.

Example 2.2.1 suggests that over an arbitrary base S, the desired quotient of a generalized elliptic
curve E Ñ S by a finite locally free S-subgroup G Ă Esm may simply be the categorical quotient
E{G. In Theorem 2.2.4 we prove that this indeed the case. The main issue that needs to be addressed
is that the formation of categorical quotients does not in general commute with nonflat base change
(as in the special case of forming the ring of invariants under the action of a finite group). Such
phenomena do not occur for generalized elliptic curves because the analysis of E{G may be reduced
to the cases when G is either diagonalizable or acts freely on E.

Theorem 2.2.4. Let S be a scheme, E π
ÝÑ S a generalized elliptic curve, and G Ă Esm an S-subgroup

scheme that is finite locally free over S. There is an S-scheme morphism

q : E Ñ E{G

that is initial among G-equivariant S-morphisms from E to an S-scheme equipped with the trivial
G-action (E is equipped with the translation action of G). Moreover, q has the following properties.

(i) The formation of q commutes with arbitrary base change in S, and E{G is S-flat.

(ii) The map q : E Ñ E{G is surjective, finite, and universally open.

(iii) There is a unique structure of a generalized elliptic curve on

E{GÑ S

for which q is a homomorphism. For this structure, q induces an S-group isomorphism

Esm{G – pE{Gqsm,

where Esm{G is the fppf sheaf quotient; in particular, Esm q
ÝÑ pE{Gqsm is finite locally free.

(iv) If E is an elliptic curve, then q : E Ñ E{G is an isogeny with kernel G.
10



Proof. Zariski locally on S the map π is projective (see Remark 2.1.9), so every finite set of
points of any π-fiber is contained in an affine open of E (see [EGA II, 4.5.4]). Therefore, by
[SGA 3I new, V, 4.1 (i)] and its proof, E is covered by G-invariant affine opens and the initial q is
nothing else than the categorical quotient that is glued together from the rings of invariants of such
G-invariant affines; moreover, this q is automatically a quotient map on the underlying topological
spaces.

Since G acts freely on Esm, by [SGA 3I new, V, 4.1 (iv)], the open S-subscheme

Esm{G Ă E{G

that results from the G-invariance of Esm is identified with the fppf sheaf quotient of Esm by G, the
map Esm q

ÝÑ Esm{G is finite locally free, and the formation of Esm{G commutes with base change.

(i) The formation of E{G commutes with flat base change, so we may first assume that S is affine
and then use Remark 2.1.16 to assume that S “ SpecR for some Noetherian R. Moreover,
by the previous paragraph, the claim is clear on the elliptic curve locus, so we may replace
R by its completion along the ideal I Ă R that cuts out the degeneracy locus S8,π Ă S to
assume that R is I-adically complete and separated.

For such R, the intersections

GR{Ij X pE
sm
R{Ij q

0 for j ě 1

are finite locally free R{Ij-subgroup schemes of G. By Grothendieck’s existence theorem
[Ill05, 8.4.5, 8.4.7], these subgroups algebraize to a finite locally free R-subgroup

H Ă G with H Ă pEsmq0.

The R{I-fibers of H are of multiplicative type, so H itself is of multiplicative type. At the
cost of replacing R by a finite locally free cover we may assume that H is diagonalizable.

By [SGA 3I new, I, 4.7.3], any R-module M equipped with an action of a diagonalizable H
is a direct sum of χ-isotypic submodules for characters χ of H, so the submodule MH of
H-invariants is of formation compatible with arbitrary base change and is R-flat if M is. In
particular, the categorical quotient E{H is R-flat and of formation compatible with base
change. As may be checked on geometric R-fibers, G{H acts freely on E{H, so the further
quotient E{G “ pE{Hq{pG{Hq is also R-flat and of formation compatible with base change.

(ii) The surjectivity of q follows from the first paragraph of the proof. By [SGA 3I new, V, 4.1 (ii)],
the morphism q is integral, and hence even finite because it inherits the property of being of
finite type from E Ñ S. In particular, q is universally closed, so it is also universally open by
[Ryd13, 2.4] (which applies due to the bottom of p. 636 there and [SGA 3I new, V, 4.1 (iii)]).

(iii) We begin by arguing that E{G possesses the S-scheme properties required in Definition 2.1.3.

Due to [AM69, 7.8], the morphism E{GÑ S inherits finite presentation from E Ñ S thanks
to the finiteness of E Ñ E{G (and an initial reduction to Noetherian S based on (i)). By (ii),

E Ñ E{G, and hence also E ˆS E Ñ E{GˆS E{G,

is a finite surjection, so the image of ∆E{SpEq in E{GˆS E{G, i.e., ∆pE{Gq{SpE{Gq, is closed.
In other words, the finite type morphism E{GÑ S inherits separatedness from E Ñ S, so it
also inherits properness by [EGA II, 5.4.3 (ii)]. Finally, E{GÑ S is flat by (i). For the fibral
properties, due to (i), we may assume that S is a geometric point.
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If S is a geometric point and E is an elliptic curve, then E{G is its isogenous quotient. If S
is a geometric point and E is the standard N -gon, then we set

H :“ GX pEsmq0, so H – µd for some d ě 1.

By Example 2.2.1, E Ñ E{H is a “self-isogeny” of the standard N -gon, and, by construction,
G{H acts freely on E{H. Therefore, E{G, which is identified with pE{Hq{pG{Hq, is the
standard n-gon with n “ N

#pG{Hq . This analysis also shows that qpEsmq “ pE{Gqsm.

Due to the paragraph preceding the proof of (i), all that remains to be shown is that the
S-group scheme structure of pE{Gqsm – Esm{G extends to a unique action of pE{Gqsm on
E{G; indeed, the induced action on Pic0

pE{Gq{S will automatically be trivial due to the fibral
analysis of the previous paragraph and Remark 2.1.4. The uniqueness follows from the
separatedness of E{G and the universal schematic density of pE{Gqsm in E{G supplied by
[EGA IV3, 11.10.10]. For the same reason, for the existence we only need to produce a
morphism

pE{Gqsm ˆS E{GÑ E{G

that extends the group law of pE{Gqsm—the relevant diagrams that encode the property of
being a group scheme will automatically commute. To build this morphism from the one for
E, it suffices to prove that

Esm{GˆS E{G – pE
sm ˆS Eq{pGˆS Gq

where the quotients are categorical. For this isomorphism, it suffices to form the quotient
on the right in stages and to note that the formation of Esm{G commutes with base change
along E Ñ S whereas the formation of E{G commutes with base change along Esm{GÑ S.

(iv) By (iii), q : E Ñ E{G is a finite locally free homomorphism between elliptic curves over S
and its kernel is G, i.e., q is an isogeny with kernel G. �

Remark 2.2.5. The categorical quotient E{G may also be analyzed with the tame stack formalism
of Abramovich–Olsson–Vistoli, [AOV08]. For this, the key point is that the quotient stack rE{Gs
is tame by [AOV08, Thm. 3.2] because the automorphism functors of its geometric points are of
multiplicative type. Then, since E{G is the coarse moduli space of rE{Gs (see [Con05, Thm. 3.1]),
E{G is S-flat and of formation compatible with arbitrary base change by [AOV08, Cor. 3.3].

2.2.6. The quotient notation. In the sequel, whenever E Ñ S is a generalized elliptic curve
and G Ă Esm is a finite locally free S-subgroup, we write E{G for the generalized elliptic curve
constructed in Theorem 2.2.4. In the following corollary, we record some further properties of this
quotient construction that follow from Theorem 2.2.4 and its proof.

Corollary 2.2.7. Let E Ñ S (resp., E1 Ñ S) be a fixed (resp., variable) generalized elliptic curve
over a scheme S.

(a) If G Ă Esm is finite locally free S-subgroup, then the homomorphism E Ñ E{G is initial
among homomorphisms f : E Ñ E1 with G Ă Ker f .

(b) If f : E Ñ E1 is a surjective homomorphism, then Ker f is a finite locally free S-subgroup of
Esm, and Ker f determines f up to an isomorphism in the sense that f induces an isomorphism

E{pKer fq – E1.

(c) If G1 Ă G2 Ă Esm are finite locally free S-subgroups, then

pE{G1q{pG2{G1q – E{G2.
12



Proof.

(a) The map f is G-equivariant for the trivial G-action on E1, so it uniquely factors through the
categorical quotient E Ñ E{G. It remains to note that the induced map pE{Gqsm Ñ pE1qsm

intertwines the group laws, as may be checked on the fppf cover Esm Ñ pE{Gqsm.

(b) The first claim was proved in Remark 2.1.14. Due to (a), f induces a homomorphism
E{pKer fq Ñ E1 that is an isomorphism on the smooth loci. Due to [EGA IV4, 17.9.5] and
the S-flatness of E{pKer fq, checking that E{pKer fq Ñ E1 is an isomorphism may be done
on geometric fibers, where it follows from the fact that an endomorphism of the standard
n-gon that is an automorphism on the smooth locus must be an automorphism.

(c) The claim follows from the universal property of E Ñ E{G2 recorded in (a). �

Corollary 2.2.7 (b) and the analogy with elliptic curves justify the following definition:

Definition 2.2.8. An isogeny between generalized elliptic curves E Ñ S and E1 Ñ S is a surjective
homomorphism f : E Ñ E1 (so, by Corollary 2.2.7 (b), it induces an isomorphism E1 – E{pKer fq).
The degree of an isogeny f is the locally constant function on S given by the order of Ker f .

The principal difference with the elliptic curve case is that an isogeny between generalized elliptic
curves is not necessarily flat (see Remark 2.2.3). As we explain in the following Proposition 2.2.9
(whose elliptic curve case is [KM85, 2.4.2]), the structure of an arbitrary homomorphism may be
completely understood in terms of isogenies (in turn, by Corollary 2.2.7 (b), the structure of an
isogeny is completely determined by its kernel).

Proposition 2.2.9. Every homomorphism f : E Ñ E1 between generalized elliptic curves E Ñ S
and E1 Ñ S is Zariski locally on S either an isogeny or the zero homomorphism.

Proof. Limit arguments described in Remark 2.1.16 allow us to reduce to the case when S is
Noetherian, so the claim follows from [MFK94, Prop. 6.1], which proves that on each connected
component of S the map f is either surjective (i.e., an isogeny) or the zero homomorphism. �

Due to Proposition 2.2.9, the following result describes how homomorphisms interact with the
subschemes of nonsmoothness and the degeneracy loci of Definition 2.1.7:

Proposition 2.2.10. If f : E Ñ E1 is an isogeny between generalized elliptic curves E π
ÝÑ S and

E1
π1
ÝÑ S, then f |Esing factors through E1sing and S8,π Ă S8,π

1 .

Proof. The second claim follows from the first because S8,π (resp., S8,π1) is the schematic image of
Esing Ñ S (resp., of E1sing Ñ S). Moreover, since the formation of all the subschemes in question
commutes with base change in S (see Remark 2.1.8), we may use Remark 2.1.9 to assume that
S “ S8,π,n and that E is the standard n-gon.

The intersection G of Ker f with the relative identity component pEsmq0 “ Gm is a finite locally
free S-subgroup scheme of both Ker f and Gm. By Corollary 2.2.7 (b)–(c), f is identified with the
composite

E Ñ E{GÑ pE{Gq{ppKer fq{Gq

of isogenies. Therefore, since the assertion about f |Esing is compatible with composition, it suffices
to treat the cases G “ Ker f and G “ 0 separately.
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Since Gm has a unique finite locally free S-subgroup of a given order, Zariski locally on S we have
G “ µd for some d P Zě1. Thus, if G “ Ker f , then we may assume that f is the fd described in
Example 2.2.1 (see also Remark 2.2.2). For this fd, the claim is clear:

Esing is identified with
Ů

Z{nZ S used in Definition 2.1.1

and fd is induced by the dth power map on every P1
S so maps Esing to itself.

If G “ 0, then f is étale, so that Ω1
E{S – f˚Ω1

E1{S . By [SGA 7I, VI, 5.1 (a)], the formation of the closed
subscheme cut out by a Fitting ideal of a finite type quasi-coherent module commutes with pullback
to another scheme, so this relation between the sheaves of differentials gives Esing “ f´1pE1singq. �

The inclusion S8,π Ă S8,π
1 of Proposition 2.2.10 may be sharpened to a precise relation between

the corresponding ideal sheaves. We record this in Proposition 2.2.11 and Remark 2.2.12.

Proposition 2.2.11. If f : E Ñ E1 is an isogeny between generalized elliptic curves and if there is
a d P Zě1 such that for every degenerate geometric fiber Es the intersection pKer fqs X pE

sm
s q

0 has
rank d, then the ideal sheaves in OS of the degeneracy loci S8,π and S8,π1 of E and E1 are related by

IS8,π1 “ I d
S8,π .

Remark 2.2.12. For any f , Zariski locally on S there exists a required d. In order to prove this,
we may assume that S “ S8,π and may work fppf locally on S, so Remark 2.1.9 reduces to the case
when E is the standard n-gon. In this case Ker f X pEsmq0 is an open and closed S-subgroup of
Ker f , and the claim follows from the local constancy of its rank over S.

Proof of Proposition 2.2.11. It suffices to treat the case when S “ SpecR for some Artinian local
ring pR,mq that has a separably closed residue field R{m. The elliptic curve case is clear, so we
assume that ER{m is degenerate. Moreover, by Corollary 2.2.7 (c), quotients may be taken in stages,
so we assume that either

Ker f Ă pEsmq0 or Ker f X pEsmq0 “ 0.

We begin with the case Ker f X pEsmq0 “ 0, when f is finite étale of rank #pKer fq, so that
Esing “ f´1pE1singq by [SGA 7I, VI, 5.1 (a)]. Lemma 2.1.10 then gives the desired S8,π “ S8,π

1 .

In the remaining case when Ker f Ă pEsmq0, we first replace S by a flat cover to be able to assume that
there is a finite étale S-subgroup G Ă Esm such that GR{m maps isomorphically to the component
group of Esm

R{m. Due to the settled Ker f X pEsmq0 “ 0 case, passage to E{G and E1{fpGq does not
affect the degeneracy loci. Therefore, we may replace

E by E{G and E1 by E1{fpGq

to reduce to the case when E is irreducible.

In this situation, since S is Artinian local and strictly Henselian, [DR73, VII.2.1] ensures that E is a
base change of the Tate curve

Tate1 Ñ SpecZJqK

(loc. cit. proves that Tate1 realizes SpecZJqK as an étale double cover of the formal completion of
E``1 along E``81 ; in the notation of loc. cit., Tate1 “ G

q
m{q

Z). If, moreover, Ker f Ă pEsmq0, then
Ker f “ µ#pKer fq inside pEsmq0 (see Lemma 2.1.11), so that we are reduced to the case when

E Ñ S is Tate1 Ñ SpecZJqK and Ker f “ µd.
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However, in this case the quotient map2 Tate1 Ñ Tate1{µd is identified with the map

Tate1 Ñ Tate1pq
dq induced by “raising the coordinates to the dth power,”

as in Example 2.2.1 (compare with [Con07, 2.5.1]). It remains to recall from [DR73, VII.1.11] that
the degeneracy locus of Tate1 (resp., of Tate1pq

dq) is cut out by the principal ideal pqq Ă ZJqK
(resp., pqdq Ă ZJqK). �

3. Compactifications of the stack of elliptic curves

Our approach to the study of level structures on generalized elliptic curves makes essential use of
the tower tE``nun|n1 of compactifications of the stack E`` that parametrizes elliptic curves. The
purpose of this chapter is to construct this tower and to detail its properties. We begin with the
construction of the individual compactifications E``n in section 3.1, and proceed to expose the
transition morphisms E``nm Ñ E``n in section 3.2. Section 3.3 proves that the coarse moduli space
of pE``nqS is the “j-line” P1

S for every n and every scheme S, whereas section 3.4 uses the global
structure of the stacks E``n to algebraize formal generalized elliptic curves and their homomorphisms.

3.1. The compactification E``n obtained by allowing n-gons for a fixed n

The goal of this section is to detail algebro-geometric properties of the Z-stack E``n obtained from
the stack of elliptic curves E`` by “adjoining Néron n-gons” (see Definition 3.1.1). We prove in
Theorem 3.1.6 that E``n is a proper and smooth compactification of E``. This result has already
been proved over Zr 1

n s in [DR73, IV.2.2], which uses deformation-theoretic methods through its
reliance on [DR73, III.1.2]. These methods require the number of the irreducible components of each
geometric fiber of the generalized elliptic curve in question to be prime to the characteristic, so they
do not seem to work without inverting n. A related difficulty is that even though the stack E``n is
algebraic, outside the elliptic curve locus it is not Deligne–Mumford in characteristics dividing n (see
Theorem 3.1.6 (b)), so E``n may not possess universal deformation rings at some of its geometric
points. To overcome these difficulties, we proceed indirectly by exploiting a convenient auxiliary
algebraic stack Bn whose relationship to E``n is described in Proposition 3.1.5.

We begin by defining the stack E``n that we are going to study and later use.

Definition 3.1.1. For an n P Zě1, let E``n denote the Z-stack parametrizing those generalized
elliptic curves E π

ÝÑ S whose degenerate geometric fibers are n-gons. Let E``8n denote the closed
substack of E``n cut out by the degeneracy loci S8,π (defined in Definition 2.1.7).

Remarks.

3.1.2. The effectivity of descent data that is needed for E``n to be a Z-stack (for the fpqc topology)
results from the S-ampleness of the relative effective Cartier divisor Esmrns Ă E.

3.1.3. The well-definedness of the closed substack E``8n rests on the compatibility (recalled in
Remark 2.1.8) of the formation of the degeneracy locus S8,π with base change.

We turn to the auxiliary stack Bn and to its relation to E``n.

3.1.4. The stack Bn. Following [DR73, V.1.3], for an n P Zě1 we let Bn be the Z-stack that, for
variable schemes S, parametrizes the pairs pE,Gq consisting of a generalized elliptic curve E Ñ S
whose degenerate geometric fibers are n-gons and a finite étale subgroup G Ă Esm that is étale

2In the notation of [DR73, VII.1.10], we have Tate1pq
d
q “ G

qd

m {pq
d
q
Z over A “ ZJqK.
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locally on S isomorphic to Z{nZ and meets every irreducible component of every geometric fiber of
E Ñ S. If n “ 1, then G is the zero subgroup, so B1 “ E``1.

Proposition 3.1.5. Fix an n P Zě1.

(a) The Z-stack Bn is Deligne–Mumford and Z-smooth of relative dimension 1.

(b) The morphism
Bn Ñ E``n

that forgets G factors through the open substack E``n- ord
n Ă E``n obtained by removing the

supersingular elliptic curves in characteristics dividing n. The induced morphism

Bn Ñ E``n- ord
n

is representable by schemes, separated, quasi-finite, faithfully flat, and of finite presentation.

(c) The stack E``n- ord
n is algebraic and Z-smooth of relative dimension 1.

Proof.

(a) Both claims follow from [DR73, V.1.4].

(b) The morphism

q : E``n Ñ E``1 is well defined by qpEq “ E{Esmrns

(see §2.2.6), and, as in [DR73, VI.1.1], the j-invariant gives the morphism j : E``1 Ñ P1
Z.

Since E``n- ord
n is the preimage under j ˝ q of the open subscheme of P1

Z obtained by removing
the supersingular j-invariants in characteristics dividing n, it is indeed an open substack of
E``n.

The morphism Bn Ñ E``n factors through E``n- ord
n because a supersingular elliptic curve

over an algebraically closed field of positive characteristic p cannot have Z{pZ as a subgroup.
Therefore, our task is to prove that for any generalized elliptic curve E Ñ S whose geometric
fibers are n-gons, ordinary elliptic curves in characteristic dividing n, or arbitrary elliptic
curves in characteristic not dividing n, the functor

F0 : S1 ÞÑ tS1-ample subgroups G Ă Esm
S1 that are étale locally on S1 isomorphic to Z{nZu

on the category of S-schemes is representable by a separated, quasi-finite, faithfully flat S-
scheme B of finite presentation (the S1-ampleness of G as a relative effective Cartier divisor on
ES1 is equivalent to the condition that G meets every irreducible component of every geometric
fiber of ES1 Ñ S1). In fact, it suffices to prove the same statement with ‘faithfully flat’ replaced
by ‘flat’ and for the functor F 10 obtained by dropping the S1-ampleness requirement from
the definition of F0: indeed, the surjectivity of B Ñ S will follow from the imposed fibral
assumptions on E Ñ S, whereas [EGA IV3, 9.6.4] together with limit arguments ensures that
the inclusion F0 Ă F 10 is representable by quasi-compact open immersions.

We analyze F 10 by studying the related functor

F1 : S1 ÞÑ tP P EsmrnspS1q that define a closed immersion Z{nZ ãÑ Esm
S1 rns by 1 ÞÑ P u.

The map F1 Ñ F 10 that sends P to the copy of Z{nZ that P generates is representable by
schemes and finite étale of rank φpnq. Therefore, once we prove that F1 is representable by a
finitely presented, separated, quasi-finite (and hence also quasi-affine, see [EGA IV3, 8.11.2]),
flat S-scheme, the desired claim about F 10 will follow from [SGA 3I new, V, 4.1] (combined
with [EGA IV2, 2.2.11 (iii)] and [EGA IV4, 17.7.5]).
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The S-scheme Esmrns represents the functor of S1-homomorphisms Z{nZÑ Esm
S1 rns. Such

a homomorphism is a closed immersion if and only if its corresponding map f of finite
locally free OS1-algebras is surjective, which is an open condition on S1 because Cokerpfq is a
finitely generated OS1-module. Therefore, the inclusion F1 Ă Esmrns is representable by open
immersions, and is quasi-compact by limit arguments, so the claims about F1 follow.

(c) Both claims follow from (b). More precisely, if X Ñ Bn is a smooth atlas, then the composed
morphism

X Ñ E``n- ord
n

is representable by algebraic spaces, faithfully flat, and locally of finite presentation, so
E``n- ord

n is algebraic by [SP, 06DC] (see also [LMB00, 10.6] for a related result), whereas, due
to [EGA IV4, 17.7.7], the Z-smoothness of E``n- ord

n follows from that of Bn (for the relative
dimension aspect, one may use [EGA IV2, 6.1.2]). �

With Proposition 3.1.5 in hand, we are ready to address algebro-geometric properties of E``n (see
Proposition 3.3.2 for some further properties).

Theorem 3.1.6. Fix an n P Zě1.

(a) The Z-stack E``n is algebraic with finite diagonal, proper, and smooth of relative dimension 1.

(b) The largest open substack of E``n that is Deligne–Mumford is

E``n ´ pE``
8

n qZ{nZ.

(c) The morphism SpecZ Ñ E``8n that corresponds to the standard n-gon is surjective, repre-
sentable, and finite locally free of rank 2n. In particular, the proper Z-algebraic stack E``8n is
irreducible, has geometrically irreducible Z-fibers, and is Z-smooth of relative dimension 0.

