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Abstract. Given a prime number p, Bloch and Kato showed how
the p∞-Selmer group of an abelian variety A over a number field K is
determined by the p-adic Tate module. In general, the pm -Selmer group
Selpm A need not be determined by the mod pm Galois representation
A[pm ]; we show, however, that this is the case if p is large enough. More
precisely, we exhibit a finite explicit set of rational primes � depending
on K and A, such that Selpm A is determined by A[pm] for all p �∈ �.
In the course of the argument we describe the flat cohomology group
H1

fppf(OK ,A[pm ]) of the ring of integers of K with coefficients in the
pm -torsion A[pm ] of the Néron model of A by local conditions for p �∈ �,
compare them with the local conditions defining Selpm A, and prove that
A[pm ] itself is determined by A[pm ] for such p. Our method sharpens
the known relationship between Selpm A and H1

fppf(OK ,A[pm ]) and con-
tinues to work for other isogenies φ between abelian varieties over global
fields provided that degφ is constrained appropriately. To illustrate it, we
exhibit resulting explicit rank predictions for the elliptic curve 11A1 over
certain families of number fields.

2010 Mathematics Subject Classification. Primary 11G10, Secondary
14F20, 14K02, 14L15

1. Introduction

Let K be a number field, let A be a g-dimensional abelian variety over K , and
let p be a prime number. Fix a separable closure K s of K . Tate conjectured
[Tat66, p. 134] that the p-adic Tate module Tp A := lim←− A[pm](K s) deter-
mines A up to an isogeny of degree prime to p, and Faltings proved this in
[Fal83, §1 b)]. One can ask whether A[p] alone determines A to some extent.
Consideration of the case g = 1, p = 2 shows that for small p one cannot
expect much in this direction. However, at least if g = 1 and K = Q, for p
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large enough (depending on A) the Frey–Mazur conjecture [Kra99, Conj. 3]
predicts that A[p] should determine A up to an isogeny of degree prime to p.

Consider now the p∞-Selmer group

Selp∞ A ⊂ H1(K , A[p∞]),

which consists of the classes of cocycles whose restrictions lie in

A(Kv )⊗Qp/Zp ⊂ H1(Kv , A[p∞])

for every place v of K . Note that A[p∞](K s) = Vp A/Tp A with
Vp A := Tp A ⊗Zp Qp, so Tp A determines the Galois cohomology groups
appearing in the definition of Selp∞ A. Since an isogeny of degree prime
to p induces an isomorphism on p∞-Selmer groups, the theorem of
Faltings implies that Tp A determines Selp∞ A up to isomorphism. One may
expect, however, a more direct and more explicit description of Selp∞ A
in terms of Tp A. For this, it suffices to give definitions of the subgroups
A(Kv )⊗Qp/Zp ⊂ H1(Kv , A[p∞]) in terms of Tp A.

Bloch and Kato found the desired definitions in [BK90, §3]: if v � p, then
A(Kv ) ⊗ Qp/Zp = 0; if v | p, then, letting Bcris be the crystalline period
ring of Fontaine and working with Galois cohomology groups formed using
continuous cochains in the sense of [Tat76, §2], they define

H1
f (Kv , Vp A) := Ker(H1(Kv , Vp A)→ H1(Kv , Vp A⊗Qp Bcris)),

and prove that

A(Kv )⊗Qp/Zp = Im(H1
f (Kv , Vp A)→ H1(Kv , Vp A/Tp A)

= H1(Kv , A[p∞])).

Considering the p-Selmer group Selp A and A[p] instead of Selp∞ A and
A[p∞] (equivalently, Selp∞ A and Tp A), in the light of the Frey–Mazur
conjecture, one may expect a direct description of Selp A in terms of A[p]
for large p. We give such a description as a special case of the following
theorem.

Theorem 1.1. Fix an extension of number fields L/K , fix a K -isogeny
φ : A→ B between abelian varieties, and let A[φ] and AL [φ] be the kernels
of the induced homomorphisms between the Néron models over the rings of
integers OK and OL . Let v (resp., w) denote a place of K (resp., L). For
v, w � ∞, let ev and pv be the absolute ramification index and the residue
characteristic of v , and let cA,v and cB,v (resp., cA,w and cB,w) be the local
Tamagawa factors of A and B.
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(a) (i) (Corollary 4.2, Remark 4.4, and Proposition B.3.) The pullback map

H1
fppf(OK ,A[φ])→ H1(K , A[φ])

is an isomorphism onto the preimage of
∏

v�∞
H1

fppf(Ov ,A[φ]) ⊂
∏

v�∞
H1(Kv , A[φ]).

(ii) (Proposition 5.4 (c).) Assume that A has semiabelian reduction at all
v | degφ. If degφ is prime to

∏
v�∞ cA,vcB,v and either 2 � degφ or

A(Kv ) is connected for all real v , then

H1
fppf(OK ,A[φ]) = Selφ A

inside H1(K , A[φ]).

(b) (Proposition 3.3.) If A has good reduction at all v | degφ and if ev < pv−1
for every such v , then the OL -group scheme AL[φ] is determined up to
isomorphism by the Gal(Ls/K )-module A[φ](Ls ).

Thus, if ⎛

⎝degφ,
∏

w�∞
cA,wcB,w

⎞

⎠ = 1,

the reduction of A is good at all v | degφ, and ev < pv − 1 for every such v
(in particular, 2 � degφ), then the φ-Selmer group

Selφ AL ⊂ H1(L , A[φ])

is determined by the Gal(Ls/K )-module A[φ](Ls ).

Corollary 1.2. If A has potential good reduction at every finite place of K
and p is large enough (depending on A), then A[pm ] determines Selpm AL for
every finite extension L/K .

Proof. By a theorem of McCallum [ELL96, pp. 801–802], every prime q
dividing some cA,w satisfies q ≤ 2g + 1. Therefore, it suffices to consider
those p with p > max(2g + 1, [K : Q]+ 1) for which A has good reduction
at every place of K above p and to apply Theorem 1.1 to the multiplication by
pm isogeny. �

Remarks.

1.3. Relationships similar to (ii) between Selmer groups and flat cohomo-
logy groups are not new and have been implicitly observed already
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in [Maz72] and subsequently used by Mazur, Schneider, Kato, and
others (often after passing to p∞-Selmer groups as is customary in
Iwasawa theory). However, the description of H1

fppf(OK ,A[φ]) by local
conditions in (i) seems not to have appeared in the literature before, and
consequently (ii) is more precise than what seems to be available.
In a more restrictive setup, the question of the extent to which A[φ]
determines Selφ A has also been discussed in [Gre10].

1.4. In the case of elliptic curves, Mazur and Rubin find in [MR15, Thm. 3.1
and 6.1] (see also [AS05, 6.6] for a similar result of Cremona and
Mazur) that under assumptions different from those of Theorem 1.1,
pm-Selmer groups are determined by mod pm Galois representations
together with additional data including the set of places of potential
multiplicative reduction. It is unclear to us whether their results can be
recovered from the ones presented in this paper.

1.5. The Selmer type description as in (i) continues to hold for H1
ét(OK ,A),

where A→ SpecOK is the Néron model of A. This leads to a reproof
of the étale cohomological interpretation of the Shafarevich–Tate group
X(A) in Proposition 4.5; such an interpretation is implicit already in
the arguments of [Ray65, II.§3] and is proved in [Maz72, Appendix].
Our argument seems more direct: in the proof of loc. cit. the absence
of Corollary 4.2 is circumvented with a diagram chase that uses coho-
mology with supports exact sequences.

1.6. In Theorem 1.1 (a), it is possible to relate Selφ A and H1
fppf(OK ,A[φ])

under weaker hypotheses than those of (ii) by combining Proposi-
tion 2.5 with Corollary 4.2 as in the proof of Proposition 5.4 (see also
Remark 5.5).

