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Abstract

Given a prime number p, Bloch and Kato showed how the p'-Seliner group of an abelian
variety A over a number field K is determined by the p-adic Tate module. In general,
the p"1-Selmer group Selpmn A need not be determined by the mod p1 Galois representation
A[p"']; we show, however, that this is the case if p is large enough. More precisely, we
exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A
is determined by A[p"n] for all p V E. In the course of the argument we describe the flat
cohomology group H'fP,(OK, A[p".]) of the ring of integers of K with coefficients in the p"-
torsion A[p"] of the Neron model of A by local conditions for p V E, compare them with
the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[p"] for
such p. Our method sharpens the relationship between Selpm A and H'f (OK, A[p"1]) which
was observed by Mazur and continues to work for other isogenies 0 between abelian varieties
over global fields provided that deg 0 is constrained appropriately. To illustrate it, we exhibit
resulting explicit rank predictions for the elliptic curve HAI over certain families of number
fields. Standard glueing techniques developed in the course of the proofs have applications
to finite flat group schemes over global bases, permitting us to transfer many of the known
local results to the global setting.
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1. INTRODUCTION

Let K be a number field, let A -+ Spec K be a dimension g abelian variety, and let p be a prime
number. Fix a separable closure K of K. Tate conjectured [Tat66, p. 1311 tht the j-e dic Tate
module IPA := lim A[p"'](K) determines A up to an isogeny of degree prime to p., and Faltings
proved this in [Fal83, §1 b)]'. One can ask whether A[p] alone determines A to some extent.
Consideration of the case g = 1, p = 2 shows that for small p one cannot expect much in this
direction. However, at least if g = 1 and K = Q, for p large enough (depending on A) the Frey-
Mazur conjecture [Kra99, Conj. 3j predicts that A[p] should determine A up to an isogeny of degree 2

prime to p.

Consider now the p'-Selmer group Selp A4 cA H 1 (K, A[p0]), which consists of the classes of cocy-
cles whose restrictions lie in A(K,) 0 Qp/Zp c H 1 (K., A[p*]) for every place v of K. Note that
A[pV](K) = VA/TpA with VpA := TpA Oz, Qp, so TpA determines the Galois cohomology groups
appearing in the definition of Selpo A. Since an isogeny of degree prime to p induces an isomorphism
on p*-Selmer groups, the theorem of Faltings implies that TpA determines SelP, A up to isomor-
phismi. One may expect, however, a more direct and more explicit description of Selp-2 A in terms
of T,)A. For this, it suffices to give definitions of the subgroups A(Ky) 0 Qp/ZP c H 1 (K, A[p ])
in terms of TpA.

Bloch and Kato found the desired definitions in [BK90]: if v { p, then A(K.,) & Qp/Zp = 0; if v I p,
then, letting Bcris be the crystalline period ring of Fontaine and working with Galois cohomology
groups formed using continuous cochains in the sense of [Tat76, §21, they define

Hf(K,,VA) :=Ker(H1 (K ,TVA) - H 1(K., VA&Q, Bcris)),

and prove that

A(Ko) 0 Qp/Zp = Im(H'(K-,, VA) -- H 1 (Kv, VA/TA) = H1 (K, A[pj])).

Considering the p-Selmer group Selp A and A[p] instead of Selp.ci A and A [p*] (equivalently, Selp"c A
and TpA), in light of the Frey-Mazur conjecture, one may expect a direct description of Selp A in
terms of A[p] for large p. We give such a description as a special case of

Theorem 1.1. Fix an extension of number fields L/K, a K-isogeny #: A - B between abelian
varieties, and let A[O] and AL[#] be the kernels of the induced homomorphisms between the Nfron
models over the 'rings of integers OK and OL- Let v (resp., w) denote a place of K (resp., L),
let cA, and CB,v (resp., cA,,, and cB,w) be the corresponding local Tamagawa factors for v, w { co
(cf. §8.7), let e be the absolute ramification index if v t co, set ep := maxVj1 ev, and see §1.17 for
other notation.

(a) (i) (Corollary 7.3.) The pullback map

HLfpp(OK, A[#]) -- H1 (K, A[#]) (1.1.1)

is an isomorphism onto the preimage of Hvy, HLfpp(OV, A[#]) c fl] H 1 (KV, A[#]).

'By [Tat66, Lemmas I and 3], the quoted result of Faltings implies the bijectivity of

Z, 0 lon(A, B) -- HOMGal(K/K) (TpA, TpB)

for all abelian varieties A, B over K. In particular, if t: TpA -- + TpB, there is an isogeny #: A - B whose reduction
mod p agrees with t mod p, hence p { deg 0.

2The degree condition can be added, since up to isomorphism only finitely many abelian varieties are K-isogenous
to A [Zar85, Thm. 1].



(ii) (Proposition 9.8 (d).) If the reduction of A at all v I deg # is semiabelian, deg # is prime
to fJon CA'jCct,, and either 2 f deg 6 or A(K,) equipped with its archirnedean topology

is connected for all real v, then Hf'ppf(OKl,, A[ Seld Ainside H 1 (K, A[0]).

(b) (Proposition 5.9.) Assume that A has good reduction at all v | deg 0. If ep < p - 1 for every
prirne p I deg 0, then the OL-group scheme A'] is determined up to isomorphistri by the
Gal(L/K) -module A[#](L).

Thus, if (deg#, VC CA,WcB,w) = 1, the reduction of A is good at all v | deg , and ep < p - 1

for every p I deg# (in particular, 2 t deg#), then the #-Selmer group Selo AL C H 1 (L, A[0]) is

deterrmined by the Gal(T/K)-module A[#](T).

Corollary 1.2. If A has potential good reduction everywhere and p is large enough (depending on
A), then A[p"'] determines Selp, AL for every finite extension L/K.

Proof. Indeed, by a theorem of McCallum [ELL96, pp. 801-802, q _ 2g + 1 for a prime q I cA,.. D

Remarks.

1.3. Relationships similar to (ii) between Selner groups and flat cohomology groups are not new
and have been (implicitly) observed already in [Maz72] and subsequently used by Mazur,
Schneider, Kato, and others (often after passing to p*-Selmer groups as is customary in
Iwasawa theory). However, the description of H'fp(OK, A[]) by local conditions in (i) is

new and works even if A[#] is not OK-flat thanks to Proposition 2.11; consequently, (ii) is
more precise than what seems to be available in the literature.

1.4. In the case of elliptic curves, Mazur and Rubin find in [MR13, Thin. 3.1 and 6.1] (see also
[AS05, 6.6] for a similar result of Cremona and Mazur) that under assumptions different from
those of Theorem 1.1, pm Selmer groups are determined by mod pm Galois representations
together with additional data including the set of places of potential multiplicative reduction.
It is unclear to us whether their results can be recovered from the ones presented here.

1.5. The Selmer type description of a flat cohomology group as in (i) continues to hold with other

OK-group schemes g as coefficients. For instance, g can be a finite flat group scheme or

a N6ron model; see Theorem 7.2 for a general result of this type. Choosing g = A to be
the N6ron model of A leads to a reproof of the 6tale cohomological interpretation of the
Shafarevich-Tate group I(A) in Proposition 7.5; such interpretation is implicit already in
the arguments of [Ray65, II.§3] and is proved in [Maz72, Appendix]. Our argument is more
direct: in the proof of loc. cit. the absence of Theorem 7.2 is circumvented with a diagram
chase that uses cohomology with supports exact sequences.

1.6. In Theorem 1.1 (a), it is possible to relate Selo A and H0pf(OKI A[0]) under weaker hy-
potheses than those of (ii), see Proposition 9.8 (a).

1.7. The interpretation of Selmer groups as flat cohomnology groups is useful beyond the case when
# is multiplication by an integer. For an example, see the last sentence of Remark 9.10.

1.8. Theorem 1.1 is stronger than its restriction to the case L = K. Indeed, the analogue of
ep < p - 1 may fail for L but hold for K. This comes at the expense of AL [] and Selo AL
being determined by A[#](L) as a Gal(L/K)-module, rather than as a Gal(L/L)-module.

1.9. To determine an explicit finite set of rational primes E depending on K, L, A, and B such
that Selo AL is determined by the Gal(L/K)-module A[O] (L) whenever deg # is coprime to
the elements of E, let E consist of all primes below a place of bad reduction for A, all primes
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dividing a local Tamagawa factor of A1 , or BL, the prime 2, and all odd primes p ramified in
K for which ep > p - 1 (since ep < [K Q], one can include all the primes p [K :Q + 1
for simplicity). Taking L = K and A =.R yields the set E promised in the abstract.

1.10. In Theorem 1.1, is the subgroup H(L)//0A(L) (equivalently, the quotient III(AL)[#H) also
determined by A[#](L)? The answer is 'no'. Indeed, in [CMOO, p. 241 Cremona and Mazur
report 3 that the elliptic curves 2534E1 and 2534G1 over Q have isomorphic mod 3 repre-
sentations, but 2534E1 has rank 0, whereas 2534G1 has rank 2. Since 3 is prime to the
conductor 2534 and the local Tamagawa factors c2 = 44, c7 = 1, c18 1 = 2 (resp., c2 = 13,
C7 = 2, c181 = 1) of 2534E1 (resp., 2534G1), Theorem 1.1 indeed applies to these curves.
Another example (loc. cit.) is the pair 4592D1 and 4592G1 with # = 5 and ranks 0 and 2.

For an odd prime p and elliptic curves E and E' over Q with E[p] E'[p] and prime
to p conductors and local Tamagawa factors, Theorem 1.1, expected finiteness of 1I, and
Cassels-Tate pairing predict that rk E(Q) = rk E'(Q) mod 2. Can one prove this directly?

The analogue of Theorem 1.1 in the function field case is

Theorem 1.11. Let S be a (connected) proper smooth curve over a finite field, let K be its function
field, let #: A -+ B be a K-isogeny between abelian varieties, and let A[O] -- S be the kernel of the

induced homomorphism between the Niron models over S. For a closed point s e S, let Os,s be the

completion of the local ring at s, let Ks,s be the fraction field of s,, and let cA,, and cB,, be the
corresponding local Tamagawa factors (cf. §8.7).

(a) (i) (Corollary 7.3.) The pullback map H'ppf (S, A[0]) -+ Hfl(K, A[#]) is an isomorphism

onto the preimage of [4e Hff (Os,s, A[O]) c- H, Hflpf (Ks,s, A[O]) where the products

are indexed by the closed s e S.

(ii) (Proposition 8.9 (e).) If char K { deg 0, then Hflpf (S, A[0]) c H1 (K, A[O]) consists of
the everywhere unramifed cohomology classes.

(iii) (Proposition 9.8 (d).) If the reduction of A is semiabelian everywhere and deg # is prime
to HS cA,scB,s, then H,1,fl(S, A[O]) = Selo A inside Hlppf (K, A[O]).

(b) (Corollary 3.9.) If char K f deg #, then the S-group scheme A[O] is determined up to isomor-
phism by A[#]; actually, A[#] - S is just the Niron model of A(] -+ Spec K.

Thus, if (deg #, char K [l, cA,,cB,s) = 1, then the #-Selmer subgroup Selo A c H'(K, A[O]) is deter-

mined by A[O] and in fact consists of the everywhere unramifed cohomology classes of H' (K, A[#]).

Remarks.

1.12. The prevalence of the unramified condition in the final conclusion of Theorem 1.11 is due
to the following extension of a well-known lemma of Cassels [Cas65, 4.11 proved in Proposi-
tion 8.9 (f): for a nonarchimedean place v of a global field K and a K-isogeny #: A -* B, if
(deg 0, cA,vcB,v char IF,) = 1, then the condition at v defining the 0-Selmer group is the un-

ramified cohomology subgroup Hir(Ko,, A[O]) - H1 (K,, A[O]); Cassels assumes in addition
that v is a place of good reduction (when cA, cB,, = 1). If A is an elliptic curve and K is
a number field, this generalization has also been observed by Schaefer and Stoll [SS04, 4.5J.

3Assurning the Birch and Swinnerton-Dyer conljecture to compute Shafarevich-Tate groups analytically. This is
unnecessary for us, since full 2-descent finds provably correct ranks of 2534E1, 253401, 4592D1, and 4592G1.

9



If (deg 0, ccA,CB, char Fv) = 1, then Hi(K, A[#]) = H1'fPP(OV, A[#]) inside H 1(K., A[#])

by Proposition 8.9 (f). Thus, a further extension of Cassels' lemma to all residue characteris-
tics is Proposition 8.8 (e): if (deg 0, CAvCBV) = 1 and A has semiabelian reduction at v in case
char F,, dog #, then the condition at v defining Sel - is HC) 0 W(O, A[#]) c- H 1(KvA[).
This conclusion has also been observed by Mazur and Rubin [MR.13, Prop. 5.81 in the case
dim A = 1 and 0 = pm .

1.13. Injectivity of the pullback maps in Theorems 1.1 (i) and 1.11 (i) are special cases of The-
orem 6.1: such injectivity continues to hold with a closed subgroup of a N6ron model as
coefficients for the cohomology groups (or pointed sets in the noncommutative case).

1.14. Models of finite group schemes over global bases. The glueing techniques developed in
§4 with the purpose of proving Theorem 1.1 (b) apply to the study of finite flat group schemes over
global bases. More precisely, let K be a number field, let OK be its ring of integers, and fix a rational
prime p. An OK -model (of its generic fiber) is a commutative quasi-finite flat separated OK-group
scheme g killed by a power of p such that G -- Spec OK] is a Nhron model (cf. §2.2 for N6ron

models) and Go, -- Spec O, is finite flat for each v I p; see §5.1 for the definition in the general
setting. A commutative finite flat OK-group scheme g of p-power order is precisely a finite OK-
model, which in turn is nothing else than an OK-model g for which the Gal(K/K)-module g(K) is
unramified away from p (cf. §5.1). Studying general OK-models amounts to allowing ramification
away from p.

Our main results concerning OK-models g are Corollary 4.4 together with Theorem 5.4, which say
that g is determined by GK together with (go,)Vip; moreover, a compatible tuple (gK, (%v)jvp)

glues to an OK-model g. Effectively, the study of OK-models of a fixed generic fiber G amounts to
the study of finite fiat 0,-models of GK, for v I p, permitting us to transfer many of the known local
results to the global setting. For instance, we obtain uniqueness of OK-models of a fixed generic
fiber G for K of low ramification at places above p (Proposition 5.7 (c)), show that the product
over all v I p of Kisin's moduli of finite flat group schemes varieties continues to parametrize models
over global bases (Proposition 5.17), and show that a p-divisible group over K extends (uniquely)

to OK if and only if all its layers have finite OK-models (§5.19 and Proposition 5.21); see §5 for
other results of this sort. The description of H'fppf(OK, g) c- H 1 (K, GK) by local conditions as in
Remark 1.5 holds for every OK-model g; see §§9.2-9.5 for a discussion of this.