(d) The closed substack E``8n Ă E``n is a reduced relative effective Cartier divisor over SpecZ.

Remark 3.1.7. In (b), the largest Deligne–Mumford open substack of the separated Z-algebraic
stack E``n does make sense a priori. Indeed, the proof of [Con07, 2.2.5 (2)] shows that if S is a
scheme and X is an S-algebraic stack that is covered by S-separated open substacks, then there is
a unique open substack

U Ă X

containing exactly those geometric points of X that have an unramified automorphism functor.
(Equivalently, U contains those S-scheme valued points of X whose automorphism functors are
unramified.) By Nakayama’s lemma (or simply by [SP, 02GF (1)ô(2)]), the diagonal ∆U {S is
unramified, so U is Deligne–Mumford, and, by construction, U contains every Deligne–Mumford
open substack of X . Even though we take the unramifiedness of the diagonal as our definition of
being Deligne–Mumford (see §1.9), in the case in hand U inherits separatedness from E``n, so, by
[LMB00, 8.1], it also satisfies the étale atlas definition of a Deligne–Mumford stack.

Proof of Theorem 3.1.6.

(a) The stack E``n is a union of open substacks E`` and E``n- ord
n , both of which are algebraic

and Z-smooth of relative dimension 1 by Proposition 3.1.5. Therefore, E``n is also algebraic
and Z-smooth of relative dimension 1.
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By [Con07, 3.2.4], the isomorphism functor of two generalized elliptic curves E Ñ S and
E1 Ñ S whose degenerate geometric fibers are n-gons is representable by a finite S-scheme,3
so ∆E``n{Z is finite and, in particular, E``n is separated. The morphism

E``\ SpecZÑ E``n
whose restriction to SpecZ corresponds to the standard n-gon is surjective on underlying
topological spaces, so E``n is quasi-compact, and hence is of finite type over Z. Its properness
therefore results from the valuative criterion [LMB00, 7.10], which is satisfied due to the
semistable reduction theorem for elliptic curves (and the availability of contractions, which
are reviewed in §3.2.1).

(b) In the view of Remark 3.1.7, we only need to show that

E``n ´ pE``
8

n qZ{nZ

contains those geometric points x of E``n whose automorphism functor is unramified. If x lies
in E`` “ E``n´E``8n , then Autpxq is unramified by [Del75, 5.3 (I)] (or by [MFK94, Cor. 6.2]).
If x lies in E``8n , then, by Lemma 2.1.6, Autpxq is unramified if and only if x lies in

E``8n ´ pE``
8

n qZ{nZ.

(c) For the asserted properties of the morphism, it suffices to note that for a generalized elliptic
curve E π

ÝÑ S with S8,π,n “ S, the functor of isomorphisms between E and the standard
n-gon is representable by a finite locally free S-scheme of rank 2n, as may be checked fppf
locally on S with the help of Remark 2.1.9 and Lemma 2.1.6. The asserted properties of E``8n
then follow by using [EGA IV4, 17.7.7] and [EGA IV2, 6.1.2] for the smoothness aspect.

(d) By (c), the stack E``8n is Z-smooth, so it is also reduced. For the Cartier divisor claim, we
may work over a smooth finite type scheme cover

X Ñ E``n, with X8 Ă X being the preimage of E``8n .

By [KM85, 1.1.5.2], we may also base change from Z to an algebraically closed field. Then,
for a point x P X8, by (a) and (c), both X and X8 are smooth at x and

dimxX
8 “ dimxX ´ 1.

Thus, X8 Ă X is a Weil divisor and, since X is regular, also a desired Cartier divisor. �

For later use we record the following proposition taken from [Con07, 3.2.4].

Proposition 3.1.8. Let E π
ÝÑ S and E1 π

1

ÝÑ S be generalized elliptic curves such that

S8,π,n X S8,π
1,m “ H whenever n ‰ m.

(a) The fppf sheaf IsompE,E1q that parametrizes generalized elliptic curve isomorphisms is repre-
sentable by a finite S-scheme of finite presentation.

3 Here is a sketch for a proof of this representability that bypasses blowups used in [Con07, 3.2.2 and 3.2.4]: as in
the proof of [DR73, III.2.5], one uses Hilbert schemes to get representability by a quasi-finite, separated S-scheme;
then, due to the valuative criterion, the key point is to check that if S is the spectrum of a strictly Henselian discrete
valuation ring and E and E1 are degenerating elliptic curves with identified generic fibers: Eη “ E1η, then E “ E1; for
this, the theory of Néron models (especially, [BLR90, 7.4/3]) identifies pEsm

q
0 with pE1smq0 and, since the reductions

of η-rational points are dense in the special fibers, also Esm with E1sm; then Zariski’s main theorem [BLR90, 2.3/21]
produces the graph of the sought identification E “ E1.
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(b) If S is integral and normal and η is its generic point, then any η-isomorphism

Eη » E1η extends to a unique S-isomorphism E » E1.

Proof. Part (a) has essentially been proved in footnote 3. Alternatively, Zariski locally on S there
is an n P Zě1 such that E and E1 correspond to objects of E``n, so (a) is a reformulation of the
finiteness of the diagonal of E``n proved in Theorem 3.1.6 (a). To obtain (b) one combines (a) with
the following useful lemma. �

Lemma 3.1.9. If S is an integral normal scheme, η is its generic point, and F is a finite S-scheme,
then the pullback map F pSq Ñ F pηq is bijective.

Proof. The injectivity follows from the schematic dominance of η Ñ S and the separatedness of
F Ñ S. For the surjectivity, we may work Zariski locally on S to assume that S “ SpecA. Then
the schematic image in F of an x P F pηq is SpecB for some finite A-subalgebra B Ă FracA. Since
A is normal, A “ B, so the schematic image is the sought extension of x to an element of F pSq. �

3.2. The tower of compactifications

The compactifications E``n introduced in the previous section are related to each other: they form
an infinite tower in which the transition morphisms

E``nm Ñ E``n
encode contractions of generalized elliptic curves. The goal of this section is to use the already
established results about E``n to prove several basic properties, such as flatness, of these transition
morphisms (see Theorem 3.2.4) and to deduce some concrete results about the generalized elliptic
curves themselves (see Corollaries 3.2.5 and 3.2.6). We begin with a brief review of contractions.

3.2.1. Contraction with respect to a finite locally free subgroup. As is justified in [Con07,
top of p. 218] (which is based on [DR73, IV.1.2]), if E Ñ S is a generalized elliptic curve and
G Ă Esm is a finite locally free S-subgroup, then there is a generalized elliptic curve

cGpEq Ñ S equipped with a surjective S-scheme morphism E Ñ cGpEq (3.2.1.1)

such that

‚ the image under E Ñ cGpEq of each disjoint from G irreducible component of a geometric
fiber of E Ñ S is a single point, and

‚ the map E Ñ cGpEq restricts to a group isomorphism between the open complement of the
union of such components and pcGpEqqsm.

In particular, if E is an elliptic curve, then E “ cGpEq.

These conditions ensure that G is identified with an S-subgroup of cGpEqsm that meets every
irreducible component of every geometric fiber of cGpEq Ñ S. Due to [DR73, IV.1.2], they also
determine the data (3.2.1.1) uniquely up to a unique isomorphism. In particular, whenever G1 Ă Esm

is another finite locally free S-subgroup that meets the same irreducible components of the geometric
fibers of E Ñ S as G, one gets a canonical identification

cGpEq “ cG1pEq. (3.2.1.2)

For the same reason, the formation of E Ñ cGpEq commutes with arbitrary base change in S.
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We call this cGpEq the contraction of E with respect to G. The compatibility of the formation of
cGpEq with base change shows that for every n,m P Zě1, the identity map on E`` extends to the
“contraction” Z-morphism

E``nm Ñ E``n defined by E ÞÑ cEsmrnspEq.

Likewise, if pE,Gq is classified by the stack Bnm of §3.1.4, then pcGrnspEq, Grnsq is classified by the
stack Bn, so there is the “contraction” Z-morphism

Bnm Ñ Bn defined by pE,Gq ÞÑ pcGrnspEq, Grnsq.

These and similar morphisms will be called contractions or contraction morphisms in the sequel (a
slight abuse of terminology because it is not substacks of E``nm or Bnm that are getting contracted).

In many situations, we will need a robust criterion for recognizing algebraic spaces and morphisms
that are representable by algebraic spaces. The following lemma, which paraphrases [Con07, 2.2.5 (1)
and 2.2.7] and may be traced back to [DR73, IV.2.6], is well suited for this task.

Lemma 3.2.2. Let S be a scheme and let X and Y be S-algebraic stacks whose diagonals ∆X {S

and ∆Y {S are quasi-compact and separated.

(a) The stack X is an algebraic space if and only if for every algebraically closed field k whose
spectrum is equipped with a morphism to S, every object ξ of X pkq, and every Artinian local
k-algebra A, the pullback of ξ to the groupoid X pAq has no nonidentity automorphism; if X
is Deligne–Mumford, then A “ k suffices.

(b) An S-morphism
f : X Ñ Y

is representable by algebraic spaces if and only if for every algebraically closed field k whose
spectrum is equipped with a morphism to S, every object ξ of X pkq, and every Artinian local
k-algebra A, no nonidentity automorphism of the pullback of ξ to X pAq is sent to an identity
automorphism in Y pAq; if X is Deligne–Mumford, then A “ k suffices.

Proof.

(a) The necessity is clear. For the sufficiency, due to [Con07, 2.2.5 (1)], it is enough to argue that
the assumed condition implies the triviality of the automorphism functor of every ξ. This
functor is a separated k-group algebraic space G of finite type, so is necessarily a scheme due
to [Art69, 4.2], and is even k-étale if X is Deligne–Mumford. The triviality of G is therefore
equivalent to that of all the GpAq, with A “ k being sufficient if X is Deligne–Mumford.

(b) The failure of the condition on ξ implies that the groupoid of A-points of some A-fiber of
f has a nonidentity automorphism, and the necessity follows. For the sufficiency, due to
[Con07, 2.2.7], it is enough to argue that the assumed condition implies that each k-fiber X
of f is an algebraic space, so it remains to observe that this condition ensures that X meets
the criterion of (a). �

To infer further representability by schemes, we will often use the following well-known lemma:

Lemma 3.2.3. For stacks X and Y over a scheme S, an S-morphism f : X Ñ Y that is
representable by algebraic spaces, separated, and locally quasi-finite is representable by schemes; if, in
addition, f is proper, then f is finite.

Proof. This follows from [LMB00, A.2] (see also [Con07, 2.2.6]) and [EGA IV4, 18.12.4]. �
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We are ready to exploit the relationship between the two contractions introduced in §3.2.1 to extract
further information about the stacks E``n.

Theorem 3.2.4. For Bn as in §3.1.4 and any n,m P Zě1, consider the commutative diagram

Bnm

c1

��

a // E``nm
c

��

Bn
b // E``n

in which c and c1 are the contraction morphisms of §3.2.1 and a and b forget the subgroup G.

(a) The contractions c and c1 are flat and of finite presentation. Moreover, c is proper, with finite
diagonal, and surjective, whereas c1 is representable by schemes, separated, and quasi-finite.

(b) The closed substack
E``8n ˆE``n,c E``nm Ă E``nm

is a relative effective Cartier divisor over SpecZ that is a positive integer multiple of E``8nm.

(c) The multiple needed in (b) is m, i.e.,

rE``8n ˆE``n,c E``nms “ m ¨ rE``8nms

as Cartier divisors on E``nm.

Proof. The commutativity of the diagram follows from the identification discussed in §3.2.1.

By Proposition 3.1.5 (b), the maps a and b are representable by schemes, separated, quasi-finite, of
finite presentation, flat, and faithfully flat onto E``nm-ord

nm and E``n-ord
n , respectively.

(a) By Theorem 3.1.6 (a), the stacks E``nm and E``n are Z-proper with finite diagonal, so c is also
proper, with finite diagonal, and of finite presentation. Since the contraction of the standard
nm-gon with respect to its n-torsion is the standard n-gon, c is surjective. Moreover, c|E`` is
the identity, E`` and E``nm-ord

nm cover E``nm, and, by Proposition 3.1.5 (b), a is faithfully flat
onto E``nm-ord

nm , so the flatness of c will follow once we establish that of c1.

It remains to establish the claims about c1. For the representability of c1 by algebraic spaces,
due to Lemma 3.2.2 (b), it suffices to observe that if E is the standard nm-gon over an
algebraically closed field and G » Z{nmZ is a subgroup of Esm that meets every irreducible
component of E, then, by Lemma 2.1.6, no nonidentity automorphism of pE,Gq restricts
to the identity map on pEsmq0. The separatedness of c1 follows from the separatedness of
b ˝ c1 “ c ˝ a and of b, and similarly for the finite presentation of c1. For the quasi-finiteness of
c1 it therefore suffices to observe that a generalized elliptic curve over an algebraically closed
field has finitely many subgroups of order nm. The representability of c1 by schemes follows
from Lemma 3.2.3.

Finally, since c1 is a quasi-finite map between separated Deligne–Mumford stacks that are
smooth of relative dimension 1 over Z, it is flat by [EGA IV2, 6.1.5].

(b) Since c is flat by (a) and E``8n Ă E``n is a relative effective Cartier divisor over SpecZ by
Theorem 3.1.6 (d), the pullback in question is also a relative effective Cartier divisor over
SpecZ. Both

E``8n ˆE``n,c E``nm and E``8nm
21



are supported on the same closed subset of the underlying topological space of E``nm and,
by Theorem 3.1.6 (c)–(d), this subset is irreducible and has E``8nm as its associated reduced
closed substack (see [LMB00, 5.6.1 (ii)]). Moreover, E``nm is regular, so on any of its scheme
atlases Cartier divisors identify with Weil divisors. Passage to such an atlas then shows that
E``8n ˆE``n,c E``nm is a positive integer multiple of E``8nm—the global constancy of the needed
factor across the irreducible components of the pullback of E``8nm to the atlas follows from the
irreducibility of E``8nm (to check that the generic points of such irreducible components map
to the generic point of E``8nm, one uses the fact that generizations lift along a flat morphism;
see [LMB00, 5.8]).

(c) Due to (b) and the moduli interpretation, it suffices to find a single generalized elliptic curve
E

π
ÝÑ S with nm-gon degenerate geometric fibers such that its contraction E1

π1
ÝÑ S with

respect to Esmrns satisfies the equality

IS8,π1 “ I d
S8,π of OS-ideal sheaves for d “ m

but does not satisfy this equality for any other d P Zě1 (here IS8,π Ă OS is the ideal sheaf
that cuts out the degeneracy locus S8,π Ă S, and likewise for IS8,π1 ). Tate curves supply
such an E, see [DR73, VII.1.11 and VII.1.14]. �

We now record some concrete consequences of our analysis of the contraction c : E``nm Ñ E``n.

Corollary 3.2.5. For a generalized elliptic curve E π
ÝÑ S, let IS8,π Ă OS be the ideal sheaf that

cuts out the degeneracy locus S8,π Ă S. If the degenerate geometric fibers of E π
ÝÑ S are nm-gons

and cEsmrnspEq
π1
ÝÑ S is the contraction of E π

ÝÑ S with respect to Esmrns, then

IS8,π1 “ Im
S8,π .

Proof. This is a reformulation of Theorem 3.2.4 (c). �

Corollary 3.2.6. For each n P Zě1, every generalized elliptic curve E Ñ S is fppf locally on S the
contraction (with respect to some subgroup) of a generalized elliptic curve E1 Ñ S for which the
number of irreducible components of each degenerate geometric fiber is divisible by n. An fppf cover
of S over which such an E1 exists may be chosen to be locally quasi-finite over S.

Proof. We may assume that there is a d P Zě1 such that the degenerate geometric fibers of E
are d-gons (see Remark 2.1.9). The first claim then follows from flatness, surjectivity, and finite
presentation of E``nd

c
ÝÑ E``d. The second claim follows from the first and [EGA IV4, 17.16.2]. �

We conclude the section by using Corollary 3.2.6 to analyze the torsion subgroups of a generalized
elliptic curve in a formal neighborhood of the degeneracy locus. Similar analysis in the case of Tate
curves has been carried out in [DR73, VII.1.13–VII.1.15].

Proposition 3.2.7. Let E π
ÝÑ S be a generalized elliptic curve with S “ SpecR for a Noetherian R

that is complete and separated with respect to the ideal I Ă R that cuts out S8,π Ă S.

(a) For every n P Zě1, the S-group pEsmq0 has a unique finite locally free S-subgroup Bn Ă pEsmq0

of order n, and Bn » µn étale locally on S. If an m P Zě1 divides both n and the number
of irreducible components of each degenerate geometric fiber of E, then Esmrns has a unique
finite locally free S-subgroup An,m that meets precisely m irreducible components of every
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degenerate geometric fiber of E, contains every other finite locally free S-subgroup of Esmrns
with this property, is of order nm, and fits into a short exact sequence

0 Ñ Bn Ñ An,m Ñ Cm Ñ 0

with Cm isomorphic to Z{mZ étale locally on S.

(b) For every n P Zě1, over S ´ S8,π the group Bn from (a) fits into a short exact sequence

0 Ñ pBnqS´S8,π Ñ ES´S8,π rns Ñ C 1n Ñ 0

with C 1n an pS ´ S8,πq-group scheme that is isomorphic to Z{nZ étale locally on S ´ S8,π.

Proof.

(a) If S is an infinitesimal thickening of S8,π, then Lemma 2.1.11 gives the claim. Therefore, the
uniqueness and the existence of Bn and An,m follow from [EGA III1, 5.1.4 and 5.4.1] (the
S-group structure of Bn may be read off from the action morphism Bn ˆS E Ñ E, so the
nonproperness of Esm does not intervene, and likewise for An,m). The étale local structure of
Bn translates into that of its Cartier dual, so it may be read off on geometric fibers at points
in S8,π, and likewise for the étale local structure of Cm.

(b) In the case when n divides the number of irreducible components of each degenerate geometric
fiber of E, the claim follows from (a). In general, C 1n is a finite locally free pS ´ S8,πq-group
scheme of order n and it suffices to check that its geometric fibers are isomorphic to Z{nZ. In
order to check this at a point η P S ´ S8,π, we choose a specialization s P S8,π of η and use
[EGA II, 7.1.9] to find an S-scheme T that is the spectrum of a complete discrete valuation
ring whose generic (resp., closed) point maps to η (resp., s). Due to the uniqueness of Bn, the
formation of C 1n commutes with base change of E to T , so we are reduced to the case when
S “ SpecR for some complete discrete valuation ring R and I Ă R is a nonzero power of the
maximal ideal. In this case, Corollary 3.2.6 and [EGA IV4, 18.5.11 (a)ô(c)] supply a finite
faithfully flat R-algebra R1 such that ER1 is the contraction of a generalized elliptic curve
E1 Ñ SpecR1 for which n divides the number of irreducible components of each degenerate
geometric fiber. Base change to R1 reduces the claim to the settled case of E1. �

3.3. The coarse moduli space of E``n
We seek to prove in Proposition 3.3.2 that for any scheme S and any n P Zě1 the coarse moduli
space of pE``nqS is isomorphic to P1

S , the “j-line.” Of course, this is hardly surprising, but even in the
n “ 1 case we are not aware of a reference that would treat arbitrary S—for n “ 1, [DR73, VI.1.1]
settles the basic case S “ SpecZ, whereas [FO10, 2.1] handles general locally Noetherian S (the
formation of the coarse moduli space need not commute with nonflat base change, so the S “ SpecZ
case does not automatically imply the general case). We will build on the above result of Deligne
and Rapoport through the following lemma.

The existence of all the coarse moduli spaces that we will consider in this section is guaranteed by
[KM97, 1.3 (1)] (see also [Con05, 1.1] and [Ryd13, 6.12]).

Lemma 3.3.1. Let X be a Deligne–Mumford stack that is separated, flat, and locally of finite type
over Z, and let

f : X Ñ X

be its coarse moduli space map. If fFp : XFp Ñ XFp is the coarse moduli space map of XFp for every
prime p, then fS : XS Ñ XS is the coarse moduli space map of XS for every scheme S.
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Proof. The formation of the coarse moduli space f : X Ñ X commutes with flat base change in
X, and we may work fppf locally on XS when checking that fS : XS Ñ XS is the coarse moduli
space of XS . We may therefore assume that S “ SpecR for some ring R and, by [AV02, 2.2.3 and
its proof], that

X “ SpecA and X “ rpSpecBq{Gs

for some finite A-algebra B equipped with an action of a finite group G. In this situation, as is
explained in [Con05, 3.1], we have A “ BG, the coarse moduli space of XS is SpecppB bZ Rq

Gq, and
we seek to prove that the map

jR : BG bZ RÑ pB bZ Rq
G

is an isomorphism granted that it is an isomorphism whenever R “ Fp for any p.

The Z-flatness of X ensures that B is torsion-free, so the abelian group B{BG is also torsion-free.
Therefore, BG bZ RÑ B bZ R, and hence also jR, is injective for every Z-module R. In order to
conclude, we will prove that jR is also surjective for every Z-module R.

By passage to a filtered direct limit, we may assume that the Z-module R is finitely generated. Thus,
since the case R “ Z is clear, we may assume that R “ Z{nZ for some n P Zě1. To then finally
reduce to the assumed R “ Z{pZ case by devissage, it remains to use the commutative diagram

0 // BG bZ R
1 //

� _

jR1

��

BG bZ R //
� _

jR
��

BG bZ R
2 //

� _

jR2

��

0

0 // pB bZ R
1qG // pB bZ Rq

G // pB bZ R
2qG

that is in place whenever one has a short exact sequence 0 Ñ R1 Ñ RÑ R2 Ñ 0 of Z-modules. �

We are ready for the promised conclusion about the coarse moduli space of pE``nqS .

Proposition 3.3.2. For any n P Zě1, the coarse moduli space of E``n (resp., of the open substack
E`` Ă E``n) is isomorphic to P1

Z (resp., to A1
Z Ă P1

Z, with the map E`` Ñ A1
Z being given by the

j-invariant) and its formation commutes with base change to an arbitrary scheme S. In particular,
E``n is irreducible and has geometrically irreducible Z-fibers.

Proof. The last assertion follows from the rest because the map to the coarse moduli space induces
a homeomorphism on topological spaces.