1.7. The interpretation of Selmer groups as flat cohomology groups is useful
beyond the case when φ is multiplication by an integer. For an example,
see the last sentence of Remark 5.7.

1.8. Theorem 1.1 is stronger than its restriction to the case L = K . Indeed,
the analogue of ev < pv − 1 may fail for L but hold for K . This comes
at the expense of AL [φ] and Selφ AL being determined by A[φ](Ls) as
a Gal(Ls/K )-module, rather than as a Gal(Ls/L)-module.

1.9. Taking L = K and A = B in Theorem 1.1, we get the set � promised
in the abstract by letting it consist of all primes below a place of bad
reduction for A, all primes dividing a local Tamagawa factor of A, the
prime 2, and all odd primes p ramified in K for which ev ≥ p − 1 for
some place v of K above p.

1.10. In Theorem 1.1, is the subgroup B(L)/φA(L) (equivalently, the
quotient X(AL)[φ]) also determined by A[φ](Ls )? The answer is
‘no’. Indeed, in [CM00, p. 24] Cremona and Mazur report1 that the

1Cremona and Mazur assume the Birch and Swinnerton-Dyer conjecture to
compute Shafarevich–Tate groups analytically. This is unnecessary for us, since full
2-descent finds provably correct ranks of 2534E1, 2534G1, 4592D1, and 4592G1.



Selmer groups as flat cohomology groups 35

elliptic curves 2534E1 and 2534G1 over Q have isomorphic mod 3
representations, but 2534E1 has rank 0, whereas 2534G1 has rank 2.
Since 3 is prime to the conductor 2534 and the local Tamagawa factors
c2 = 44, c7 = 1, c181 = 2 (resp., c2 = 13, c7 = 2, c181 = 1) of
2534E1 (resp., 2534G1), Theorem 1.1 indeed applies to these curves.
Another example (loc. cit.) is the pair 4592D1 and 4592G1 with φ = 5
and ranks 0 and 2.
For an odd prime p and elliptic curves E and E ′ over Q with
E[p] ∼= E ′[p] and prime to p conductors and local Tamagawa fac-
tors, Theorem 1.1, expected finiteness of X, and Cassels–Tate pairing
predict that rk E(Q) ≡ rk E ′(Q) mod 2. Can one prove this directly?

1.11. For the analogue of Theorem 1.1 (a) in the case when the base is a
global function field, one takes a (connected) proper smooth curve S
over a finite field in the references indicated in the statement of Theo-
rem 1.1 (a). Letting K be the function field of S, the analogue of The-
orem 1.1 (b) is Corollary B.6: if char K � degφ, then A[φ]→ S is the
Néron model of A[φ]→ Spec K (L plays no role); in this case, due to
Proposition 2.7 (b),

H1
fppf(S,A[φ]) ⊂ H1(K , A[φ])

is the subset of the everywhere unramified cohomology classes. The
final conclusion becomes: if (degφ, char K

∏
s cA,scB,s) = 1 (the

product of the local Tamagawa factors is indexed by the closed s ∈ S),
then A[φ] determines the φ-Selmer subgroup

Selφ A ⊂ H1(K , A[φ]),

which, in fact, consists of the everywhere unramified cohomology
classes of H1(K , A[φ]).

Example 1.12. We illustrate our methods and results by estimating the
5-Selmer group of the base change EK of the elliptic curve E = 11A1 to
any number field K . This curve has also been considered by Tom Fisher,
who described in [Fis03, 2.1] the φ-Selmer groups of EK for the two degree
5 isogenies φ of EK defined over Q. We restrict to 11A1 for the sake of
concreteness (and to get precise conclusions (a)–(f)); our argument leads to
estimates analogous to (2) for every elliptic curve A over Q and an odd prime
p of good reduction for A such that A[p] ∼= Z/pZ⊕ μp.

Let EK → SpecOK be the Néron model of EK . Since E[5] ∼= Z/5Z⊕μ5,
the proof of Proposition 3.3 supplies an isomorphism

EK [5] � Z/5ZOK
⊕ μ5.
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Therefore, the cohomology sequence of 0→ μ5 → Gm
5−→ Gm → 0 together

with the isomorphism H1
fppf(OK ,Z/5Z) � ClK [5] gives

dimF5 H1
fppf(OK , EK [5]) = 2 dimF5 ClK [5]+ dimF5 O×K /O

×5
K

= 2hK
5 + r K

1 + r K
2 − 1+ uK

5 , (1)

where ClK is the ideal class group, r K
1 and r K

2 are the numbers of real and
complex places, and

hK
5 := dimF5 ClK [5], uK

5 := dimF5 μ5(OK ).

The component groups of Néron models of elliptic curves with split multi-
plicative reduction are cyclic, so (1) and Remark 5.5 give the bounds

2hK
5 + r K

1 + r K
2 − 1+ uK

5 − #{v | 11}
≤ dimF5 Sel5 EK ≤ 2hK

5 + r K
1 + r K

2 − 1+ uK
5 + #{v | 11}. (2)

Thus, the obtained estimate is most precise when K has a single place above
11. Also,

dimF5 Sel5 EK ≡ r K
1 + r K

2 − 1+ uK
5 + #{v | 11} mod 2, (3)

because the 5-parity conjecture is known for EK by the results of [DD08].
When K ranges over the quadratic extensions of Q, due to (2), the conjectured
unboundedness of the 5-ranks hK

5 of the ideal class groups is equivalent to
the unboundedness of dimF5 Sel5 EK . This equivalence is an instance of a
general result [Čes15, 1.5] that gives a precise relation between unboundedness
questions for Selmer groups and class groups. That a relation of this sort may
be feasible has also been (at least implicitly) observed by other authors, see,
for instance, [Sch96].

It is curious to draw some concrete conclusions from (2) and (3).

(a) As is also well known, rk E(Q) = 0.
(b) If K is imaginary quadratic with hK

5 = 0 and 11 is inert or ramified in K ,
then rk E(K ) = 0.

(c) If K is imaginary quadratic with hK
5 = 0 and 11 splits in K , then either

rk E(K ) = 1, or rk E(K ) = 0 and corkZ5 X(EK )[5∞] = 1, because, due
to the Cassels–Tate pairing,

corkZ5 X(EK )[5∞] ≡ dimF5 X(EK )[5] mod 2.

Mazur in [Maz79, Thm. on p. 237] and Gross in [Gro82, Prop. 3] proved
that rk E(K ) = 1.
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(d) If F is a quadratic extension of a K as in (c) in which none of the places
of K above 11 split and h F

5 = 0, then either rk E(F) = 2, or X(EF )[5∞]
is infinite (one again uses the Cassels–Tate pairing).

(e) If K is real quadratic with hK
5 = 0 and 11 is inert or ramified in K , then

either rk E(K ) = 1, or rk E(K ) = 0 and corkZ5 X(EK )[5∞] = 1. In the
latter case X(EK )[p∞] is infinite for every prime p, because the p-parity
conjecture is known for EK for every p by [DD10, 1.4] (applied to E and
its quadratic twist by K ). Gross proved in [Gro82, Prop. 2] that if 11 is
inert, then rk E(K ) = 1.

(f) If K is cubic with a complex place (or quartic totally imaginary), a single
place above 11, and hK

5 = 0, then either rk E(K ) = 1, or rk E(K ) = 0
and corkZ5 X(EK )[5∞] = 1.

How can one construct the predicted rational points? In (c) and the inert
case of (e), [Gro82] explains that Heegner point constructions account for the
predicted rank growth.