Example 1.15. We illustrate the utility of our methods and results by estimating the 5-Selmer
group of the base change EK of the elliptic curve E = 11A1 to any number field K. This curve has
also been considered by Tom Fisher, who described in [Fis03, 2.1] the #-Selmer groups of EK for
the two degree 5 isogenies # of EK defined over Q. We restrict to 141A for the sake of concreteness

(and to get precise conclusions (a)-(f)), although our argument leads to estimates analogous to
(1.15.2) for every elliptic curve A over Q and an odd prime p of good reduction for A such that
A[p] a Z/pZ pp.

Let SK -+ Spec OK be the N6ron model of EK. Since E[5] - Z/5Z @A5 (compare [Gre99, pp. 120-
1211), by Proposition 5.9 and its proof, SK'[5] - Z/5Z E[ p5. Thus, exploiting the exact sequence

0 -) Y - G + G1, -- 0 together with Example 9.3,

dimF 5 Hfppf(OK, SK[5]) = 2 dimF, ClK[5] + dimF O 5 = 2h + r + r- 1 u, (1.15.1)

where ClK is the ideal class group, r K and rK are the numbers of real and complex places, and

:= dimF5 ClK[5], uK := dim [5(OK).
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Since component groups of N6ron models of elliptic curves with split multiplicative reduction are
cyclic, (1.15.1) and Proposition 9.8 (a) give

2h K +r -+-#{v I 11} ; dimi Sel E :; 2h +'rf +rK -1+u +#{I.I 11}. (1.15.2)

Thus, the obtained estimate is most precise when K has a single place above 11. Also,

dimF, Sel5 EK = r+ -I + uK + #{v I 11} mod 2, (1.15.3)

because the 5-parity conjecture is known for EK [DD081. When K ranges over the quadratic
extensions of Q, due to (1.15.2), the conjectured unboundedness of 5-ranks hK of ideal class groups
(which a priori has nothing to do with E) is equivalent to the unboundedness of dim 5 Sel 5 EK;

in particular, it is implied by the folklore4 conjecture that the ranks of quadratic twists of a fixed
elliptic curve over Q (in our case, E) are unbounded.

It is curious to observe some concrete conclusions that (1.15.2) and (1.15.3) offer (note that pre-
cise rank expectations are possible due to (1.15.2)-the sole growth follows already from parity
considerations):

(a) As is also well known, rk E(Q) = 0.

(b) If K is imaginary quadratic with h K= 0 and 11 is inert or ramified in K, then rk E(K) = 0.

(c) If K is imaginary quadratic with h = 0 and 11 splits in K, then either rk E(K) = 1, or
rk E(K) = 0 and corkz2 m(EK)[5'] 1. Mazur in [Maz79, Thm. on p. 237] and Gross in
[Gro82, Prop. 31 proved that rkE(K) 1.

(d) If F is a quadratic extension of a K as in (c) in which none of the places of K above 11 split
and h = 0, then either rkE(F) = 2, or H1(EF)[5 ] is infinite.

(e) If K is real quadratic with hK = 0 and 11 is inert or ramified in K, then either rk E(K) = 1,
or rkE(K) = 0 and corkz HI(EK)[5*] = 1. In the latter case II(EK,)[p"] is infinite for
every prime p, because the p-parity conjecture is known for EK for every p by [DD1O, 1.4]
(applied to E and its quadratic twist by K). Gross proved in [Gro82, Prop. 2] that if 11 is
inert, then rkE(K) = 1.

(f) If K is cubic with a complex place (or quartic totally imaginary), a single place above 11,
and hK = 0, then either rkE(K) = 1, or rkE(K) = 0 and corkz5  L(EKc)[5 ] = 1.

How can one construct the predicted rational points? In (c) and the inert case of (e), [Gro82]
explains that Heegner point constructions account for the predicted rank growth. However, (d) and
(f) concern situations that seem to be beyond the scope of applicability of the existing methods for
systematic construction of rational points of infinite order.

1.16. The contents of the paper. We begin by collecting several general results concerning
N6ron models and their torsors in §2 and proceed in §3 by proving various short exact sequences
involving open subgroups of N6ron models of abelian varieties. These give appropriate analogues
of Kummer sequences when working with N6ron models. We devote §4 to a standard fpqc descent
result enabling us to glue schemes over global bases from their local base changes, which leads
in §5 to global analogues of familiar local results concerning finite flat group schemes. Injectivity
of (1.1.1) and related maps is argued in §6, which also discusses embeddings of finite flat group
schemes into N6ron models. In §7, exploiting §4, we study the question of Hfl,, with appropriate
coefficients over Dedekind bases being described by local conditions. We restrict to local bases in
§8 to compare the subgroups B(K0 )/#A(K,), HfPf(O, A[#]), and Hir(Kv, A[#]) of H 1(K, A[#])

4Which does not mean "widely believed".
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under appropriate hypotheses. The local analysis is used in §9 to compare the 4-Selmer group and

H fpp(OK, A[O]). For cross-reference purposes, several known results from algebraic geometry are
gathered in Appendix A.

1.17. Conventions. When needed, a choice of a separable closure RK of a field K will be made
implicitly, as will be a choice of an embedding K <-+ L for an overfield L/K. If v is a place of a
global field K, then K, is the corresponding completion; for v { o/, the ring of integers and the
residue field of K, are denoted by O and Fv. If K is a number field, OK is its ring of integers. For

a local ring R, its henselization, strict henselization, and completion are Rh, Rsh, and R. For s e S
with S a scheme, Oss, nms,, and k(s) are the local ring at s, its maximal ideal, and its residue field.
We call a morphism fppf if it is flat, surjective, and locally of finite presentation. An fppf torsor is
a torsor for the fppf topology (as opposed to a torsor that itself is fppf over the base). The fppf,
big &tale, and 6tale sites of S are Sfppf, Stt, and S6t; the objects of Sfppf and St are all S-schemes,
while those of S& are all schemes 6tale over S. The cohomology groups computed in St and Sfppf
are denoted by Ht (S, 9) and Hfpp (S, g); usually g will be represented by a commutative S-group

algebraic space locally of finite presentation. Galois cohomology groups are denoted by H'. For
g as above, the 6-functorial identification Hgt(K, 9) = H"(K, 9(K)) is made implicitly (similarly
in the noncommutative case for i ; 1, cf. §A.4). So is H t(S, 9) -ZHppf(S, G) for smooth g as in

Proposition A.2 (see Proposition A.6 for the noncommutative case); it is 8-functorial as well. In
the presence of f: S' - S, it is understood that HjfP(S, g) -- H1 f(S', f*9) is the 6-functorial
pullback. We frequent the shorthand XT for the base change of X -* S along T -* S. An algebraic
group over a field K is a finite type smooth K-group scheme. For an integer n and a scheme S, the
open subscheme on which n is invertible is S [A].

Since [SP, Definition 025Y] is our definition of an algebraic space (see also [SP, Lemma 076M]),
when citing other references we need to make sure that the implicit quasi-separatedness assumption
is met. Better behavior under descent is our reason for resorting to algebraic spaces. The reader
only interested in Theorems 1.1 and 1.11 can stick to schemes: due to affineness of A[<], its torsors
are schemes (see Proposition 3.3).

2. NsRON MODELS

Our analysis of Selmer groups will be based on a study of Nron models of abelian varieties. This
section is devoted to various concepts and results in the theory of Nron models. We set notation
in §§2.1-2.2, record ways to recognize and construct N6ron models in §§2.3-2.17, and investigate
their torsors in §§2.18-2.21.

2.1. Dedekind schemes. These are the connected Noetherian normal schemes S of dimension
, 1. Connectedness (due to which S # 0) is not necessary but simplifies the notation (though
not the proofs). A nonempty open U c S as well as Spec Os,, Spec Oh, and Spec Os for s e S

are Dedekind schemes as well. The main cases of interest are S being a (connected) proper smooth
curve and S = Spec OK for the ring of integers OK of a number field or a nonarchimedean local
field K.

Let K be the function field of S. If X is an S-scheme, XK is the generic fiber of X. A nongeneric
s e S is closed, and the complement of a nonempty open subscheme U c S is a finite union of
closed points. A normal Noetherian local ring of dimension <; 1, such as Os,s for s e S, is either

a discrete valuation ring or a field. The fraction fields of Oh, 0 8s, and Os,, will be denoted by

K', Ksh and Ks,,, respectively. Note that OS, ,, Of< and OSS are either fields (if s is the
12



generic point) or discrete valuation rings sharing a common uniformizer [BLR90, §2.3 Prop. 10]. In

the latter case, OIs, 0>. and 0 s,, share the residue fields (cf. [EGA IV4, 18.6.6 (iii)] for Oh).

The introduced notation will be in force in this section.

2.2. N6ron (ift) models. An S-group scheme X is a Ne'ron model (of X -) if it is separated,
of finite type, smooth, and satisfies the Niron property: the restriction to the generic fiber map

Homs(Z, X) -* HOrnK(ZK, XK) is bijective for every smooth S-scheme Z (which determines X

from XK up to a unique isomorphism). Dropping the finite type requirement, one obtains the

definition of a N6ron lft model, which is locally of finite type because of smoothness. Of course, a

N6ron model is also a N6ronl lft model. No further generality is obtained if X is an algebraic space in

these definitions: a separated group algebraic space locally of finite type over a locally Noetherian

base of dimension < 1 is a scheme [Ana73, 4.B].

Proposition 2.3.

(a) A finite type (resp., locally of finite type) X -+ S is a Niron model (resp., Niron lft model)

if and only if so is Xos, - Spec Os,s for every closed s e S.

(b) If X -- S is a Naron model (resp., Niron lft model), then so are

Xoh Spc> sh- ee( n
o - Spec S, '7 -+S, Spec Oss,, and X 0 sh -+ Spec Gs

for a closed s e S.

Proof.

(a) See [BLR90, §1.2 Prop. 4] and [BLR90, p. 2901.

(b) Combine (a) and [BLR90, §10.1 Prop. 3].

Proposition 2.4. A proper smooth S-group scheme g is a Niron model.

Proof. Proposition 2.3 (a) reduces to the local case S = Spec Os,,, when the conclusion is clear due to

[BLR90, §7.1 Thin. 1] as g(O 8 ) -+ 9(KS) is bijective by the valuative criterion of properness. L

Proposition 2.5. Let 9 and 'H be Niron models over S. A sheaf of groups E on Sfppf that is an

extension 1 -> 71 - -* g -- 1 is represented by a Niron model.

Proof. By Proposition A.8, the S-group algebraic space E is separated, of finite type, and smooth,
and so in fact a scheme [BLR90, §6.6 Cor. 31. The proof of [BLR90, §7.5 Prop. 1 (b)] based on the

same method as the proof of Proposition 2.4 now shows that E is a Nron model. 0

Remark 2.6. One can use Proposition 2.5 to reduce Proposition 2.4 to the familiar cases of 9 being

an abelian scheme or finite 6tale. Indeed, as we now show, a proper smooth group scheme g over

a connected base scheme S is an extension of a finite 6tale S-group scheme by an abelian scheme.

Let g0 c g be the open S-subgroup scheme such that (90 ), is the identity component of g, for

every s e S [EGA IV 3, 15.6.5]. We claim that go c g is also closed, rendering the smooth g0 -- S

proper. Granting this, due to the constancy of fiber dimension of 9 [EGA IV 3 , 15.6.6 (iii) 0)]

(this is the only place where connectedness of S is used), go -+ S is an abelian scheme, and, by

Proposition A.13 (c)-(d), g/g 0 is a separated smooth S-algebraic space of finite type. Working

fiberwise, g/g0 - S is quasi-finite by [SP, Lemma 06RW], and hence a scheme by [LMBOO, A.2].

It then inherits properness from g [EGA II, 5.4.3 (ii)], and hence is finite 6tale [EGA IV 3 , 8.11.11.
To complete the argument we now show that go c g is closed. Since g -+ S is of finite presentation

and the formation go commutes with arbitrary base change, due to the usual limit arguments, we
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can assume that S is affine, then Noetherian, then also local, and finally also complete (using fpqc
descent in this last step). In the latter case, [EGA IIii, 5.5.21 applied to the connected Go shows
that g -+ S inherits properness from its special fiber. The desired properness of g 0 c g follows.

An important source of N4ron models is Theorem 2.13; for its formulation, we recall the notions of

2.7. Schematic image and schematic dominance. For a scheme morphism X L+ Y, its
schematic image is the initial closed subscheme Y' -+ Y through which f factors. By [SP, Lemma
01R6], the schematic image exists. If for each open U c Y the schematic image of fu is U, then
f is schematically dominant [EGA IV 3 , 11.10.2]. If f is quasi-compact, then the induced X -> Y'
is schematically dominant [SP, Lemma 01R8], and in this case the formation of Y' commutes with
flat base change [EGA IV 3 , 11.10.5 (ii) a)].

The schematic image of a morphism of algebraic spaces is defined analogously to the case of schemes;
its existence is guaranteed by [SP, Lemma 082X]. If the morphism is in addition quasi-compact,
then the formation of the schematic image again commutes with flat base change [SP, Lemma 089E].

Lemma 2.8 (Transitivity of schematic images for algebraic spaces). For a scheme T and morphisms
of T-algebraic spaces f : X -+ Y and g: Y -- Z, let Y' <-> Y and Z' <-+ Z be the schematic images
of f and gly'. Then Z' --+ Z is also the schematic image of g o f.

Proof. Since a section of a closed immersion of algebraic spaces is an isomorphism, the proof of

[EGA I, 9.5.5] given for schemes continues to work for algebraic spaces.

Lemma 2.9. Let T be a scheme and f : X - Y and g1, 92: Y -+ Z morphisms of T-algebraic
spaces. If Z -+ T is separated, g1 o f - 92 o f, and the schematic image of f is Y, then g1 = 92.

Proof. The proof of [EGA I, 9.5.6] given for schemes continues to work for algebraic spaces. l

Recall that S is a connected Dedekind scheme with function field K.

Proposition 2.10. Let Y be an S-algebraic space and H a closed subalgebraic space of YKc.

(a) The schematic image R of H -- Y is the unique S-flat closed subalgebraic space of Y with
generic fiber H. In particular, a flat Y is the schematic image of its generic fiber.

(b) For an S-algebraic space Y' and a closed subalgebraic space H' c Y whose schematic image

in Y' is denoted by -', the schematic image of H X K H' Y xs Y' is x s '.

(c) For a flat S-algebraic space X, an S-morphism f : X -* Y factors through R if and only if
fK factors through H.

(d) If Y is an S-group and H is a K-subgroup, then R is an S-subgroup of Y.

(e) If X is a flat S-algebraic space and Y is separated, then there is at most one S-morphism
X - Y extending a given XK - YK.

Wf) If Y is a separated S-group and H is a K-subgroup, then the closed S-subgroup W is separated.
Moreover, W is killed by n (resp., is commutative) if so is H.

(g) If 3 is a finite type S-group and H is a finite K-group, then 'H is a quasi-finite S-group.

Proof.
14



(a) Choose an 6tale surjection U -+ Y for some scheme U. By the known scheme case [EGA 1V 2 ,
2.8.5] and the flat base change aspect of p2.7, R x y U is the unique S-flat closed subscheme of
U with generic fiber H xy, UK,. Its S-flatness implies that of N thanks to ISP, Lemma 06ET].