We begin with the n “ 1 case, for which the base S “ SpecZ has been treated in [DR73, VI.1.1 and
VI.1.3] and we only need to prove that the formation of the coarse moduli space of E``1 commutes
with arbitrary base change. Let

C Ă E``1
be the preimage of the open subscheme of P1

Z obtained by removing the sections j “ 0 and
j “ 1728. By [Del75, 5.3 (III)], the automorphism functor of every generalized elliptic curve classified
by C is the constant group t˘1u. Therefore, as is explained in [ACV03, §5.1], [Rom05, §5], or
[AOV08, Appendix A], we may “quotient out” this constant group from the automorphism functors
to obtain the algebraic stack C( t˘1u that is a “rigidification” of C . By, for instance, [AOV08, A.1],
the rigidification map

C Ñ C( t˘1u

induces an isomorphism on coarse moduli spaces. However, by [LMB00, 8.1.1], the algebraic stack
C( t˘1u is its own coarse moduli space. Thus, since the formation of C( t˘1u commutes with
arbitrary base change, so does that of the coarse moduli space of C . In particular, for every prime
p, the map from the coarse moduli space of pE``1qFp to P1

Fp is an isomorphism on a dense open
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subscheme. However, this map is finite locally free due to the normality of its source inherited from
the Fp-smooth pE``1qFp , so it is an isomorphism globally. This settles the n “ 1 case for S “ SpecFp,
and the general n “ 1 case then follows from Lemma 3.3.1.

For general n, we begin by arguing that the coarse moduli space Y of E``n is Z-flat and that its
formation commutes with arbitrary base change. By the settled n “ 1 case, this is true on the
elliptic curve locus, so we may focus on the open substack Cn Ă E``n that is the preimage of C . By
[DR73, II.2.8], every generalized elliptic curve has the automorphism ´1 that restricts to inversion
on the smooth locus. In particular, the constant group scheme t˘1u is a canonical subgroup functor
of the automorphism functor of every generalized elliptic curve classified by Cn, so we may pass to
the rigidification Cn( t˘1u and need to argue that its coarse moduli space is Z-flat and of formation
compatible with base change. This follows from [AOV08, 3.3] because the algebraic stack Cn( t˘1u
is tame by Lemma 2.1.6 and [Del75, 5.3 (III)].

It remains to prove that the map f : Y Ñ P1
Z between the coarse moduli spaces of E``n and E``1 is

an isomorphism. By [Ryd13, 6.12], the coarse moduli space Y is Z-proper, so the map in question
is proper and quasi-finite, and hence also finite by Lemma 3.2.3. Once we prove its flatness, and
hence also local freeness, it will remain to inspect the elliptic curve locus to see that it is an
isomorphism. Due to the Z-flatness of Y and [EGA IV3, 11.3.11], for the remaining flatness of f we
may work Z-fiberwise, and hence conclude with the help of [EGA IV2, 6.1.5] after observing that for
every field k, the reducedness of the k-smooth pE``nqk ensures the reducedness, and hence also the
Cohen–Macaulay property, of its 1-dimensional coarse moduli space Yk. �

3.4. Algebraization of formal generalized elliptic curves and of their homomorphisms

The goal of this section is to prove that a formal generalized elliptic curve that is adic over an affine
Noetherian formal scheme and whose number of irreducible components of a degenerate geometric fiber
is constant may be uniquely algebraized, and likewise for generalized elliptic curve homomorphisms—
see Theorem 3.4.2 for a precise statement. Such algebraizability does not immediately follow from
Grothendieck’s formal GAGA formalism because the loci of smoothness may not be proper over the
base, but it nevertheless is not surprising: if this formalism applied to the Z-proper stack E``n as it
does in the scheme case, then the pullback map

E``npRq Ñ lim
ÐÝm

E``npR{Imq

would be an equivalence for every adic Noetherian ring R with an ideal of definition I, and
Theorem 3.4.2 (a) would follow. The key difference from the scheme case is that a section of
pE``nqR Ñ SpecR is not a closed immersion. Nevertheless, an argument that we have extracted
from [Ols06, 5.4] proves a suitable formal GAGA statement recorded in Lemma 3.4.1 (see also
[Aok06, §3.4] and [Aok06e] for a similar argument).

Lemma 3.4.1. Let R be a Noetherian ring that is complete and separated with respect to an ideal
I Ă R. For every proper R-algebraic stack X with finite diagonal ∆X {R (for instance, for every
proper Deligne–Mumford R-stack X ), the functor

X pRq Ñ lim
ÐÝm

X pR{Imq (3.4.1.1)

is an equivalence of categories.

Proof. If x, x1 P X pRq, then the isomorphism functor Isompx, x1q is a finite R-scheme, so

Isompx, x1qpRq Ñ lim
ÐÝm

Isompx, x1qpR{Imq
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is bijective by formal GAGA for schemes [EGA III1, 5.1.6]. In other words, the functor (3.4.1.1) is
fully faithful. For its essential surjectivity, suppose that

txm P X pR{Imqumě1

is a compatible sequence of objects. Due to the finiteness of ∆X {R, each map

SpecpR{Imq
xm
ÝÝÑXR{Im

is representable by schemes and finite. Therefore, xm corresponds to a coherent OXR{Im
-algebra

Am. By formal GAGA for Artin stacks, i.e., by [Ols06, A.1], the compatible system tAmumě1 comes
via base change from a unique coherent OX -algebra A . It remains to argue that the composition
of the finite morphism X

x
ÝÑ X corresponding to A and the structure morphism X Ñ SpecR

is an isomorphism. By construction, xR{Im “ xm for every m ě 1, so the claim will follow from
[EGA III1, 5.1.6] once we prove that the proper R-algebraic stack X is a finite R-scheme.

By [Con07, 2.2.5 (2)], the algebraic space locus of X is open and contains XR{I , so it must
coincide with X. Since the relative dimension of X over R may be computed étale locally on X,
[EGA IV3, 13.1.3] proves that the relative dimension 0 locus of X is open, and hence must equal X
because it contains XR{I . To conclude that X Ñ SpecR is finite one then applies Lemma 3.2.3. �

The algebraization Theorem 3.4.2 (a) has already been proved in [Con07, 2.2.4] by a different
argument that does not use formal GAGA for Artin stacks (a similar argument had previously been
used in [DR73, VII.1.10] to construct Tate curves), but it seems worthwhile to put this result in
the context of Lemma 3.4.1. In contrast, the method of [Con07, 2.2.4] does not seem to suffice
for the proof of the algebraizability of homomorphisms (beyond the case of isomorphisms), i.e., for
Theorem 3.4.2 (b). To algebraize homomorphisms we exploit their structure detailed in §2.2.

Theorem 3.4.2. Let R be a Noetherian ring, complete and separated with respect to an ideal I Ă R.

(a) For each n P Zě1, every compatible under pullback sequence

tEm Ñ SpecpR{Imqumě1

of generalized elliptic curves whose degenerate geometric fibers are n-gons is isomorphic to
the sequence obtained via base change from a unique generalized elliptic curve E Ñ SpecR.

(b) For generalized elliptic curves E Ñ SpecR and E1 Ñ SpecR, every compatible sequence

tfm : ER{Im Ñ E1R{Imumě1

of generalized elliptic curve homomorphisms (defined in Definition 2.1.12) comes via base
change from a unique generalized elliptic curve homomorphism f : E Ñ E1.

Proof.

(a) Lemma 3.4.1 applied to E``n proves the claim (for the uniqueness, Remark 2.1.9 ensures that
the degenerate geometric fibers of E are n-gons).

(b) We begin with the case when all the fm are isomorphisms (Lemma 3.4.1 does not apply
because E need not correspond to an object of E``n for any n). Due to Remark 2.1.9, there
is no geometric point s of SpecR for which Es and E1s are both degenerate but have distinct
numbers of irreducible components, so Proposition 3.1.8 (a) shows that the isomorphism
functor IsompE,E1q is a finite R-scheme. Therefore, by [EGA III1, 5.1.6], the sequence

pfmq P lim
ÐÝm

IsompE,E1qpR{Imq is induced by a desired unique f P IsompE,E1qpRq.
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In the general case, by [EGA III1, 5.4.1], the fm algebraize to a unique R-morphism

f : E Ñ E1,

and our task is to show that f is a generalized elliptic curve homomorphism. Since idempotents
of R{I lift uniquely to R (see [EGA IV4, 18.5.16 (ii)]), we may use Proposition 2.2.9 to write

R “ R1 ˆR2 and I “ I 1 ˆ I2

in such a way that pf1qR1{I 1 is the zero homomorphism and pf1qR2{I2 is an isogeny. Then
R1 (resp., R2) is complete and separated with respect to I 1 (resp., I2) and each pfmqR1{I 1m
(resp., pfmqR2{I2m) is the zero homomorphism (resp., an isogeny). Thus, fR1 must be the zero
homomorphism, and we are reduced to the case when all the fm are isogenies.

Let Km Ă ER{Im be the kernel of the isogeny fm. The group law of Km is the restriction of
the action morphism

Km ˆ ER{Im Ñ ER{Im ,

so [EGA III1, 5.1.4 and 5.4.1] supply a finite locally free R-subgroup K Ă Esm that algebraizes
all the Km. Corollary 2.2.7 (b) and the settled case when the fm are isomorphisms then
provide the identification E{K – E1, so f is identified with the isogeny E Ñ E{K and hence
is a homomorphism. �

4. Modular descriptions of modular curves

With the compactifications E``n at our disposal, we are ready to exhibit the moduli interpretations
and the regularity of several classical modular curves, such as X pnq or X1pnq (see §1.7 for an
overview of our method and of previous work). We begin in section 4.1 by reviewing the construction
and the properties of modular curves of arbitrary congruence level. The moduli interpretations
of X pnq and X1pnq given in sections 4.3 and 4.4 use Drinfeld structures on generalized elliptic
curves, so in section 4.2 we extend a number of properties of such structures from the elliptic curve
case studied by Katz and Mazur. In section 4.5, we synthesize the arguments used for X pnq and
X1pnq in the form of an axiomatic result, which we use in section 4.6 to treat further modular
curves ĂX1pn;n1q, X1pn;n1q, and X0pn;n1q for suitable n and n1. The analysis of X1pn;n1q is used
in section 4.7 to give a modular construction of some Hecke correspondences for X1pnq.

4.1. Modular curves of congruence level

The main goal of this section is to review the definition given by Deligne and Rapoport in [DR73,
IV.3.3] of (stacky) modular curves over Z of congruence level. The definition is via a normalization
procedure, and for general levels there is no known description of these Z-curves as moduli spaces
of generalized elliptic curves equipped with additional structure (one of the principal goals of this
paper is to give such a description in the case of Γ0pnq level). The normalization procedure rests on
the case of “no level,” with which we begin.

4.1.1. The case of no additional level. In this case, the modular curve in question is the Z-stack
E``1 that parametrizes generalized elliptic curves with integral geometric fibers (see Definition 3.1.1).
In the context of level structures, we will denote E``1 by X

GL2ppZq, by XΓp1q, or simply by X p1q,
and we will denote its elliptic curve locus E`` by similar notation with X replaced by Y , e.g., by

Y p1q ĂX p1q.

By Theorem 3.1.6 (a)–(b) (i.e., by [DR73, III.2.5 (i), III.1.2 (iii), and IV.2.2]), the stack X p1q is
Deligne–Mumford and the morphism X p1q Ñ SpecZ is proper and smooth of relative dimension 1.
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4.1.2. The case of an arbitrary congruence level H. The level is an open (and hence finite
index) subgroup H of GL2ppZq. Its associated modular curve XH is a Deligne–Mumford Z-stack that,
loosely speaking, compactifies the stack YHr

1
level s which represents the “level H moduli problem”

on elliptic curves over schemes on which bad primes that depend on the level are invertible. More
precisely, given H, one fixes an n P Zě1 for which

KerpGL2ppZq� GL2pZ{nZqq Ă H and sets H :“ ImpH Ñ GL2pZ{nZqq.
One then lets YHr

1
n s be the Zr 1

n s-stack that, for variable Zr 1
n s-schemes S, parametrizes elliptic

curves E Ñ S equipped with an S-point of the finite étale S-scheme

Hz IsompErns, pZ{nZq2q.
Finally, one defines XH to be the Deligne–Mumford X p1q-stack obtained by

normalizing X p1q with respect to the “forgetful” finite étale morphism YHr
1
n s Ñ Y p1qZr 1

n
s.

One lets YH be the preimage of Y p1q in XH . It is proved in [DR73, IV.3.6] that different choices of
n lead to canonically isomorphic XH .

The map
XH Ñ X p1q (4.1.2.1)

is representable, finite, and also surjective because X p1q is irreducible. Moreover, by [EGA IV2, 6.1.5]
(which applies because of “going down” and the normality of XH), the map (4.1.2.1) is flat, so it
is locally free of rank rGL2ppZq : Hs and XH is of relative dimension 1 over Z at every point. By
[DR73, IV.6.7], the proper and flat structure morphism XH Ñ SpecZ is even smooth over Zr 1

n s. If
H 1 Ă H, then the finite étale Y p1q-morphism YH 1r

1
n s Ñ YHr

1
n s obtained from the S-morphisms

H 1z IsompErns, pZ{nZq2q Ñ Hz IsompErns, pZ{nZq2q
gives rise to the finite X p1q-morphism

XH 1 Ñ XH .

Thus, due to the following lemma and Proposition 4.3.6, all the XH are schemes for small enough H.

Lemma 4.1.3. If the modular curve XH has an open substack U Ă XH whose geometric points
have no nontrivial automorphisms, then U is a scheme that is quasi-projective over SpecZ.

Proof. By Lemma 3.2.2 (a), U is an algebraic space. Moreover, the coarse moduli space morphism
X p1q Ñ P1

Z is separated and quasi-finite, so U Ñ P1
Z is also separated and quasi-finite, and hence U

is a scheme by Lemma 3.2.3. Finally, the morphism U Ñ P1
Z is quasi-projective by [EGA IV3, 8.11.2]

or by Zariski’s main theorem [EGA IV3, 8.12.6], so U Ñ SpecZ is also quasi-projective. �

Remark 4.1.4. Due to Lemma 4.1.3 and [Con07, 2.2.5 (2)], each XH has a unique largest open
subscheme. This subscheme contains exactly those geometric points of XH whose automorphism
functors are trivial.

One suspects that XH is the “correct” modular curve of level H, in part because there is no other
choice granted that one believes that such a modular curve should be representable and finite over
X p1q, normal, and agree with YHr

1
n s over Y p1qZr 1

n
s. One of the bottlenecks limiting practical

usefulness of the stacks XH is the lack of descriptions of their functors of points (without inverting
the level) in terms of generalized elliptic curves equipped with additional data. In the cases where
such descriptions have been found, one has been able to analyze XH more thoroughly, e.g., to
prove that XH is regular (and not just normal). Such regularity is useful in practice (but is not
known in general)—for instance, through [EGA IV2, 6.1.5] it would ensure flatness of the maps
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XH Ñ XH 1 mentioned above. Similarly, the proof of the Zr 1
n s-smoothness of pXHqZr 1

n
s given in

[DR73, IV.6.7] rests on the modular description of pXHqZr 1
n
s presented in loc. cit. for any H (however,

this description is not explicit enough to a priori recover the “obvious” candidate descriptions for
classical choices of H).

Modular descriptions of XH are known for most “classical” H, and we will reprove some of them in
sections 4.3–4.6 below.

4.2. Drinfeld level structures on generalized elliptic curves via congruences

In order to efficiently handle all residue characteristics, the modular descriptions of various XH

that will be discussed in subsequent sections will use Drinfeld level structures on generalized elliptic
curves. In the elliptic curve case, the necessary properties of such structures follow from the work
of Katz and Mazur presented in [KM85], and the goal of this section is to extend them to the
generalized elliptic curve case. Some such extensions have already been obtained in [Con07], but
our method seems simpler, more direct, and applies in a wider range of situations. The key idea
is to exploit “mod n congruences” with elliptic curves: the properties of various “mod n Drinfeld
level structures” tend to be fppf local and to depend solely on the n-torsion Esmrns, so for many
purposes we may first use Corollary 3.2.6 to reduce to the case when Esmrns is finite locally free of
rank n2 and then apply the following lemma to further reduce to the elliptic curve case.

Lemma 4.2.1. For every n P Zě1 and every generalized elliptic curve E Ñ S for which n divides
the number of irreducible components of each degenerate geometric fiber, there is an fppf cover S1 Ñ S
and an elliptic curve E1 Ñ S1 for which

Esm
S1 rns » E1rns.

Proof. We may work étale locally on S, so limit arguments allow us to assume that S is local
and strictly Henselian. We may then also assume that the special fiber of E is degenerate, so the
connected-étale sequence (together with Lemma 2.1.11) shows that Esmrns is an extension of Z{nZ
by µn. After passage to an fppf cover this extension splits and our task reduces to showing that fppf
locally on SpecZ there is an elliptic curve E1 with E1rns – µn ˆ Z{nZ.

Via limit arguments, it suffices to find such an E1 over each strict Henselization pR,mq of SpecZ at
every closed point. The conclusion then follows from choosing an ordinary elliptic curve over R{m,
lifting its Weierstrass equation to R, and using the connected-étale sequence again. �

To make sense of Drinfeld level structures as alluded to above, we recall the following key definition:

Definition 4.2.2. For a finite abelian group A and a generalized elliptic curve E Ñ S, a Drinfeld
A-structure on E is a homomorphism α : AÑ EsmpSq for which the relative effective Cartier divisor

Dα :“
ř

aPArαpaqs Ă Esm

is an S-subgroup scheme. If this S-subgroup G Ă Esm is given in advance, then we say that α is a
Drinfeld A-structure on G.

Remark 4.2.3. By [KM85, 1.5.3], if #A is invertible on S, then a Drinfeld A-structure α on E
amounts to an isomorphism induced by α between the constant S-group AS and some S-subgroup
of Esm.
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Convention 4.2.4. In the sequel we will sometimes deal with Drinfeld Z{nmZ- or pZ{nmZq2-
structures for fixed n,m P Zě1 and will want to obtain Z{nZ- or pZ{nZq2-structures by restricting
to the n-torsion subgroups. To make sense of this we need to choose noncanonical isomorphisms

Z{nZ » pZ{nmZqrns and pZ{nZq2 » pZ{nmZq2rns.

The particular choices will never matter for the results, but for definiteness we always choose the
isomorphisms induced by multiplication by m on Z or on Z2.

In the results below, the “compare with” references point to the elliptic curve cases treated by Katz
and Mazur. We begin by detailing the properties of restrictions to subgroups of various Drinfeld
structures on generalized elliptic curves. Parts (a) and (c) of Proposition 4.2.5 have been proved in
[Con07, 2.3.2] by a different method that also eventually reduces to the elliptic curve case.

Proposition 4.2.5. Let n,m P Zě1, and let E Ñ S be a generalized elliptic curve.

(a) (Compare with [KM85, 5.5.2 (1) and 5.5.7 (1)]). If α is a Drinfeld pZ{nmZq2-structure on
Esmrnms, then α|pZ{nmZq2rns is a Drinfeld pZ{nZq2-structure on Esmrns and α|Z{nmZˆt0u is a
Drinfeld Z{nmZ-structure on E.

(b) (Compare with [KM85, 5.5.8 (1)]). If α : pZ{nmZq2 Ñ EsmpSq is a group homomorphism,
every prime divisor of m divides n, and α|pZ{nmZq2rns is a Drinfeld pZ{nZq2-structure on
Esmrns, then α is a Drinfeld pZ{nmZq2-structure on Esmrnms (so, in particular, the number
of irreducible components of each degenerate geometric fiber of E is divisible by nm).

(c) (Compare with [KM85, 5.5.7 (2)]). If α is a Drinfeld Z{nmZ-structure on E, then α|pZ{nmZqrns
is a Drinfeld Z{nZ-structure on E.

(d) (Compare with [KM85, 5.5.8 (2)]). If α : Z{nmZÑ EsmpSq is a group homomorphism, every
prime divisor of m divides n, and α|pZ{nmZqrns is a Drinfeld Z{nZ-structure on E, then α is
a Drinfeld Z{nmZ-structure on E.

(e) (Compare with [KM85, 5.5.2 (2)]). For brevity, set N :“ nm. If α is a Drinfeld pZ{NZq2-
structure on EsmrN s and G Ă Esm is the subgroup

ř

iPZ{NZˆt0urαpiqs supplied by (a), then

α|t0uˆZ{NZ : t0u ˆ Z{NZÑ pE{GqsmpSq

is a Drinfeld Z{NZ-structure on EsmrN s{G Ă pE{Gqsm.

Proof. It suffices to work fppf locally on S, so we may use Corollary 3.2.6 to reduce to the case when
the number of irreducible components of each degenerate geometric fiber of E is divisible by nm (in
parts (a) and (e) we are in this case at the outset). We may then apply Lemma 4.2.1 to assume
further that there is an elliptic curve E1 Ñ S with E1rnms » Esmrnms. By [KM85, 1.10.6 and
1.10.11], the properties under consideration depend solely on the S-group scheme Esmrnms equipped
with the homomorphism α and not on the embedding of Esmrnms into a smooth S-group scheme of
relative dimension 1 (such as Esm or E1). Thus, the claims result from their elliptic curve cases. �

Cyclic subgroups of generalized elliptic curves will be important for us, so we recall their definition.

Definition 4.2.6. For a generalized elliptic curve E Ñ S, a finite locally free S-subgroup G Ă Esm

is cyclic of order n if fppf locally on S there is a Drinfeld Z{nZ-structure on G. For a G that is
cyclic of order n, a section g P GpSq is a generator of G (or generates G) if the homomorphism
α : Z{nZÑ EsmpSq defined by αp1q “ g is a Drinfeld Z{nZ-structure on G. An isogeny of constant
degree n between generalized elliptic curves over S is cyclic if its kernel is cyclic of order n.
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We turn to the properties of cyclic subgroups of generalized elliptic curves. Parts (a), (d), and (f) of
Proposition 4.2.7 have also been reduced to the elliptic curve case in [Con07, 2.3.7, 2.3.8, and 2.3.5]
by a different method.

Proposition 4.2.7. Let E Ñ S be a generalized elliptic curve, G Ă Esm an S-subgroup that is finite
locally free of rank n over S, and Gˆ Ă G the S-subsheaf of generators of G (by [KM85, 1.6.5], the
S-subsheaf Gˆ is a closed S-subscheme of G of finite presentation).

(a) (The Katz–Mazur cyclicity criterion; compare with [KM85, 6.1.1 (1)]). The subgroup G is
cyclic of order n if and only if Gˆ is finite locally free of rank φpnq over S. In particular, G
is cyclic of order n if and only if it becomes cyclic of order n over an fpqc cover of S. If n is
invertible on S and G is cyclic of order n, then Gˆ Ñ S is étale.

(b) (Compare with [KM85, 6.1.1 (2)]). If g P GpSq is a generator of G, then

Gˆ “
ř

iPpZ{nZqˆri ¨ gs as effective Cartier divisors on Esm.

(c) (Compare with [KM85, 6.4.1]). There is a finitely presented closed subscheme T Ă S such
that the base change GS1 to an S-scheme S1 is cyclic if and only if S1 Ñ S factors through T .