1.13 The contents of the paper

We begin by restricting to local bases in §2 and comparing the subgroups
B(Kv)/φ(A(Kv )), H1

fppf(Ov ,A[φ]), and H1
nr(Kv , A[φ]) of H1(Kv , A[φ])

under appropriate hypotheses. In §3, after recording some standard results on
fpqc descent, we apply them to prove Theorem 1.1 (b) and to reprove the étale
cohomological interpretation of Shafarevich–Tate groups. In §4, exploiting
the descent results of §3, we take up the question of H1

fppf with appropriate
coefficients over Dedekind bases being described by local conditions and
prove Theorem 1.1 (i). The final §5 uses the local analysis of §2 to compare
Selφ A and H1

fppf(OK ,A[φ]) and to complete the proof of Theorem 1.1. The
two appendices collect various results concerning torsors and exact sequences
of Néron models used in the main body of the text.

Some of the results presented in this paper are worked out in somewhat more
general settings in the PhD thesis of the author; we invite a reader interested
in this to consult [Čes14a], which also discusses several tangentially related
questions.

1.14 Conventions

When needed, a choice of a separable closure K s of a field K will be made
implicitly, as will be a choice of an embedding K s ↪→ Ls for an overfield L/K .
If v is a place of a global field K , then Kv is the corresponding completion;
for v � ∞, the ring of integers and the residue field of Kv are denoted by Ov

and Fv . If K is a number field, OK is its ring of integers. For s ∈ S with S
a scheme, OS,s , mS,s , and k(s) are the local ring at s, its maximal ideal, and
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its residue field. For a local ring R, its henselization, strict henselization, and
completion are Rh , Rsh , and R̂. The fppf, big étale, and étale sites of S are
Sfppf, SÉt, and Sét; the objects of Sfppf and SÉt are all S-schemes, while those of
Sét are all schemes étale over S. The cohomology groups computed in Sét and
Sfppf are denoted by Hi

ét(S,−) and Hi
fppf(S,−); Galois cohomology merits no

subscript: Hi (K ,−). An fppf torsor is a torsor under the group in question
for the fppf topology. An algebraic group over a field K is a smooth K -group
scheme of finite type.

2. Images of local Kummer homomorphisms as flat cohomology groups

Let S = Spec o for a Henselian discrete valuation ring o with a finite
residue field F, let k = Frac o, let i : Spec F → S be the closed point, let
φ : A→ B be a k-isogeny of abelian varieties, let φ : A→ B be the induced
S-homomorphism between the Néron models, which gives rise to the homo-
morphism φ : �A → �B between the étale F-group schemes of connected
components of AF and BF. We use various open subgroup schemes of A and
B discussed in §B.

2.1 The three subgroups

The first subgroup of H1
fppf(k, A[φ]) is

B(k)/φA(k) ∼= Im(B(k)
κφ−→ H1

fppf(k, A[φ])) ⊂ H1
fppf(k, A[φ]).

The second subgroup is

H1
fppf(o,A[φ]) ∼= Im(H1

fppf(o,A[φ])
a−→ H1

fppf(k, A[φ])) ⊂ H1
fppf(k, A[φ]),

where the isomorphism results from the injectivity of a supplied by
Proposition B.3, [GMB13, Prop. 3.1], and Proposition A.5 (even though A[φ]
may fail to be flat, loc. cit. proves that its category of fppf torsors is equivalent
to the category of fppf torsors of the o-flat schematic image of A[φ] in A, so
Proposition A.5 nevertheless applies).

The third is the unramified subgroup

H1
nr(k, A[φ]) := Ker(H1(k, A[φ])→ H1(ksh, A[φ])) ⊂ H1(k, A[φ]),

where ksh := Frac osh . The unramified subgroup is of most interest in the
case when A[φ] is étale (for instance, when char k � degφ); beyond this étale
case, the unramified subgroup is often too small in comparison to the first two
subgroups.

While Im κφ is used to define the φ-Selmer group, H1
fppf(o,A[φ]) and

H1
nr(k, A[φ]) are easier to study because they depend only on A[φ].
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We investigate Im κφ by detailing its relations with H1
fppf(o,A[φ]) and

H1
nr(k, A[φ]) in Propositions 2.5 and 2.7.

Lemma 2.2. For a commutative connected algebraic group G → Spec F,
one has

H j (F,G) = 0 for j ≥ 1.

Proof. In the case j = 1, the claimed vanishing is a well-known result of Lang
[Lan56, Thm. 2]. In the case j > 1, the vanishing follows from the facts that
F has cohomological dimension 1 and that G(Fs) is a torsion group (the latter
results from the finiteness of F). �

Lemma 2.3. For an F-subgroup � ⊂ �A, pullback induces isomorphisms

H j
fppf(o,A

�) ∼= H j (F, �) for j ≥ 1.

In particular, #H1
fppf(o,A�) = #�(F) and H j

fppf(o,A�) = 0 for j ≥ 2.

Proof. By [Gro68, 11.7 2◦)], pullback induces isomorphisms

H j
fppf(o,A

�) ∼= H j (F,A�
F
) for j ≥ 1,

so it remains to apply Lemma 2.2 to the terms H j (F,A0
F
) in the long exact

cohomology sequence of

0→ A0
F
→ A�

F
→ �→ 0. �

2.4 The local Tamagawa factors

These are
cA := #�A(F) and cB := #�B(F).

The sequences

0→ �A[φ](Fs)→ �A(F
s)→ (φ(�A))(F

s)→ 0,

0→ (φ(�A))(F
s)→ �B(F

s)→ (�B/φ(�A))(F
s)→ 0

are exact, so

#�A(F)

#(φ(�A))(F)
≤ #�A[φ](F) and

#�B(F)

#(φ(�A))(F)
≤ #

(
�B

φ(�A)

)
(F).

(4)
We now compare the subgroups Im κφ and H1

fppf(o,A[φ]) of H1
fppf(k, A[φ])

discussed in §2.
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Proposition 2.5. Suppose that A φ−→ B is flat (e.g., that char F � degφ or
that A has semiabelian reduction, see Lemma B.4).

(a) Then

#

(
H1

fppf(o,A[φ])

H1
fppf(o,A[φ]) ∩ Im κφ

)
= #�A(F)

#(φ(�A))(F)

(4)≤ #�A[φ](F),

#

(
Im κφ

H1
fppf(o,A[φ]) ∩ Im κφ

)
= #�B(F)

#(φ(�A))(F)

(4)≤ #

(
�B

φ(�A)

)
(F).

(b) If degφ is prime to cB, then �B(F) = (φ(�A))(F), and hence, by (a),

Im κφ ⊂ H1
fppf(o,A[φ]).

(c) If degφ is prime to cA, then �A(F) = (φ(�A))(F), and hence, by (a),

H1
fppf(o,A[φ]) ⊂ Im κφ.

(d) If degφ is prime to cAcB, then

Im κφ = H1
fppf(o,A[φ]).

Proof.