For the uniqueness claim, the interpretation in [8P, Lemma 03MB] of closed sibalgebraic
spaces in terms of their quasi-coherent sheaves of ideals reduces to showing that S-flat closed
subalgebraic spaces Ni ( N 2 c Y sharing H as their generic fiber are equal. Due to

[SP, Lemma 041Y], this can be checked 6tale locally on Y, and it holds after base change to U.

(b) This results from the S-flatness and uniqueness claims of (a).

(c) Combine the definition of N, Lemma 2.8 applied to the composition XK -+ x Y, and (a).

(d) The diagrams giving the group scheme structure of Y restrict to N due to (a), (b), and (c).

(e) Combine (a) and Lemma 2.9.

(f) Separatedness is inherited from Y. The rest follows from (e).

(g) By (a) and (d), N is a finite type flat S-group with NK= H. Choose an 6tale surjection
U -+ N with U a locally of finite type flat S-scheme. The generic fiber UK is locally quasi-
finite. By [SP, Definition 03XJ], it remains to check that U is also locally quasi-finite. For

this, working locally on U, we assume that U -. S is affine. Since we seek to show that the
fibers of u are finite, we may also assume that S is local.

Due to flatness and (a), U is the scheme-theoretic union of the schematic images of the
irreducible components of UK. To show the finiteness of the special fiber of U, we can
therefore pass to these S-flat schematic images and assume that U is irreducible, in which
case the conclusion results from [BLR90, §2.4 Prop. 4].

Proposition 2.10 enables us to extend [GMB13, Prop. 3.1] beyond the affine case:

Proposition 2.11. Let S be a connected Dedekind scheme, K its function field, g -+ S a separated
S-group algebraic space, and 9 c g the schematic image of gK -* g, s0 9 is an S-flat closed
subgroup of 9 by Proposition 2.10 (a) and (d). For a torsor X -* S under 9 for the fppf topology,
the schematic image X of XK --* X is a torsor under 9 for the fppf topology. The assignment
X - X is functorial and furnishes an equivalence of categories between torsors under 9 and those
under 9. The "change of group" functor resulting from 9 c g is quasi-inverse to X X. In
particular, H4pf(S, 1 ) - H1p(S, 9) is bijective.

Proof. Torsor sheaves are the same as torsor algebraic spaces thanks to Proposition A.5.

The action morphism 9 x s X -* X restricts to 9 x s X -> X thanks to Proposition 2.10 (c), which
also shows that X(T) = X(T) for every fppf T - S, so X(T) # 0 for some such T. Since X, and
hence also X, inherits separatedness from 9, employing in addition Proposition 2.10 (b) and (e),

we see that the isomorphism g x s X X x s X and its inverse restrict to the analogous
isomorphism 9 x s X -- X x s X and its inverse. In conclusion, X is a torsor under g for the fppf
topology. The functoriality of X -* X also results from Proposition 2.10 (c).

We turn to the remaining quasi-inverse claim. For a torsor X' under 9 for the fppf topology, the

natural map i: X' + A" x' g =: X is a closed immersion, as one checks fppf locally on S. Moreover,
7K is an isomorphism and X' inherits flatness from 9. Thus, due to Proposition 2.10 (a) and (c),
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X' = X inside X functorially in X'. Conversely, for a torsor X under 9, the natural X xg C -+ X
is an isomorphism, as can be checked fppf locally on S; this isomorphism is functorial in X. F1

2.12. Group smoothenings. For a finite type S-group scheme G with smooth generic fiber, it

group smoothening is an S-homomorphism g' 1 g with a finite type smo0oth S-group scheme 9'
satisfying: for a finite type smooth Z -- S, every S-morphism Z -+ 9 factors uniquely through t.
If a group smoothening of g exists, it is unique up to a unique isomorphism. Due to spreading out
(applied to Z), the formation of G' commutes with localization on S, SO tK is an isomorphism.

Theorem 2.13 ([BLR90, §7.1 Cor. 61). A closed K-smooth subgroup scheme G - X'K of the generic
fiber of a Niron model X -+ S admits a Niron model, which is given by the group smoothening of
the schematic image Q of G -+> X. Consequently, 9 is a NJron model if and only if it is S-smooth.

Corollary 2.14. A smooth S-group scheme 9 is a closed subgroup of a Niron model if and only if
it is a Niron model itself.

Proof. To see that 9 inherits the N6ron property, use Proposition 2.10 (c) for smooth schemes X. E

Etale NMron models are particularly pleasant to deal with due to

Proposition 2.15. Let G be a finite itale K-group scheme.

(a) The Niron model9 -g S of G exists and is separated quasi-finite 6tale.

(b) g -+ S is finite if and only if G(K) is unramifled at all nongeneric s e S (i.e., if and only if

the finite (Kss )I group Gy(Rs)nr is constant for all such s, where (Ks,s)n := Frac(Os,s)sh).

(c) 9 F gK is an equivalence between the category of 6tale Niron models over S and that of finite
6tale K-group schemes that is compatible with kernels and finite products. When restricted
to the full subcategory of finite 6tale g, it is also compatible with quotients.

(d) Commutative finite 6tale S-group schemes form an abelian subcategory of the category of
abelian sheaves on S6t that is equivalent by the exact generic fiber functor to the category of
finite discrete Gal(K/K)-modules that are unramifled at all nongeneric points of S.

Proof. The Nron property of a finite 6tale S-group scheme can be verified directly by reducing to
the constant case (alternatively, use Proposition 2.4). Thus, for existence in (a), spreading-out and
[BLR90, §1.4 Prop. 1 and §6.5 Cor. 31 reduces to the case of a strictly local S, when 9 - S is
obtained from G by extending the constant subgroup G(K)K c G to a constant subgroup over S

[BLR90, §7.1 Thin. 1]. The other claims of (a), as well as (b), are immediate from construction.
Since a quotient of finite 6tale group schemes is finite 6tale, (c) follows, and it implies (d). H

Remarks.

2.16. The existence in (a) can also be argued with the help of restriction of scalars and normaliza-
tion to reduce to the constant case.

2.17. Without restricting to finite 6tale 9 in (c), compatibility with quotients fails. Indeed, short
exactness of a sequence of Gal(K/K)-modules does not imply that of the corresponding
sequence of Nron models. An example is a nonsemisimple ramified extension H of two
trivial mod p characters: by (b), the Nron model of H is not finite, whereas every extension
of finite S-group schemes must again be finite due to Proposition A.8.

We now consider fppf (equivalently, 6tale, cf. Proposition A.6) torsors under a N6ron (lft) model.
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Proposition 2.18 ([Ray70, Thm. XI 3.1 1)]). Every fppf torsor under a N6ron model is repre-

sentable by a scheme.

We do not know whether representability by schemes fails for torsors under N~ron Wft models.

Proposition 2.19. An fppf torsor T -+ S ander a Niron ift model X - S is a separated smooth

S-algebraic space that has the Niron property for smooth S-algebraic spaces. If X is a Niron model,
then T -* S is of finite type.

Proof. By Propositions A.5 and A.6, T trivializes over an tale cover S' -+ S and is representable by
an S-algebraic space. Every S-algebraic space Z is the quotient of an 6tale equivalence relation of

schemes, so in checking N6ron bijectivity of T(Z) -+ T(Z1 ), one is reduced to the case of a smooth

S-scheme Z. As N6ron property is preserved under 6tale base change, in the commutative diagram

T(Z) :T(Z 5') T(Zs x st')

{a {b {c

T-( K) T((Z5') )K) | T((ZSI ss') K)

with equalizer rows, b and c are bijective, hence so is a, giving the N6ron property of T. The other

claimed properties are inherited from X by descent [SP, Lemmas 0421, 0429, and 041U]. E

Corollary 2.20. For a Niron lft model X - S.,
S§1.17

H1 ( -). Hf'ppf (K, XK) ~ H (K, XK) (2.20.1)

is injective (cf. §4.44 for the notation).

Proof. An fppf torsor under X is determined by its generic fiber due to Proposition 2.19. E

If S is local, it is possible to determine the image of (2.20.1):

Proposition 2.21. Let R be a discrete valuation ring, and set K := Frac R and Ksh Frac Rsh.

For a Niron lft model X over S = Spec R, the image of the injection t from (2.20.1) is the unramified

cohomology subset
I := Ker(H 1 (K, XK) -> H' (Kh, XKsh)),

which consists of all the XK -torsors that trivialize over Ksh. In other words, an XK -torsor T extends

to an X-torsor if and only if T(Ksh) = 0.

Proof. By Proposition A.6, every X-torsor T trivializes over an 6tale cover U -- S. Moreover,
Spec R"h -- Spec R factors through U, so T trivializes over Rfs. This yields Im t C I.

By construction, Rsh is a filtered direct limit of local 6tale R-algebras R' which are discrete valuation

rings sharing a uniformizer with R; if K' = Frac R', then Ksh lin K'. Let T be an XK-torsor

with T(KSi) # 0; we will show that it extends to an X-torsor T, thus proving I c Im t. Since T

is locally of finite presentation, T(Ksh) = linT(K') [LMBOO, 4.18 (i)], so T trivializes over some

K'; we fix the corresponding R'. The descent datum on TK'c with respect to K'/K transports along

an isomorphism of torsors to XK' and then, since N6ron property is preserved under 6tale base

change, to a descent datum on XRI with respect to R'/R, all compatibly with the torsor structure.
This compatibility together with the effectivity of the descent datum on XRI for algebraic spaces

[LMBOO, 1.6.4], equips the descended T --+ Spec R with the structure of an X-torsor trivialized over

R'. By construction, TK - T as XK-torsors.
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3. EXACT SEQUENCES INVOLVING N9RON MODELS OF ABELIAN VARIETIES

The short exact sequences gathered in this section are crucial for the fppf cohomological approach to
Selimer groups and have been used repeatedly in the literature, but their proofs seem hard to locate.

3.1. Open subgroups of A. Let S be a connected Dedekind scheme (cf. @2.1), let K be its
function field, let A --- Spec K be an abelian variety, and let A -- S be its N6ron model. For a
nongeneric s e S, let 4) be the finite 6tale k(s)-group scheme AS/A0 of connected components of
the special fiber A,. For each s, choose a k(s)-subgroup P, c 1, (equivalently, a Gal(k(s)/k(s))-

submodule F8 (k(s)) c: 48 (k(s))). For all s but finitely many, A, is an abelian variety, so 4) = 0
and F, = 4). Consequently, one obtains the open S-subgroup scheme AF c A by removing for each
s the connected components of A, not in F,. By construction, for each S-scheme T, the sections in

A"(T) are those T L+ A for which the composition of f,: T, - A, and A, -+ 4), factors through
r, c D. If P = 0 for each s, one obtains the open S-subgroup A c A that fiberwise consists of
connected components of identity. Of course, r, = (D for all s leads to A4 = A. For s C S, we
denote the base change (A'), by A.

For a closed s c S, denote by i,: Spec k(s) -* S the resulting closed immersion. Since i*A = A,
under the adjunction iZ* -- i8, the homomorphism Ar r,) P corresponds to the homomorphism

A" -+ i8 *Ai i8 ,P mapping f c A"(T) to 7r, o f,. In particular, for every choice of fs cF F,
there is a Cartesian square

Ar( --- A"1 1 (3.1.1)

Proposition 3.2. For all choices of subgroups f, c Fs c 4%, the sequence

0 - A" - A A a@iS*(PS/FS) -+ 0

is exact in S6 t, Stt, and Sfppf.

Proof. Left exactness is clear from (3.1.1) and left exactness of iz,, whereas to check the remaining
surjectivity of a in Sgt on stalks, it suffices to consider strictly local rings (0, m) of Sft centered at

a nongeneric s c S with F # F. Let a c m be the ideal generated by the image of ms,,. In the
commutative diagram

Ap() " L> (Fs/ps)(0/a)

b 4d

AF( /m) c o (17s/fs)(0/m),

b is surjective due to Hensel-lifting for the smooth A' -* Spec 0 IBLR90, §2.3 Prop. 5], c is surjective

due to invariance of the rational component group of the smooth A" Spec k(s) upon passage
k(s)

to a separably closed overfield [EGA IV 4 , 17.16.3 (ii)], whereas d is bijective since (rs/Fs)o/a is
finite 6tale over the Henselian local (0/a, m/a) [EGA IV 4 , 18.5.15]. The desired surjectivity of a(O)
follows (by limit arguments [EGA IV 3 , 8.14.2], a induces a(0) on the stalk at 0). 0
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Let A ) B be a K-isogeny of abelian varieties. This induces A L B on the N6ron models over S.

Proposition 3.3. The kernel A[O] - S 'Is atfine. Every torsor under A[#j for the jppf topology is
,representable.

Proof. Affineness is a special case of [Ana73, 2.3.2]. Representability of torsors is a special case of
Proposition A.7.

Lemma 3.4. The following are equivalent:

(a) A 0 B is quasi-finite;

(b) A 0 L B' is surjective (as a morphism of schemes);

(c) A B is flat.

When the equivalent conditions hold, A0 L B0 is a surjection of fppf sheaves.

Proof. Due to the fibral criterion of flatness [EGA TV3 , 11.3.111 to handle (c), the conditions (a)-(c)
can be checked fiberwise on S. We show that they are equivalent for the fiber at s e S.

Since A, B are fppf over S, by [BLR90, §2.4 Prop. 41, dimA, = dim A, dimB, = dim B, and hence
dim A = dim B. Therefore, by [SCA 3 1 new, VIB, 1.2 et 1.31, (a)<>(b). If #, is flat, then 0,(A') is
both open and closed (loc. cit.), and hence equals B. Thus, (c)->(b). Conversely, if #, is surjective,
it is flat [SGA 3 1 new, VIA 5.4.1], so (b)-->(c).

For the last claim, by (b) and (c), # is fppf, and hence a surjection of represented fppf sheaves. D

3.5. Semiabelian reduction. One says that A has semiabelian reduction at a nongeneric s e S if
A0 is an extension of an abelian variety by a torus.

Lemma 3.6. The equivalent conditions of Lemma 3.4 hold if

(d) A has semiabelian reduction at all nongeneric s c S with char k(s) I deg #.
If # is multiplication by n, then (d) is equivalent to the conditions of Lemma 3.4.

Proof. For a commutative connected algebraic group G over a field k, multiplication by n is surjective
on G, provided that G is a semiabelian variety if char k { n: it is surjective on abelian varieties and
tori for every k and induces an isomorphism on Lie G if char k { n, so [SGA 31 Iew, VIB 1.2 applies.
This gives (d) >(b) by considering the isogeny ',: B -- A with kernel #(A[deg #]), so 0 o = deg 0.

To argue that (a)->(d) if # = n, take an s c S with char k(s) I n. Quasi-finiteness of multiplication
by n prevents A0  from having Ga as a subgroup, so A' is of unipotent rank 0, and hence

A0 is a semiabelian variety as explained in [BLR90, §7.3 p. 178j.

Remark 3.7. For an arbitrary #, (d) is not equivalent to (a)-(c) of Lemma 3.4: take

# = id4 xn: 41 x A 2 - A1 x A2

for an n for which (d) holds for A 2 ; (c) holds for this #, but (d) fails in general since A1 is arbitrary.