(d) (Compare with [KM85, 6.8.7]). If n is squarefree, then G is cyclic.

(e) (Compare with [KM85, 5.5.4 (3)]). If G is cyclic of order n and the number of irreducible
components of each degenerate geometric fiber of E Ñ S is divisible by n, then the subgroup
Esmrns{G of E{G is cyclic of order n.

(f) (Compare with [KM85, 6.7.2]). If G is cyclic and g, g1 P GpSq are generators of G, then for
every positive divisor d of n both n

d ¨ g and n
d ¨ g

1 are generators of the same S-subgroup

Gd Ă G

that is cyclic of order d. In particular, if G is cyclic, then the fppf local on S subgroup of G
defined in this way descends to a canonical cyclic S-subgroup Gd Ă G of order d.

Proof. Cyclicity is an fppf local condition, so we may work fppf locally on S. We may therefore
use Corollary 3.2.6 and Lemma 4.2.1 to assume that the number of irreducible components of each
degenerate geometric fiber of E Ñ S is divisible by n and that there is an elliptic curve E1 Ñ S such
that Esmrns » E1rns. Thus, since, by [KM85, 1.10.6 and its generalization 1.10.1], the properties
under consideration depend solely on the S-group scheme Esmrns and its subgroup G, the claims
follow from their elliptic curve cases (in (a), if n is invertible on S, then a cyclic G of order n
becomes isomorphic to Z{nZ over an étale cover of S, so that Gˆ becomes isomorphic to the constant
subscheme pZ{nZqˆ Ă Z{nZ). �

Definition 4.2.8. For a generalized elliptic curve E Ñ S and a cyclic S-subgroup G Ă Esm of order
n, the S-subgroup Gd defined in Proposition 4.2.7 (f) is the standard cyclic subgroup of G of order d.
Isogenies f1 : E Ñ E1 and f2 : E1 Ñ E2 of constant degrees between generalized elliptic curves over
S are cyclic in standard order if Kerpf2 ˝ f1q is cyclic and Ker f1 is its standard cyclic subgroup (so
that, in particular, f1 and f2 are both cyclic by Proposition 4.2.9 (e) below).

In Propositions 4.2.9 and 4.2.10 we extend various results of [KM85, §6.7] about standard cyclic
subgroups and standard order factorizations of cyclic isogenies to the case of generalized elliptic
curves (§2 provides a robust extension of the notion of an isogeny). Some of these extensions will be
important for the analysis of XΓ0pnq carried out in Chapter 5.
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Proposition 4.2.9. Let E Ñ S be a generalized elliptic curve, let G Ă Esm be a cyclic S-subgroup
of order n, let d and d1 be positive divisors n, and let

Gd Ă G

denote the standard cyclic subgroup of order d.

(a) (Compare with [KM85, 6.7.4]). If d | d1, then Gd is identified with the standard cyclic subgroup
of Gd1 of order d.

(b) Interpreting the intersection as that of fppf subsheaves of G, we have

Gd XGd1 “ Ggcdpd,d1q.

(c) If G meets precisely m irreducible components of every degenerate geometric fiber of E, then
Gd meets precisely m

gcdpm,n
d
q
irreducible components of every degenerate geometric fiber of E.

(d) (Compare with [KM85, 6.7.5]). Letting Gˆd denote the S-scheme parametrizing the generators
of Gd (so that, by Proposition 4.2.7 (a), Gˆd is a closed subscheme of Gd and is finite locally
free of rank φpdq over S), we have

G “
ř

d|nG
ˆ
d as effective Cartier divisors on Esm.

(e) (Compare with [KM85, 6.7.4]). The quotient

G{Gd Ă pE{Gdq
sm

is a cyclic S-subgroup of order n
d , the image of any generator of G generates G{Gd, and if

d | d1, then the standard cyclic subgroup of G{Gd of order d1

d is identified with Gd1{Gd.

(f) (Compare with [KM85, 6.7.11 (2)]). If n and n
d have the same prime divisors, then g P GpSq

generates G if and only if its image generates G{Gd, and, in particular, g generates G if and
only if g ` h generates G for some (equivalently, for any) h P GdpSq.

Proof. Part (a) follows from the definitions because we may work fppf locally to assume that G has
a generator. Part (b) follows from (a): since Ggcdpd,d1q lies inside both Gd and Gd1 , it suffices to
observe that Gd{Ggcdpd,d1q and Gd1{Ggcdpd,d1q have coprime orders and hence intersect trivially inside
G{Ggcdpd,d1q. Part (c) follows from the definition of Gd. To prove part (d), we pass to an fppf cover
of S over which G admits a generator and apply Proposition 4.2.7 (b).

For the remaining (e) and (f), we work fppf locally on S and use Corollary 3.2.6 and Lemma 4.2.1
to assume that G has a generator, that the number of irreducible components of each degenerate
geometric fiber of E is divisible by n, and that there is an elliptic curve E1 Ñ S with Esmrns » E1rns.
By [KM85, 1.10.6], the properties under consideration in (e) and (f) depend solely on the S-group G
and not on its embedding into Esm or E1, so (e) and (f) follow from their elliptic curve cases. �

Proposition 4.2.10. Let

f1 : E0 Ñ E1, f2 : E1 Ñ E2, and f :“ f2 ˝ f1 : E0 Ñ E2

be isogenies of constant degrees d1, d2, and d1d2 between generalized elliptic curves over S.

(a) (Compare with [KM85, 6.7.8]). If f is cyclic and Ker f2 is étale over S, then f1 and f2 are
cyclic in standard order.

(b) (Compare with [KM85, 6.7.10]). If d1 and d2 are coprime, then f is cyclic if and only if both
f1 and f2 are cyclic, in which case f1 and f2 are cyclic in standard order.
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(c) (Compare with [KM85, 6.7.12]). If f1 and f2 are cyclic, d1 and d2 have the same prime
divisors, and g P pKer fqpSq is such that d2 ¨ g generates Ker f1 and f1pgq generates Ker f2,
then f1 and f2 are cyclic in standard order and g generates Ker f .

(d) (Compare with [KM85, 6.7.15]). If tEi´1
fi
ÝÑ Eiu

n
i“3 are further isogenies of constant degrees

di between generalized elliptic curves over S such that d1, . . . , dn all have the same prime
divisors and such that for each 1 ď i ď n´ 1 the isogenies fi and fi`1 are cyclic in standard
order, then Kerpfn ˝ ¨ ¨ ¨ ˝f1q is cyclic and each Kerpfi ˝ ¨ ¨ ¨ ˝f1q is its standard cyclic subgroup.

Proof. For notational convenience, we set n :“ 2 in (a), (b), and (c). By Corollary 2.2.7 and
[KM85, 1.10.6], the properties under consideration may be expressed in terms of the S-group scheme
Kerpfn ˝ . . . ˝ f1q equipped with its S-subgroups Kerpfi ˝ . . . ˝ f1q. Thus, since the claims are fppf
local on S, Corollary 3.2.6 and Lemma 4.2.1 allow us to assume that the number of irreducible
components of each degenerate geometric fiber of E0 is divisible by

śn
i“1 di and that there is an

elliptic curve E1 Ñ S with
Esm

0 r
śn
i“1 dis » E1r

śn
i“1 dis.

This reduces to the elliptic curve cases treated by Katz–Mazur in op. cit. �

We wish to prove in Proposition 4.2.11 (b) a generalization of the claim of [Con07, 2.4.5] that is
important for the definition of Γ1pN ;nq-structures given there. The argument given in loc. cit. seems
to require further input: the “universal deformation technique” invoked towards the end of the
proof does not seem to apply directly because it is based on [DR73, III.1.2 (iii)] that requires the
number of irreducible components of the closed fiber to be prime to the residue characteristic and
the Z{NZ-structure P may interfere with this requirement.

Proposition 4.2.11. Let E Ñ S be a generalized elliptic curve, and let n,m P Zě1.

(a) If G Ă Esm and H Ă Esm are S-subgroups that are cyclic of orders n and m, respectively,
and α and β are fppf local on S Drinfeld Z{nZ- and Z{mZ-structures on G and H, then

ř

iPZ{nZ
jPZ{mZ

rαpiq ` βpjqs

is an effective Cartier divisor on Esm that does not depend on the choices of α and β and
descends to a well-defined relative effective Cartier divisor on Esm over S denoted by rG`Hs.

(b) Set d :“ gcdpn,mq and suppose that the number of irreducible components of each degenerate
geometric fiber of E Ñ S is divisible by d. If G Ă Esm and H Ă Esm are S-subgroups that
are cyclic of orders n and m, respectively, and rGd `Hds “ Esmrds, then rG`Hs is a finite
locally free S-subgroup scheme of Esm of order nm and killed by lcmpn,mq, and any Drinfeld
Z{nZ-structure on G induces a Drinfeld Z{nZ-structure on rG`Hs{H Ă pE{Hqsm.

Proof. For (a), the cases when either α or β is fixed suffice, so one only needs to observe that
translation by an S-point is an automorphism of the S-scheme Esm and hence commutes with the
formation of the sum of effective Cartier divisors—for example, the left hand side of

αpiq `H “
ř

jPZ{mZrαpiq ` βpjqs

does not depend on β.

For (b), we work fppf locally on S and use Corollary 3.2.6 to assume that the number of irreducible
components of each degenerate geometric fiber of E Ñ S is divisible by nm and that there are
Drinfeld Z{nZ- and Z{mZ-structures α and β on G and H. We then imitate the argument of
[Con07, top of p. 231] given in the elliptic curve case. Namely, we use [KM85, 1.7.2 and 1.10.6] to
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“factor into prime powers” to reduce to the case when n “ pr and m “ ps for some prime p and r ď s
(the r ě s case of the last aspect of the claim will be argued separately in the last paragraph of this
proof). We assume that r ě 1 (otherwise rG`Hs “ H) and, after replacing S by an fppf cover, we
choose a homomorphism rα : Z{psZÑ EpSq with ps´rrαp1q “ αp1q. By Proposition 4.2.5 (b),

rα` β : pZ{psZq2 Ñ EsmpSq

is a Drinfeld pZ{psZq2-structure on Erpss, so, by Proposition 4.2.5 (e),

rα : Z{psZÑ pE{HqsmpSq

is a Drinfeld Z{psZ-structure on E{H. Then, by Proposition 4.2.5 (c),

α : Z{prZÑ pE{HqsmpSq

is a Drinfeld Z{prZ-structure on a subgroup K Ă pE{Hqsm. Finally, by [KM85, 1.11.3], the scheme
rG`Hs is the preimage of K in E, so is a subgroup, as desired. Moreover, rG`Hs is killed by ps
because the quotient rG`Hs{Erprs is killed by its order, i.e., by ps´r, whereas Erprs is killed by
pr. By construction, α, whose particular choice is irrelevant for the argument, induces a Drinfeld
Z{prZ-structure on rG`Hs{H.

It remains to prove that any α also induces a Drinfeld Z{prZ-structure on rG`Hs{H Ă pE{Hqsm

when r ě s and s ě 1. For this, by Proposition 4.2.5 (e), α|pZ{prZqrpss induces a Drinfeld Z{psZ-
structure on E{H, so, by Proposition 4.2.5 (d), α induces a Drinfeld Z{prZ-structure on some
S-subgroup K 1 Ă pE{Hqsm, and it remains to apply [KM85, 1.11.3] again to deduce that the
preimage of K 1 in E must equal rG`Hs. �

One of the cornerstones of our approach to the study of various moduli stacks of Drinfeld A-structures
on generalized elliptic curves is a direct reduction of many questions to the A “ pZ{nZq2 case. To
make reductions of this sort feasible we will need the following result:

Proposition 4.2.12. Let E Ñ S be a generalized elliptic curve, let n,m P Zě1, let S1 be a variable
S-scheme, and recall Convention 4.2.4.

(a) If the number of irreducible components of each degenerate geometric fiber of E Ñ S is
divisible by nm and α is a Drinfeld pZ{nZq2-structure on Esmrns, then the functor

S1 ÞÑ tDrinfeld pZ{nmZq2-structures β on Esm
S1 rnms such that β|pZ{nmZqrns “ αS1u

is representable by a finite locally free S-scheme of rank # GL2pZ{nmZq
# GL2pZ{nZq that is étale if nm is

invertible on S.

(b) (Compare with [KM85, 5.5.3]). If E Ñ S is a generalized elliptic curve for which n divides
the number of irreducible components of each degenerate geometric fiber and α is a Drinfeld
Z{nZ-structure on E, then the functor

S1 ÞÑ tDrinfeld pZ{nZq2-structures β on Esm
S1 rns such that β|Z{nZˆt0u “ αS1u

is representable by a finite locally free S-scheme of rank n ¨ φpnq.

(c) (Compare with [KM85, 5.5.3]). If the number of irreducible components of each degenerate
geometric fiber of E Ñ S is divisible by n and, for some S-subgroup G Ă E,

α : Z{nZÑ EsmpSq and β : Z{nZÑ pE{GqsmpSq

are Drinfeld Z{nZ-structures on G and on Esmrns{G, respectively, then the functor

S1 ÞÑ tDrinfeld pZ{nZq2-structures γ on Esm
S1 rns such that

αS1 “ γ|Z{nZˆt0u and βS1 “ γ|t0uˆZ{nZ : Z{nZÑ pE{GqsmpS1qu
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is representable by a finite locally free S-scheme of rank n.

(d) Set d :“ gcdpn,mq and N :“ lcmpn,mq. If the number of irreducible components of each
degenerate geometric fiber of E Ñ S is divisible by N and α and β are, respectively, Drinfeld
Z{nZ- and Z{mZ-structures on E such that

α|pZ{nZqrds ` β|pZ{mZqrds : pZ{dZq2 Ñ EsmpSq

is a Drinfeld pZ{dZq2-structure on Esmrds, then the functor

S1 ÞÑ tDrinfeld pZ{NZq2-structures γ on Esm
S1 rN s such that

αS1 “ γ|pZ{NZˆt0uqrns and βS1 “ γ|pt0uˆZ{NZqrmsu

is representable by a finite locally free S-scheme of rank N ¨φpNq
d¨φpdq .

Proof. All the functors in question are fppf sheaves, so we may work fppf locally on S. Setting
N :“ nm (resp., N :“ n) in part (a) (resp., in parts (b) and (c)) for notational convenience, we may
therefore apply Lemma 4.2.1 to assume that there is an elliptic curve E1 Ñ S with

E1rN s » EsmrN s.

By [KM85, 1.10.6], all the properties and functors under consideration depend solely on the S-scheme
EsmrN s (and its subgroup G in (c)), so we may pass to E1 to reduce to the elliptic curve case. This
already settles (b) and (c), and in order to also obtain (a) it remains to combine [EGA IV2, 6.1.5]
with [KM85, 5.1.1], which ensures that for every ` P Zě1, the moduli stack parametrizing Drinfeld
pZ{`Zq2-structures on elliptic curves is finite locally free of rank # GL2pZ{`Zq over E``, étale over
E``Zr 1

`
s, and regular.

For the remaining elliptic curve case of (d), we use [KM85, 1.7.2] to “factor into prime powers” and
reduce to the case when

n “ pr and m “ ps for some prime p.

Without loss of generality r ě s, so the case s “ 0 is settled by (b). In the case s ě 1, by
Proposition 4.2.5 (b) (i.e., by [KM85, 5.5.8 (1)]), the functor in question is identified with the functor
parametrizing Q P EpS1q such that pr´sQ “ βS1p1q. This functor is an Erpr´ss-torsor, so it is
representable by a finite locally free S-scheme of rank p2pr´sq “

pr¨φpprq
ps¨φppsq . �

When proving the algebraicity of moduli stacks of Drinfeld structures on generalized elliptic curves
we will sometimes rely on the representability of functors parametrizing various such structures on a
fixed curve. The key case of this representability is Proposition 4.2.15 (a) recorded below—further
cases may be deduced from it with the help of Proposition 4.2.7 (a). It will be important to have
such representability when the structures being parametrized are assumed to be ample, so we first
review the notion of ampleness.

Definition 4.2.13. A finite locally free S-subgroup G Ă Esm of a generalized elliptic curve E Ñ S
is ample if G is S-ample as a relative effective Cartier divisor on E, equivalently, if G meets every
irreducible component of every geometric fiber of E Ñ S. For a finite abelian group A, a Drinfeld
A-structure α on E is ample if the S-subgroup Dα :“

ř

aPArαpaqs Ă Esm is ample.

Remark 4.2.14. The role of ampleness of α in the study of various stacks that classify Drinfeld
A-structures on generalized elliptic curves is twofold: it facilitates descent considerations (e.g., the
ones in the definition of a stack) by endowing E Ñ S with a canonical S-ample line bundle OEpDαq,
and it also kills undesirable automorphisms that would hinder the representability of various “forget
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the level” contraction morphisms (e.g., if α is ample and S is a geometric point, then one sees from
Lemma 2.1.6 that only the identity automorphism of pE,αq fixes pEsmq0).

Proposition 4.2.15. Let E Ñ S be a generalized elliptic curve, let S1 be a variable S-scheme, and
recall the notation Gd and rG`Hs introduced in Definition 4.2.8 and Proposition 4.2.11 (a).

(a) Fix n,m P Zě1, and set d :“ gcdpn,mq and N :“ lcmpn,mq. The functor

F : S1 ÞÑ tcyclic S1-subgroups G,H Ă Esm
S1 of orders n and m with rGd `Hds “ Esm

S1 rdsu

(resp., its analogue which, in addition, requires rG`Hs to be ample) is representable by a
finitely presented, separated, quasi-finite, flat S-scheme F that is étale if nm is invertible
on S. If N divides the number of irreducible components of each degenerate geometric fiber
of E Ñ S, then F (defined without the ampleness requirement) is finite locally free of rank
# GL2pZ{NZq ¨ d¨φpdq

N ¨φpNq¨φpnq¨φpmq over S.

(b) (Compare with [KM85, 6.8.1]). For every n P Zě1, the functor

I : S1 ÞÑ tfinite locally free S1-subgroups G Ă Esm
S1 of rank nu

(resp., its analogue which, in addition, requires G to be ample) is representable by a finitely
presented, separated, quasi-finite, flat S-scheme I that is étale if n is invertible on S. If n
divides the number of irreducible components of each degenerate geometric fiber of E Ñ S,
then I (defined without the ampleness requirement) is finite locally free over S and its rank is
constant and equals the number of subgroups of pZ{nZq2 of order n.

Remark 4.2.16. In (a), an important special case is m “ 1, when F parametrizes cyclic subgroups
of order n. In (b), due to Corollary 2.2.7 (b), I parametrizes n-isogenies with source E.

Proof of Proposition 4.2.15. Due to [EGA IV3, 9.6.4] and limit arguments that reduce to a Noetherian
base, the additional ampleness requirement cuts out quasi-compact open subfunctors of F and I, so
the ampleness variant of the claims will follow once we establish the rest.

To ease notation, we set N :“ n in (b). By [EGA IV4, 18.12.12], quasi-finite and separated morphisms
are quasi-affine, so effectivity of fppf descent for relatively quasi-affine schemes enables us to work
fppf locally on S. We may therefore apply Corollary 3.2.6 to assume that Esm is an open S-subgroup
of the smooth locus of another generalized elliptic curve E1 Ñ S for which N divides the number
of irreducible components of each degenerate geometric fiber. The functor F (resp., I) is an open
subfunctor of the corresponding functor F 1 (resp., I 1) for E1, and the open immersion F Ă F 1
(resp., I Ă I 1) is quasi-compact due to limit arguments, so it suffices to settle the claims for E1 in
place of E. We may then use Lemma 4.2.1 to assume that there is an elliptic curve E2 Ñ S with

E2rN s » E1smrN s.

Since E1 and E2 give isomorphic functors I, this reduces (b) to its elliptic curve case [KM85, 6.8.1].

For (a), we let F 1N denote the functor that parametrizes Drinfeld pZ{NZq2-structures α on E1smS1 rN s.
By Proposition 4.2.12 (a), F 1N is representable by a finite locally free S-scheme of rank # GL2pZ{NZq
that is étale if N is invertible on S. By Proposition 4.2.5 (a) and (c), there is a well-defined morphism

F 1N Ñ F 1

that sends α to the pair of subgroups on which α|pZ{NZˆt0uqrns and α|pt0uˆZ{NZqrms are Drinfeld
Z{nZ- and Z{mZ-structures, respectively. By Proposition 4.2.7 (a) and Proposition 4.2.12 (d),
F 1N Ñ F 1 is representable by schemes and finite locally free of rank N ¨φpNq¨φpnq¨φpmq

d¨φpdq . Therefore, the
desired claim about F 1 follows from [SGA 3I new, V, 4.1] (combined with [EGA IV2, 2.2.11 (ii)] and
[EGA IV4, 17.7.5 and 17.7.7]). �
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4.3. A modular description of XΓpnq

The main goal of this section is to give a modular description of XΓpnq, where n P Zě1 and

Γpnq :“ KerpGL2ppZq� GL2pZ{nZqq

(see §4.1.2 for the definition of XΓpnq; see also §1.9). This description and the proof of its correctness
follow already from the results of [Con07], which also show the regularity and other properties of
XΓpnq. We reprove both the description and some of the properties of XΓpnq by exploiting a direct
relationship with the compactification E``n studied in Chapter 3. The resulting proofs seem more
direct and more versatile—for instance, we will see in §4.4 that virtually the same strategy also
handles the H “ Γ1pnq case, which is significantly more complex for the methods of op. cit. Another
pleasant feature of this approach is that it eliminates the crutch of analytic uniformizations—for
instance, in the proof of the “ampleness” of X pnq8 Ă X pnq given in Proposition 4.3.2 (b), the only
input that is needed from the theory over C is the fact that the coarse moduli space of pE``1qC is P1

C
(this comes in through our reliance on [DR73, VI.1.1] in the proof of Proposition 3.3.2).

We begin by giving the definition of the modular stack X pnq that classifies generalized elliptic
curves endowed with an ample level n structure, and proceed to establish enough of its properties to
arrive at the identification X pnq “XΓpnq.

4.3.1. The stack X pnq. This is the Z-stack that, for a fixed n P Zě1, and for variable schemes S,
parametrizes the pairs

pE
π
ÝÑ S, α : pZ{nZq2 Ñ EsmpSqq

consisting of a generalized elliptic curve E π
ÝÑ S whose degenerate geometric fibers are n-gons and

an (automatically ample) Drinfeld pZ{nZq2-structure α on Esmrns. The notation agrees with that
of §4.1.1 because X p1q “ E``1. We let

X pnq8 Ă X pnq and Y pnq ĂX pnq

be the closed substack cut out by the degeneracy loci S8,π and its open complement (the elliptic curve
locus), respectively. Due to Remark 4.2.3, for variable Zr 1

n s-schemes S, the base change Y pnqZr 1
n
s

parametrizes elliptic curves E Ñ S equipped with an S-isomorphism α : pZ{nZq2
S

„
ÝÑ Erns.