(a) The short exact sequence

0→ A[φ]→ A φ−→ Bφ(�A) → 0

of Corollary B.7 gives

0 �� Bφ(�A)(o)/φA(o) ��
� �

��

�� H 1
fppf(o,A[φ]) ����

� �

a

��

Ker

⎛

⎝H 1
fppf(o,A)

H1
fppf(φ)−−−−−−→ H 1

fppf(o,Bφ(�A))

⎞

⎠ ��
� �

��

0

0 �� B(k)/φA(k)
κφ �� H 1

fppf(k, A[φ]) �� H 1
fppf(k, A)[φ] �� 0,

where the injectivity of the vertical arrows follows from the Néron property,
the snake lemma, and Corollary A.3. By Lemma 2.3, H1

fppf(φ) identifies
with

H1(F, �A)
h−→ H1(F, φ(�A))

induced by φ; moreover, h is onto. Since

H1
fppf(o,A[φ])

H1
fppf(o,A[φ]) ∩ Im κφ

∼= Ker H1
fppf(φ)

∼= Ker h
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and

# Ker h = #H1(F, �A)

#H1(F, φ(�A))
= #�A(F)

#(φ(�A))(F)
,

the first claimed equality follows.
On the other hand,

Im κφ

H1
fppf(o,A[φ]) ∩ Im κφ

∼= B(k)/φA(k)

Bφ(�A)(o)/φA(o)
∼= B(o)

Bφ(�A)(o)
. (5)

Moreover, Lemma 2.3 and the étale cohomology sequence of the short
exact sequence

0→ Bφ(�A)→ B→ i∗(�B/φ(�A))→ 0

from Proposition B.2 give the exact sequence (see [Gro68, 11.7 1◦)] for
the identifications between different cohomology theories)

0→ B(o)
Bφ(�A)(o)

→
(

�B

φ(�A)

)
(F)→ H1(F, φ(�A))

→ H1(F, �B) � H1
(

F,
�B

φ(�A)

)
, (6)

where we have used the exactness of i∗ for the étale topology to obtain the
last term. By combining (5) and (6), we obtain the remaining equality

#

(
Im κφ

H1
fppf(o,A[φ]) ∩ Im κφ

)
= #(�B/φ(�A))(F) · #H1(F, �B)

#H1(F, φ(�A)) · #H1(F, �B/φ(�A))

= #�B(F)

#(φ(�A))(F)
.

(b) Let ψ : B → A be the isogeny with kerψ = φ(A[deg φ]), so

ψ ◦ φ = degφ, and thus also φ ◦ ψ = degφ.

If (degφ, #�B(F)) = 1, then

�B(F)= (degφ)(�B(F))⊂ ((degφ)(�B))(F)⊂ (φ(�A))(F)⊂�B(F),

which gives the desired equality �B(F) = (φ(�A))(F).
(c) We have the inclusion

�A[φ] ⊂ �A[degφ],

so if (degφ, #�A(F)) = 1, then �A[φ](F) = 0. The resulting injection

�A(F) ↪→ φ(�A)(F)

is then surjective because #H1(F, �A[φ]) = #�A[φ](F) due to the
finiteness of F.

(d) The claim follows by combining (b) and (c). �
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Remark 2.6. In the case dim A = 1 and φ = pm , Proposition 2.5 (d) has
also been observed by Mazur and Rubin in [MR15, Prop. 5.8].

We now compare the unramified subgroup H1
nr(k, A[φ]) ⊂ H1(k, A[φ]) to

Im κφ and H1
fppf(o,A[φ]):

Proposition 2.7. Suppose that A[φ] is étale (e.g., that char k � degφ), and
let G → S be the Néron model of A[φ]→ Spec K (the Néron model exists by,
for instance, [BLR90, §7.1, Cor. 6]).

(a) There is an inclusion

H1
nr(k, A[φ]) ⊂ H1

fppf(o,A[φ])

inside H1(k, A[φ]).
(b) If A[φ]→ S is étale (e.g., if char F � degφ), then

H1
nr(k, A[φ]) = H1

fppf(o,A[φ])

inside H1(k, A[φ]).
(c) One has

H1
nr(k, A[φ]) ⊂ Im κφ

inside H1(k, A[φ]) if one assumes in addition that

(i) A φ−→ B is flat (which holds if char F � degφ or if A has semiabelian
reduction, see Lemma B.4), and

(ii) #�A(F) = #(φ(�A))(F) (which holds if degφ is prime to cA, see
Proposition 2.5 (c)).

(d) One has
H1

nr(k, A[φ]) = Im κφ = H1
fppf(o,A[φ])

inside H1(k, A[φ]) if one assumes in addition that

(i) A[φ]→ S is étale (which holds if char F � degφ), and
(ii) #�A(F) = #(φ(�A))(F) = #�B(F) (which holds if degφ is prime to

cAcB).

Proof.

(a) By Proposition A.4 (together with [Gro68, 11.7 1◦)] for the identification
between the étale and the fppf cohomology groups),

H1
nr(k, A[φ]) = H1

fppf(o,G)

inside H1(k, A[φ]). It therefore suffices to find an S-homomorphism
G → A[φ] that induces an isomorphism on the generic fibers. Such an
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S-homomorphism is provided by [BLR90, §7.1, Cor. 6], which describes
G as the group smoothening of the schematic image of A[φ] in A.

(b) If A[φ] → S is étale, then no smoothening is needed in loc. cit., that is,
A[φ] itself is the Néron model of A[φ]. The claim therefore results from
Proposition A.4.

(c) Due to the assumptions (i) and (ii), Proposition 2.5 (a) applies and gives
the inclusion

H1
fppf(o,A[φ]) ⊂ Im κφ.

The claim therefore results from (a).
(d) Proposition 2.5 supplies the equality

H1
fppf(o,A[φ]) = Im κφ,

so the claim results from (b). �

Remark 2.8. Proposition 2.7 (d) generalizes a well-known lemma of Cassels
[Cas65, 4.1], which yields Im κφ = H1

nr(k, A[φ]) under the assumptions that
char F � degφ and that the reduction is good (so that cA = cB = 1). In a setting
where dim A = 1 and char F � degφ, a special case of this generalization has
also been observed by Schaefer and Stoll [SS04, proof of Prop. 3.2].

3. Assembling A[φ] by glueing

A descent Lemma 3.1 formalizes the idea that giving a scheme over a connected
Dedekind scheme S amounts to giving a scheme over a nonempty open V ⊂ S
together with a compatible ÔS,s-scheme for every s ∈ S − V . Lemma 3.1 is
crucial for glueing A[φ] together in the proof of Proposition 3.3; it will also
be key for Selmer type descriptions of sets of torsors in §4. Its more technical
part (b) involving algebraic spaces is needed in order to avoid a quasi-affineness
hypothesis in Corollary 4.2. This corollary enables us to glue torsors under a
Néron model in the proof of Proposition 4.5: even though a posteriori such
torsors are schemes, we glue them as algebraic spaces because the description
of the essential image in Lemma 3.1 (a) is not practical beyond the quasi-
affine case. For the proof of Theorem 1.1, however, there is no need to resort
to algebraic spaces: Lemma 3.1 (a) is sufficient due to the affineness of A[φ]
guaranteed by Proposition B.3.

Lemma 3.1. Let R be a discrete valuation ring, set K := Frac R and
K h := Frac Rh, and consider

F : X �→ (X K , X Rh , τ : (X K )K h
∼−→ (X Rh )K h ),

a functor from the category of R-algebraic spaces to the category of triples
consisting of a K -algebraic space, an Rh -algebraic space, and an isomorphism
between their base changes to K h.
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(a) When restricted to the full subcategory of R-schemes, F is an equivalence
onto the full subcategory of triples of schemes that admit a quasi-affine
open covering (see the proof for the definition). The same conclusion holds
with Rh and K h replaced by R̂ and K̂ := Frac R̂.

(b) When restricted to the full subcategory of R-algebraic spaces of finite
presentation, F is an equivalence onto the full subcategory of triples
involving only algebraic spaces of finite presentation.

Proof.

(a) This is proved in [BLR90, §6.2, Prop. D.4 (b)]. A triple of schemes admits
a quasi-affine open covering if

X K =
⋃

i∈I

Ui and X Rh =
⋃

i∈I

Vi

for quasi-affine open subschemes Ui ⊂ X K and Vi ⊂ X Rh for which τ

restricts to isomorphisms (Ui)K h
∼−→ (Vi)K h .