Corollary 3.8. Suppose that A 0 B is flat (due to Lemma 3.6, this is the case if A has sermiabelian
reduction at every nongeneric s e S with char k(s) I deg 0). Then A[O] - S is quasi-finite flat and
affine; it is also finite if A has good reduction everywhere.
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Proof. By Lemma 3.4, A -+ B is quasi-finite flat, and A[O] -+ S inherits these properties. Affineness
results from Proposition 3.3 (or also from (SGA 31 new, XXV, 4.11). If A has good reduction, then
A is proper over S, and hence so is its closed subscheme A[O], which then is finite due to quasi-
finiteness [EGA IV 3 , 8.11.1. F]

Corollary 3.9. If char k(s) { deg # for all s e S, then A[O] is the Neran., model of A[0].

Proof. By Proposition 2.10 and Corollary 3.8, A[#] is the schematic image of A[#] -+ A and is
killed by deg 0. Thus, due to Corollary 3.8 and Proposition A.9, A[#] -+ S is 6tale, and one invokes
Theorem 2.13. LI

The analogue of 0 -+ A[O] -+ A ) B -- 0 for A 0 B faces complications due to possibly discon-
nected closed fibers. To state it in Proposition 3.10 (a), note that a choice of Ps c 4) yields 1(P,),
which give the open subgroup BO c B as in §3.1, and #: A" -> B factors through B3(r) + B.

Proposition 3.10. If A A B is flat (e.g., if A has semiabelian reduction at all nongeneric s e S
with char k(s) I deg #, cf. Lemma 3.6), then for all choices r, c 4, the sequences

(a) 0 -+ A" [] -> A A B4 (r) -> 0,

(b) 0 -+ A'[0] -> A' [] -+ sis*(Fs[0s]) -+ 0

are exact in Spp

Proof. In the commutative diagram

0 - AO[#] - A [0] -+ Si*(PFs[P]) -* 0

{o {G tsis*O$s

0 - S B0 
- BS #8 (()) -s 0,

the bottom horizontal sequences are short exact by Proposition 3.2, the left bottom # is surjective
by Lemma 3.4, and the right vertical sequence is short exact in Sfppf because it is so in St due to
exactness of each i, in the 6tale topology. Both claims follow by invoking snake lemma. O

Corollary 3.11. Suppose that A A B is flat. For an isogeny B - C of abelian varieties, which

induces B 0) C on Niron models, and for every choice of F, c 4), the sequence

0 --+ A][ 1 -+ # AAB"P()(o,] -( 0

is exact in Sfppf

Proof. Due to universality of quotients [Ray67, §3 iii)], pulling back Proposition 3.10 (a) along
B4(r[ '] ,'+ 13( gives the claim. L

Remark 3.12. Corollary 3.11 requires no assumption on B -0 C. For instance, it applies when
0 = n and = in are multiplication by n and m isogenies and A has semiabelian reduction at all
nongeneric s e S with char k(s) I n.
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4. GLUEING SCHEMES OVER GLOBAL BASES

Let S be a connected Dedekind scheme and K its function field. For a nongeneric s e S, set
Ks,, Frac Os. The purpose of this convention (note that S K) is to clarify the statemeiit
of Lemma 4.1 by making Os,, and Ks,, notationally analogous to 0' and Kh.

A standard descent lemma 4.1 formalizes the idea that an S-scheme amounts to a V-scheme for a
nonempty open V c- S together with a compatible Os,,-scheme for every s e S - V. We use it in §5
through Corollary 4.4 to reduce questions about group schemes over global bases to the local case.
Its special case Claim 4.1.1 is key for Selmer type descriptions of sets of fppf torsors in §7.

Lemma 4.1. Let s1,..., s. e S be distinct nongeneric points, V := S - {s 1 ,...J, s} the comple-
mentary open subscheme, and F the functor

X F-+ (XV, Xo5 ,1 . .. , Xo0 8 ,, a: (XY)Ks,,, (X0  )Ks,, for 1 i < n)

from the category of S-algebraic spaces to the category of tuples consisting of a V-algebraic space, an
Os,-algebraic space for each i, and isomorphisms a1 , . . , an as indicated ("glueing data'). Mor-
phisms in the target category are tuples of morphisms of V- and 0s,,-algebraic spaces that are
compatible with the aj's.

(a) When restricted to the fall subcategory of S-schemes, F is an equivalence onto the full sub-
category of tuples of schemes that admit a quasi-affine open covering (see the proof for
the definition). The same conclusion holds with Os,s, and Ks,s, replaced by Oh, and

K,, :Frac O or by Os,,i and Ks,,: Frac Os,,j.
'S,si s,si Ss; 5 8

(b) When restricted to the full subcategory of S-algebraic spaces of finite presentation, F is an
equivalence onto the fall subcategory of tuples involving only algebraic spaces of finite presen-
tation. The same conclusion holds with Os,s, and Ks,, replaced by Oh and Kh

SSi S,S1

Proof. In (a), we say that a tuple of schemes admits a quasi-affine open covering if Xv = UQej Uj
and Xos., = Ujc Usj for 1 < i n with quasi-affine (over respective bases) open Uj, Ui~j for

which the ai restrict to isomorphisms (Uj)Ks,,, ~-> (Ui,j)Ks5 . The definition is analogous in the
case of henselizations or completions, or for various categories of tuples considered below. Note that
F takes values in the claimed subcategory: an affine open covering of X gives a quasi-affine open
covering F(X).

Since F is the composite of X -* (Xs_(, 1 , Xo05 l, ai) and its analogue for 82,..., sn E S - {si}

(and similarly for henselizations and completions), induction reduces us to the n 1 case (in (a),
a quasi-affine open covering of an n-tuple descends to a quasi-affine open covering of the first entry
of the triple due to the inductive hypothesis applied to the schemes in the covering). In the sequel
si = s, a, = a, V = S - {s}, and we stop writing Ks,, for K.

Postponing the cases of henselizations and completions, we now prove (a) and (b):

(a) Giving a descent datum with respect to the fpqc V L] Spec Os,s - S amounts to giving
a because there are no nontrivial triple intersections. Thus, F is fully faithful [BLR,90,
§6.1 Thm. 6 (a)]. For essential surjectivity, by [SP, Lemma 0247], the quasi-affine open cover
descends and glues along descended quasi-affine open intersections to a desired X.

(b) Let 7r e K be a uniformizer of Os,,; note that Oss is a filtered direct limit lim R of coordinate
rings of affine open subschemes of S containing s on which -r is regular and vanishes only at
s. For essential surjectivity, given a (Y, Y, a: YK - , YK) with Y -- V and Y - Spec Os,,
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of finite presentation, first spread out Y to Y' -+ Spec R and a to a': Y for

some R as above using limit considerations of [OlsO6, proof of Prop. 2.2]. As in (a), a' gives
a descent datum with respect to V [jSpec R - S which is effective [LMBOO, 1.6.4j, thus
yielding a desired X. Full faithfulness follows from ialoguius limit arguments using 6tale

(or Zariski) descent for morphisms of sheaves on St and [LMBOO, 4.18 (i)].

Before dealing with henselizations and completions we make a preliminary reduction concentrating
on the case of Oh and K',' (that of Os,s and Ks,, is completely analogous). In the categories
described below morphisms are tuples of morphisms which are compatible with the isomorphisms
that are specified as part of the data of an object.

Let W be the target category of F, and W" its analogue in the case of henselizations. We proved that
F is an equivalence when restricted to the subcategories of (a) and (b), so it remains to show that

G: - W, (Y, y, a: YK YK) '-+ Y7 Y 0  h : }< -K K K

is too. Let 9 be the category of Os,,-algebraic spaces and 9 h the category of triples

(Z, Z,: ZKh Z(4)

consisting of a K-algebraic space, an OhS-algebraic space, and an isomorphism as indicated. Let 9^

be the analogous category of triples with 0h and K replaced by Os, and KSs. Let B: 9 +

be the base change functor and & the category of triples

(Y, (Z,Z,) e 9 hy: YK - - Z)

with Y a V-algebraic space. The diagram of functors

le G ) le h (Y'Y, a)| G Y~ h)

(i,\d H t(id,B,id) H I H

S, (Y, (YK, Yo, id), a) (Y (YKIYohI a'Kh ), id) (y, (YK, Z ah), id).
,'s S, S Sss

is commutative up to a natural isomorphism given by the a's. Moreover, H is an equivalence,
because the functor (Y, (Z, Z, 3), y) - (Y, Z, 0 o -yKh ) is inverse to H. Thus, the restriction of G

to appropriate subcategories as in (a) and (b) is an equivalence if and only if (id, B, id) is, which is
the case if the restriction of B is an equivalence. It remains to prove

Claim 4.1.1. Let B: 9 - 9' be the base change functor.

(a) When restricted to the full subcategory of Os,,-schemes, B is an equivalence onto the full
subcategory of triples of schemes that admit a quasi-affine open covering. The analogous

conclusion holds with 0 h, Kh and _9 replaced by Os,s, Ks,, and 9^.
S, S'81

(b) When restricted to the full subcategory of Os,,-algebraic spaces of finite presentation, B is
an equivalence onto the full subcategory of triples involving only algebraic spaces of finite
presentation.

To complete the proof of Lemma 4.1, we prove Claim 4.1.1:

(a) See [BLR90, §6.2 Prop. D.4 (b)].
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(b) The method of proof was suggested to me by Brian Conrad. We first treat the case of Oh

and K' . By construction, 0 is a filtered direct limit of local tale Os,-algebras R which
are discrete valuation rings sharing the residue field and a uniformizer with OS,s. Given
an object T = (Z, Z, " Z -- Z1 h ) of gh with Z -p Spec K and Z -+ Spec Oh

of finite presentation, to show that it is in the essential image of the restricted B we first
descend Z to Z' --* Spec R for some R as above using limit considerations as in [01s06, proof
of Prop. 2.2]. Similarly, K = lim Frac(R) and 3 descends to /3': ZFC(R) - Z
after possibly increasing R. Transporting the descent datum on ZFraC(R) with respect to
Frac(R)/K along 13', one gets a descent datum on Z'ac(R), which, as explained in [BLR90,
§6.2 proof of Lemma C.21, extends uniquely to a descent datum on Z' with respect to
R/Os,,. By [LMBOO, 1.6.4], the descent datum is effective, giving an Os,,-algebraic space X;
by construction, B(X) - T, and by [SP, Lemma 041Vj, X is of finite presentation. The full
faithfulness of B follows from a similar limit argument using 6tale descent for morphisms of
sheaves on (Os,,)gt and [LMBOO, 4.18 (i)].

Remarks.

4.2. As is immediate from fpqc descent, if P is a property of morphisms of schemes (resp., alge-
braic spaces) that is stable under base change and is fpqc local on the base, then analogues of
(a) (resp., (b)) hold after restricting further to subcategories involving only schemes (resp., al-
gebraic spaces) possessing P.

4.3. The functor F commutes with fiber products since those in the target category are formed
componentwise. This continues to hold after restricting to the subcategories of (a) 5 and (b),
and also further to subcategories of schemes or algebraic spaces possessing P as in 4.2 if P
is in addition stable under composition. In particular, we obtain

Corollary 4.4. In the notation of Lemm.a 4.1, the functor

g - (9v) 90s" , iG0,,, c a: ( 9 V)KS,,. -2 (9g9s' i s' f or 1 _< i* 'n) (4.4.1)

is an equivalence of categories from the category of S-quasi-affine S-group schemes to the category of

tuples consisting of a V-quasi-affine V-group scheme, a quasi-affine Os,, -group scheme for each i,
and isomorphisms a1,... , a.,, as indicated. The same conclusion holds with Os,s, and Ks,si replaced

by Oh and Kh8 s or by Os,si and Ks,9. If P is a property of morphisms of schemes stable under

base change and composition and fpqc local on the base, the same conclusions hold after restricting

to subcategories involving only quasi-affine (over their bases) group schemes possessing P.

5. MODELS OF FINITE GROUP SCHEMES OVER GLOBAL BASES

Let S be a connected Dedekind scheme, K its function field, and G a finite commutative K-group
scheme. We study separated quasi-finite flat S-group schemes g equipped with an isomorphism
G ~>n14 gK. Propositions 2.10 and A.11 show that such a G is commutative and allow to assume, as
we do for the rest of the section, that #G = pm for some prime p, in which case 9 is killed by pm.
If S is the spectrum of the ring of integers of a finite extension of Qp, finite flat g are the subject
of a vast body of literature starting with 1T070] and [Ray74. The goal of the present section is to
use Corollary 4.4 to transfer some of the known results over local bases to those over global ones.
Since we cannot prove much otherwise, we assume that char K # p.

5 For (a), a quasi-affine open covering of the fiber product tuple Ti xT T3 is given by the fiber products of the
opens in coverings of T 1 , T 2 , and T3 and is indexed by J1 x J 2 x J3 , where Ji indexes a covering of Ti.
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5.1. S-models. Let V := S[!] be the open subscheme of S obtained by inverting p; the points

s1 . . .,- so of S - V have residue characteristic p. A commutative quasi-finite S-group scheme g
with gK of p-power order is an S-model (of its generic fiber) if gy -+ V is a Neron model and each

- Spec (SS, is finite flat. An S-miodel i s'parated and flat because these properties are fpqc
local; it is also S-affine due to [SGA 31 1ew, XXV, 4.11 (applied to the homomorphism towards the
zero group). A morphism of S-models is a morphisin of S-group schemes. A commutative finite flat
S-group scheme of p-power order is an S-model due to Propositions 2.4 and A.9; allowing gy -+ V
to be N6ron instead of finite flat amounts to allowing ramification away from p, cf. Proposition 2.15.

Proposition 5.2. Let g and N be S-models.

(a) A morphism of S-models g -- W is determined by its generic fiber.

(b) A sheaf of abelian groups E on Sfppf that is an extension of S-models 0 - N -+ -+ g -+ 0
is represented by an S-model.

Proof.

(a) This is a special case of Proposition 2.10 (e).

(b) By Proposition A.8, E is represented by a quasi-finite S-group scheme which is finite flat over
each Os,s. Since EK is of p-power order, S is an S-model by Proposition 2.5. 0

5.3. S-models of a fixed G. These are S-models g -+ S equipped with a K-group scheme
isomorphism a: G K; their morphisms are required to be compatible with the a's. Let
./f(G, S) be the resulting category of S-models of G; by Proposition 5.2 (a), the objects of .YI'(G, S)
have no nontrivial automorphisms. By Proposition 2.15 (a), .1(G, V) is the terminal category. Note

that ./(G, Oss,), l(GKh' IS8) , and 11(Gk, , Os,s,) are simply the categories of finite flat

models of the base changed G, where K :=Fracoh and Ks,,, := FracOs,,,.

Theorem 5.4. The base change functors

1,(G, S) 11,(G, Os,,,) x .. - (G, Os,,,,),
(G, S) -+ /(GKh , I) x - I f(Gh ,S),

s , S , san

_1(G, S) -+ ,(Gks , Os,,,) x ... x ,(Gks, 'Os's.)

are equivalences of categories.