The results of section 4.2 lead to the following direct relationship between X pnq and E``n.

Proposition 4.3.2. Consider the Z-morphism f : X pnq Ñ E``n that forgets α.

(a) The morphism f is representable, finite, and locally free of degree equal to # GL2pZ{nZq;
moreover, f is étale over Zr 1

n s. In particular, X pnq is a Cohen–Macaulay, reduced algebraic
Z-stack that is proper, flat, and of relative dimension 1 over SpecZ at every point; moreover,
X pnq is smooth over Zr 1

n s.

(b) The closed substack X pnq8 Ă X pnq is the preimage of the closed substack E``8n Ă E``n
and is a reduced relative effective Cartier divisor over SpecZ that meets every irreducible
component of every geometric fiber of X pnq Ñ SpecZ and is smooth over Zr 1

n s.

Proof.

(a) The asserted properties of f follow from Proposition 4.2.12 (a). The asserted properties of
X pnq other than the reducedness then result from Theorem 3.1.6 (a) (and [EGA IV2, 6.4.2]
for the Cohen–Macaulay aspect). By [EGA IV2, 5.8.5], the reducedness amounts to the

37



combination of (R0) and (S1). The Cohen–Macaulay aspect implies (S1), whereas (R0) follows
from the Z-flatness and Zr 1

n s-smoothness.

(b) In the given moduli interpretation, the map X pnq Ñ E``n does not change the underlying
generalized elliptic curves, so an S-point of X pnq factors through X pnq8 if and only if its
image in E``n factors through E``8n . In other words,

X pnq8 “ X pnq ˆE``n E``
8

n ,

as desired. All the remaining claims then follow from (a) and from their counterparts for
E``n supplied by Theorem 3.1.6 (c)–(d) and Proposition 3.3.2 (for the reducedness of X pnq8

one uses the (R0)`(S1) criterion as in the proof of (a)). �

4.3.3. The contraction morphisms. Due to Proposition 4.2.5 (a), the contraction morphism

X pnmq
c
ÝÑ X pnq is well defined by pE,αq ÞÑ pcEsmrnspEq, α|pZ{nmZq2rnsq

(see Convention 4.2.4) for every n,m P Zě1. This morphism is compatible with its analogue for E``n
discussed in §3.2.1 in the sense that there is the commutative diagram

X pnmq

c

��

fnm
// E``nm

��

X pnq
fn

// E``n
whose horizontal maps forget the level structures α.

Proposition 4.3.4. For every n,m P Zě1, the contraction c : X pnmq Ñ X pnq is representable,
finite, and locally free of rank # GL2pZ{nmZq

# GL2pZ{nZq . In particular, each X pnq is Deligne–Mumford.

Proof. Since X p1q is Deligne–Mumford, the last assertion follows from the rest (applied with n “ 1).
The representability of c by algebraic spaces follows from Lemma 3.2.2 (b) and Lemma 2.1.6.

The contraction c inherits properness and finite presentation from X pnmq Ñ SpecZ, and so is
quasi-finite due to its moduli interpretation. Therefore, by Lemma 3.2.3, the map c is representable
by schemes and finite. It remains to prove that c is flat—once this is done, the asserted rank may be
read off on the elliptic curve locus by using Proposition 4.3.2 (a).

The flatness of the base change

E``nm ˆE``n X pnq
a
ÝÑX pnq

follows from that of E``nm Ñ E``n supplied by Theorem 3.2.4 (a). On the other hand,

E``nm ˆE``n X pnq

parametrizes generalized elliptic curves endowed with a Drinfeld pZ{nZq2-structure on Esmrns subject
to the constraint that the degenerate geometric fibers are nm-gons, so the map

X pnmq
b
ÝÑ E``nm ˆE``n X pnq

is flat by Proposition 4.2.12 (a). In conclusion, the composite c “ a ˝ b is also flat. �

We are ready for the promised identification X pnq “XΓpnq.

Theorem 4.3.5. The Deligne–Mumford stack X pnq is regular and is identified with the stack XΓpnq

of §4.1.2 (see the proof for the description of the identification).
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Proof. By [KM85, 5.1.1], the open substack Y pnq ĂX pnq is regular. By combining this with the
conclusions of Proposition 4.3.2, we see that X pnq satisfies both (R1) and (S2), i.e., is normal.
Therefore, due to the conclusions of Proposition 4.3.4, X pnq is identified with the normalization of
X p1q in Y pnqZr 1

n
s. However, the moduli interpretations of the Y p1q-stacks Y pnqZr 1

n
s and YΓpnqr

1
n s

coincide (see §4.1.2 and §4.3.1), so X pnq is identified with the normalization of X p1q in YΓpnqr
1
n s,

i.e., with XΓpnq. To then extend the regularity of Y pnq supplied by [KM85, 5.1.1] to the regularity
of the entire X pnq, we recall that it follows from [DR73, 4.13] that XΓpnq is regular away from the
supersingular points in characteristics dividing n. �

In the sequel we will identify X pnq and XΓpnq. We conclude the section by recording all the cases
in which X pnq is a scheme (see [DR73, IV.2.9] for such a result over Zr 1

n s).

Proposition 4.3.6. The stack X pnq is a (necessarily projective) scheme over Z unless n “ ps or
n “ 2ps for some prime p and some s P Zě1.

Proof. If n “ ps or n “ 2ps, then every supersingular elliptic curve E over Fp equipped with a
Drinfeld pZ{nZq2-structure on Erns has multiplication by ´1 as an automorphism, so X pnq cannot
be a scheme. Outside of these cases, n “ n1n2 for relatively prime n1 ě 3 and n2 ě 3, so, due to
[KM85, 2.7.2 (1)] and Lemma 2.1.6, the geometric points of X pnq have no nontrivial automorphisms,
and hence X pnq is a projective Z-scheme by Lemma 4.1.3. �

4.4. A modular description of XΓ1pnq

The main goal of this section is to give a modular description of XΓ1pnq, where n P Zě1 and

Γ1pnq :“
!

`

a b
c d

˘

P GL2ppZq such that a ” 1 mod n and c ” 0 mod n
)

(see §4.1.2 for the definition of XΓ1pnq; see also §1.9). The overall strategy is similar to the case of
Γpnq treated in the previous section: through relations with the compactifications E``m we infer
enough properties of the stack X1pnq that classifies generalized elliptic curves endowed with an
ample Drinfeld Z{nZ-structure to arrive at the identification X1pnq “ XΓ1pnq. As in the case of
Γpnq, this identification and the finer properties of X1pnq, such as regularity, follow already from
the results of [Con07], but the alternative proofs given below seem simpler. In particular, when
proving the regularity of X1pnq we do not use any computations with schemes of Γ1pnq-structures
on Tate curves or with universal deformation rings, but instead directly deduce such regularity from
the regularity of X pnq.

4.4.1. The stack X1pnq. This is the Z-stack that, for a fixed n P Zě1 and for variable schemes S,
parametrizes the pairs

pE
π
ÝÑ S, α : Z{nZÑ EsmpSqq

consisting of a generalized elliptic curve E π
ÝÑ S and an ample Drinfeld Z{nZ-structure α on E. As

before, we let
X1pnq

8 Ă X1pnq and Y1pnq ĂX1pnq

be the closed substack cut out by the degeneracy loci S8,π and its open complement (the elliptic
curve locus), respectively.

For a positive divisor m of n, we let

X1pnqpmq Ă X1pnq
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be the open substack that classifies those pE,αq for which the degenerate geometric fibers of E Ñ S
are m-gons (the openness follows from Remark 2.1.9), and we set

X1pnq
8
pmq :“ X1pnqpmq XX1pnq

8.

When m varies, the open substacks X1pnqpmq cover X1pnq, and we will use them to prove the
algebraicity of X1pnq.

Proposition 4.4.2. Consider the Z-morphism fpmq : X1pnqpmq Ñ E``m that forgets α.

(a) The morphism fpmq is representable by schemes, quasi-finite, separated, flat, and of finite
presentation; moreover, fpmq is étale over Zr 1

n s. In particular, X1pnq is an algebraic Z-stack
with a quasi-compact and separated diagonal and is flat, of finite presentation, and of relative
dimension 1 over SpecZ at every point; moreover, X1pnq is smooth over Zr 1

n s.

(b) The closed substack X1pnq
8
pmq Ă X1pnqpmq is the preimage of E``8m Ă E``m. In particular,

X1pnq
8 Ă X1pnq is a reduced relative effective Cartier divisor over SpecZ that is smooth

over Zr 1
n s.

Proof.

(a) The asserted properties of fpmq follow from Proposition 4.2.15 (a) and Proposition 4.2.7 (a).
Since the X1pnqpmq cover X1pnq, the asserted properties of X1pnq follow from those of fpmq
and from Theorem 3.1.6 (a).

(b) For the first assertion, it suffices to observe that in the given moduli interpretation, the map
fpmq does not change the underlying generalized elliptic curve. The remaining assertions then
follow from the first, (a), and Theorem 3.1.6 (c)–(d), using the (R0)`(S1) criterion together
with [EGA IV2, 6.4.2] to establish the claimed reducedness. �

4.4.3. The relation to X pnq. There is a forgetful contraction morphism

g : X1pnq ÑX p1q,

and, due to Proposition 4.2.5 (a), also an X p1q-morphism

h : X pnq ÑX1pnq, pE,αq ÞÑ pcα|Z{nZˆt0upEq, α|Z{nZˆt0uq

that contracts E with respect to the unique finite locally free subgroup of Esm on which α|Z{nZˆt0u
is a Drinfeld Z{nZ-structure.

We will extract further information about X1pnq by studying h. The main difficulty is that h changes
E, which makes its key properties, such as flatness, less transparent. To overcome this, we will
further exploit the compactifications E``m.

Theorem 4.4.4.

(a) The morphism h : X pnq ÑX1pnq is representable, finite, and locally free of rank n ¨ φpnq. In
particular, X1pnq Ñ SpecZ is proper, X1pnq is regular, and X1pnq

8 meets every irreducible
component of every geometric Z-fiber of X1pnq.

(b) The contraction g : X1pnq ÑX p1q is representable, finite, and locally free of rank # GL2pZ{nZq
n¨φpnq .

(c) The stack X1pnq is Deligne–Mumford and is identified with the stack XΓ1pnq of §4.1.2; more
precisely, both X1pnq and XΓ1pnq are the normalizations of X p1q in Y1pnqZr 1

n
s – YΓ1pnqr

1
n s.
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Proof.

(a) The representability of h by algebraic spaces follows from Lemma 3.2.2 (b) and Lemma 2.1.6.
Let X pnqpmq Ă X pnq be the h-preimage of X1pnqpmq, let hpmq : X pnqpmq Ñ X1pnqpmq
be the restriction of h, and let fpmq : X1pnqpmq Ñ E``m be the forgetful map studied in
Proposition 4.4.2. By (3.2.1.2), the composition fpmq ˝ hpmq agrees with the composition

X pnqpmq Ñ E``n
c
ÝÑ E``m

in which the first map forgets the Drinfeld pZ{nZq2-structure. Therefore, the universal
property of the fiber product gives the commutative diagram

X pnqpmq
h1 //

hpmq ((

X1pnqpmq ˆE``m E``n

h2

��

// E``n
c

��

X1pnqpmq
fpmq

// E``m

in which the square is Cartesian. By Proposition 4.2.12 (b), the map h1 is representable and
finite locally free of rank n ¨ φpnq. By Theorem 3.2.4 (a), the base change h2 of c is proper,
flat, and surjective. The representable map hpmq is therefore proper, flat, surjective, and, due
to its moduli interpretation, also quasi-finite. Since h inherits these properties, we see from
Lemma 3.2.3 that h is representable by schemes and finite locally free. Its rank is determined
on the elliptic curve locus, so equals n ¨ φpnq.

The remaining claims follow from the combination of Proposition 4.3.2, Theorem 4.3.5, and
[EGA IV2, 6.5.3 (i)], once we establish the Z-separatedness of X1pnq. For this, since the
diagonal map ∆X1pnq{Z is separated and of finite type by Proposition 4.4.2 (a), its properness
follows from the commutative diagram

X pnq

h
��

∆X pnq{Z
// X pnq ˆZ X pnq

hˆh
��

X1pnq
∆X1pnq{Z // X1pnq ˆZ X1pnq

and the properness of phˆ hq ˝∆X pnq{Z.

(b) Since X1pnq Ñ SpecZ is proper, g is also proper. Moreover, g is representable by algebraic
spaces and quasi-finite due to its moduli interpretation, Lemma 3.2.2 (b), and Lemma 2.1.6.
Thus, due to Lemma 3.2.3, g is representable by schemes and finite. The remaining assertions
follow by considering the composite X pnq

h
ÝÑ X1pnq

g
ÝÑ X p1q and combining (a) with

Proposition 4.3.4.

(c) Thanks to (b), the Deligne–Mumford property is inherited from X p1q. For the rest, due to
the regularity of X1pnq and the finiteness of X1pnq ÑX p1q, we need to identify the stack
Y1pnqZr 1

n
s with the stack YΓ1pnqr

1
n s that, for variable Zr 1

n s-schemes S, parametrizes pairs
consisting of an elliptic curve E Ñ S and an S-point of the finite étale S-scheme

tp 1 ˚
0 ˚ q Ă GL2pZ{nZquz IsompErns, pZ{nZq2q.

The datum of such an S-point amounts to the datum of an isomorphism between Z{nZ and
a subgroup of E, so the sought identification results from Remark 4.2.3. �
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4.5. An axiomatic criterion for recognizing correctness of a modular description

The arguments of the preceding section that supplied the identification X1pnq “XΓ1pnq and proved
the regularity of XΓ1pnq illustrate a general method that will similarly handle more complicated
cases in the sequel. Therefore, in order to avoid repetitiveness, we wish to present the following
axiomatic result that ensures that for any open subgroup H Ă GL2ppZq any “good enough” candidate
stack X 1

H agrees with the XH defined in §4.1.2 and that XH is automatically regular whenever such
a good candidate is present. Of course, the main difficulty of this approach to the regularity of XH

lies in finding a suitable X 1
H . In all the cases presented in the sequel, the candidate X 1

H will be
defined by a modular description of its functor of points and Theorem 4.5.1 will act as a criterion
for recognizing that this modular description actually yields XH .

Theorem 4.5.1. Let H Ă GL2ppZq be an open subgroup, let n P Zě1 be such that Γpnq Ă H, and let
X 1
H be a Z-stack.

(a) If there is a cover

X 1
H “

Ť

m|npX
1
Hqpmq by open substacks pX 1

Hqpmq Ă X 1
H

each of which admits a representable by algebraic spaces, separated, finite type morphism

pX 1
Hqpmq Ñ E``dpmq

for some dpmq P Zě1, then X 1
H is algebraic, has a quasi-compact and separated diagonal

∆X 1
H{Z, and is of finite type over Z.

(b) If X 1
H is algebraic, has a quasi-compact and separated diagonal, is of finite type over Z, and

(1) there is a proper, flat, and surjective Z-morphism X pnq
h
ÝÑX 1

H ,

then X 1
H is regular, X 1

H Ñ SpecZ is a proper, flat surjection, and pX 1
HqZr 1

n
s is Zr 1

n s-smooth.

(c) If X 1
H is algebraic, Z-proper, and satisfies (1) together with

(2) there is a representable by algebraic spaces Z-morphism X 1
H

g
ÝÑ X p1q that over Zr 1

n s is
identified with the morphism YHr

1
n s Ñ Y p1qZr 1

n
s of §4.1.2, and

(3) the composition g ˝ h : X pnq ÑX p1q is identified with the contraction of §4.3.3,

then X 1
H is Deligne–Mumford and the morphism g induces the identification

XH “ X 1
H ;

more precisely, then both XH and X 1
H are the normalizations of X p1q in YHr

1
n s.

Remark 4.5.2. The flatness of h is one of the most stringent requirements. For the X 1
H that we

will construct this flatness will be supplied by the results of Katz and Mazur through congruences
with elliptic curves (see Proposition 4.2.12 (b) and the proof of Theorem 4.4.4 (a) for an example).

Proof of Theorem 4.5.1.

(a) The algebraicity of each pX 1
Hqpmq follows from that of E``dpmq supplied by Theorem 3.1.6 (a)

(see [LMB00, 4.5 (ii)]). This suffices for the algebraicity of X 1
H because the diagonal ∆X 1

H{Z
factors as the composition

X 1
H “

Ť

m|npX
1
Hqpmq Ñ

Ť

m|npX
1
Hqpmq ˆZ pX

1
Hqpmq Ă X 1

H ˆZ X 1
H
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in which the inclusion is representable by open immersions. Since the inclusion is also
quasi-compact and each pX 1

Hqpmq is separated over Z, i.e., each ∆pX 1
Hqpmq{Z is proper, it also

follows that ∆X 1
H{Z is quasi-compact and separated.

(b) In the commutative diagram

X pnq
∆X pnq{Z

//

h
��

X pnq ˆZ X pnq

hˆh
��

X 1
H

∆X 1
H
{Z

// X 1
H ˆZ X 1

H

the composite phˆ hq ˝∆X pnq{Z is proper, ∆X 1
H{Z is separated and of finite type, and h is

surjective, so ∆X 1
H{Z is proper. In other words, X 1

H Ñ SpecZ is separated, so X 1
H inherits

Z-properness from X pnq. Due to the flatness and surjectivity of h, the flatness, regularity,
and smoothness aspects for X 1

H follow from the corresponding aspects for X pnq supplied by
Proposition 4.3.2 (a) and Theorem 4.3.5.

(c) The Deligne–Mumford property follows from the representability of g. The map g inherits
properness from X 1

H Ñ SpecZ and quasi-finiteness from g ˝ h, so g is finite by Lemma 3.2.3.
Moreover, X 1

H is normal by (b), so, due to the requirement (2), g identifies X 1
H with the

normalization of X p1q with respect to YHr
1
n s Ñ Y p1qZr 1

n
s. On the other hand, by definition,

this normalization is XH (see §4.1.2). �

Example 4.5.3. Theorem 4.5.1 is useful for proving that “obvious” candidate modular descriptions
for various mixtures of standard moduli problems are correct. When treating “mixture situations,”
one cannot simply “reduce to individual constituents” via fiber products (unlike on the elliptic curve
locus): such “reductions” fail already in situations where no mixtures are involved, for instance,

X p15q flX p3q ˆX p1q X p5q, even though Y p15q – Y p3q ˆY p1q Y p5q,

as one sees by inspecting the ramification at the cusps (e.g., CJq
1
15 K fl CJq

1
3 KbCJqK CJq

1
5 K).

The concrete example of a “mixture situation” for which we wish to illustrate Theorem 4.5.1 has

H “ Γpdq X Γ1p`q with coprime d, ` P Zě1.

For this H, due to the factorizations of Drinfeld structures discussed in [KM85, 1.7.2], the “obvious”
candidate X 1

H is the stack that, for variable schemes S, parametrizes ample Drinfeld ppZ{dZq2ˆZ{`Zq-
structures α on generalized elliptic curves E Ñ S subject to the requirement that α|pZ{dZq2ˆt0u is a
Drinfeld pZ{dZq2-structure on Esmrds (so d divides the number of irreducible components of each
degenerate geometric fiber of E Ñ S).

For this X 1
H , we let the maps h and g in Theorem 4.5.1 be the forgetful contractions with n “ d`

and let
pX 1

Hqpmq Ă X 1
H

be the open substack parametrizing those E Ñ S whose degenerate geometric fibers are m-gons.
The requirements of Theorem 4.5.1 (a) are met due to [KM85, 1.7.2] and Propositions 4.2.5 (a),
4.2.7 (a), and 4.2.15 (a) (with pn,mq “ pd`, dq in the latter). The requirement (b) (1) is checked
with the help of a diagram analogous to the one in the proof of Theorem 4.4.4 (a), the key point
being that the induced map

X pnqpmq Ñ pX 1
Hqpmq ˆE``m E``n

from the h-preimage X pnqpmq of pX 1
Hqpmq is finite locally free of rank ` ¨ φp`q due to Proposi-

tion 4.2.12 (b). The requirement (c) (2) is checked as in the proof of Theorem 4.4.4 (c) by using the
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fact that the image of H in GL2pZ{nZq is the pointwise stabilizer of pZ{dZq2 ˆ Z{`Z in pZ{nZq2.
Finally, the requirement (c) (3) follows from the definitions of g and h.

In conclusion,
X 1
H “ XΓpdqXΓ1p`q

and XΓpdqXΓ1p`q is regular (such regularity at the cusps is not an automatic consequence of the
regularity of XΓpdq and XΓ1p`q).

4.6. A modular description of XΓ1pn;n1q and XΓ0pn;n1q for suitable n and n1

Let n and n1 be positive integers, and let

Γ1pn;n1q Ă GL2ppZq

be the preimage of the subgroup of GL2pZ{nn1Zq that stabilizes the subgroup t0u ˆ pZ{nn1Zqrn1s
in pZ{nn1Zq2 and that fixes pZ{nn1Zqrns ˆ t0u pointwise. Our goal is to prove that the “obvious”
candidate modular description for XΓ1pn;n1q presented in §4.6.1 is correct under the assumption that

ordppn
1q ď ordppnq ` 1

for every prime p. The importance of XΓ1pn;n1q stems from its role in defining Hecke correspondences
for X1pnq (see section 4.7), but there also are the following reasons for treating H “ Γ1pn;n1q.

‚ The techniques used below to study XΓ1pn;n1q simultaneously expose properties of the stack
X0pnq

naive that parametrizes generalized elliptic curves equipped with an ample cyclic sub-
group of order n. Although in general X0pnq

naive does not agree with XΓ0pnq, its properties
will nevertheless be crucial for the study of XΓ0pnq in Chapter 5.

‚ Under the additional assumption that ordppn
1q ď ordppnq for all p | gcdpn, n1q, the correctness

of the candidate modular description of XΓ1pn;n1q also follows from the results of [Con07] but it
seems worthwhile to simplify the proofs of op. cit. with the help of the general Theorem 4.5.1.
In fact, Conrad does not assume that ordppn

1q ď 1 for p - n, but outside this case the forgetful
contraction morphism from the algebraic stack MΓ1pn;n1q that he constructs in op. cit. to
X p1q is not representable (even over C), so MΓ1pn;n1q cannot agree with XΓ1pn;n1q (a related
pathology is that MΓ1pn;n1q is not Deligne–Mumford in characteristics p - n with p2 | n1).

In order to also recover and generalize the results of [Con07] in the cases when ordppn
1q ą 1 for some

prime p - n, we initially drop all requirements on n and n1, define a certain stack X1pn;n1q that
agrees with the stack MΓ1pn;n1q considered in op. cit. (in the cases in which MΓ1pn;n1q was defined),
prove that X1pn;n1q is algebraic, Z-proper, and regular (among other properties), and only then
impose assumptions on n and n1 in order to arrive at the agreement with XΓ1pn;n1q.