(b) The method of proof was suggested to me by Brian Conrad. By construc-
tion, Rh is a filtered direct limit of local étale R-algebras R′ which are
discrete valuation rings sharing the residue field and a uniformizer with R.
Given a

T = (Y,Y, τ : YK h
∼−→ YK h )

with Y → Spec K and Y → Spec Rh of finite presentation, to show that
it is in the essential image of the restricted F , we first use limit consider-
ations (for instance, as in [Ols06, proof of Prop. 2.2]) to descend Y to a
Y ′ → Spec R′ for some R′ as above.

Similarly, K h = lim−→ K ′ with K ′ := Frac R′, so τ descends to

a τ ′ : YK ′
∼−→ Y ′K ′ after possibly enlarging R′. We transport the

K ′/K -descent datum on YK ′ along τ ′ to get a descent datum on Y ′K ′ ,
which, as explained in [BLR90, §6.2, proof of Lemma C.2], extends
uniquely to an R′/R-descent datum on Y ′. By [LMB00, 1.6.4], this
descent datum is effective, and we get a quasi-separated R-algebraic
space X ; by construction, F(X) ∼= T , and by [SP, 041V], X is of finite
presentation.

The full faithfulness of F follows from a similar limit argument
that uses étale descent for morphisms of sheaves on RÉt together with
[LMB00, 4.18 (i)]. �

Let S be a connected Dedekind scheme (see §A for the definition), let K
be its function field. For s ∈ S, set KS,s := FracOS,s . The purpose of this
convention (note that KS,s = K ) is to clarify the statement of Corollary 3.2
by making OS,s and KS,s notationally analogous to Oh

S,s and K h
S,s .
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Corollary 3.2. Let S be a Dedekind scheme, let s1, . . . , sn ∈ S be distinct
nongeneric points, and let V := S − {s1, . . . , sn} be the complementary open
subscheme. The functor

F : G �→ (GV ,GOS,s1
, . . . ,GOS,sn

, αi : (GV )KS,si

∼−→ (GOS,si
)KS,si

for 1 ≤ i ≤ n)

is an equivalence of categories from the category of quasi-affine S-group
schemes to the category of tuples consisting of a quasi-affine V -group scheme,
a quasi-affine OS,si -group scheme for each i , and isomorphisms α1, . . . , αn

of base changed group schemes as indicated. The same conclusion holds with
OS,si and KS,si replaced by Oh

S,si
and K h

S,si
or by ÔS,si and K̂S,si .

Proof. For localizations, the claim is a special case of fpqc descent. Thus, for
henselizations and completions the claim follows from Lemma 3.1. �

Proposition 3.3 (Theorem 1.1 (b)). Let L/K be an extension of number
fields, and let φ : A → B be a K -isogeny between abelian varieties. Assume
that

(i) A has good reduction at all the places v | degφ of K ;
(ii) For every place v | degφ of K , its absolute ramification index ev satisfies

ev < pv − 1,

where pv is the residue characteristic of v .

Then the OL-group schemeAL [φ], defined as the kernel of the homomorphism
induced by φL between the Néron models over OL, is determined up to
isomorphism by the Gal(Ls/K )-module A[φ](Ls ).

Proof. By Corollary B.6, AL[φ]
S
[

1
deg φ

] is the Néron model of the finite étale

A[φ]L , and hence is determined by A[φ]. By Corollary 3.2, it therefore suffices
to prove that each AL [φ]Ow for a place w | degφ of L is also determined
by A[φ]. Moreover, if such a w lies above the place v of K , then the good
reduction assumption implies that

AL [φ]Ow
∼= (AK [φ]Ov )Ow,

so it suffices to prove that already AK [φ]Ov is determined by A[φ].
Let p be the residue characteristic of v . By Corollary B.5, AK [φ]Ov is finite

flat, so it uniquely decomposes as a direct product of commutative finite flat
Ov -group schemes of prime power order. The prime-to-p factor is finite étale,
so it is the Néron model of the prime-to-p factor of A[φ], and hence is deter-
mined by A[φ]. The p-primary factor is also determined thanks to Raynaud’s
result [Ray74, Thm. 3.3.3] on uniqueness of finite flat models over Henselian
discrete valuation rings of mixed characteristic and low absolute ramification
index. �
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Remark 3.4. Dropping (ii) but keeping (i), the proof continues to give the
same conclusion as long as one argues that in the situation at hand AK [φ]Ov

is determined by A[φ] for each v | degφ.

Although the assumption (ii) excludes the cases when 2 | degφ, Remark 3.4
can sometimes be used to overcome this, as the following example illustrates.

Example 3.5. Let K be a number field of odd discriminant, and let
A → Spec K be an elliptic curve with good reduction at all v | 2. Assume
that A[2](Kv ) �= (Z/2Z)2 for every v | 2, so that A[2]Kv has at most one
Kv -subgroup of order 2 for every such v . We show that the conclusion of
Proposition 3.3 holds for 2 : A → A, so, in particular, if

∏
v�∞ cA,v is odd

and K is totally imaginary, then A[2] determines the 2-Selmer group Sel2 A
by Theorem 1.1.

Remark 3.4 reduces us to proving that A[2]Kv determines AK [2]Ov for
each v | 2. We analyze the ordinary and the supersingular reduction cases
separately. This is permissible because these cases are distinguishable: in the
former, A[2]Kv is reducible, whereas in the latter it is not.

In the supersingular case, by [Ser72, p. 275, Prop. 12], A[2]K sh
v

with

K sh
v := FracOsh

v is irreducible and also an F4-vector space scheme of dimen-
sion 1. By [Ray74, 3.3.2 3o], AK [2]Osh

v
is its unique finite flat Osh

v -model.

By schematic density considerations, the descent datum on AK [2]Osh
v

with

respect to Osh
v /Ov is uniquely determined by its restriction to the generic

fiber, which in turn is determined by A[2]Kv . Fpqc descent along Osh
v /Ov

then implies that A[2]Kv determines AK [2]Ov .
In the ordinary case, the connected-étale decomposition shows thatAK [2]Ov

is an extension of Z/2ZOv
by (μ2)Ov . Therefore, since we assumed that

A[2]Kv determines its subgroup (μ2)Kv , it also determines AK [2]Ov due to
the injectivity of

Ext1Ov
(Z/2Z, μ2) ∼= H1

fppf(Ov , μ2)→ H1
fppf(Kv , μ2) ∼= Ext1Kv (Z/2Z, μ2)

(extensions in the category of fppf sheaves of Z/2Z-modules).

4. Selmer type descriptions of sets of torsors

The main result of this section is Corollary 4.2, which describes certain sets
of torsors by local conditions and proves Theorem 1.1 (i). It leads to a short
reproof of the étale (or fppf) cohomological interpretation of Shafarevich–
Tate groups and also forms the basis of our approach to fppf cohomological
interpretation of Selmer groups.
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Lemma 4.1. Let R be a discrete valuation ring, set K := Frac R and
K h := Frac Rh, and let G be a flat R-group algebraic space of finite presen-
tation. If the horizontal arrows are injective in

H1
fppf(R,G)

� � ��

��

H1
fppf(K ,GK )

��
H1

fppf(R
h,GRh ) �

� �� H1
fppf(K

h,GK h ),

then the square is Cartesian. If G is a quasi-affine R-group scheme, then the
same conclusion holds under analogous assumptions with Rh and K h replaced
by R̂ and K̂ .

Proof. We first treat the case of Rh and K h . We need to show that every
GK -torsor TK which, when base changed to K h , extends to a GRh -torsor
TRh , already extends to a G-torsor T → Spec R. By Lemma 3.1 (b), TRh

descends to a flat and of finite presentation R-algebraic space T , and various
diagrams defining the G-action descend, too. To conclude that T is a G-torsor,
it remains to note that

G ×R T → T ×R T , (g, t) �→ (gt, t) (7)

is an isomorphism, as may be checked over Rh .
In the similar proof for R̂ and K̂ , to apply Lemma 3.1 one recalls that if G

is a quasi-affine scheme, then so are its torsors, see [SP, 0247]. �

Let S be a Dedekind scheme, let K be its function field. As in §3, to clarify
analogies in Corollary 4.2, we set KS,s := FracOS,s for a nongeneric s ∈ S.