Proof. This follows from Corollary 4.4 by restricting the functors there to appropriate subcategories;
the cases of henselizations and completions being analogous, we explicate that of localizations.
Restrict (4.4.1) to the full subcategories of group schemes that are finite flat over each Oss, and are
N6ron models over V with K-fiber isomorphic to G. At this point, making the latter isomorphism
part of the data of an object identifies the source category with .11(G, S) and the target category
with ,I-I(G, Os,sl) x - x A(G, Os,,,) (both up to equivalences). 0

Remark 5.5. Theorem 5.4 continues to hold after relaxing the definition of an S-model by requiring
it to be separated quasi-finite flat over each Os,,, (and Nron over V). Indeed, such an S-model is
affine [SGA 3 1 new, XXV, 4.1j, so Corollary 4.4 still applies. 6

6 Reliance on loc. cit. here and in §5.1 is superficial: Corollary 4.4 holds with "affine" replaced by "quasi-affine"
throughout, whereas a separated quasi-finite S-scheme is quasi-affine [EGA IV 3 , 8.11.2].
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5.6. Integrally closed subdomains R of a number field K. Necessarily, R is the ring of E-
integers OKS for a possibly infinite set E of finite places of K, namely, the places appearing in
prime factorizations of denominators of elements of R. The Dedekind scheme Spec R has function
fiold K; its nongeneric points correspond to finite places o of K not in >2. The nonempty open
subschemes of Spec OK are the Spec OKN as above with finite E.

Proposition 5.7. Suppose that K is a number field and S = Spec OK,r for an integrally closed
subdomain OK,Z c K (as in §5.6). Fix a finite commutative K-group scheme G of p-power order

(equivalently, a Gal(K/K)-representation G(K) on a finite p-primary abelian group).

(a) A tuple consisting of a finite flat Or-model of GK, for each v 0 E above p arises from a
unique OK,E -model of G. Up to isomorphism there are only finitely many OK,E-models of G.

(b) A finite flat OK,E -model of G exists if and only if G(K) is unrarnified outside of E u {v | p}

and a finite flat O, -model of GK, exists for each v $ E above p. In this case every OKX -model
of G is finite flat.

(c) If each v # E above p has absolute ramification index < p - 1, then up to isomorphism there
is at most one OK,E-model of G.

(d) For OK,E-models g1 and g2 of G, a tuple consisting of a morphism (91)o, -+ (92)ov of
0r-models of GKv for each v $ E above p arises from a unique morphism 9 1 -+ 92 of OK,F,-

models of G, in which case we write 91 > 92. There is at most one morphism 9 1 -92., SO
> defines a partial order on the set of isomorphism classes of OK,E-models of G.

(e) Two OK,. -models g1 and g2 of G have the supremum and the infimum with respect to >.

() If an OK,r-model of G exists, then the set of isomorphism classes of OK,r-models of G has

the unique maximum 9+ and the unique minimum 9- with respect to >.

Proof. Combine Theorem 5.4 with

(a) Finiteness of the set of isomorphism classes of objects of .X1(GKV, O) [Maz70, top of p. 221];

(b) Proposition 2.15 (b);

(c) The corresponding local result [Ray74, Thm. 3.3.3];

(d) Proposition 5.2 (a);

(e) The corresponding local result [Ray74, Prop. 2.2.2];

(f) The corresponding local result [Ray74, Cor. 2.2.3]. I

Remark 5.8. In the case of finite flat models of order p, Proposition 5.7 (a) is [T070, Lemma 4].

Proposition 5.9 (Theorem 1.1 (b)). Let L/K be an extension of number fields, #: A -+ B a

K-isogeny between abelian varieties, S := SpecOL, and AL[] the kernel of the homomorphism

induced by /L between the N6ron models over S. Assume that

(i) A has good reduction at all places v | deg # of K;

(ii) , < p - 1 for every primte p | deg <, where e: maxV,1l ev and ev is the absolute ramnification

index of v.

Then the OL -group scheme AL [#] is determined up to isomorphism by the Gal(L /K,)-module A[O](L).
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Proof. The p-primary decomposition of AL[#] from Proposition A.11 induces the K-rational p-
primary decomposition of the generic fiber, so by Proposition 2.10 (a) and Corollary 3.8, the factors
of the former are AL [,] for K-isogenies 47 of prime power degree, reducing to the case deg 0 = p'.

By Corollaries 3.8 and 3.9, AL[#]Sl] is the N6ron model of the finite 6tale A[#].L, whereas AL[0]0o,

is finite flat for every place w of L above p. In conclusion, A'[#] is an S-model of A[#]/, and, due
to Proposition 5.7 (c), the claim follows if L = K. Thus, AK[#] is determined, and it remains to
apply Proposition 5.7 (a): indeed, an abelian scheme is a Nron model (compare Proposition 2.4),
so in general AL[#]o, = (AK[#] 0 ,)O, where ' is the place of K below w. 0

Remarks.

5.10. For a global field K of positive characteristic prime to deg #, the analogue of Proposition 5.9
is a special case of Corollary 3.9.

5.11. Dropping (ii) but keeping (i) (or assuming instead of (i) and (ii) that A has semiabelian
reduction at all v I deg # and L = K), the proof continues to give the same conclusion as
long as one argues that in the situation at hand AK [0] o0 is determined for each v I deg # (in
the semiabelian reduction case one has to use Remark 5.5 instead of Proposition 5.7 (a)).

Although (ii) excludes the 2 1 deg # cases, Remark 5.11 can sometimes overcome this:

Example 5.12. Let K be a number field of odd discriminant, and let A - Spec K be an elliptic
curve with good reduction at all v 12. Assume that A[2](K.,) # (Z/2Z)2 for every v |2, so A[2]K,
has at most one Ko,-subgroup of order 2 for every such v. We show that under this assumption the
conclusion of Proposition 5.9 holds for 2: A - A, so, in particular, if llVfO CA,v is odd and K is
totally imaginary, A[2] determines Sel2 A by Theorem 1.1.

Remark 5.11 reduces to proving that AK[2]o,, is determined by A[2]K, for each v 12; one of the key
assumptions is the unramifiedness of Kv/Q 2 . We analyze the ordinary and supersingular reduction
cases separately; this is permissible since the cases are distinguishable: in the former, A[2]K, is
reducible, whereas in the latter it is not.

In the supersingular case, by [Ser72, p. 275, Prop. 12], A[2]Knr is irreducible and also an F 4-vector
space scheme of dimension 1. By [Ray74, 3.3.2 30], A[2]0 .r is its unique finite flat Or-model. By
schematic density (cf. Proposition 2.10 (e)) and limit considerations, the descent datum on AK[2]0 nr

with respect to ogr/o is uniquely determined by its restriction to the generic fiber, which in turn is
determined by A[2]K,. Fpqc descent along Or/O, then implies that A[2]K, determines AK[2](q.

In the ordinary case, the connected-6tale decomposition shows that AK [2]o, is an extension of
Z/2Z by (p2)o.. Therefore, since we assumed that A[2]1 -,, determines its subgroup (P2)K,, it

also determines AK[2]o, due to the injectivity of

Extb (Z/2Z, /12) =Hfppf (Ov, A2) -+ Hp p2) KvExt (Z/2Z, p2)

(extensions in the category of fppf sheaves of Z/2Z-modules, compare Example 6.14).

In the remainder of the section we collect several other results about S-models which, due to Corol-
lary 4.4, are consequences of their local counterparts. Unlike in Proposition 5.7, we no longer fix G.

Proposition 5.13. Suppose that K is a number field and S = Spec OK,N for an integrally closed
subdomain OK,E c K (as in §5.6).

(a) Every automorphism of G extends to an automorphism of its maximal and minimal OKZ-
models g+ and g- (cf. Proposition 5.7 (f)).
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If e, < p - 1 for every v E Z above p. then

(b) For OKE-models 9 and R, every homomorphism 9K -- 7 K extends uniquely to W - 7;

(r) For (9K,z -models 9 and 7, -th map Exto,, (s', 7) -+ ExtI(jK, Kl) (ote ios of sheaves
of abelian groups on the fppf site) is injective;

(d) The kernel of a morphism of OK -models is again a OK,Z -model;

(e) Finite flat OK,E-models form an abelian subcategory of the category of abelian sheaves on
Sfppf that is equivalent by the exact generic fiber functor to the category of finite discrete
p-primary Gal(K/K)-modules that are unramified outside E U {v | p} and flat at all v $ Z
above p (i.e., whose restrictions to Gal(Kv,/K,) admit finite flat Or-models for all v $ E).

Proof.

(a) Use Corollary 4.4 to replace morphisms of OK,E-models by morphisms of tuples as in (4.4.1),
and then use the N6ron property to identify V-morphisms of the first entry with their generic
fibers. It remains to prove the corresponding well-known local result, as can be done by
considering Hopf algebras.

(b) After reasoning as in (a), apply the corresponding local result [Ray74, 3.3.6 10].

(c) Combine (b) and Proposition 5.2 (b).

(d) Combine Proposition 2.15 (c) and the corresponding local result [Ray74, 3.3.6 101.

(e) The full faithfulness and essential surjectivity follow from (b), Proposition 2.15 (b) and
Proposition 5.7 (a). For the abelian subcategory claim, existence of products, kernels, and
cokernels within the subcategory follows from (d), Proposition 2.15 (d), and [Ray74, 3.3.6 10].
The generic fiber functor is exact because it is compatible with short exact sequences. D

5.14. F-vector space schemes. Fix a characteristic p finite field F. A group scheme G is an
F-vector space scheme if its functor of points factors through the category of F-vector spaces (in
particular, G is commutative). An S-model of G that has an F-vector space scheme structure
extending that of G is an F-vector space S-model of G. Classification of finite locally free F-vector
space schemes of rank #F over certain bases is the subject of [Ray74j. Due to the restriction [Ray74,
p. 245 (*)], typically this classification does not apply over global bases. We use Corollary 4.4 to
transfer some of the local results to the global setting.

Proposition 5.15. Suppose that K is a number field and S = Spec OK,Y for an integrally closed
subdomain 0K,E c K (as in §5.6). Fix a finite F-vector space K-scheme G.

(a) If the maximal and minimal OK,E-models g+ and g- of G exist (cf. Proposition 5.7 (f)),
they are F-vector space OK,E -models of G.

(b) If #G = #F and for every v E above p, either e,, < p - 1, or e,= p - 1 and the
Gal(Kv/K,)-representation G(Kv) is simple, then the F-vector space scheme structure of G
extends to every OK,E -model.

Proof.

(a) Apply Proposition 5.13 (a) to the automorphisms of G given by the elements of F'.

(b) To extend the automorphisms of G given by the elements of FX to an OK,V-model of G,
argue as in the proof of Proposition 5.13 (a) and apply [Ray74, 3.3.2 2' et 30]. F1
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5.16. Kisin's moduli. Suppose that K is a number field. Fix a continuous Gal(K/K)-representation
on a finite dimensional F-vector space V, which identifies with an 6tale F-vector space K-scheme.
For a place v of K above p, Kisin constructed [Kis09, 2.1.131 a projective F-scheme Wyo whose
F'-points are in bijection with isomorphism classes of F'-vector space Or-models of the oxternsion of
scalars (Vg)F' for every finite extension F'/F (this alone need not determine W y o)

Proposition 5.17. Suppose that K is a number field and S = Spec OK,E for an integrally closed
subdomain OK,E ci K (as in §5.6). Fix a finite F-vector space K-scheme V and set

xv := H!§,v,Kv.o
vip

For every finite extension F'/F, the F'-points of the projective F-scheme XV are in bijection with
isomorphism classes of F'-vector space OK,v-models of the extension of scalars VF'.

Proof. An F'-vector space OK,E-model of V, is an OK,_-model of VF to which the automorphisms
of VF' given by the elements of F' extend. Due to Corollary 4.4 and the N&ron property, it is
equivalent to require this for the base changed Or-models for every v 0 E above p. Thus, the third
equivalence of Theorem 5.4 for G = VF' and S = Spec OK,X; restricts to that between categories
involving only F'-vector space models.

Remark 5.18. Proposition 5.17 and the Weil conjectures prove the existence of algebraic integers
al,..., aa and 01, .. ,#b such that for every n and a degree n extension F'/F, the number of
isomorphism classes of F'-vector space OK,E-models of V' is a' + ' '+ ce - --.. - o

5.19. p-divisible S-models. Returning to general S, a p-divisible S-model of height h is a sequence

g = (g[pn], in)no of S-models g[p'] for which #g[p] K = pnh and

0 -, g[pn] i g[pn+ P) gpn+1 ] (5.19.1)

is exact for every n. A morphism g -. 71 of p-divisible S-models (of possibly distinct heights) is a
compatible with the in's sequence of morphisms g[pn] -_ [pn] of S-models; thus,

Hom(g, H) = lmHom([p"], N[p']).

Evidently, go, go0 , g -, and 9 K are p-divisible groups of height h over respective bases.

Since char K 0 p, the continuous Gal(K/K)-representation g(K) := limg[pn](K) on a finite free

Z,-module of rank h determines the 6tale gK. The category of p-divisible S-models contains that
of p-divisible groups over S as the full subcategory of g with all g[p'] finite; much like in §5.1, the
difference between the two categories stems from the possible ramification of g(K) away from p for
an arbitrary p-divisible S-model 9.

Tate's full faithfulness theorem for p-divisible groups continues to hold for p-divisible S-models:

Proposition 5.20. The generic fiber functor from the category of p-divisible S-models to that of
p-divisible groups over K is fully faithful, i.e., for p-divisible S-models g and 7-, every Zp-linear

homomorphism g(K) --+ 'H(K) of Gal(K/K)-representations is induced from a 'unique morphism
g -- X. In particular, a p-divisible S-model is determined by its generic fiber.

Proof. Due to Corollary 4.4 and the Nron property, giving a morphism 9 -+ 'H amounts to giving
g(K) - 7H(K) (i.e., a morphism of the generic fiber p-divisible groups) together with its extensions
to morphisms 1o ,- , ,. The latter exist and are unique due to [Tat67, Thin. 41. 0
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Raynaud's criterion for existence of a p-divisible model continues to hold, too:

Proposition 5.21. For a p-divisible givup G =- (Gp"], i'n)jo over K, the following are equivalent:

(a) G has a p-divisible S-model;

(a') Each G~p'] has an S-model;

(b) G extends to a p-divisible group over every Os,s,;

(b') Each G[p"] has a finite flat model over every Os,s,.

The same conclusion holds if in (b) and (b') one replaces G, G[pn], and Oss, by GKh , G p ]Kh

and oh or by Gks, Gpf] and OsSi .
and C, S,ad.5A

Proof. We treat the case of localizations; those of henselizations and completions are similar.

By [Ray74, 2.3.1], (b)<->(b'), whereas (a)>(a')-->(b') are evident. We prove the remaining (b)-->(a).

By Theorem 5.4, the layers of the extensions over Os,,, give rise to S-models g[if] of G[pn], whereas

Corollary 4.4 and the Neron property furnish extensions

Zn: g[pP] --+>![p+1] of in: G[pn] -+ G[pn+l.