4.6.1. The stack X1pn;n1q. This is the Z-stack that, for fixed n, n1 P Zě1 with d :“ gcdpn, n1q and
for variable schemes S, parametrizes the triples

pE
π
ÝÑ S, α : Z{nZÑ EsmpSq, Hq

consisting of a generalized elliptic curve E π
ÝÑ S, a Drinfeld Z{nZ-structure α on some S-subgroup

G Ă Esm, and a cyclic S-subgroup H Ă Esm of order n1 subject to the requirements that

rGd `Hds “ Esmrds and rG`Hs is ample (4.6.1.1)

(we implicitly use Definition 4.2.8 and Proposition 4.2.11 (a) to make sense of rGd`Hds and rG`Hs).
The effectivity of descent needed for X1pn;n1q to be a stack is ensured by the ampleness of rG`Hs
as in Remark 4.2.14. The requirement rGd `Hds “ Esmrds implies that the number of irreducible
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components of each degenerate geometric fiber of E is divisible by d, so Proposition 4.2.11 (b) ensures
that rG`Hs is a finite locally free S-subgroup of Esm of rank nn1 that is killed by lcmpn, n1q.

We let
X1pn;n1q8 Ă X1pn;n1q and Y1pn;n1q ĂX1pn;n1q

be the closed substack cut out by the degeneracy loci S8,π and its open complement (the elliptic
curve locus), respectively. Similarly to the case of X1pnq (discussed in §4.4.1), for every positive
divisor m of lcmpn, n1q, we let

X1pn;n1qpmq Ă X1pn;n1q

be the open substack over which the degenerate geometric fibers of E are m-gons.

4.6.2. Variants ĂX1pn;n1q and X0pn;n1q. Slight modifications of the definition of X1pn;n1q give
the following related stacks:

‚ The stack ĂX1pn;n1q obtained by replacing the datum H by the datum of a Drinfeld Z{n1Z-
structure β on some S-subgroup H Ă Esm subject to (4.6.1.1);

‚ The stack X0pn;n1q obtained by replacing the datum α by the datum of a cyclic S-subgroup
G Ă Esm of order n subject to (4.6.1.1).

Due to Proposition 4.2.7 (a), the forgetful maps
ĂX1pn;n1q ÑX1pn;n1q and X1pn;n1q ÑX0pn;n1q (4.6.2.1)

are representable by schemes, finite locally free of ranks φpn1q and φpnq, respectively, and, over Zr 1
n1 s

and Zr 1
n s, respectively, étale. As before, for every positive divisor m of lcmpn, n1q we let

ĂX1pn;n1qpmq Ă ĂX1pn;n1q and X0pn;n1qpmq Ă X0pn;n1q

be the open substacks over which the degenerate geometric fibers of E are m-gons, let
ĂX1pn;n1q8 Ă ĂX1pn;n1q and X0pn;n1q8 Ă X0pn;n1q

be the degeneracy loci, and let
ĂY1pn;n1q Ă ĂX1pn;n1q and Y0pn;n1q ĂX0pn;n1q

be the elliptic curve loci.

For suitably constrained n and n1, the stacks ĂX1pn;n1q and X0pn;n1q were also considered in [Con07]
(in the notation M

rΓ1pN ;nq
and MΓ0pN ;nq). There ĂX1pn;n1q was often used as an intermediary

in the proofs of the properties of X1pn;n1q, whereas X0pn;n1q was mentioned on page 273 in
relation to modifications that one needs to make to the method of op. cit. to also construct Hecke
correspondences for X0pnq. We will see below that the proofs of the properties of X1pn;n1q will also
prove the corresponding properties of ĂX1pn;n1q and X0pn;n1q.

4.6.3. Contraction maps from X pnn1q. There is a forgetful contraction map

X pnn1q Ñ ĂX1pn;n1q (4.6.3.1)

that sends a Drinfeld pZ{nn1Zq2-structure γ to α :“ γ|pZ{nn1Zqrnsˆt0u and β :“ γ|t0uˆpZ{nn1Zqrn1s (see
Proposition 4.2.5 (a) and (c) and Convention 4.2.4) and contracts the underlying generalized elliptic
curve accordingly. Similar forgetful contraction maps

X pnn1q ÑX1pn;n1q and X pnn1q ÑX0pn;n1q

are the compositions of (4.6.3.1) with the forgetful maps from (4.6.2.1).
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We are ready to address the basic properties of the stack X1pn;n1q and its variants.

Theorem 4.6.4. Fix n, n1 P Zě1 and let X P t ĂX1pn;n1q,X1pn;n1q,X0pn;n1qu.

(a) The Z-stack X is algebraic, regular, proper, flat, and of relative dimension 1 over SpecZ at
every point; moreover, X is smooth over Zr 1

nn1 s. The diagonal ∆X {Z is finite.

(b) The forgetful contraction map X pnn1q ÑX is representable by schemes and is finite locally
free of constant positive rank.

(c) The closed substack X 8 Ă X is a reduced relative effective Cartier divisor over SpecZ that
meets every irreducible component of every geometric Z-fiber of X and is smooth over Zr 1

nn1 s.

Proof.

(a) By Proposition 4.2.15 (a) and the finiteness of the maps (4.6.2.1), for every positive divisor m
of lcmpn, n1q the forgetful map Xpmq Ñ E``m is representable, separated, and of finite type,
so, by Theorem 4.5.1 (a), X is algebraic and has a quasi-compact and separated diagonal.

Except for the relative dimension and the diagonal aspects, the rest of the claim follows
from Theorem 4.5.1 (b) once we prove that the forgetful contraction X pnn1q Ñ ĂX1pn;n1q is
proper, flat, and surjective. For this, we first let X pnn1qpmq for every positive divisor m of
lcmpn, n1q be the preimage of ĂX1pn;n1qpmq. Due to Theorem 3.2.4 (a), it then suffices to note
that, by Proposition 4.2.12 (a) and (d), the induced map

X pnn1qpmq Ñ ĂX1pn;n1qpmq ˆE``m E``nn1 ,

both components of which are forgetful, is finite locally free of constant positive rank.

The relative dimension aspect will follow from the corresponding aspect for X pnn1q once
we prove that the surjective map X pnn1q Ñ ĂX1pn;n1q is finite locally free. In fact, due to
Lemma 3.2.3 and the previous paragraph, representability by algebraic spaces and quasi-
finiteness would suffice. The representability is inherited from X pnn1q Ñ X p1q and the
quasi-finiteness follows from the moduli interpretation.

The diagonal ∆X {Z is proper due to the Z-separatedness of X and is quasi-finite due to
Theorem 3.1.6 (a), so its finiteness follows from Lemma 3.2.3.

(b) Due to the proof of (a) and the fact that the forgetful contractions (4.6.2.1) are representable
and finite locally free, only the constancy of the rank requires attention and we may focus on
X0pn;n1q. Moreover, since Y0pn;n1q is dense in X0pn;n1q, we may work on the elliptic curve
locus. Therefore, since the rank of Y pnn1q Ñ Y p1q is constant, the conclusion follows from
Proposition 4.2.15 (a) which proves that Y0pn;n1q Ñ Y p1q is finite locally free of constant
positive rank.

(c) The assertion about the geometric fibers follows from the corresponding assertion for
X pnn1q8 Ă X pnn1q supplied by Proposition 4.3.2 (b), so it suffices to prove that for
each positive divisor m of lcmpn, n1q the restriction X 8

pmq Ă Xpmq of X 8 Ă X is a reduced
relative effective Cartier divisor over SpecZ that is smooth over Zr 1

nn1 s. To do so, it suffices
to note that X 8

pmq is the pullback of E``8m, to apply Theorem 3.1.6 (c)–(d) and Proposi-
tion 4.2.15 (a), to use the properties of the forgetful maps (4.6.2.1), and to use the (R0)`(S1)
criterion for reducedness. �
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In principle it is possible to determine the largest Deligne–Mumford open substacks of ĂX1pn;n1q,
X1pn;n1q, and X0pn;n1q (such open substacks make sense a priori due to Remark 3.1.7): one
needs to inspect the defining modular descriptions to determine those geometric points whose
automorphism functors are not étale. To illustrate the procedure, in Proposition 4.6.5 we exhibit
large Deligne–Mumford open substacks of ĂX1pn;n1q, X1pn;n1q, and X0pn;n1q (the actual Deligne–
Mumford loci of X1pn;n1q and X0pn;n1q may be larger). For the stack MΓ1pN ;nq considered in
[Con07], Proposition 4.6.5 (b) improves on [Con07, 3.1.7] by proving that the Deligne–Mumford
locus includes all the cusps in characteristics p | N (even when p2 | n).

Proposition 4.6.5. Fix n, n1 P Zě1 and set d :“ gcdpn, n1q.

(a) The stack ĂX1pn;n1q is Deligne–Mumford. In fact, the forgetful contraction morphism

ĂX1pn;n1q ÑX p1q

is representable by algebraic spaces.

(b) The open substack of X1pn;n1q obtained by removing the closed substacks X1pn;n1q8Fp for
the primes p with ordppn

1q ě ordppnq ` 2 is Deligne–Mumford. If ordppn
1q ď ordppnq ` 1 for

every prime p, then the forgetful contraction morphism

X1pn;n1q ÑX p1q

is representable by algebraic spaces.

(c) The open substack of X0pn;n1q obtained by removing the closed substacks X0pn;n1q8Fp for the
primes p with |ordppnq ´ ordppn

1q| ě 2 is Deligne–Mumford. If |ordppnq ´ ordppn
1q| ď 1 for

every prime p, then the forgetful contraction morphism

X0pn;n1q ÑX p1q

is representable by algebraic spaces.

Proof. We recall from Lemma 2.1.6 that the automorphism functor of the standard m-gon generalized
elliptic curve is µmˆZ{2Z. To test the Deligne–Mumford property of an open substack of ĂX1pn;n1q,
X1pn;n1q, or X0pn;n1q, we will use the criterion of having unramified automorphism functors at
geometric points (see Remark 3.1.7). To test the representability of contraction morphisms, we will
use Lemma 3.2.2 (b). These preliminary remarks already settle part (a).

(b) Our task is to show that if p is a prime, E is the standardm-gon with p | m over an algebraically
closed field k, and pE,α,Hq is an object of X1pn;n1qpkq with ordppn

1q ď ordppnq ` 1, then
µp Ă AutpEq does not fix both α and H. By decomposing into primary parts with the help
of [KM85, 1.7.2] and by contracting away from the p-primary part of rG`Hs, we loose no
generality by assuming that n, n1, and m are powers of p and m ą 1.

Suppose that µp fixes both α and H. Then α cannot be ample, so H is ample, H X pEsmq0

contains µp Ă pEsmq0, and ordppn
1q ě 2. Therefore, the standard cyclic subgroup Hp Ă H

of order p is contained in pEsmq0 and hence equals µp. Moreover, due to the requirement
ordppn

1q ď ordppnq ` 1, we have n ą 1, so, by Proposition 4.2.5 (a), the requirement
rGd ` Hds “ Esmrds implies that rGp ` Hps “ Esmrps. The latter forces Gp to project
isomorphically onto the p-torsion subgroup of the component group of Esm, so G injects into
this component group. Since H is ample and H X pEsmq0 ‰ 0, this violates the requirement
ordppn

1q ď ordppnq ` 1 unless G is ample, that is, unless α is ample, which is a contradiction.
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(c) Our task is to show that if p is a prime, E is the standardm-gon with p | m over an algebraically
closed field k, and pE,G,Hq is an object of X0pn;n1qpkq with |ordppnq ´ ordppn

1q| ď 1, then
µp Ă AutpEq does not fix both G and H. As in the proof of (b), we assume that n, n1, and
m are powers of p and m ą 1.

Suppose that µp fixes both G and H. By the conclusion of (b), µp cannot fix any Drinfeld
Z{nZ-structure (resp., Z{n1Z-structure) on G (resp., H), so G and H must both be ample,
and hence must both contain µp Ă pEsmq0. Then Gp “ Hp “ µp inside pEsmq0, which is a
contradiction to the requirement rGp`Hps “ Esmrps inherited from rGd`Hds “ Esmrds. �

With Proposition 4.6.5 in hand, we are ready for identifications with suitable modular curves XH .

Theorem 4.6.6. Fix n, n1 P Zě1.

(a) Let rΓ1pn;n1q be the preimage in GL2ppZq of the subgroup of GL2pZ{nn1Zq that fixes the
subgroups pZ{nn1Zqrns ˆ t0u and t0u ˆ pZ{nn1Zqrn1s pointwise in pZ{nn1Zq2. The forgetful
contraction ĂX1pn;n1q ÑX p1q induces the identification

ĂX1pn;n1q “X
rΓ1pn;n1q

.

(b) Let Γ1pn;n1q be the preimage in GL2ppZq of the subgroup of GL2pZ{nn1Zq that fixes the subgroup
pZ{nn1Zqrns ˆ t0u pointwise and stabilizes the subgroup t0u ˆ pZ{nn1Zqrn1s in pZ{nn1Zq2. If
ordppn

1q ď ordppnq ` 1 for every prime p, then the forgetful contraction X1pn;n1q Ñ X p1q
induces the identification

X1pn;n1q “XΓ1pn;n1q.

(c) Let Γ0pn;n1q be the preimage in GL2ppZq of the subgroup of GL2pZ{nn1Zq that stabilizes the
subgroups pZ{nn1Zqrnsˆt0u and t0uˆpZ{nn1Zqrn1s in pZ{nn1Zq2. If |ordppn

1q ´ ordppnq| ď 1
for every prime p, then the forgetful contraction X0pn;n1q ÑX p1q induces the identification

X0pn;n1q “XΓ0pn;n1q.

Proof. By Proposition 4.6.5, the imposed assumptions on n and n1 ensure that the forgetful contrac-
tion morphisms to X p1q are representable by algebraic spaces. Therefore, due to Theorem 4.6.4 and
Theorem 4.5.1 (c), we only need to show that, for variable Zr 1

nn1 s-schemes S, the Y p1qZr 1
nn1
s-stacks

ĂY1pn;n1qZr 1
nn1
s, Y1pn;n1qZr 1

nn1
s, and Y0pn;n1qZr 1

nn1
s

parametrize elliptic curves E Ñ S equipped with an S-point of

rΓ1pn;n1qz IsompErnn1s, pZ{nn1Zq2q, Γ1pn;n1qz IsompErnn1s, pZ{nn1Zq2q,

and Γ0pn;n1qz IsompErnn1s, pZ{nn1Zq2q,

respectively, where overlines denote images in GL2pZ{nn1Zq. For this, it suffices to inspect the
defining modular descriptions of ĂX1pn;n1q, X1pn;n1q, and X0pn;n1q and to use the definitions of
rΓ1pn;n1q, Γ1pn;n1q, and Γ0pn;n1q given in the statements of (a), (b), and (c). �
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4.7. A modular construction of Hecke correspondences for X1pnq

We wish to explain how the results of sections 2.2, 4.4, and 4.6 give rise to a Hecke correspondence

π1, π2 : XΓ1pn; pq Ñ XΓ1pnq

for every n P Zě1 and every squarefree p P Zě1 that may or may not be coprime with n.

In terms of the moduli interpretations given in §4.4.1 and §4.6.1 and proved in Theorem 4.4.4 (c)
and Theorem 4.6.6 (b), the maps are given by

π1ppE,α,Hqq “ pcαpEq, αq and π2ppE,α,Hqq “ pE{H,αq,

and are well defined due to the last aspect of Proposition 4.2.11 (b) (we let cαpEq denote the
contraction of E with respect to the unique subgroup on which α is a Drinfeld Z{nZ-structure). To
argue that we have exhibited a correspondence, it suffices to prove the following lemma:

Lemma 4.7.1. The maps π1 and π2 are representable, finite locally free, and surjective.

Proof. Since π1 is the X p1q-morphism induced by the inclusion Γ1pn; pq Ă Γ1pnq, its finiteness follows
from the finiteness of XH Ñ XH 1 observed in the last paragraph of §4.1.2. By Theorem 4.4.4 (a),
XΓ1pnq is regular, so the flatness of π1 follows from [EGA IV2, 6.1.5]. The surjectivity of π1 may be
checked over pYΓ1pnqqQ.

For the representability of π2, due to Lemma 3.2.2 (b) and the representability of XΓ1pn; pq Ñ X p1q,
it suffices to observe that if E is a generalized elliptic curve over an algebraically closed field and
H Ă Esm is a finite subgroup, then every automorphism i of E that stabilizes H and induces
the identity map on E{H must fix pEsmq0 because the endomorphism idEsm ´i|Esm of Esm factors
through H. The properness of π2 follows from the Z-properness of XΓ1pn; pq and XΓ1pnq, so its
quasi-finiteness may be checked on geometric fibers. Finiteness of π2 is then supplied by Lemma 3.2.3,
and its flatness follows from [EGA IV2, 6.1.5]. Finally, the surjectivity of π2 may be checked over
pYΓ1pnqqQ. �

In the case when p is a prime, the Hecke correspondence above has already been constructed in
[Con07, 4.4.3] by a different method: due to the lack of the theory of quotients of generalized
elliptic curves by arbitrary finite locally free subgroups, loc. cit. first defines π2 by the same formula
on the elliptic curve locus and then argues that the resulting map extends uniquely to the entire
XΓ1pn;pq. The construction above seems simpler and more direct, and it also produces the map ξ of
[Con07, 4.4.3]: if e and e1 are the identity sections of E Ñ S and E{H Ñ S, then there is a map

pe1q˚pΩ1
pE{Hq{Sq Ñ e˚pΩ1

E{Sq

whose formation is compatible with base change in S.

5. A modular description of XΓ0pnq

For an integer n P Zě1 and the subgroup

Γ0pnq :“
!

`

a b
c d

˘

P GL2ppZq | c ” 0 mod n
)

,

the goal of this chapter is to exhibit the modular curve XΓ0pnq defined via normalization (see §4.1.2)
as a moduli stack parametrizing generalized elliptic curves equipped with a “Γ0pnq-structure,” which
on the elliptic curve locus is the datum of a subgroup that is cyclic of order n in the sense of
Definition 4.2.6. The proof of the correctness of this moduli interpretation in Theorem 5.13 will
simultaneously deduce the regularity of XΓ0pnq from that of YΓ0pnq proved by Katz and Mazur. We
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begin with a naive modular description that recovers XΓ0pnq only for squarefree n and then proceed
to refine the naive description to a description that works for any n.

Throughout Chapter 5 we fix an integer n P Zě1.

5.1. The stack X0pnq
naive. This is the Z-stack that, for variable schemes S, parametrizes the pairs

pE
π
ÝÑ S, Gq

consisting of a generalized elliptic curve E π
ÝÑ S and an ample S-subgroup G Ă Esm that is cyclic of

order n (in the sense of Definition 4.2.6). We call such a G a naive Γ0pnq-structure on E.

We let
Y0pnq

naive Ă X0pnq
naive

be the open substack that parametrizes those pairs for which E is an elliptic curve. For each positive
divisor m of n, we let

X0pnq
naive
pmq Ă X0pnq

naive

be the open substack that parametrizes those pairs for which the degenerate geometric fibers of E
are m-gons.

In the notation of §4.6.2, one has
X0pnq

naive “ X0pn; 1q,

so, by Theorem 4.6.4 (a), the stack X0pnq
naive is algebraic, proper and flat over SpecZ, and regular

with finite diagonal ∆X0pnqnaive{Z. By Theorem 4.6.4 (b) (and its proof), the morphism

X pnq ÑX0pnq
naive

that sends a Drinfeld pZ{nZq2-structure α to the subgroup on which α|Z{nZˆt0u is a Drinfeld Z{nZ-
structure and contracts the underlying generalized elliptic curve with respect to this subgroup is
finite locally free of rank n ¨ φpnq2.

If n is squarefree, then Theorem 4.6.6 (c) proves that the contraction

X0pnq
naive Ñ X p1q is identified with the structure morphism XΓ0pnq Ñ X0p1q.

This identification fails when n is divisible by p2 for some prime p: variants of the example given in
§1.2 show that for such n the contraction X0pnq

naive Ñ X p1q is not representable.

5.2. The notation dpmq. For a positive divisor m of n, we set

dpmq :“ m
gcdpm, n

m
q
,

so that dpmq depends both on m and on the integer n that is fixed throughout.

To explain the role of the functionm ÞÑ dpmq in the context of Γ0pnq-structures on generalized elliptic
curves, let E be the standard m-gon over an algebraically closed field and suppose that E is equipped
with an ample cyclic subgroup G Ă Esm of order n. Then GXpEsmq0 “ µ n

m
and µm Ă AutpEq is the

subgroup of those automorphisms that induce the identity map on the contraction of E with respect
to the zero section (see Lemma 2.1.6). The further subgroup of AutpEq that in addition stabilizes
G is therefore µm X µ n

m
“ µgcdpm, n

m
q (intersection in pEsmq0), and this subgroup acts trivially on

precisely dpmq of the m irreducible components of E.

When refining G to a Γ0pnq-structure on such an E, we will only remember the contraction
cEsmrdpmqspEq that is a dpmq-gon together with the standard cyclic subgroup G n

m
¨dpmq of order

n
m ¨ dpmq. In addition, we will require the datum of a compatible ample cyclic G1 of order n on every
E1 that contracts to (a base change) of cEsmrdpmqspEq and that has m-gon degenerate geometric
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fibers. Different m may give the same dpmq, so there is no way to recover m from cEsmrdpmqspEq
alone; to overcome this, we will incorporate m into the data that comprises a Γ0pnq-structure.

For the precise definition of a Γ0pnq-structure given in §5.10, we need the following preparations.

5.3. The stack of “decontractions”. Fix a positive divisor m of n and suppose that we have a
generalized elliptic curve E π

ÝÑ S and an open subscheme Sπ,pmq Ă S that contains the elliptic curve
locus S ´ S8,π and such that the degenerate geometric fibers of ESπ,pmq are dpmq-gons. (Such an
Sπ,pmq will be part of the data of a Γ0pnq-structure on E.) The base change ESπ,pmq determines a
map Sπ,pmq Ñ E``dpmq, so we may consider the fiber product algebraic stack

Sπ,pmq ˆE``dpmq E``m,

which parametrizes “decontractions” of ESπ,pmq , or, more precisely, which, for variable Sπ,pmq-schemes
S1, parametrizes the pairs

pE1
π1
ÝÑ S1, ι1 : ES1

„
ÝÑ cE1smrdpmqspE

1qq

consisting of a generalized elliptic curve E1 π
1

ÝÑ S1 whose degenerate geometric fibers are m-gons and
a specified S1-isomorphism ι1. We denote the universal object of Sπ,pmq ˆE``dpmq E``m by

pEπ,pmq, ιπ,pmqq.