Corollary 4.2. Let G be a flat closed S-subgroup scheme of an S-group
scheme that is the Néron model of its generic fiber. Then the square

H1
fppf(S,G)

� � ��

��

H1
fppf(K ,GK )

��∏
s H1

fppf(OS,s,GOS,s )
� � ��

∏
s H1

fppf(KS,s,GKS,s ),

(8)

is Cartesian (the products are indexed by the nongeneric s ∈ S), and simi-
larly with OS,s and KS,s replaced by Oh

S,s and K h
S,s (resp., ÔS,s and K̂S,s if

G → S is quasi-affine).

Proof. The indicated injectivity in (8) results from Proposition A.5 and
from the compatibility of the formation of the Néron model with localiza-
tion, henselization, and completion (see [BLR90, §1.2, Prop. 4 and §7.2,
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Thm. 1 (ii)] for these compatibilities). By Lemma 4.1, the diagram

∏
s H1

fppf(OS,s ,GOS,s )
� � ��

��

∏
s H1

fppf(KS,s,GKS,s )

��∏
s H1

fppf(Oh
S,s ,GOh

S,s
) �

� ��
∏

s H1
fppf(K

h
S,s,GK h

S,s
)

is Cartesian, and likewise for ÔS,s and K̂S,s . It remains to argue that (8) is
Cartesian.

We need to show that every GK -torsor TK which extends to a GOS,s -torsor
TOS,s for every nongeneric s ∈ S, already extends to aG-torsorT (these torsors
are schemes, see the proof of Proposition A.5). Since TK → Spec K inherits
finite presentation from GK , for some open dense U ⊂ S it spreads out to a
TU → U which is faithfully flat, of finite presentation, has aGU -action, and for
which the analogue of (7) over U is bijective. Consequently, TU is a GU -torsor.

To increase U by extendingTU over some s ∈ S−U , we spread outTOS,s to a
GW -torsor TW over some open neighborhood W ⊂ S of s. By Proposition A.5,
the torsors TU and TW are isomorphic over U ∩ W , which permits us to glue
them and to increase U . By iterating this process we arrive at the desired
U = S. �

Remarks.

4.3. The closed subgroup assumption on the flat S-group scheme G is used
only to deduce the indicated injectivity in (8). If one assumes instead that
G is commutative finite flat, then the injectivity follows from the valuative
criterion of properness; consequently, Corollary 4.2 also holds for such
G. For further extensions of Corollary 4.2, see [Čes14a, 7.2–7.4].

4.4. The flatness ofG is actually not needed for Corollary 4.2 to hold. To justify
this, let G̃ be the schematic image of GK in G, so that G̃ is S-flat and a
closed S-subgroup scheme of the same Néron model. The formation of G̃
commutes with flat base change, in particular, with base change to OS,s ,
to Oh

S,s , or to ÔS,s . By [Čes14a, 2.11] (or already by [GMB13, Prop. 3.1]
if G is affine), the change of group maps

H1
fppf(S, G̃)→ H1

fppf(S,G) and

H1
fppf(OS,s, G̃OS,s )→ H1

fppf(OS,s ,GOS,s )

are bijective, and likewise with OS,s replaced by Oh
S,s or by ÔS,s . This

reduces the claim of Corollary 4.2 for G to its claim for G̃, which is S-flat.

We now use Corollary 4.2 to give an alternative proof of the results of
[Maz72, Appendix].
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Proposition 4.5. Suppose that S is a proper smooth curve over a finite field or
that S is the spectrum of the ring of integers of a number field. Let A→ Spec K
be an abelian variety, and let A→ S be its Néron model. Letting the product
run over the nongeneric s ∈ S, set

X(A) := Ker

(
H1

ét(S,A)→
∏

s

H1
ét(ÔS,s,AÔS,s

)

)
.

(a) If cs denotes the local Tamagawa factor of A at s (see §2 for the
definition), then

[H1
ét(S,A) : X(A)] ≤

∏

s

cs .

(b) One has

X(A) = Ker

(
H1(K , A)→

∏

s

H1(K̂S,s, A)

)
.

(c) One has
X(A) = Im(H1

ét(S,A
0)→ H1

ét(S,A)).
(d) Let X(A) be the Shafarevich–Tate group of A. Then

X(A) ⊂X(A)

and
[X(A) : X(A)] ≤

∏

real v

#π0(A(Kv )) ≤ 2#{real v}·dim A.

In particular, X(A) is finite if and only if so is H1
ét(S,A).

Proof.

(a) By Lemma 2.3 (see [Gro68, 11.7 1◦)] for the identification between the
étale and the fppf cohomology groups),

#H1
ét(ÔS,s ,AÔS,s

) = cs,

so the claim results from the definition of X(A).
(b) By [BLR90, §3.6, Cor. 10], if an AK h

S,s
-torsor has a K̂S,s-point, then it

already has a K h
S,s-point, i.e., the pullback map

H1(K h
S,s, A)→ H1(K̂S,s, A)

is injective, and hence, by Proposition A.5, so is the pullback map

H1
ét(O

h
S,s ,AOh

S,s
)→ H1

ét(ÔS,s,AÔS,s
).
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Therefore, it suffices to prove that

Ker

(
H1

ét(S,A)→
∏

s

H1
ét(Oh

S,s ,AOh
S,s
)

)
= Ker

(
H1(K , A)→

∏

s

H1(K h
S,s , A)

)
.

This equality follows from the fact that the square

H1
ét(S,A)

� � ��

��

H1(K , A)

��∏
s H1

ét(O
h
S,s ,AOh

S,s
) �

� ��
∏

s H1(K h
S,s, A)

is Cartesian by Corollary 4.2.
(c) In the notation of Proposition B.2, we have the exact sequence

0→ A0 → A→
⊕

s

is∗�s → 0.

A segment of its associated long exact cohomology sequence reads

H1
ét(S,A

0)→ H1
ét(S,A)→

⊕

s

H1
ét(k(s),�s),

so it remains to recall that the pullback maps

H1
ét(ÔS,s ,AÔS,s

)→ H1
ét(k(s),�s)

are isomorphisms by Lemma 2.3.
(d) The inclusion follows from (b). So does the bound on the index because

for real v one has

H1(Kv , A) ∼= π0(A(Kv )) and #π0(A(Kv )) ≤ 2dim A,

for instance, by [GH81, 1.1 (3) and 1.3]. The last claim also uses (a). �

5. Selmer groups as flat cohomology groups

The main goal of this section is the comparison of Selφ A and H1
fppf(S,A[φ])

in Proposition 5.4.

5.1 Selmer structures

Let K be a global field, and let M be a finite discrete Gal(K s/K )-module.
A Selmer structure on M is a choice of a subgroup of H1(Kv ,M) for each
place v such that for all v but finitely many, H1

nr(Kv ,M) ⊂ H1(Kv ,M) is
chosen (compare with the definition [MR07, 1.2] in the number field case).
The Selmer group of a Selmer structure is the subgroup of H1(K ,M) obtained
by imposing the chosen local conditions, i.e., it consists of the cohomology
classes whose restrictions to every H1(Kv ,M) lie in the chosen subgroups.
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5.2 The setup

If K is a number field, we let S := SpecOK ; if K is a function field, we let S
be a connected proper smooth curve over a finite field with function field K .
We let

A
φ−→ B and A φ−→ B

be a K -isogeny between abelian varieties and the induced S-homomorphism
between their Néron models. For a place v �∞, we get the induced map

φv : �A,v → �B,v

between the groups of connected components of the special fibers of A and B
at v . We let

cA,v := #�A,v (Fv) and cB,v := #�B,v (Fv)

be the local Tamagawa factors.