The remaining exactness of (5.19.1) can be checked fpqc locally and hence follows from Proposi-

tion 2.15 (c) and the definition of a p-divisible group over Os,,,.

6. CLOSED SUBGROUPS OF N9RON MODELS

Let S be a connected Dedekind scheme and K its function field. The main result of this section,
Theorem 6.1, yields an obstruction for an S-group scheme g to occur as a closed subgroup of

a Nron (lft) model over S. The obstruction is trivial for finite flat g, and we investigate the

possibility of commutative such g always occurring as closed subgroups of Nron models in the

discussion following Question 6.5.

Theorem 6.1. For an S-group scheme g, the map

Hfppf(S, g) -+ HJ)pf(K, gK) (6--

(cf. §A.4) is injective if there is a closed immersion g <- X of S-group schemes with either

(a) X a Niron lft model, or

(b) X commutative satisfying

(i) X -+ S is separated and locally of finite presentation,

(ii) X(S) -+ X(K) is surjective, and

(iii) Hfpp (S, X) Hlpf (K, XK) is injechive.

Proof. In both cases, by replacing g with the schematic image of its generic fiber and invoking

Proposition 2.11, we may and do assume that g is flat.

(a) In terms of descent data with respect to a trivializing fppf S' -+ S, an fppf G-torsor T is

described by the automorphism of the trivial right !gs'xss'-torsor given by left translation by

a g e g(S' x s S'). The image of g in X(S' x s S') describes an fppf X-torsor TX; by descent,

there is a g-equivariant closed immersion T c TX.
29



For generically isomorphic fppf g-torsors 7T1 and Ti, take a common trivializing S' -> S.
For the injectivity of (6.1.1), we seek a -torsor isomorphism a: 1 - 7-7 2. In terms of
descent data, an isomorphism aK: ( K1)[ -- * (T2)K of right gjK-torsors is induced by left
multiplicstion by a certain h e (S'); its imige in X(S') extends aK to "! mX;orsor
isomorphisi #K: (7)K - (T)K. By Proposition 2.19, OK extends to an X-torsor
isomorphism 13: Ti -- + TX. Due to flatness of 'N -- S, the schematic image of ('N)K T"
is TN [SP, Lemma 089E]. Thus, # restricts to a desired a: T1 -+ 7i by Lemma 2.8.

(b) By Proposition A.13 (d), Q := X/g is a commutative separated S-group algebraic space. By
Proposition 2.10 (e), q is injective in

X(S) > (S) A HLS f ) H1 Pf (S, X)

11 r
X(K) > (K) H1 Hjf (K,!jK) > PT1 K X)

and it remains to apply the four lemma. D

Since a closed subalgebraic space of a scheme is a scheme, Proposition 2.18 and the proof of Theo-
rem 6.1 (a) reprove a special case of [Ana73, 4.D]:

Corollary 6.2. Every torsor under a closed subgroup scheme of a Niron model over S is repre-
sentable by a scheme.

Theorem 6.1 gives no obstruction for proper 9:

Proposition 6.3. For a proper flat S-group scheme g,

Hfppf(S, g) -1 H,f (K, 9 K)

(cf. §A.4) is injective.

Proof. For an fppf Q-torsor T, let Tg := AutcT (the fppf sheaf of g-automorphisms of T) be the
corresponding inner twist of 9 (compare [Gir7l, 111.1.4.8]). Since 7 is fppf locally isomorphic to 9,
it is a proper flat S-group scheme [SP, Lemma 04SK], [Ana73, 4.B]. By [Gir7l, 111.2.6.3, V.1.5.1.2],
there is a commutative diagram

HjfpS fp) ~ j,(S 7g)

I I
H1 f(K !9K) - ; Hjf,(K, ITgK)

in which the horizontal "subtraction of the class of T' (resp., TK) isomorphisms map the class of
T (resp., TK) to the class of the trivial torsor. Replacing 9 by Tg and a generically isomorphic to
T fppf C-torsor T' by the corresponding Tgtorsor it remains to argue that a generically trivial
g-torsor T is trivial. We fix such a T, which is a scheme [Ana73, 4.D).

Fix a p e T(K) with the intention of lifting it to a P e T(S). Since 7T inherits properness from

9, the valuative criterion extends p to ps e T(Os,s) for every s e S. Each ps spreads out to a
neighborhood U8 of s, compatibly on intersections U8 r U, by Proposition 2.10 (e), and glueing
gives a desired P. l

30



Remark 6.4. Proposition 6.3 applies to finite flat S-group schemes G. Its conclusion also holds for
the commutative S-models of §5.1: letting T be a generically trivial torsor under an S-model 9,
a P e T(K) extends to an S[j]-point due to Proposition 2.19 and also to an Os,s,-point for each

s. due to properness of To,, ; hence, Lemma 1.1 (a) extends P to an S-point trivializing T. In

conclusion, Theorem 6.1 furnishes no obstruction regarding Questions 6.5 and 6.5':

Question 6.5. For a number field K, is every commutative finite flat OK-group scheme a closed

subgroup of a Niron model of an abelian variety?

Question 6.5'. For a prime p and a number field K, is every OK-model (cf. §5.1) a closed subgroup

of a Nfron model of an abelian variety?

Remarks.

6.6. By Proposition A.11, Question 6.5' generalizes Question 6.5.

6.7. The answers are negative if one insists on abelian schemes (which are Nron models, cf. Propo-
sition 2.4): the only abelian scheme over Z is the trivial one [Fon85, p. 517 Corollaire],

[Abr87, Thin. 5].

6.8. Over local rings embeddings of finite flat group schemes into abelian schemes are possible
due to a theorem of Raynaud [BBM82, 3.1.11 (and [Mat89, 7.10]).

In the remainder of the section we discuss variants of these questions, settling the K Q case:

Proposition 6.9. Fix a prime p = char K. If S has at most one point s of residue characteristic

p, then every S-model G (cf. §5.1) is a closed subgroup of the Niron model A of an abelian variety

A = AK having good reduction at s (if s exists).

Proof. If no such s exists, then G is a Nron model itself. Take a closed immersion GK +-* A into
an abelian variety over K (construct it over a finite separable extension trivializing G and take
restriction of scalars [CGP10, A.5.1, A.5.5, A.5.7, A.5.9], [BLR90, §7.6 Prop. 5 (f), (h)]). Letting
A -> S be the N6ron model of A and 71 the schematic image of GK -+ A, Propositions 2.10 and A.9
with Corollary 2.14 give the desired g ~7.

If s exists, then [BBM82, 3.1.1] gives a closed immersion i: Go-s Aos, of Os,,-group schemes

into an abelian scheme, which by Proposition 2.4 is the N6ron model of A := (Aos,,)K. Letting

A -- S be the Nron model of A, Proposition 2.3 (a) justifies the notation, whereas i spreads
out [EGA IV 3 , 8.8.2 (i) et 8.10.5 (iv)] to a closed immersion Gu --- AU of U-group schemes for
some open U c S containing s. As in the first paragraph, the unique Gs-{s) -- As_, 1 extending

GK ---+ AK is a closed immersion and similarly over U n (S - {s}), so a desired closed immersion

G -* A results by glueing.

Remarks.

6.10. For a prime p # char K, let S,,) be the semilocal Dedekind scheme obtained from S by

localizing away from p. The proof above continues to answer Question 6.5' affirmatively as

long as Gs, - S(p) is a closed subgroup of the Nron model of an abelian variety.

6.11. The answer to Question 6.5 is negative if G is allowed to be separated quasi-finite flat. For

instance, an open subgroup G of a finite 6tale OK-group scheme K with GK = K but!9 = K
cannot be a closed subgroup of a Nron model due to Proposition 2.4 and Corollary 2.14.

To construct such G, take V = Z/pZ and remove the closed subscheme complementary

to the identity section in some nongeneric fiber.
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6.12. For an S-flat closed subgroup g of a Neron model X and a smooth S-scheme T., due to
Proposition 2.10 (c), 9(T) identifies with the set of S-morphisms T - A whose generic fiber
factors through 9 K. In particular, 9(T) -+ 9K(TK) is bijective due to the N&ron property
of X. Failir of this bijectivity obstructs realizing g as a closed subgroup of a N6ron m o

In Remark 6.11 this is witnessed with T = .

Question 6.13. For local S, which commutative separated quasi-finite flat S-group schemes are
closed subgroups of a Niron model?

Example 6.14. We construct a commutative separated quasi-finite flat group scheme 9 over
S Spec Zp for which, due to Theorem 6.1, failure of the injectivity of Hppyf(S, 9) -- HJf(K, 9 K)
obstructs being a closed subgroup of a N6ron model. Due to Corollary 2.14, we seek non-6tale 9.

Since 1 # ZP /Z,"" ~ HJ,(S, ),) ~1Ext1(/pZ, y) (extensions in the category of sheaves of
Z/pZ-modules on Sfppf), there is a nonsplit extension

0 -+ [pp -+- 3' -+ Z/pZ S-+0. (.41

By Proposition A.8, 'H is represented by a finite flat S-group scheme. Let U c- Z/pZ be the open
subgroup obtained by removing the closed subscheme of the special fiber complementary to the
identity section, set 9 :=W X /p U, and observe the commutative diagram

0 - ftp - -* U -+ 0

0 - P- N - Z/pZ - 0.

By construction, 9 is an open subgroup of W, so it is separated quasi-finite flat (but not 6tale because
it admits a nontrivial homomorphism from upp). It remains to argue that HJ (5, 9) A Hj,,f(K, aK)

is not injective. Since -- S is proper and (6.14.1) is nonsplit, 7H(K) = W(S) = p (S) = 0.
Therefore, since -/9 ~ Z/pZ /U, the injectivity of a would entail that of

(Z/pZ C/U) (S) - (Z/PZ /U)(K) = 0,
which fails because (Z/pZ /U)(S) contains (Z/pZ )(S) ~ Z/pZ.

7. SELMER TYPE DESCRIPTIONS OF SETS OF TORSORS

The main result of this section is Theorem 7.2, which forms the basis of our approach to fppf
cohomological interpretation of Selmer groups by describing certain sets of torsors by local condi-
tions. In Proposition 7.5 it leads to a short reproof of a result of Mazur that gives 6tale (or fppf)
cohomological interpretation of Shafarevich-Tate groups.

Lemma 7.1. Let R be a discrete valuation ring, Rh its henselization, and set K := Frac R and
K -: Frac R h. For a flat R-group algebraic space 9 of finite presentation, if the horizontal arrows in

Hfpp(R, )C - HJppf(K, gK)

I I
Hjfppf(R, Ia) fp Hj(K, I~a

(cf. §A.4) are injective, then the square is Cartesian. The same conclusion holds under analogous

assumptions with R and Kh replaced by R and K if 9 is quasi-affine.
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Proof. We first treat the case of Rh and Kh. We need to show that every QK-torsor TK which,
when base changed to K", extends to a gh-torsor TRI., already extends to a g-torsor T ) Spec R.

By Claim 4.1.1 (b), TRh descends to an fppf R-algebraic space T, and various diagrams defining the

G-8ction descend, too. To argue that T isz a G-torsor, it remains to note that,

gxJ T - 'T xf T, (g,t) '--- (gt,t) (7.1.1)

is an isomorphism, because it is so over Rh. In the similar proof for R and K, to apply Claim 4.1.1

one appeals to Proposition A.7. E

Let S be a connected Dedekind scheme and K its function field. As in §4, to clarify analogies in

Theorem 7.2, we set Ks,, := Frac Os,, for a nongeneric s e S.

Theorem 7.2. For a flat S-group algebraic space g of finite presentation, if the horizontal arrows

in (the products are indexed by the nongeneric s e S)

H1 Pf (S, 9)Y > Hjf,(K, !K)

1 1(7.2.1)
H HPf (Os,, S % )(- H-is H, f(KS,S, gKs,,)

(cf. §A.4) are injective and so is

Hfp(V, g) -> Hfp(K, 9K) (7.2.2)

for every open V c S, then (7.2.1) is Cartesian. The same conclusion holds with Os,s and Ks,s

replaced by ',, and Ks,, (resp., Os,s and Ks,s if g is a quasi-affine S-group scheme), if in addition

the bottom horizontal arrow in (7.2.1) stays injective with Os,s and Ks,s replaced by Oh and Kh8

(resp.. Os,s and Ks,s).

Proof. By Lemma 7.1, assuming injectivity of the bottom horizontal arrow, the diagram

U1 1-FS Hjff(Os,, ) 90s" Hjf(KS,, gKs,,)

t t

Us ~ ~ ' Hj,,,( ,g ) :CHj,(K,, S')

is Cartesian and likewise for Os,, and KS,s. It remains to argue that (7.2.1) is Cartesian.

We need to show that every gK-torsor 7K which extends to a gos,-torsor To9s,s for every nongeneric

s e S already extends to a g-torsor T. Since TK - Spec K inherits finite presentation from gK, by

tOlsO6, Prop. 2.2 and its proof] and [LMBOO, 4.18 (i)], for some nonempty open U c S, it spreads

out to a T -+ U which is faithfully flat, of finite presentation, has a g-action, and for which the

analogue of (7.1.1) over U is bijective. Consequently, T is a gu-torsor.

To increase U by extending T'V over some s e S - U, use limit arguments as above to spread out

Ts to a g!w-torsor 7 jv over some open neighborhood W c S of s. Since (7.2.2) is injective with

V = U r1 W, the torsors T and 't.r are isomorphic over U n V, permitting us to glue them and

increase U. Iterating we arrive at the desired U = S.
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Corollary 7.3. Let #: A - B be a K-isogeny between abelian varieties, and A[#] the kernel of the
induced S-homomorphism between the N6ron models. The square

H1f(SA[#])C H'>4K, A[O])

Hs H f(Os,s, A[# 5s - s Hjf (Ks,sj A[#]k )

is Cartesian (the products are indexed by the nongeneric s e S).

Proof. Theorem 7.2 applies due to Proposition 2.3, Theorem 6.1, and Proposition 3.3. II

Remark 7.4. Due to Remark 6.4, another possible choice for g in Theorem 7.2 is a finite flat
S-group scheme or an S-model.

We now use Theorem 7.2 to give an alternative proof of the results of [Maz72, Appendix].

Proposition 7.5. Suppose that S has a finite residue field at every nongeneric point. Fix an abelian
variety A -- Spec K, its Niron model A -- S, and set

LU(A) := Ker (H (S, A) -- HM ( ,
S

where the product is indexed by the nongeneric s e S.

(a) Let cs be the local Tamagawa factor of A at s (i.e., cs is the number of connected components
of A, possessing a rational point). Then

(H't (S, A) : ELI(A)] H cs.
S

(b) EL(A) = Im(H 1 (S, A 0 ) - H (S, A)).

(c) II(A) = Ker(H 1(K, A) -+ HsH 1 (Ks,, A)).

(d) If S is the spectrum of the ring of integers of a number field or a proper smooth curve over
a finite field and 11(A) := Ker(H1 (K, A) -* H, H1 (K, A)) (the product is indexed by the
places of K) is the Shafarevich-Tate group of A, then E11(A) c EL(A) and

[M(A) : 11(A)] < 11 #iro(A(Kv)) < 2#{realv}.dimA,
real v

where -To(A(Kv)) is the group of connected components of the compact real Lie group A(K.).