The base change of Sπ,pmq ˆE``dpmq E``m (resp., of Eπ,pmq) to S ´ S8,π is identified with S ´ S8,π

(resp., with ES´S8,π), and the same holds over the entire Sπ,pmq if dpmq “ m.

We will endow the universal “decontraction” Eπ,pmq with additional structures. The algebraic stack
Eπ,pmq is typically not a scheme, but there are two ways to think about such structures concretely:

‚ As compatible with isomorphisms and base change structures on E1 for each pE1 π
1

ÝÑ S1, ι1q;

‚ As compatible under the pullbacks

Sπ,pmq ˆE``dpmq X1 Ñ Sπ,pmq ˆE``dpmq X0

structures on the “decontractions” over the indicated bases, where X1 Ñ X0 Ñ E``m is a
once and for all fixed scheme presentation of the algebraic stack E``m, so that

Sπ,pmq ˆE``dpmq X1 Ñ Sπ,pmq ˆE``dpmq X0 Ñ Sπ,pmq ˆE``dpmq E``m

is a scheme presentation of the algebraic stack Sπ,pmq ˆE``dpmq E``m (by Theorem 3.1.6 (a),

the algebraic stacks E``m and E``dpmq have finite diagonals, so X0 ˆE``m X0 and similar fiber
products that would a priori be algebraic spaces are schemes).

The second way has the advantage of avoiding set-theoretic difficulties that would need to be
addressed in order to make the first way completely rigorous.

The contractions of the generalized elliptic curves parametrized by the stack Sπ,pmqˆE``dpmq E``m are
identified. In particular, the degenerate geometric fibers of these curves have canonically isomorphic
component groups because the identity component of such a fiber may be used to fix the “direction”
of the m-gon. This observation lies behind the following lemma:

Lemma 5.4. Let E π
ÝÑ S and E1 π1

ÝÑ S be generalized elliptic curves whose degenerate geometric
fibers are m-gons and let ι : cpEq „

ÝÑ cpE1q be an S-isomorphism between their contractions with
respect to the identity sections.
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(a) If S is a geometric point, then there is a unique identification

Esm{pEsmq0 “ E1sm{pE1smq0

of the component groups that is induced by any isomorphism E » E1 that is compatible with ι.

(b) If Sred “ pS8,πqred (so that also Sred “ pS8,π
1

qred), then there is a unique S-identification

pEsmqrms{pEsmq0rms “ pE1smqrms{pE1smq0rms

whose base change to any geometric S-point s is induced by any s-isomorphism Es » E1s
compatible with ιs. Any S-isomorphism i : E » E1 compatible with ι induces this identification.

(c) For g P EsmpSq and g1 P E1smpSq, the set of s P S for which g and g1 meet the same (in the
sense of (a)) irreducible components of Es and E1s forms an open subscheme of S that is also
closed if Sred “ pS8,πqred.

Proof.

(a) If either E or E1 is smooth, then ι itself induces the desired identification. We may therefore
assume that both E and E1 are degenerate. Then, by Remark 2.1.9, both E and E1 are
isomorphic to the standardm-gon discussed in Remark 2.1.5. Moreover, any two isomorphisms
E » E1 that are compatible with ι differ by an automorphism of E1 that is the identity map
on pE1smq0. It remains to observe that, by Lemma 2.1.6, any automorphism of E1 that is the
identity map on pE1smq0 induces the identity map on E1sm{pE1smq0.

(b) If S is a geometric point, then

pEsmqrms{pEsmq0rms “ Esm{pEsmq0,

and likewise for E1, so the claim follows from (a). In general, by Lemma 2.1.11, both

pEsmqrms{pEsmq0rms and pE1smqrms{pE1smq0rms

are étale, so we may and do assume that S “ Sred. In this case, by Remark 2.1.9, i exists fppf
locally on S. Moreover, any i satisfies the defining property, so we only need to check that
two different i induce the same identification. For this, the case of a local strictly Henselian
S suffices and reduces to the settled case of a geometric point.

(c) We may assume that S “ S8,π “ S8,π
1 and S is reduced and may work fppf locally on S.

We therefore use Remark 2.1.9 to fix an S-isomorphism i : E
„
ÝÑ E1 that is compatible with

ι and to assume that E is the standard m-gon. In this case, the label of the component of
Esm that meets g is locally constant on S, and likewise for ι´1pg1q. �

5.5. Coherence of a cyclic subgroup of the universal “decontraction”. In the notation of
§5.3, part of the data of a Γ0pnq-structure will be an ample cyclic pSπ,pmq ˆE``dpmq E``mq-subgroup

Gpmq Ă Esm
π,pmq

of order n, or, in more concrete terms, for every pE1 π
1

ÝÑ S1, ι1q an ample cyclic S1-subgroup G1 Ă E1sm

of order n that is compatible with base change and with isomorphisms of pairs pE1, ι1q (for the notion
of cyclicity, see Definition 4.2.6).

In order to isolate a well-behaved class of such Gpmq, we say that Gpmq is coherent if:
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For every Sπ,pmq-scheme S1 and every pair of objects

pE11
π11
ÝÑ S1, ι11q and pE12

π12
ÝÑ S1, ι12q

of pSπ,pmq ˆE``dpmq E``mqpS
1q, the pullbacks G11 Ă E1sm1 and G12 Ă E1sm2 of Gpmq fpqc lo-

cally on S1 have generators g11 and g12 that meet the same (in the sense of Lemma 5.4 (a))
irreducible components of the geometric fibers of E11 and E12 and satisfy

pι11q
´1p nm ¨ g

1
1q “ pι

1
2q
´1p nm ¨ g

1
2q.

(The last equality takes place in E and makes sense because n
m ¨g

1
1 lies in the contraction cE1sm1 rdpmqspE

1
1q

by Proposition 4.2.9 (c), and likewise for n
m ¨ g

1
2.) Equivalently, the coherence of Gpmq is a condition of

the existence of compatible fpqc local generators of the pullbacks of Gpmq along the two projections

pSπ,pmq ˆE``dpmq E``mq ˆSπ,pmq pSπ,pmq ˆE``dpmq E``mq Ñ Sπ,pmq ˆE``dpmq E``m,

where compatibility amounts to the conditions imposed on g11 and g12 above.

In what follows, the purpose of the coherence condition is to ensure that Gpmq is uniquely determined

by its pullback to any pE1 π
1

ÝÑ S1, ι1q with S1 “ Sπ,pmq, provided that such an pE1, ι1q exists. Lemma 5.7
will justify this, and its aspect (iii) will show that no generality is lost if one strengthens the coherence
condition by fixing an fpqc local generator g11 of G11 in advance.

Any Gpmq is coherent if Sπ,pmqˆE``dpmq E``m “ Sπ,pmq, and also if n is a unit on Sπ,pmq as we now show.

Lemma 5.6. If n is invertible on Sπ,pmq, then every ample cyclic pSπ,pmq ˆE``dpmq E``mq-subgroup
Gpmq Ă Esm

π,pmq of order n is coherent.

Proof. We will show that for every pair pE11
π11
ÝÑ S1, ι11q and pE12

π12
ÝÑ S1, ι12q as in the definition of

coherence, desired generators g11 and g12 of G11 and G12 exist even étale locally on S1. For this, due to
Lemma 5.4 (c), we may assume that S1 is local strictly Henselian and that the special fibers pE11qs1
and pE12qs1 are degenerate. Moreover, since pE11qsmrns and pE12qsmrns are étale and G11 and G12 are
constant, we may assume further that S1 is a geometric point. In the case of a geometric point, it
suffices to transport any choice of a g11 across any S1-isomorphism pE11, ι

1
1q » pE

1
2, ι

1
2q. �

The following key lemma analyses the coherence condition beyond the case when n is a unit by
exhibiting a universal property satisfied by pullbacks of a coherent Gpmq. This property compensates
for the loss of a direct reduction to geometric points that governed the case of an invertible n.

Lemma 5.7. Let m be a positive divisor of n, let d P Zě1 be a multiple of m, let E π
ÝÑ S and

E1
π1
ÝÑ S be generalized elliptic curves whose degenerate geometric fibers are d-gons, and let

ι : cEsmrdpmqspEq
„
ÝÑ cE1smrdpmqspE

1q

be an S-isomorphism. For every cyclic S-subgroup G Ă Esm of order n that meets precisely m
irreducible components of every degenerate geometric fiber of E, there is a unique cyclic S-subgroup
G1 Ă E1sm of order n such that

(i) over S ´ S8,π “ S ´ S8,π
1 there is an equality ιpGS´S8,πq “ G1

S´S8,π1
; and

(ii) fpqc locally on S there exist generators g of G and g1 of G1 that meet the same irreducible
components of the geometric fibers of E and E1 (in the sense of Lemma 5.4 (a)) and satisfy

ιp nm ¨ gq “
n
m ¨ g

1.
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(So G1 meets precisely m irreducible components of every degenerate geometric fiber of E1.)

Moreover, this unique G1 is such that

(iii) for every S-scheme T and every generator rg of GT , fpqc locally on T there exists a generator
rg1 of G1T such that rg and rg1 meet the same irreducible components of the geometric fibers of
E and E1 and satisfy

ιp nm ¨ rgq “
n
m ¨ rg

1;

(iv) the standard cyclic subgroups G n
m
¨dpmq Ă G and G1n

m
¨dpmq Ă G1 of order n

m ¨ dpmq satisfy

ιpG n
m
¨dpmqq “ G1n

m
¨dpmq.

Remark 5.8. The equalities displayed in (ii)–(iv) make sense due to Proposition 4.2.9 (c).

Proof of Lemma 5.7. We have broken the argument up into six steps.

Step 1. The claim of (iv) follows from the rest. The subgroups ιpG n
m
¨dpmqq and G1n

m
¨dpmq of E

1sm are

cyclic of order n
m ¨ dpmq, agree with ιppG n

m
¨dpmqqS´S8,πq over S ´ S8,π

1 , and fpqc locally on S have
generators ιp m

dpmq ¨ gq and
m
dpmq ¨ g

1 whose n
m -multiples equal ιp nm ¨ p

m
dpmq ¨ gqq. Therefore, ιpG n

m
¨dpmqq

and G1n
m
¨dpmq must be equal because they satisfy (i) and (ii) when n, m, and G are replaced by

n
m ¨ dpmq, dpmq, and G n

m
¨dpmq, respectively (G n

m
¨dpmq meets precisely dpmq irreducible components of

every degenerate geometric fiber of E due to Proposition 4.2.9 (c)).

Step 2. The claim of (iii). We may assume that T “ S and may work fpqc locally on S, so we
fix g, g1, and rg over S. In order to find a desired fpqc local rg1, we work Zariski locally on S and
use limit arguments together with Lemma 5.4 (c) to reduce to the case when S “ SpecR for some
Noetherian R. Then we pass to an fpqc cover to assume that R is complete and separated with
respect to the ideal I that cuts out S8,π (equivalently, with respect to the ideal that cuts out S8,π1 ;
see Corollary 3.2.5).

By Proposition 3.2.7 (a), Esmrns (resp., E1smrns) has the largest finite locally free S-subgroup An,m
(resp., A1n,m) that meets precisely m irreducible components of every degenerate geometric fiber of
E (resp., E1), so G Ă An,m and G1 Ă A1n,m. Moreover, Proposition 3.2.7 (a) supplies extensions

0 // Bn // An,m // Cm // 0

0 // Bn // A1n,m // Cm // 0

of S-group schemes, where the identification of Bn is via ι and the identification of Cm is via
Lemma 5.4 (b) (applied over R{Ij for every j ě 1 to the contractions of ER{Ij and E1

R{Ij
with

respect to the m-torsion). As may be checked on degenerate geometric fibers, the generators g P GpSq
and g1 P G1pSq project to the same section of Cm that gives an isomorphism Cm » Z{mZ.

The homomorphism GÑ Cm is finite locally free and, by Proposition 4.2.10 (a), its kernel is the
standard cyclic subgroup G n

m
Ă G of order n

m . By replacing g and g1 by u ¨ g and u ¨ g1 for a suitable
u P pZ{nZqˆpSq, we reduce to the case when g and rg have the same image in Cm. Then g´ rg P G n

m
,

so n
m ¨ g “

n
m ¨ rg, which means that we may choose rg1 to be g1.

For the rest of the proof, we focus on the remaining claim about the existence and uniqueness of G1.
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Step 3. Reduction to the case when n is a prime power. The group G, as well as any candidate G1,
decomposes as a product of its p-primary parts for various primes p dividing n. By [KM85, 1.7.2],
cyclicity of G or of G1 is equivalent to the cyclicity of the primary factors, and the datum of a
generator of G or of G1 corresponds to the datum of a generator of each primary factor. Therefore,
for the existence and the uniqueness of the sought G1 we may assume that n is a prime power.

For the rest of the proof, we assume that n “ pr and m “ ps for some prime p and r, s P Zě0.

Step 4. The case s “ 0. For the existence, ιpGq fulfills the requirements (i)–(ii). The uniqueness
reduces to the case of an Artinian local S and then follows from Proposition 3.2.7 (a).

For the rest of the proof, we assume that s ě 1, so that n
m ‰ n.

Step 5. Uniqueness of G1. Due to the claim concerning (iii) (i.e., due to Step 2), we may assume
that the two candidates G11, G12 Ă E1sm have generators g11 and g12 that meet the same irreducible
components of the geometric fibers of E1 and satisfy n

m ¨ g
1
1 “

n
m ¨ g

1
2. Furthermore, we may assume

that the base S is Noetherian, then local, then complete, and finally Artinian, and that E1 is
nonsmooth over S. Then, since g11 ´ g12 P pE1smq0pSq and

n
m ¨ g

1
1 “

n
m ¨ g

1
2, we have

g12 “ g11 ` h for some h P pE1smq0r nm spSq.

By Lemma 2.1.11 and Proposition 4.2.10 (a), the S-group pE1smq0r nm s is the standard cyclic subgroup
of G11 of order n

m , so Proposition 4.2.9 (f) ensures that g11 ` h generates G11, which means that
G11 “ G12.

Step 6. Existence of G1. Due to the uniqueness of G1, for its existence we may work fpqc locally on
S, so we fix a generator g of G. Moreover, as in Step 2 we reduce to the case when S “ SpecR for a
Noetherian R that is complete and separated with respect to the ideal I Ă R that cuts out S8,π
and use Proposition 3.2.7 (a) to obtain the diagram of extensions displayed in Step 2.

By Proposition 3.2.7 (a), E1smrms Ă A1n,m, so E1smr
m
dpmq s Ă A1n,m, too, and hence the image of A1n,m

under the multiplication by m
dpmq map of E1sm is a finite locally free S-subgroup of A1n

m
¨dpmq,dpmq

of order
`

n
m ¨ dpmq

˘

¨ dpmq. This image therefore equals A1n
m
¨dpmq,dpmq, so, since ιp

m
dpmq ¨ gq lies in

A1n
m
¨dpmq,dpmq, after replacing S by a finite locally free cover we may choose a g1 P A1n,mpSq with

m
dpmq ¨ g

1 “ ιp m
dpmq ¨ gq.

Since E1smr m
dpmq s is an extension of pCmqr m

dpmq s by pBnqr
m
dpmq s, after a further finite locally free cover

of S we may adjust g1 by a lift to pE1smr m
dpmq sqpSq of the difference of the images of g and g1 in Cm to

arrange that g and g1 have the same image in Cm and hence meet the same irreducible components
of the geometric fibers of E and E1.

By Proposition 4.2.5 (d), g1 generates a cyclic S-subgroup G1 Ă E1sm of order n. Since m
dpmq |

n
m , the

group G1 satisfies (ii). Thus, to complete Step 6, and hence also the proof of Lemma 5.7, it suffices
to show that

ιpGS´S8,πq “ G1
S´S8,π1

.

We have G Ă An,m and G1 Ă A1n,m with g and g1 projecting to the same section of Cm. Moreover, by
Proposition 3.2.7 (b) and the diagram displayed in Step 2, both ιppAn,mqS´S8,π1 q and pA

1
n,mqS´S8,π1

are the preimages in E1
S´S8,π1

rns of the unique pS ´ S8,π
1

q-subgroup of pE1smrns{BnqS´S8,π1 of
order m, so

ι identifies An,m and A1n,m over S ´ S8,π
1

.
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We claim that under this identification via ι, the image of gS´S8,π in An,m{Bn agrees with the
image of g1

S´S8,π1
in A1n,m{Bn. Since A1n,m{Bn is finite étale, it suffices to check the claimed

agreement on the geometric fibers at the points in S ´ S8,π1 , so the technique used in the proof of
Proposition 3.2.7 (b) reduces the proof of the claimed agreement to the case when R is a discrete
valuation ring and E and E1 have smooth generic fibers but nonsmooth closed fibers. In this case,
by Proposition 3.1.8 (b), ι extends to a unique isomorphism E » E1, which then must induce the
identification of the groups Cm for E and E1. Thus, in this case the claimed agreement follows from
the agreement of the images of g and g1 in Cm.

Returning to the proof of ιpGS´S8,πq “ G1
S´S8,π1

, via the above reasoning, we conclude that
g1
S´S8,π1

´ ιpgS´S8,πq lies in Bn. Moreover, since m
dpmq |

n
m , the construction of g1 ensures that

n
m ¨ g

1

S´S8,π1
“ n

m ¨ ιpgS´S8,πq.

Therefore, there is an h P ppBnqr nm sqpS ´ S
8,π1q such that

g1
S´S8,π1

“ ιpgS´S8,πq ` h.

By the uniqueness aspect of the first assertion of Proposition 3.2.7 (a) and by Proposition 4.2.9 (c),
pBnqr

n
m s is the standard cyclic subgroup of G of order n

m , so ιpgS´S8,πq ` h generates ιpGS´S8,πq
by Proposition 4.2.9 (f). The sought equality ιpGS´S8,πq “ G1

S´S8,π1
follows. �

We are ready for the definition of a Γ0pnq-structure on a generalized elliptic curve.

5.9. Γ0pnq-structures. For a generalized elliptic curve E π
ÝÑ S, a Γ0pnq-structure on E is a tuple

pG, tSπ,pmqum|n, tGpmqum|nq
consisting of the following data.

(1) A cyclic pS ´ S8,πq-subgroup G Ă ES´S8,π of order n (in the sense of Definition 4.2.6).

(2) For each positive divisor m of n, an open subscheme Sπ,pmq Ă S such that

(2.1) S “
Ť

m Sπ,pmq;

(2.2) if m ‰ m1, then Sπ,pmq X Sπ,pm1q “ S ´ S8,π;

(2.3) the degenerate geometric fibers of ESπ,pmq are dpmq-gons, where dpmq “
m

gcdpm, n
m
q
.

(3) For each positive divisor m of n, in the notation of §5.3, an ample cyclic pSπ,pmqˆE``dpmq E``mq-
subgroup

Gpmq Ă Esm
π,pmq

of order n such that

(3.1) on the elliptic curve locus,

pGpmqqS´S8,π “ ιπ,pmqpGq;

(3.2) the cyclic subgroup Gpmq is coherent in the sense of §5.5.

Remarks.

5.9.1. If E Ñ S is smooth, then the data (2)–(3) are uniquely determined by (1) and a Γ0pnq-
structure on E is nothing else than a cyclic S-subgroup of order n.

5.9.2. If n is invertible on S, then, by Lemma 5.6, the requirement (3.2) is superfluous.
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5.9.3. If n is squarefree, then dpmq “ m for every m, so that Sπ,pmq is the open subscheme of S
obtained by removing all the S8,π,m1 with m1 ‰ m, the “decontraction” Eπ,pmq is ESπ,pmq itself,
and a Γ0pnq-structure on E is nothing else than an ample cyclic S-subgroup of Esm order n.

In general, the datum tSπ,pmqum|n of (2) is equivalent to a subdivision

S8,π “
Ů

m|n S
8
π,pmq,

subject to the requirement that S8π,pmq Ă S8,π,dpmq for every m. In this notation,

Sπ,pmq “ S ´
´

Ť

m1‰m S
8
π,pm1q

¯

.

5.9.4. The subgroup Gpmq determines an ample cyclic Sπ,pmq-subgroup

Gpmq Ă Esm
Sπ,pmq

of order n
m ¨ dpmq such that pGpmqqS´S8,π is a standard cyclic subgroup of G. To build

Gpmq, we choose an fppf cover S1 of Sπ,pmq for which there is an object pE1 Ñ S1, ι1q of
Sπ,pmq ˆE``dpmq E``m, let G

1 Ă E1sm be the pullback of Gpmq, and use Proposition 4.2.9 (c) to
set

pGpmqqS1 :“ pι1q´1pG1n
m
¨dpmqq.

Lemma 5.7 (iv) shows the agreement of the two pullbacks of pGpmqqS1 to S1 ˆSπ,pmq S
1, and

hence also the effectivity of descent to the sought Gpmq over Sπ,pmq, as well as the independence
of the resulting Gpmq on the choice of S1 and pE1, ι1q.

By construction and Lemma 5.7 (iv), ιπ,pmqpGpmqq is a standard cyclic subgroup of Gpmq.

The principal reason why the stack X0pnq that we are about to introduce is practical to work with
even when n is not squarefree is Lemma 5.12 (a) below.

5.10. The stack X0pnq. In order to construct this Z-stack, we begin by letting S be a variable
scheme and by defining the categories X0pnqpSq.

The objects of X0pnqpSq are the tuples

pE
π
ÝÑ S, G, tSπ,pmqum|n, tGpmqum|nq

consisting of a generalized elliptic curve E π
ÝÑ S and a Γ0pnq-structure on E.

In X0pnqpSq, a morphism

pE1
π1
ÝÑ S, G1, tSπ1,pmqu, tGpmq,1uq Ñ pE2

π2
ÝÑ S, G2, tSπ2,pmqu, tGpmq,2uq

between two tuples such that Sπ1,pmq “ Sπ2,pmq for every positive divisor m of n consists of

(I) an S-isomorphism iE : E1
„
ÝÑ E2 of generalized elliptic curves such that

piEqS´S8,π1 pG1q “ G2;
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(II) for each positive divisor m of n, an isomorphisms ipmq of stacks over Sπ1,pmq “ Sπ2,pmq and an
isomorphism iEpmq of generalized elliptic curves that fit into the commutative diagram

Eπ1,pmq iEpmq

„ //

��

Eπ2,pmq

��

Sπ1,pmq ˆE``dpmq E``m
„

ipmq

// Sπ2,pmq ˆE``dpmq E``m

and such that iEpmq induces the isomorphism piEqSπ1,pmqˆE``dpmq
E``m between the contractions of

Eπ1,pmq and Eπ2,pmq with respect to Esm
π1,pmq

rdpmqs and Esm
π2,pmq

rdpmqs, respectively, and satisfies

iEpmqpGpmq,1q “ Gpmq,2.

There are no morphisms between tuples for which Sπ1,pmq ‰ Sπ2,pmq for some m.