5.3 Two sets of subgroups (compare with §2)

The first set of subgroups is

Im(B(Kv)
κφ,v−−→ H1

fppf(Kv , A[φ]))

∼= B(Kv)/φA(Kv ) ⊂ H1
fppf(Kv , A[φ]) for all v .

Its Selmer group, defined as in §5, is the φ-Selmer group

Selφ A ⊂ H1
fppf(K , A[φ]).

The second set of subgroups is

H1
fppf(Ov ,A[φ]) ⊂ H1

fppf(Kv , A[φ]), if v �∞, and

H1(Kv , A[φ]) ⊂ H1(Kv , A[φ]), if v | ∞;
the indicated injectivity for v � ∞ has been discussed in §2 (even in the case

when A φ−→ B fails to be flat!). By Corollary 4.2 and Remark 4.4 (together
with Proposition B.3), its Selmer group is

H1
fppf(S,A[φ]) ⊂ H1

fppf(K , A[φ]).

If A[φ] is étale, then A[φ] is also étale over a sufficiently small nonempty
open subset of S, so, by Proposition 2.7 (d), the above sets of subgroups are
two Selmer structures on A[φ].
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In general, without assuming that A[φ] is étale, the two sets of subgroups
form two sets of Selmer conditions in the sense of [Čes14b, §3.1]; in particular,
by [Čes14b, 3.2],

H1
fppf(S,A[φ]) is always finite,

even in the case when A[φ] is not étale and A φ−→ B is not flat. (The notion
of Selmer conditions generalizes the notion of a Selmer structure to the case
when M of §5 is an arbitrary commutative finite K -group scheme, i.e., not
necessarily étale.)

Proposition 5.4. Suppose thatA φ−→ B is flat (by Lemma B.4, this assumption
holds if, for example, A has semiabelian reduction at all v � ∞ for which
char Fv | degφ).

(a) If degφ is prime to
∏
v�∞ cB,v , then

Selφ A ⊂ H1
fppf(S,A[φ])

inside H1
fppf(K , A[φ]).

(b) If degφ is prime to
∏
v�∞ cA,v and either 2 � degφ or A(Kv ) equipped

with its archimedean topology is connected for all real v , then

H1
fppf(S,A[φ]) ⊂ Selφ A

inside H1
fppf(K , A[φ]).

(c) If degφ is prime to
∏
v�∞ cA,vcB,v and either 2 � degφ or A(Kv ) equipped

with its archimedean topology is connected for all real v , then

H1
fppf(S,A[φ]) = Selφ A

inside H1
fppf(K , A[φ]).

Proof. By §5, setting H1
fppf(Ov ,A[φ]) := H1(Kv , A[φ]) for v | ∞, we have

injections

Selφ A

H1
fppf(S,A[φ]) ∩ Selφ A

↪→
∏

v �∞

Im κφ,v

H1
fppf(Ov ,A[φ]) ∩ Im κφ,v

,

H1
fppf(S,A[φ])

H1
fppf(S,A[φ]) ∩ Selφ A

↪→
∏

v

H1
fppf(Ov ,A[φ])

H1
fppf(Ov ,A[φ]) ∩ Im κφ,v

.

(9)

This together with Proposition 2.5 (b), (c), and (d) gives the claim because
under the assumptions of (b) and (c) the factors of (9) for v | ∞ vanish:
H1(Kv , A[φ]) = 0 unless 2 | degφ and v is real, and also, by [GH81, 1.3],
H1(Kv , A) ∼= π0(A(Kv )). �
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Remarks.

5.5. To compare Selφ A and H1
fppf(S,A[φ]) quantitatively, one may combine

(9) with Proposition 2.5 (a).
5.6. As in Proposition 2.7 (c) and (d), the assumptions on cA,v and cB,v in

Proposition 5.4 (a), (b), and (c) (and hence also in Theorem 1.1 (ii)) can
be weakened to, respectively,

#�B,v(Fv) = #(φv (�A,v ))(Fv) for all v �∞,
#�A,v (Fv) = #(φv (�A,v ))(Fv) for all v �∞, and

#�A,v (Fv) = #(φv (�A,v ))(Fv) = #�B,v (Fv) for all v �∞.
5.7. In practice it is useful to not restrict Proposition 5.4 to the case when

A has semiabelian reduction at all v � ∞ with char Fv | degφ. For
instance, suppose that K is a number field, A is an elliptic curve that
has complex multiplication by an imaginary quadratic field F ⊂ K , and
φ = α ∈ EndK (A) ⊂ F ⊂ K . Then

AOK

[
1
α

] φ−→ AOK

[
1
α

]

is flat (even étale) because it induces an automorphism of LieAOK

[
1
α

],

which is a line bundle on SpecOK
[ 1
α

]
. On the other hand, degφ need

not be invertible on SpecOK
[ 1
α

]
. Proposition 5.4 applied to this example

leads to a different proof of [Rub99, 6.4], which facilitates the analysis of
Selmer groups of elliptic curves with complex multiplication by relating
them to class groups.

A. Torsors under a Néron model

A.1 Dedekind schemes and Néron models

A Dedekind scheme S is a connected Noetherian normal scheme of dimension
≤ 1. The connectedness is not necessary, but it simplifies the notation. We let
K denote the function field of S. An S-group scheme X is a Néron model
(ofXK ) if it is separated, of finite type, smooth, and satisfies the Néron property:
the restriction to the generic fiber map

HomS(Z,X )→ HomK (ZK ,XK )

is bijective for every smooth S-scheme Z .

Proposition A.2. Every torsor (for the fppf or the étale topology) T → S
under a Néron model X → S is a scheme that is separated, smooth, and has
the Néron property.
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Proof. Representability of T by a scheme follows from [Ray70, Thm. XI 3.1
1)]. Its separatedness and smoothness are inherited from X by descent.

In checking the Néron property, one can restrict to quasi-compact Z . Since

T is separated, S-morphisms Z f−→ T are in bijection with closed subschemes

Z ⊂ Z ×S T

that are mapped isomorphically to Z by the first projection (Z is the graph
of f ), and similarly for K -morphisms ZK → TK . Such a Z is determined by
ZK , being its schematic image in Z ×S T by [EGA IV2, 2.8.5]. Bijectivity of
the assignment Z �→ ZK for any Z as above is equivalent to the sought Néron
property of T .

To check this bijectivity, it remains to show that the schematic image
Z′ ⊂ Z ×S T of any graph ZK ⊂ ZK ×K TK is projected isomorphically
to Z , as can be done étale locally on S (in the case of a Noetherian source,
the formation of the schematic image commutes with flat base change by
[EGA IV3, 11.10.3 (iv), 11.10.5 (ii)]). By [EGA IV4, 17.16.3 (ii)], there is an
étale cover S′ → S trivializing the torsor T , so the claim follows from the
Néron property of TS′ ∼= XS′ . �

Corollary A.3. For a Néron model X → S, the pullback map

H1
ét(S,X )

ι−→ H1
ét(K ,XK )∼=H1(K ,XK ) (10)

is injective.

Proof. Indeed, by Proposition A.2, a torsor under X is determined by its
generic fiber. �

If S is local, it is possible to determine the image of (10):

Proposition A.4. Suppose that S = Spec R for a discrete valuation ring R,
and let X → S be a Néron model. The image of the injection ι from (10) is the
unramified cohomology subset

I := Ker(H1(K ,XK )→ H1(K sh,XK sh ))

where K sh := Frac Rsh. In other words, an XK -torsor T extends to an
X -torsor if and only if T (K sh) �= ∅.
Proof. Due to smoothness, every torsor T under X trivializes over an étale
cover U → Spec R, and hence over Rsh , giving Im ι ⊂ I . The inclusion
I ⊂ Im ι is a special case of [BLR90, §6.5, Cor. 3]. �

Corollary A.3 can be strengthened as follows.
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Proposition A.5. For an S-flat closed S-subgroup scheme G of a Néron
model X → S, the pullback map

H1
fppf(S,G)→ H1

fppf(K ,GK )

is injective.