(e) 1H(A) is finite if and only if so is Hit(S, A).

Proof. Smoothness of A -+ S permits the interchangeable use of 6tale and fppf cohomology groups,
cf. Proposition A.2 (a).

(a) Indeed, it will be proved in Lemma 8.6 that #H1t(Os,s, As,) -= c.

(b) Combine the cohomology sequence of the sequence from Proposition 3.2 with Lemma 8.6.
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(c) Indeed, Theorem 7.2 and Corollary 2.20 give the Cartesian diagram

(S, A) H 1 (K, A)

I1 I
IL H ((j. AS 0 )- H8 H1 S(K 1, A).

Working with henselizations suffices thanks to the injectivity of

H'(K h, 8 A) -+ H 1 (Kss, A),

for which we refer to fBLR90, §3.6 Cor. 10] (see also Proposition 2.18), and the bijectivity of

H 9/(O1, Ah ) -A H6t (Os,s, A.s)

which follows from Proposition A.2 (b).

(d) Since H1(K,A) ~ ro(A(K,)) and #7ro(A(Kv)) ; 2dinA for real v (compare [GH81,
1.1 (3) and 1.3]), the claim follows from (c).

(e) Combine (a) and (d).

8. IMAGES OF LOCAL IKUMMER HOMOMORPHISMS AS FLAT COHOMOLOGY GROUPS

8.1. The image of the Kummer map. For a field k and a k-isogeny #: A -+ B of abelian
varieties, Proposition 3.10 (a) yields the exact sequence

0 -- A[O] - A -0+ B - 0 (8.1.1)

in the fppf topos of k. Its cohomology sequence gives the Kummer map B(k) -O Hflpf (k, A[O])

with image B(k)/#A(k) -= Im K. c Hjf(k, []).

If char k { deg # and 4': B -+ A is the isogeny with ker 4 = O(A[deg #]), then d Lie - is the

inverse of Lie 0, proving 6taleness of # [BLR90, §2.2 Cor. 10], [SGA 3 1 new, IVB 1.3]. In this case, #
is an 6tale surjection, (8.1.1) is exact already in the big 6tale topos, A[#] -+ Spec k is finite 6tale, and

A.21.17

HjPpf(k, A ) iLH6 (k, A[]) H (kA[#]),

which restrict to identifications of the images of Kummer maps.

In this section we compare Im tg with other natural subgroups of Hlpf (k, A[O]) for k as in

8.2. The setup. For the rest of the section, let S = Spec o for a Henselian discrete valuation ring 0,
let k = Frac o, let F be the residue field of o, let i: Spec F -- Spec o be the closed point, let 0: A -+ B
be a k-isogeny of abelian varieties, let #: A -+ B be the induced S-homomorphism between the
N6ron models, and let (DA and <DB be the stale F-group schemes of connected components of A, and
B,; write 0 for 0,: A, - B, and also for the induced (DA -+ <DB. We use various open subgroups of
A and B constructed in §3.1.

8.3. The three subgroups of interest. The first one is Im K0 C Hj1 f (k, A [0]) from §8.1.

The second subgroup is the image of H' , (o, A[O]) a H'Pf (k, A[0]). By Theorem 6.1, a is injective,
and we identify H f,(o, A[#]) Im a c Hf' f(k, A]).
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The third subgroup is defined if char k { deg # (so A[O] is 6tale, cf. §8.1); it is the unramified subgroup

H:=(kA[) Ker(HI (k, A[#]) -+ H (kh ,A[O])) c H'(k, A[]), (8.3.1)

where kh := Frac os/. If o is the ring of integers of a nonarchimedean local field k, then ks" is its
maximal unramified extension, and (8.3.1) recovers the usual unrainified subgroup.

While Im KO is used to define the #-Selmer group, Hfl(o, A[#]) and Hr(k, A[O]) are easier to study

as they depend only on A[#]. We investigate In K by detailing its relations with H1Pf (o, A[O])

and Hnr(k, A[O]) in Propositions 8.8 and 8.9.

Lemma 8.4. If F is finite and G -+ Spec F is a commutative connected algebraic group, then

H-(F, G) = 0 for > 1.

Proof. The case j > 1 holds since F has cohomological dimension 1 and G(F) is a torsion group (as
F is finite), and the case j 1 is a well-known result of Lang [Lan56, Thm. 2]. I

Lemma 8.5. If Gal(F/F) Z and.Al is a finite discrete Gal(F/F)-module, then

#H 0 (F, M) = #H 1(F, M).

Proof. The maps in H1 (F, M) = lim H (Fn/F, MGa1(F/F,,)) are inflation injections, whereas) Ii,.:F]=n
#H1(F,/F, MGa1(F/Fn)) = #H(F, MA) [Ser79, VIII.§4 Prop. 8].

Lemma 8.6. Suppose that F is finite. For a subgroup F c 4)A and j >, 1, pullback induces

isomorphisms Hpf(o, A") - Hi(F, F). In particular, #Hjf,,(o, A') #F(F) and HfJpf (o, Ar) = 0
for j >, 2.

Proof. Combine the cohomology sequence of 0 -+ AF. -+ A -+ F - 0, Proposition A.2 (b), and
Lemmas 8.4 and 8.5. El

8.7. The local Tamagawa factors. These are CA #DA(F) and CB := ##B(F), i.e., the
numbers of rational components of the special fibers of the NMron models A and B. If A and B
have good reduction, i.e., A and B are abelian schemes, then CA = C = 1. The sequences

0 -LDA[#](F) -+DA(F) -+ ((DA))(F) - 0,

0 - (#(<DA))(F) 4B(F) -> ( B/OtA))(F) 0

of discrete Gal(F/F)-modules are exact, and hence

___ _ ##A[](B(F) #) (F). (8.7.1)
#(O(<bA))(F) ' #(#('DA))(F) (<b4A)

We now compare the subgroups Im s and Hjf,,(o, A[#]) of Hj f (k, A[#]) discussed in §8.3:

Proposition 8.8. Suppose that F is finite and A + B is flat (the latter assumption holds if A has
semiabelian reduction in case char F | deg #, cf. Lemma 3.4).

(a) Then

H Afflpf(o, A[O]) #<D(F) (8.7.1)
# 1 #(D4](F),

HA fppf(o, A [#]) n Im KO #(#(<>A))(F)

IM no #<DB(F) (8.7. 1) # 4B)()
# 1 - # (F).

H (0, A[#]) n Im ##< )()#36
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(b) There is an injection

Hpp (o, A[#]) n-u Im Kb
(B ) (IF).

0(<bA) J

(c) If deg # is prime to CB, then 4)B (F) = (44))(F), and hence, by (a), Im KO C H' Pf(o, A[O]).

(d) If deg # is prime to CA, then DA (F) = (0(4A))(F), and hence, by (a), HJf,,f(o, A[#]) C Im t.

(e) If deg # is prime to CACB, then Im K= HjPf,(o, A[O]).

Proof.

(a) Let Hjfl,(#) denote the map HjfPP(o, A) -+ H lf (o, BO('A)) induced by #. The short exact

sequence 0 -* A[O] -+ A - B(W^) -+ 0 of Proposition 3.10 (a) together with A.12 (b) give
the commutative diagram

0 -* B9("^)(o)/#A(o) -i Hj,(o,A[#]) Ker H () - 0

0  B(k)/A(k) f H Pf (k, A [0]) +H'Pf(k, A)[#] 0,

where the injectivity of the vertical arrows follows from the N6ron property and Theorem 6.1.

By Lemma 8.6, Hjff(#) identifies with H 1 (F, 4DA) h H 1 (F, (<DA)) induced by 0; moreover,
h is onto. Since

Hjlf (o, A[0]) Kerh
nKer H

Hfppf (o, A[O]) n Im K0 "

and

#Kerh #H(F, b4A) 8.5

#s K O er h A
the first claim follows. On the other hand,

Im o B(k)/#A(k)

Hjfpp(o, A[#]) n Im'e B 4
A)(o)/#A(o) -

B(o)/#A(o)
BI(IA.) (o)1#A(o)

Lemma 8.6 and the 6tale cohomology sequence of 0 -- B*^) -+ B -+ i*(<DB/#(4A)) -+ 0

from Proposition 3.2 give the exact sequence (cf. also Proposition A.2 (a))

0 13(o)
0 30A (0)

(F) --) H 1 (F, 0(4)A)) -+ H 1 (F,CD B) - H F,

where we have used the exactness of i for the Rtale topology to obtain the last term.

Combining (8.8.1) and (8.8.2) yields the remaining

(Hi ( [Im K0)

H jppf((, A[#]) n ImK,4

#(<bB/O(DA))(F) -#H'(F, 4<B)
#H 1 (F, 0(4)A)) - #H1(F, <DB A

8.5 #4 (F)

#(04A,))(F).

(b) Combine (8.8.1) and (8.8.2).
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(c) Let '7: B -* A be the isogeny with kerV$ = O(A[deg#]), so 0 o # = deg 0, and thus also
o = deg <k. If (deg 0, #<D3(F)) = 1, then

'kB(F) = (degq#)(<B(F)) c ((degO)(<>B))(F) c (#(<A))(F) c <}(F),

giving the desired 4<3(F) = (#(<DA))(F).

(d) Considering 4) as in the proof of (c), <4A[] c <4A[deg #], so if (deg 0, #<bA(F)) = 1, then
4A [0](F) = 0. The resulting (DA(F) --+ (OA)(F) is onto, since #H 1(F, <DA [#]) = (F)

(e) Combine (c) and (d). E

We now compare the third subgroup Hnr(k, A[O]) c H(k, A[#]) of §8.3 to Im .p and H'ppf(o, A[O]):

Proposition 8.9. Suppose that char k { deg 0.

(a) The Niron model Q -) Spec o of A[#] -> Spec k exists and is 6tale.

(b) Hf1,f(o, ) -+ H 1(k, A[0]) is an isomorphism onto Hr(k, A[0]).

(c) The image of Hf1,,(o, A[O]) -> H 1 (k, A[O]) contains H Ar(k, A[O]).

(d) H 1r(k, A[#0]) c Imrno if in addition

(a) F is finite,

(b) A -) B is flat if char F I deg 0, and

(c) deg # is prime to CA or, more generally (cf. Proposition 8.8 (d)), #DA(F) = (#(DA))(F)

(e) If charF { deg 0, then Hf'ppf(o, A[#]) = Hjr(k, A[O]).

(f) Im np = Hf1,(o, A[O]) = Hir (k, A[#]), if in addition

(i) F is finite,

(ii) char F { deg q, and

(iii) deg 0 is prime to CACB or, more generally (cf. Proposition 8.8 (c)-(d)),

#<DA(F) = #(#(<A))(F) = #DB(F).

Proof.

(a) By 8.1, if char k t deg 0, then A[O] -* Spec k is finite 6tale, so Proposition 2.15 applies.

(b) This is a special case of Proposition 2.21.

(c) Due to (b), it suffices to find an o-homoinorphism 9 -+ A[O] inducing an isomorphism on
generic fibers, which is provided by Theorem 2.13 (and §2.12).

(d) By Proposition 8.8 (a), Hf1,,(o, A[0]) c Imi i'g, so the conclusion results from (c).

(e) This follows from (b), because if char F { deg #, then 9 = A[#] by Corollary 3.9.

(f) By Proposition 8.8 (a), Im n = H=fpp(o, A[#]), so the conclusion results from (e). E
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9. SELMER GROUPS AS FLAT COHIOMOLOGY GROUPS

Let K be a global field. If K is a number field, let S = Spec OK; if K is a function field, let S
be the proper smooth rnrve with function field K. A noinrchinedean place v of K corresponncd

to a closed s E S, rendering K,, O, and IF synonymous to Ks,., 1s, and k(s). This section
is concerned with relations between Selmer groups and certain flat cohomology groups of S: we
investigate Selmer groups of abelian varieties in §§9.7-9.10 and also those associated to an S-model
in §§9.2-9.5.

9.1. Selmer structures. Fix a finite discrete Gal(K/K)-niodule Al. A Selmer structure on Al
is a choice of a subgroup of H1 (K,, M) for each place v such that for all v but finitely many, the
unramified subgroup Hnkr(Kv, -A) c H1 (Kv, Al) is chosen (compare [MR07, Def. 1.2]); its Selmer

group is the subgroup of H1 (K, M) obtained by imposing the chosen local conditions, i.e., it consists
of the cohomology classes whose restrictions to every H'(Kr, -l) lie in the chosen subgroups.

9.2. The Selmer structure of an S-model g with #gK = p". It is given by the subgroups

H1 Hi(KV, gK ) ~I ifvt, and (9.2.1)

H (Kv, gK,) c H'(Kg KJ, if v | 00,

which is a legitimate choice by Remark 6.4 and Proposition 2.21 (implicitly, p # char K). By The-
orem 7.2 and Remark 7.4, the resulting Selmer group is nothing else but Hfl,(S, ) c H 1 (K, 9K),

which is finite, being contained in the finite (cf. [Mil06, 11.2.13 (a)]) H1 (S[1] , S[±) c H1(K, gK)

(only the conditions away from p are imposed).

Example 9.3. If K is a number field and 9 = Z/pZOK ,then (9.2.1) consists of the unramified sub-

groups for v { cc. The resulting Selmer subgroup of H1(K, Z/p"Z) Homcnt(Gal(K/K), Z/p"Z)

consists of the homomorphisms unramified at all the finite places. By the theory of the narrow
Hilbert class field, it identifies with Hom(Pic+(OK), Z/p"Z), where Pic+(OK) is the narrow class
group of K. This is consistent with the description of HAT.T (OK, Z/p"Z) ~H(OK, Z/plZ) as

Homlcont (761t (OK), Z/P Z)-

9.4. Morphisms of S-models and Selmer groups. The map H 1 (K, 9 K) - H 1 (K, WK) induced

by a morphism g L 71 of S-niodels respects the Selmer subgroups: Hjf (S, ) c H 1(K, gK) maps

into Hf(S, S-1) c H1(K, WK). In particular, if g and 71 are S-models of a fixed G as in §5.3,
then f induces the inclusion H,f(S, g) W H,(S, N) inside H 1 (K, G). Motivated by the local

analogue (admitting a positive answer [Maz70]), one may ask whether an S-model is determined by
its Selmer group, i.e., whether the functor

g F (9K, Hfp(Sg) c H 1 (K, gK))

is fully faithful. The answer is negative:

Example 9.5. For a prime p, let K = Q((p,) for some n > 1 excluding the (p, n) = (2, 1) case and

consider S-models of G = Z/pZ K Letting v be the place above p, by the Oort-Tate classification

[T070, pp. 14-16 Remarks 1 and 5] and [Tat97, 4.4.1 (c)], there are pfl 1 + 1 nonisomorphic finite

flat Or-models of GK, which correspond to factorizations (1 - n)(P-1)i Pp for

0 < i P" and are linearly ordered, i.e., each maps to the next one. Proposition 5.7 (a) and

(d) therefore give p"- + 1 nonisomorphic linearly ordered S-models of G. If p is regular, i.e., p
does not divide the class number of K (e.g., p = 2 [Was97, 10.5]), then the Selmer groups of these
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S-models are subgroups of the (P -1) + 1)-dimensional Hj(S[.], [t,) ~ Z[(, 1] X/Z[(pn, I]xP

(only the conditions away from p are imposed). Due to dimension reasons, for p = 2 and u > 3 this
space cannot have a flag of p'- + I distinct subspaces, forcing some Selmer groups to coincide. We
do not know, however, if distinct S-models of Z/pZ can have coinciding Seiner groups for odd

p. Their defining local subgroups at v have been worked out by Mazur and Roberts [MR.69, 9.31,
tRob73, Thin. 11.