In concrete terms, the datum pipmq, iEpmqq of (II) amounts to

(II1) an Sπ1,pmq-isomorphism

ipmq : Sπ1,pmq ˆE``dpmq E``m
„
ÝÑ Sπ2,pmq ˆE``dpmq E``m

together with: for every object pE11 Ñ S1, ι11q of Sπ1,pmq ˆE``dpmq E``m with ipmq-image
pE12 Ñ S1, ι12q, a generalized elliptic curve isomorphism

iE11,E12 : E11
„
ÝÑ E12

that is compatible with piEqS1 (via ι11 and ι12), brings the pullback of Gpmq,1 to the pullback of
Gpmq,2, and whose formation commutes with isomorphisms and base change of pairs pE11, ι11q.

A compatible with iE pair of isomorphisms pipmq, iEpmqq always exists (send pE
1
1, ι

1
1q to pE11, ι11˝piEq

´1
S1 q)

and, thanks to iEpmq , is unique up to a unique isomorphism. However, this unique pipmq, iEpmqq may not
automatically respect Gpmq,1 and Gpmq,2. In practice, the uniqueness up to a unique isomorphism means
that the lack of canonicity in the choice of pipmq, iEpmqq does not matter and that the construction of
X0pnq stays in the realm of 2-categories.

The existence of a unique pipmq, iEpmqq compatible with iE ensures that

‚ X0pnqpSq is a groupoid; and

‚ the base change functor X0pnqpSq Ñ X0pnqpS
1q along variable scheme morphisms S1 Ñ S

turns X0pnq into a Z-stack for the fppf topology (see [SP, 026F] for stack axioms).

We let
X0pnq

8 Ă X0pnq and Y0pnq ĂX0pnq

be the closed substack cut out by the degeneracy loci S8,π and its open complement (the elliptic
curve locus), respectively. By Remark 5.9.1, there is an identification

Y0pnq “ Y0pnq
naive.

By Remark 5.9.3, if n is squarefree, then X0pnq is identified with X0pnq
naive.

For a positive divisor m of n, we let

X0pnqpmq Ă X0pnq
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be the open substack cut out by the subschemes Sπ,pmq. For every tuple classified by X0pnqpmq, the
degenerate geometric fibers of E are dpmq-gons.

5.11. The contraction X0pnq
naive Ñ X0pnq. Let E π

ÝÑ S be a generalized elliptic curve equipped
with a naive Γ0pnq-structure, i.e., with an ample cyclic S-subgroup G Ă Esm of order n. To build
a Γ0pnq-structure on a generalized elliptic curve rE

rπ
ÝÑ S out of pE,Gq, we first construct rE by

letting S
rπ,pmq, for a positive divisor m of n, be the largest open subscheme of S over which the

degenerate geometric fibers of E are m-gons and by letting rE be the gluing of the contractions
cEsmrdpmqspES

rπ,pmq
q along ES´S8,π . We endow rES´S8,rπ with the cyclic subgroup GS´S8,π of order

n. This produces the data (1) and (2), so it remains to explain how to get (3).

For a fixed positive divisor m of n, each S
rπ,pmq-scheme S1, and each generalized elliptic curve E1 Ñ S1

whose degenerate geometric fibers are m-gons and that is equipped with an S1-isomorphism

ι1 : rES1 “ cEsmrdpmqspES1q
„
ÝÑ cE1smrdpmqspE

1q,

we endow E1 with the unique cyclic S1-subgroup G1 of order n supplied by Lemma 5.7. Due to the
uniqueness, the formation of G1 commutes with base change and with isomorphisms of pairs pE1, ι1q.
In other words, the subgroups G1 give rise to a cyclic subgroup Gpmq Ă Esm

π,pmq of order n, which
agrees with G on the elliptic curve locus due to Lemma 5.7 (i), is ample due to Lemma 5.7 (ii), and
is coherent due to Lemma 5.7 (iii). This gives the sought datum (3).

The construction of rE and of its Γ0pnq-structure respects isomorphisms and base change of pairs
pE,Gq, so we obtain the sought contraction morphism

X0pnq
naive Ñ X0pnq,

which for each positive divisor m of n restricts to a morphism

X0pnq
naive
pmq Ñ X0pnqpmq.

The following lemma together with Lemma 5.7 is the driving force of our analysis of X0pnq.

Lemma 5.12. Let m be a positive divisor of n.

(a) The square

X0pnq
naive
pmq

//

��

E``m

��

X0pnqpmq // E``dpmq
is Cartesian.

(b) The map X0pnqpmq Ñ E``dpmq is representable by schemes, of finite presentation, separated,
quasi-finite, and flat; moreover, it is étale over Zr 1

n s.

Proof.

(a) For a generalized elliptic curve E π
ÝÑ S, part of the data of a Γ0pnq-structure α on E with

Sπ,pmq “ S is the datum of a naive Γ0pnq-structure G1 on E1 for every pE1
π1
ÝÑ S, ι1q classified

by Sπ,pmq ˆE``dpmq E``m. The assignment of this naive Γ0pnq-structure gives the morphism

X0pnqpmq ˆE``dpmq E``m Ñ X0pnq
naive
pmq ,
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which, by construction of the contraction X0pnq
naive
pmq Ñ X0pnqpmq in §5.11, is a left inverse to

the induced morphism

X0pnq
naive
pmq Ñ X0pnqpmq ˆE``dpmq E``m.

To prove that it is also a right inverse, we need to argue that α agrees with the Γ0pnq-structure
on E determined as in §5.11 by the naive Γ0pnq-structure G1 on E1. For this, the key point
is the coherence requirement (3.2) on the Gpmq that is part of α: thanks to it and to the

uniqueness aspect of Lemma 5.7, for every pE2 π2
ÝÑ S, ι2q classified by Sπ,pmq ˆE``dpmq E``m,

the naive Γ0pnq-structure G2 on E2 that is part of α is also the one determined by G1 through
Lemma 5.7, and likewise over any S-scheme S1.

(b) We prove the asserted properties with the representability by schemes requirement replaced
by representability by algebraic spaces—due to Lemma 3.2.3, this loses no generality.

By Proposition 4.2.15 (a) (applied with m “ 1 there), X0pnq
naive
pmq Ñ E``m enjoys all the

properties in question. Moreover, these properties are fppf local on the target (for the repre-
sentability by algebraic spaces, see [SP, 04SK] or [LMB00, 10.4.2]) and, by Theorem 3.2.4 (a),
E``m Ñ E``dpmq is surjective, flat, and of finite presentation. With the help of (a), we
therefore conclude that X0pnqpmq Ñ E``dpmq inherits the properties in question. �

We are ready for the sought identification X0pnq “XΓ0pnq and for the regularity of XΓ0pnq.

Theorem 5.13.

(a) The stack X0pnq is Deligne–Mumford and regular. The map X0pnq ÑX p1q that forgets the
Γ0pnq-structure and contracts with respect to the identity section induces the identification

X0pnq “XΓ0pnq;

more precisely, X0pnq and XΓ0pnq are the normalizations of X p1q in Y0pnqZr 1
n
s – YΓ0pnqr

1
n s.

(b) The substack X0pnq
8 Ă X0pnq is a reduced relative effective Cartier divisor over SpecZ that

meets every irreducible component of every geometric fiber of X0pnq Ñ SpecZ and is smooth
over Zr 1

n s.

Proof.

(a) We will use the axiomatic Theorem 4.5.1. To apply its part (a), and hence to prove the
algebraicity of X0pnq and the quasi-compactness and separatedness of ∆X0pnq{Z, we use
the open cover X0pnq “

Ť

m|n X0pnqpmq and appeal to Lemma 5.12 (b). To then apply
Theorem 4.5.1 (b), and hence to prove the regularity of X0pnq, we let X pnq ÑX0pnq be the
composition of the contractions

X pnq ÑX0pnq
naive and X0pnq

naive Ñ X0pnq

of §5.1 and §5.11 and note that this composition is proper, flat, and surjective due to
§5.1, Lemma 5.12 (a), and Theorem 3.2.4 (a). Finally, in order to prove that X0pnq is
Deligne–Mumford and X0pnq “XΓ0pnq, by Theorem 4.5.1 (c), we need to prove that the map

X0pnq ÑX p1q

is representable by algebraic spaces and that its base change to Y p1qZr 1
n
s is identified with

YΓ0pnqr
1
n s Ñ Y p1qZr 1

n
s.
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Since Y0pnq “ Y0pnq
naive, the latter identification results from the fact that the image of

Γ0pnq in GL2pZ{nZq is the stabilizer of the subgroup Z{nZˆ t0u in pZ{nZq2 (compare with
the proof of Theorem 4.4.4 (c)).

Due to Lemma 3.2.2 (b), the representability of X0pnq ÑX p1q will follow once we prove that,
for every Artinian local algebra A over an algebraically closed field k and every ξ P X0pnqpkq,
no nonidentity automorphism of ξ|A maps to an identity automorphism in X p1qpAq. More
concretely, by Lemma 2.1.6, we need to prove that for every positive divisor d of n and every
prime divisor p of d, there is no Γ0pnq-structure α on the standard d-gon E over k such that
some nonidentity automorphism i P µppAq Ă AutpEqpAq fixes the pullback αA of α to A. For
the sake of contradiction, we fix such α and i.

We let m be such that α has Sπ,pmq ‰ H, so, in particular, dpmq “ d. We let p rE, ιq be the
standard m-gon over k equipped with the canonical isomorphism ι : E

„
ÝÑ c

rEsmrds
p rEq. Up to

unique isomorphism, the pair of isomorphisms pipmq, iEpmqq that extends i as in §5.10 sends
p rEA, ιAq to p rEA, ιA ˝ i´1q, so the ample cyclic A-subgroups rG Ă rEsm

A and rG1 Ă rEsm
A of order

n that are the pullbacks of Gpmq corresponding to p rEA, ιAq and p rEA, ιA ˝ i´1q must be equal:

rG “ rG1 inside rEA.

We replace A by an Artinian local fppf cover to assume that the automorphism ιA ˝ i ˝ ι
´1
A of

c
rEsm
A rds

p rEAq is the contraction of an automorphism

ri P µmpAq Ă Autp rEqpAq.

Then ri gives an isomorphism p rEA, ιA ˝ i
´1q

„
ÝÑ p rEA, ιAq, so must satisfy

rip rG1q “ rG, i.e., rip rGq “ rG.

The latter equality means that ri also lies in rGX p rEsm
A q

0 “ pµ n
m
qA, that is,

ri P µgcdpm, n
m
qpAq.

However, µgcdpm, n
m
q acts trivially on c

rEsmrdpmqs
p rEq by the definition of dpmq (see §5.2), which

means that ιA ˝ i ˝ ι´1
A “ id and contradicts the assumption that i ‰ id.

(b) By the proof of (a), X pnq Ñ X0pnq is surjective, so the claim about the geometric fibers
follows from the corresponding claim for X pnq8 Ă X pnq proved in Proposition 4.3.2 (b).

For the rest, we may work on X0pnqpmq and may focus on the corresponding claims for

X0pnq
8
pmq :“ X0pnqpmq XX0pnq

8,

so it suffices to observe that X0pnq
8
pmq is the preimage of E``8dpmq under the map

X0pnqpmq Ñ E``dpmq,

to apply Theorem 3.1.6 (c)–(d) and Lemma 5.12 (b), and to use the (R0)`(S1) criterion for
reducedness. �
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6. Implications for coarse moduli spaces

The main goal of this chapter is to take advantage of the moduli interpretation of X0pnq presented in
Chapter 5 to prove that the coarse moduli space X0pnq is regular at the cusps (and, in fact, regular
on a large open subscheme, see Theorem 6.7). This regularity is not new: [Edi90, §1.2] uses the
results of Katz and Mazur to verify via an explicit computation that the completion of X0pnq along
the cusps is regular (such regularity is also a special case of an earlier assertion of Gross and Zagier,
see [GZ86, Prop. III.1.4]). In contrast, the proof given below rests on Theorem 5.13 (a), but requires
no computation of completions.

We also exploit Lemma 3.3.1 to obtain a base change result for coarse moduli spaces XH of arbitrary
congruence level H (see Proposition 6.4). To prepare for it, we review general properties of XH .

6.1. The coarse moduli space of XH . For an open subgroup H Ă GL2ppZq, the finite type
Deligne–Mumford Z-stack XH of §4.1.2 is separated, so it has a coarse moduli space XH (by
[KM97, 1.3 (1)], for instance). We let

YH Ă XH

be the open that is the coarse moduli space of the “elliptic curve locus”

YH Ă XH .

We write Xpnq, Y0pnq, etc. for XΓpnq, YΓ0pnq, etc.

Since Xp1q “ P1
Z (see Proposition 3.3.2) and XH inherits Z-properness from XH (see [Ryd13, 6.12]),

the induced map
XH Ñ Xp1q

is finite, so XH is a projective Z-scheme. Moreover, XH inherits normality from XH (see [AV02, 2.2.3]
and compare with the proof of Lemma 3.3.1), so XH Ñ Xp1q is even locally free of constant rank by
[EGA IV2, 6.1.5]. In particular, XH is flat and of relative dimension 1 over SpecZ at every point.

Due to Lemma 4.1.3 (and the sentence preceding it), XH “ XH whenever H is small enough. The
analysis of the case of arbitrary H is facilitated by the following lemma:

Lemma 6.2 ([DR73, IV.3.10 (iii)]). For an open subgroup H Ă GL2ppZq and an n ě 1, if

Γpnq Ă H and H :“ ImpH Ñ GL2pZ{nZqq,
then XH is identified with the categorical quotient Xpnq{H. �

The coarse moduli spaces YH and XH have been studied extensively in [KM85], albeit with somewhat
different terminology, notation, and setup. In order to put the results below in the context of the
work of [KM85], we explicate the relationship between the terminology of op. cit. and that of the
approach based on the systematic use of the theory of algebraic stacks.

Proposition 6.3. Let H Ă GL2ppZq be an open subgroup, let n P Zě1 be such that Γpnq Ă H, and
let H be the image of H in GL2pZ{nZq.

(a) The “quotient moduli problem” rΓpnqs{H in the sense of [KM85, §7.1] is identified with YH .

(b) The “coarse moduli scheme” MprΓpnqs{Hq in the sense of [KM85, §8.1] is identified with YH .

(c) The “compactified coarse moduli scheme” MprΓpnqs{Hq in the sense of [KM85, §8.6] is identified
with XH .

Proof.
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(a) In the case H “ Γpnq, the identification rΓpnqs “ Y pnq over E`` amounts to the definitions
given in [KM85, §5.1 and §3.1] and §4.3.1, so the identification rΓpnqs “ YΓpnq is part of
Theorem 4.3.5. Therefore, in general, the desired identification over SpecZr 1

n s results by
[KM85, 7.1.3 (2)], and hence also over all of SpecZ by [KM85, 7.1.3 (5)–(6)].

(b) If YH is representable, then the claim follows from (a) and the definition of [KM85, 8.1.1].
Therefore, in general, the claim follows from Lemma 6.2.

(c) Since MprΓpnqs{Hq is defined as the normalization of P1
Z “ Xp1q in MprΓpnqs{Hq, due to (b)

it suffices to observe that XH is the normalization of Xp1q in YH . �

Before turning to the case H “ Γ0pnq, we record the following general result that holds for every H.
Its part (a) has been proved in [DR73, VI.6.7] by a different method, and the proof given below is in
essence due to Katz and Mazur. Its part (b) complements [KM85, 8.5.3].

Proposition 6.4. Let H Ă GL2ppZq be an open subgroup, and let n P Zě1 be such that Γpnq Ă H.

(a) The coarse moduli space pXHqZr 1
n
s of pXHqZr 1

n
s is Zr 1

n s-smooth.

(b) For any Zr 1
gcdp6,nq s-scheme S, the canonical map from the coarse moduli space of pXHqS to

pXHqS is an isomorphism.

Proof. Let H denote the image of H in GL2pZ{nZq.

(a) The coarse moduli space Xpn2q may be covered by GL2pZ{n2Zq-invariant open subschemes
that are affine over Z and are preimages of Z-affine open subschemes of Xp1q, so Lemma 6.2
and [KM85, Theorem on p. 508 in the section “Notes on Chapters 8 and 10”] reduce the proof
to the case when H “ Γpn2q. For this H, the n “ 1 case is clear and if n ě 2, then the
geometric points of X pn2qZr 1

n
s have no nontrivial automorphisms by [KM85, 2.7.2 (1)] and

Lemma 2.1.6. Thus, if n ě 2, then Lemma 3.2.2 (a) ensures that

Xpn2qZr 1
n
s “ X pn2qZr 1

n
s

and [DR73, IV.2.5] provides the sought Zr 1
n s-smoothness of Xpn2qZr 1

n
s.

(b) We work locally on Zr 1
gcdp6,nq s, so we assume that S is either a Zr16 s-scheme or a Zr 1

n s-scheme.

Since XH Ñ X p1q is representable, the automorphism group of every geometric point of XH

is of order dividing 24. Therefore, by [Ols06, 2.12], étale locally on its coarse moduli space,
XH is the quotient of an affine scheme SpecA by an action of a finite group G whose order
divides 24. Thus, the case when S is a Zr16 s-scheme follows from the fact that the formation
of the ring of invariants AG commutes with arbitrary base change if #G is invertible in A.

For the remainder of the proof we assume that S is a Zr 1
n s-scheme, so applying Lemma 3.3.1

with X “ pXHqZr 1
n
s reduces the proof to the case when S “ SpecFp with p - n. We therefore

let X 1 be the coarse moduli space of pXHqFp and seek to prove that the finite map

f : X 1 Ñ pXHqFp

is an isomorphism. The source and the target curves of f are Fp-smooth (equivalently,
normal): the target due to (a) and the source due to the Fp-smoothness of pXHqFp ensured
by [DR73, IV.6.7]. Therefore, f is locally free by [EGA IV2, 6.1.5]. To conclude that its rank
is 1, it suffices to exhibit a fiberwise dense open substack U Ă YHr

1
n s whose coarse moduli

space is of formation compatible with base change to Fp.
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We choose U to be the preimage of the complement of j “ 0 and j “ 1728 in A1
Zr 1
n
s
, let

E Ñ U denote the universal elliptic curve, and let

F :“ Hz IsompErns, pZ{nZq2q
be the finite étale U -stack of level H structures on E (compare with §4.1.2). The universal
level H-structure is a section α of F Ñ U , as is r´1s˚Epαq. Since F Ñ U is finite étale, the
substack V Ă U over which α “ r´1s˚Epαq is both open and closed. By [Del75, 5.3 (III)],
the automorphism stack of E is the constant t˘1uU , so the open complement U zV is its
own coarse moduli space, whereas the coarse moduli space of V is the rigidification V( t˘1u
(in the notation of [AOV08, Appendix]). Since the formation of V( t˘1u commutes with
arbitrary base change, so does the formation of the coarse moduli space of U . �

Remarks.

6.5. For a version of Proposition 6.4 (a) in residue characteristics dividing n and suitable H, see
[KM85, 10.10.3 (5)].

6.6. In Proposition 6.4 (b), for some subgroups H one cannot remove the requirement that
gcdp6, nq be invertible on S. For instance, by [Čes17, Thm. 3.2], the canonical map from the
coarse moduli space of pXΓ1p4qqF2 to pXΓ1p4qqF2 is not an isomorphism.

We are ready for the promised regularity of X0pnq at the cusps. Similar techniques may be used to
prove analogous regularity results for Xpnq or X1pnq (or even for rX1pn;n1q, X1pn;n1q, or X0pn;n1q
with n and n1 as in Theorem 4.6.6), but we do not explicate them because in many casesXpnq “X pnq
and X1pnq “ X1pnq (see Proposition 4.3.6 and Lemma 4.1.3), and in these cases the entire Xpnq or
X1pnq is regular by Theorem 4.3.5 or Theorem 4.4.4 (a).

Theorem 6.7. For an n P Zě1, the open subscheme U Ă X0pnq obtained by removing the closed
points corresponding to j “ 0 or j “ 1728 in residue characteristics dividing n is regular.

Proof. The regularity of X0pnqZr 1
n
s follows from Proposition 6.4 (a), so it suffices to prove the

regularity of the coarse moduli space of the preimage

U Ă X0pnq

of the open subscheme of P1
Z obtained by removing the sections j “ 0 and j “ 1728.

Due to the moduli interpretation of X0pnq given in §5.10 and Theorem 5.13 (a), the constant group
t˘1uU is a subgroup of the automorphism group of the universal object of U . In fact, due to
[Del75, 5.3 (III)] and the representability of U Ñ X p1q, this automorphism group equals t˘1uU .
Therefore, the coarse moduli space of U is the rigidification U( t˘1u. By [AOV08, A.1], the map

U � U( t˘1u

is étale, and, by Theorem 5.13 (a), the stack U is regular, so U( t˘1u is also regular, as desired. �

Remark 6.8. One may use the structure of the fibers X0pnqFp with p | n to sharpen Theorem 6.7.
For instance, if n is squarefree, then, due to Proposition 6.4 and [KM85, 13.5.6 and Thm. on p. 508],
in Theorem 6.7 one may require that the removed points are in addition supersingular (and likewise
for general n and those removed points that lie on the reduced components of X0pnqFp). For a more
thorough analysis of the coarse space X0pnq, see [Edi90].

We end by proving that X0pnq
naive yields the same coarse moduli space X0pnq, and hence suffices

for many purposes (however, the proof of Theorem 6.7 does rely on the finer X0pnq through the
representability of X0pnq ÑX0p1q).
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Proposition 6.9. For every n P Zě1, the contraction morphism

X0pnq
naive Ñ X0pnq

defined in §5.11 induces an isomorphism on coarse moduli spaces.

Proof. The coarse moduli space X0pnq
1 of X0pnq

naive exists due to the finiteness of the diagonal of
X0pnq

naive supplied by Theorem 4.6.4 (a) (see [Ryd13, 6.12]). As in §6.1, the map

X0pnq
1 Ñ P1

Z

is finite, so, since Y0pnq
naive “ Y0pnq, it suffices to prove that X0pnq

1 is normal.

For the normality, we work Zariski locally on X0pnq
1 and note that each open substack

U Ă X0pnq
naive

that has an affine coarse moduli space SpecA satisfies A “ ΓpU ,OU q by the universal property for
maps to A1

Z. To then see that ΓpU ,OU q is integrally closed in its total ring of fractions it suffices
to use the normality of U supplied by Theorem 4.6.4 (a) and the fact that generizations lift along
smooth morphisms from algebraic spaces to U (see [LMB00, 5.7.1]). �

Remark 6.10. The same proof shows that, in the notation of section 4.6, for every n, n1 P Zě1 the
coarse moduli spaces of X1pn;n1q and X0pn;n1q agree with those of XΓ1pn;n1q and XΓ0pn;n1q.
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