Proof. In terms of descent data with respect to a trivializing S′ → S that is
faithfully flat and locally of finite presentation, a G-torsor T is described by
the automorphism of the trivial right GS′×S S′-torsor given by left translation
by a g ∈ G(S′ ×S S′). The image of g in X (S′ ×S S′) describes an X -torsor
T X , and the G-equivariant closed immersion T ⊂ T X of (a priori) algebraic
spaces shows that T is a scheme, since so is T X by Proposition A.2.

LetT1, T2 beG-torsors, and choose a common trivializing S′ → S. It suffices
to show that a GK -torsor isomorphism αK : (T1)K

∼−→ (T2)K extends to a
G-torsor isomorphism α : T1

∼−→ T2. In terms of descent data, αK is
described as left multiplication by a certain h ∈ G(S′K ), whose image in

X (S′K ) extends αK to an XK -torsor isomorphism βK : (T X
1 )K

∼−→ (T X
2 )K .

By Proposition A.2,βK extends to anX -torsor isomorphismβ : T X
1

∼−→ T X
2 ,

which restricts to a desired α due to schematic dominance considerations for
(Ti)K → Ti (one uses [EGA IV2, 2.8.5] and [EGA I, 9.5.5]). �

Remark A.6. The above results continue to hold for Néron lft models and
without the flatness assumption in Proposition A.5, see [Čes14a, 2.19–2.21,
6.1] (an S-group scheme X is a Néron lft model (of XK ) if it is separated,
smooth, and satisfies the Néron property recalled in §A; a Néron lft model is
not necessarily of finite type over S but is always locally of finite type due to
smoothness).

B. Exact sequences involving Néron models of abelian varieties

In this appendix, we gather several standard facts about Néron models of
abelian varieties used in the main body of the paper.

B.1 Open subgroups of Néron models of abelian varieties

Let S be a Dedekind scheme (defined in §A), and let K be its function field. Let

A→ Spec K and A→ S

be an abelian variety and its Néron model. For s ∈ S, let�s := As/A0
s be the

étale k(s)-group scheme of connected components ofAs . For each nongeneric
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s ∈ S, choose a k(s)-subgroup �s ⊂ �s . Then for all s but finitely many,
�s = �s , and we define the open subgroup

A� ⊂ A

by removing for every s the connected components of As not in �s . Letting
is : Spec k(s) → S denote the inclusion of the nongeneric point s, we have
the homomorphism

A� →
⊕

s

is∗�s .

If �s = 0 for every s, then the resulting A0 is the fiberwise identity component
of A.

Proposition B.2. For all choices �̃s ⊂ �s ⊂ �s , the sequence

0→ A�̃ → A� a−→
⊕

s

is∗(�s/�̃s)→ 0

is exact in Sét, SÉt, and Sfppf.

Proof. Left exactness is clear, whereas to check the remaining surjectivity of
a in SÉt on stalks, it suffices to consider strictly local (O,m) centered at a
nongeneric s ∈ S with �̃s �= �s . Let a ⊂ m be the ideal generated by the
image of mS,s . In the commutative diagram

A�(O)
a(O) ��

b
����

(�s/�̃s)(O/a)

d�
��

A�(O/m) c �� �� (�s/�̃s)(O/m),

the surjectivity of b follows from Hensel-lifting for the smooth A�
O → SpecO

(see [EGA IV4, 18.5.17]), the surjectivity of c follows from the invariance of
the component group of the smooth A�

k(s)s → Spec k(s)s upon passage to
a separably closed overfield, whereas the bijectivity of d is immediate from
(�s/�̃s)O/a being finite étale over the Henselian local (O/a,m/a). The desired
surjectivity of a(O) follows. �

Let A
φ−→ B be a K -isogeny of abelian varieties, and let A φ−→ B be the

homomorphism induced on Néron models over S.

Proposition B.3. The kernel A[φ] → S is affine; every fppf torsor under
A[φ] is representable.

Proof. Affineness of A[φ] is a special case of [Ana73, 2.3.2]. Effectivity of
fppf descent for affine schemes gives the torsor claim. �
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Lemma B.4. The following are equivalent:

(a) A φ−→ B is quasi-finite,

(b) A0 φ−→ B0 is surjective (as a morphism of schemes),

(c) A φ−→ B is flat,
and are implied by

(d) A has semiabelian reduction at all the nongeneric s ∈ S for which
char k(s) | degφ.

Proof. Due to the fibral criterion of flatness [EGA IV3, 11.3.11] for (c), the
conditions (a)–(c) can be checked fiberwise on S. We will show that they are
equivalent for the fiber over an s ∈ S.

Since A and B are faithfully flat and locally of finite type over S,
[BLR90, §2.4, Prop. 4] supplies the equalities

dimAs = dim A and dimBs = dim B,

and hence also dimAs = dimBs . Moreover, by [SGA 3I new, VIA, 6.7], every
homomorphism between algebraic groups over a field factors through a flat
surjection onto its closed image, so φs is surjective on identity components
if and only if it is quasi-finite, i.e., (a)⇔(b). Furthermore, if φs(A0

s ) = B0
s ,

then φs is flat on identity components, i.e., (b)⇒(c). Conversely, if φs is flat,
then, in addition to being closed, φs(A0

s ) is also open, and hence equals B0
s ,

i.e., (c)⇒(b).
For the last claim, the consideration of the isogeny ψ : B → A with the

kernelφ(A[deg φ]) reduces to the case whenφ is multiplication by an integer n.
For such φ, the surjectivity of φs on the identity components is clear if the
reduction at s is semiabelian and follows by inspection of Lie algebras if
char k(s) � n. �

Corollary B.5. Suppose that A φ−→ B is flat (e.g., that A has semiabelian
reduction at every nongeneric s ∈ S with char k(s) | degφ). Then A[φ]→ S
is quasi-finite, flat, and affine; it is also finite if A has good reduction at every
nongeneric point of S.

Proof. By Lemma B.4, A φ−→ B is quasi-finite and flat; in the good reduction
case, it is finite due to its properness, see [EGA IV3, 8.11.1]. Affineness results
from Proposition B.3. �

Corollary B.6. If char k(s) � degφ for all s ∈ S, then A[φ] is the Néron
model of A[φ].

Proof. Due to Corollary B.5 and the degree hypothesis, the quasi-finite flat
A[φ] → S is étale. On the other hand, by [BLR90, §7.1, Cor. 6], the Néron
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model of A[φ] may be obtained as the group smoothening of the schematic
image of A[φ] in A. By [EGA IV2, 2.8.5], this schematic image is A[φ], so,
since A[φ]→ S is étale, no smoothening is needed. �

A choice of k(s)-subgroups �s ⊂ �s gives rise to their images φs(�s).
These images, in turn, give rise to the open subgroup Bφ(�) ⊂ B as in §B.

Corollary B.7. Suppose that A φ−→ B is flat (e.g., that A has semiabelian
reduction at all the nongeneric s ∈ S with char k(s) | degφ). Then for every
choice of k(s)-subgroups �s ⊂ �s , the sequence

0→ A�[φ]→ A� φ−→ Bφ(�)→ 0

is exact in Sfppf.

Proof. The S-morphism A� φ−→ Bφ(�) is faithfully flat and locally of finite
presentation by Lemma B.4, whereas the exactness at the other terms is
immediate from the definitions. �
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