9.6. The setup. Let A ) B be a K-isogeny between abelian varieties, and let A B be the
induced S-homomorphism between their N6ron models, which, for v { co, induces 0,: DA,,, -- <B,,
between the groups of connected components of the special fibers of A and B at v. Denote the local
Tamagawa factors by CA,v := #<DAv(Fv) and cB,v := #<DB,v(Fv).

9.7. Two sets of subgroups (compare §8.3). The first one is the images Im4,v c Hjf,,(KL, A[q])

of the local Kummer homomorphisnis (cf. §8.1) for all places v of K; its Selmer group, defined as
in §9.1, is the #-Selmer group SelA 4 c H4flpp(K, A[O]).

The second one is

H1 f(Ov7 A[#]o,) cI Hlppf(Kv, A[#]), if v { ce, and

H'(Kv, 4[#]) c H1(K,,A[#]), if v 1 00,

and has the corresponding Selmer group Hjf,,(S, A[O]) c: Hlppf(K, A[#]) by Corollary 7.3.

If char K t deg 0, these are two Selmer structures on A[O] by Proposition 8.9 (f).

Proposition 9.8. Suppose that A L B is flat (e.g., that A has semiabelian reduction at all v oo
with char Fv I deg #, cf. Lemma 3.4).

(a) Taking intersections inside Hfl,(K, A[#]), one has

I Selo A4 <DBs (F)

Hjf (S, A[#]) n Selo A 4 # v <D)A,v) '

( H ppf (S, A[0]) ( H'(K, A[#])
H 1 H#<DA,v[#v](1Fv) H I

H pH>(S, A[O]) n Selo A v # real Im A4, )
(b) If deg # is prime to cB,,, then Selo A ci H Jfp(S, A[#]) inside H1 jf(K, A[O]).

(c) If deg # is prime to FH7 cA,, and either 2 { deg # or A(K,) equipped with its archimedean

topology is connected for all real v, then H' (S, A[O]) c Sel4 A inside H' Pf (K, A[O]).

(d) If deg # is prime to 1 v,, C ,v and either 2 { deg # or A(Kv) equipped with its archimedean

topology is connected for all real v, then H (S, AL#]) =Sel A inside H A[#]).

Proof. By §9.7, setting Hffl,((0, A[#b]o,) H1(K, A[#]) for v co, there are injections

Selo A Ci ,'o

Hfp (S, A[O]) n Selo./ t30 A Aj fpf (O, A[#] o.-)n Ov'

Hj ,ppf(S, A [#]) H" fppf(01, A[O]o,,)

H')pf(S, A[O]) n Selo A H A[O]o,) n Im x4,
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This together with Proposition 8.8 (a), (c), (d), and (e) give the claim, since under the assumptions
of (c) and (d) the factors of (9.8.1) for v oo vanish: H'(Ko, A[d>) = 0 unless 2 1 deg # and i is
real, and also, by [GH81, 1.31, H'(K, A) ~ro(A(Kv)).

Remarks.

9.9. As in Proposition 8.9 (d) and (f), the assumptions on cA,z, and cB,, in Proposition 9.8 (b),
(c), and (d) (and hence also in Theorems 1.1 (ii) and 1.11 (iii)) can be weakened to

#<DB,,(F,) = #(#v(<bA,v))(Fv) for all v { co,

#<DA,v (Fv) = # v((<A,v))(Fv) for all v j oo, and

#<bA,v(Fv) = #(#v(<DA,v))(Fv) = #<bB,v(F v) for all v j cc, respectively.

9.10. In practice, it is useful not to restrict Proposition 9.8 to the case when A has semiabelian
reduction at all v { oc with char Fv I deg 0. For instance, suppose that K is a number field, A
is an elliptic curve that has complex multiplication by an imaginary quadratic field F c K,

and # =a c EndK(A) c: F c K. Then A K AOK['] is flat (even tale) because it

induces an automorphism of Lie A 0  , which is a line bundle on Spec OK [ On the other

hand, deg # need not be invertible on Spec OK[i]. Proposition 9.8 applied to this example

leads to a different proof of [Rub99, 6.4], which facilitates the analysis of Selmer groups of
elliptic curves with complex multiplication by relating them to class groups.

APPENDIx A.

Let S be a scheme. For convenience of the reader we recall several general facts from algebraic

geometry used in the main body of the text, which mostly concern S-group algebraic spaces and

their torsors.

Lemma A.1. Let 0 be a Henselian local ring, a ci 0 an ideal, and X a smooth 0-algebraic space.

If X is not a scheme, assume that it is quasi-separated. Then the natural map X(O) - X(O/a) is
surjective.

Proof. We include a proof for the lack of reference. Assume that a # 0, let o be the closed point of

Spec 0 (or of Spec 0/a), and fix a b e X(0/a) with the intention of lifting it to a B e X(0).

If X is a scheme, the local structure theorem for smooth morphisms [BLR90, §2.2 Prop. 111 applied

at b(o) allows us to assume that X -- Spec 0 factors through X -* A' with u 6tale and separated.
Lift u o b e A'(0/a) to a c e A'(0) and hence reduce to X being 6tale and separated over 0, in
which case [EGA IV 4 , 18.5.11 (c) et 18.5.151 provides the unique section B c X(0) with B(o) = b(o).

In general, by [LMBOO, 6.3], blo lifts to a c C U(o) with U a smooth X-scheme. By the surjectivity
in the scheme case, c C (U x x,b O/a)(o) yields a lift d e U(0/a) of b. Since U is a smooth 0-scheme,
d lifts to a D e U(0), whose image in X(0) is a desired B. 0

Proposition A.2. Let 9 be a commutative smooth S-group algebraic space which is either quasi-

separated or a scheme.

(a) If j: SIppf - S& is the canonical morphism of sites, then R"j, = 0 for n > 1, and the

natural maps Hgt(S,'j,) -* H),(S, 9) are isomorphisms.

(b) If S = Spec 0 for a Henselian local ring 0 with residue field k, then the 6-functorial coho-

mology pullback maps Hppf(0, !) -> Hf),,f(k, 9 k) are isomorphisms for i > 1.
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Proof. Invoke [Gro68, 11.1 et 11.7] with U = 9 (and use Lemma A.1 to check condition (L))-when
(R) in loc. cit. is modified by assuming U to be representable by a smooth algebraic space containing
the zero section, the proofs continue to work with the following caveats:

1. In 11.4, assume in addition that A( # 0;

2. On p. 175, C2 (U) is a smooth X-algebraic space by [SP, Proposition 05YF and Lemma 04AM];

3. On p. 177, the desired quasi-coherence of N is argued as follows: let a: Xo --+ U be
the zero section; by [SP, Lemma 061C and Remark 061D], in the notation of loc. cit.,
7-omoxo (a*Qu/x, Cx 0/x) ~ N, so the conclusion follows from [SP, Lemmas 05ZF and 03M1];

4. To obtain 11.7 20) and 30), assume in addition that (L) and (R) hold for every Henselian
(but not necessarily strictly Henselian) local X-scheme X. 0

Remark A.3. As is clear from the proof of Lemma A.1, if 9 is 6tale (and either quasi-separated
or a scheme), then the conclusion of Proposition A.2 (b) also holds for i = 0 .

A.4. H 1 and torsors. Let 9 be an S-group algebraic space. For commutative g, the elements of
the cohomology groups HLfpp(S, g) (resp., H(S, 9)) can be put in bijection with fppf (resp., 6tale)
torsors T under 9, under which the trivial torsor corresponds to the identity element, and the
cohomology pullbacks for i = 1 identify with base change of torsors: T - T x s S' (cf. [Gir7l,
III.3.5.4, 111.2.4.2,111.2.4.5 et V.1.5.31). Thus, for possibly noncommutative 9, one writes H,1f(S, 9)

(resp., H,,(S, 9)) for the set of isomorphisni classes of fppf (resp., 6tale) right torsors under g and
understands that Hippgf(S, 9) (resp., H! (S, 9)) is functorial in S by base change.

Proposition A.5. Every fppf torsor T under an S-group algebraic space 9 is representable by an
S-algebraic space.

Proof. Being an S-algebraic space is fppf local [SP, Lemma 04SK].

Proposition A.6. Every fppf torsor T under a smooth S-group algebraic space 9 trivializes over an
6tale cover of S. In particular, for smooth 9, the natural map Hlt(S, 9) -* Hep(S, 9) is bijective.

Proof. By Proposition A.5 and [SP, Lemmas 0429 and 041Q], T is a smooth surjective S-algebraic
space. It trivializes over an 6tale cover of T by a scheme U. Since the smooth U -+ S has a section
6tale locally [EGA IV 4 , 17.16.3 (ii)], we conclude.

Proposition A.7. Every fppf torsor under a quasi-affine [EGA II, 5.1.1] S-group scheme 9 is
representable by a quasi-affine scheme.

Proof. By [SP, Lemma 0247] and [EGA IV 2 , 2.7.1 (xiv)], representability and quasi-affineness of an

fppf sheaf T + I can be checked fppf locally on S.

Proposition A.8. Let 1 - N -+ S - 9 - 1 be an exact sequence of sheaves of groups on Sfppf
with 9 representable by an S-scheme and 'h representable by an S-algebraic space.

(a~) is representable by an S-algebraic space.

(b) For a property P of morphisms of S-algebraic spaces that is stable under base change and
is fppf local on the base, if 'H -+- S has P, then so does 9 -- 9. If, in addition, P is stable
under composition and W -- S and 9 -+ S both have P, then so does S S.

(c) If N -- S is quasi-affine, then so is E - 9 and S is representable by an S-scheme.
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Proof.

(a) Indeed, S -+ Q is an fppf torsor under hg, so the claim is a special case of Proposition A.5.

(b) Immediate from the proof of (a).

(c) Quasi-affine morphismns are representable [SP, Lemma 03WMI, hence the claim by (b). 0

Proposition A.9. A quasi-finite fppf S-group scheme 9 whose fibers have orders that are prime to

the residue characteristic is itale.

Proof. This is [T070, p. 17, Lemma 5] if 9 is finite. In general, the proof is the same: [EGA IV 4 ,
17.6.2 a) <> c")] reduces to S being the spectrum of an algebraically closed field, in which case 9 is

finite. One then uses the connected-6tale sequence.

Lemma A.10. For a scheme S, let X, Y be S-schemes with Y(S) + 0. If X xs Y a S is
b

quasi-compact, locally of finite type, of finite type, separated, or flat, then so is X -+ S.

Proof. Working locally on S, in all cases we can assume that S is affine: S = Spec C. Hence, since

X is a continuous image of X x s Y, it is quasi-compact if so is X x s Y.

A section c of X x s Y -- X exists by the Y(S) # 0 assumption and is locally of finite type

[EGA I, 6.6.6 (v)]. Hence a o c = b is locally of finite type if so is a.

The finite type case follows by combining the quasi-compact and locally of finite type ones.

Since the diagonal morphism of the monomorphism c is an isomorphism, c is separated, hence so is

a o c = b if a is.

Flatness can be checked on stalks, reducing further to a local C and affine X = Spec A, Y = Spec B.

Since Y(S) # 0, the C-module A is a direct summand of A &c B, yielding the claim. 0

Proposition A.11 (IBC09, 7.4.2]). Let S be a scheme and 9 a commutative S-group scheme. If

n,m e 1 are relatively prime and nm kills g, then 9 = g[n] x s g[m]. If g is finite, quasi-finite,
separated, or flat, then so are 9[n] and 9[m]. In particular, a commutative separated quasi-finite

flat S-group scheme g killed by an N c 1 decomposes as a product of commutative separated

quasi-finite flat S-group schemes killed by prime power divisors of N; the factors are finite flat if so

is g.

Proof. Checking on sections of represented fppf sheaves, 0 -+ 9[n] -- 9 -) g[m] -+ 0 is split exact,
giving the first claim. If g is finite, then so is its closed subscheme g[n]; thus, if 9 is quasi-finite,
then g[n] and g[m] have finite fibers, hence are quasi-finite by Lemma A.10. Similarly, 9[n] and

9[m] inherit separatedness or flatness from g. 0

A.12. Quotients by equivalence relations. Let R and X be sheaves on Sfppf. A monomorphism

R - X xs X is an equivalence relation if 6(T) is the graph of an equivalence relation on X(T)

for each S-scheme T (cf. [Ray67, §31). Form the fppf quotient sheaf Y = X/R. By loc. cit., the

quotient is

(a) Effective, i.e., the canonical map R -) X xy X is an isomorphism;

(b) Universal, i.e., for an fppf sheaf morphism Y' -> Y, the quotient of X x y Y' by the base

changed equivalence relation R x y Y' is Y'.
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For us, the case of interest is when N -+ g is an immersion of S-group algebraic spaces, X
R = ! x s' N, and 6: g x'N5 - g x s g is (g, h) - (g, gh); the resulting quotient is !/'H.

Proposition A.13. For an immersion N 9 of S-group algebraic spaces, let 9 : /N be the
fppf quotient sheaf. Assume that 6: C x s N - 9 x s 9 given by (g, h) - (g, gh) is quasi-compact.

(a) If N -- S is fppf, then Q is a quasi-separated S-algebraic space.

(b) For a property P of morphisms of algebraic spaces that is stable under base change and is
fppf local on the base, if 'N -* S has P, then so does g -+ Q.

(c) If 'N -- S is fppf (resp., smooth) and P is a property of morphisms of algebraic spaces that
is fppf (resp., smooth) local on the source, then Q -+ S has P if and only if 9 -* S does.

(d) If N -> S is fppf and i is a closed immersion, then Q is a separated S-algebraic space.

Proof. Note that 6 is a base change of i, hence is quasi-compact whenever i is.

(a) Letting P1,P2 be the projections of g xs g, due to [LMBOO, 10.4] it suffices to check that
p1 o 6 and P2 o 6 are fppf, which is so because both are base changes of 'N - S.

(b) In the proof of [Ray67, Prop. 21 replace schemes by algebraic spaces and fpqc by fppf.

(c) Indeed, g -+ Q is fppf (resp., smooth) by (b) and [SP, Lemmas 041Q, 041W, 041T, and 0429].

(d) Since 6, being a base change of i, is a closed immersion, and the square

g xsN- g xsg

Q-*QxsQ

is Cartesian by A.12 (a), due to [SP, Lemma 0420] it remains to note that ! -; Q is fppf. E
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