
SELMER GROUPS AS FLAT COHOMOLOGY GROUPS

PHD THESIS OF KĘSTUTIS ČESNAVIČIUS

Abstract. Given a prime number p, Bloch and Kato showed how the p8-Selmer group of an
abelian variety A over a number field K is determined by the p-adic Tate module. In general, the
pm-Selmer group Selpm A need not be determined by the mod pm Galois representation Arpms; we
show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit
set of rational primes Σ depending on K and A, such that Selpm A is determined by Arpms for all
p R Σ. In the course of the argument we describe the flat cohomology group H1

fppfpOK ,Arpmsq of
the ring of integers of K with coefficients in the pm-torsion Arpms of the Néron model of A by local
conditions for p R Σ, compare them with the local conditions defining Selpm A, and prove that Arpms
itself is determined by Arpms for such p. Our method sharpens the relationship between Selpm A
and H1

fppfpOK ,Arpmsq which was observed by Mazur and continues to work for other isogenies φ
between abelian varieties over global fields provided that deg φ is constrained appropriately. To
illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain
families of number fields. Standard glueing techniques developed in the course of the proofs have
applications to finite flat group schemes over global bases, permitting us to transfer many of the
known local results to the global setting.

1. Introduction

Let K be a number field, let A Ñ SpecK be a dimension g abelian variety, and let p be a prime
number. Fix a separable closure K of K. Tate conjectured [Tat66, p. 134] that the p-adic Tate
module TpA :“ lim

ÐÝ
ArpmspKq determines A up to an isogeny of degree prime to p, and Faltings

proved this in [Fal83, §1 b)]1. One can ask whether Arps alone determines A to some extent.
Consideration of the case g “ 1, p “ 2 shows that for small p one cannot expect much in this
direction. However, at least if g “ 1 and K “ Q, for p large enough (depending on A) the Frey–
Mazur conjecture [Kra99, Conj. 3] predicts that Arps should determine A up to an isogeny of degree2
prime to p.

Consider now the p8-Selmer group Selp8 A Ă H1pK,Arp8sq, which consists of the classes of cocy-
cles whose restrictions lie in ApKvq b Qp{Zp Ă H1pKv, Arp

8sq for every place v of K. Note that
Arp8spKq “ VpA{TpA with VpA :“ TpAbZp Qp, so TpA determines the Galois cohomology groups
appearing in the definition of Selp8 A. Since an isogeny of degree prime to p induces an isomorphism
on p8-Selmer groups, the theorem of Faltings implies that TpA determines Selp8 A up to isomor-
phism. One may expect, however, a more direct and more explicit description of Selp8 A in terms

Date: April 15, 2014.
1By [Tat66, Lemmas 1 and 3], the quoted result of Faltings implies the bijectivity of

Zp bHompA,Bq Ñ HomGalpK{KqpTpA, TpBq

for all abelian varieties A,B over K. In particular, if ι : TpA
„
ÝÑ TpB, there is an isogeny φ : AÑ B whose reduction

mod p agrees with ι mod p, hence p - deg φ.
2The degree condition can be added, since up to isomorphism only finitely many abelian varieties are K-isogenous

to A [Zar85, Thm. 1].
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of TpA. For this, it suffices to give definitions of the subgroups ApKvq b Qp{Zp Ă H1pKv, Arp
8sq

in terms of TpA.

Bloch and Kato found the desired definitions in [BK90]: if v - p, then ApKvq bQp{Zp “ 0; if v | p,
then, letting Bcris be the crystalline period ring of Fontaine and working with Galois cohomology
groups formed using continuous cochains in the sense of [Tat76, §2], they define

H1
f pKv, VpAq :“ KerpH1pKv, VpAq Ñ H1pKv, VpAbQp Bcrisqq,

and prove that

ApKvq bQp{Zp “ ImpH1
f pKv, VpAq Ñ H1pKv, VpA{TpAq “ H1pKv, Arp

8sqq.

Considering the p-Selmer group SelpA and Arps instead of Selp8 A and Arp8s (equivalently, Selp8 A
and TpA), in light of the Frey–Mazur conjecture, one may expect a direct description of SelpA in
terms of Arps for large p. We give such a description as a special case of

Theorem 1.1. Fix an extension of number fields L{K, a K-isogeny φ : A Ñ B between abelian
varieties, and let Arφs and ALrφs be the kernels of the induced homomorphisms between the Néron
models over the rings of integers OK and OL. Let v (resp., w) denote a place of K (resp., L),
let cA,v and cB,v (resp., cA,w and cB,w) be the corresponding local Tamagawa factors for v, w - 8
(cf. §8.7), let ev be the absolute ramification index if v - 8, set ep :“ maxv|p ev, and see §1.17 for
other notation.

(a) (i) (Corollary 7.3.) The pullback map

H1
fppfpOK ,Arφsq Ñ H1pK,Arφsq (1.1.1)

is an isomorphism onto the preimage of
ś

v-8H
1
fppfpOv,Arφsq Ă

ś

v-8H
1pKv, Arφsq.

(ii) (Proposition 9.8 (d).) If the reduction of A at all v | deg φ is semiabelian, deg φ is prime
to

ś

v-8 cA,vcB,v, and either 2 - deg φ or ApKvq equipped with its archimedean topology
is connected for all real v, then H1

fppfpOK ,Arφsq “ SelφA inside H1pK,Arφsq.

(b) (Proposition 5.9.) Assume that A has good reduction at all v | deg φ. If ep ă p´ 1 for every
prime p | deg φ, then the OL-group scheme ALrφs is determined up to isomorphism by the
GalpL{Kq-module ArφspLq.

Thus, if pdeg φ,
ś

w-8 cA,wcB,wq “ 1, the reduction of A is good at all v | deg φ, and ep ă p ´ 1

for every p | deg φ (in particular, 2 - deg φ), then the φ-Selmer group SelφAL Ă H1pL,Arφsq is
determined by the GalpL{Kq-module ArφspLq.

Corollary 1.2. If A has potential good reduction everywhere and p is large enough (depending on
A), then Arpms determines Selpm AL for every finite extension L{K.

Proof. Indeed, by a theorem of McCallum [ELL96, pp. 801–802], q ď 2g`1 for a prime q | cA,w. �

Remarks.

1.3. Relationships similar to (ii) between Selmer groups and flat cohomology groups are not new
and have been (implicitly) observed already in [Maz72] and subsequently used by Mazur,
Schneider, Kato, and others (often after passing to p8-Selmer groups as is customary in
Iwasawa theory). However, the description of H1

fppfpOK ,Arφsq by local conditions in (i) is
new and works even if Arφs is not OK-flat thanks to Proposition 2.11; consequently, (ii) is
more precise than what seems to be available in the literature.
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1.4. In the case of elliptic curves, Mazur and Rubin find in [MR13, Thm. 3.1 and 6.1] (see also
[AS05, 6.6] for a similar result of Cremona and Mazur) that under assumptions different from
those of Theorem 1.1, pm-Selmer groups are determined by mod pm Galois representations
together with additional data including the set of places of potential multiplicative reduction.
It is unclear to us whether their results can be recovered from the ones presented here.

1.5. The Selmer type description of a flat cohomology group as in (i) continues to hold with other
OK-group schemes G as coefficients. For instance, G can be a finite flat group scheme or
a Néron model; see Theorem 7.2 for a general result of this type. Choosing G “ A to be
the Néron model of A leads to a reproof of the étale cohomological interpretation of the
Shafarevich–Tate group XpAq in Proposition 7.5; such interpretation is implicit already in
the arguments of [Ray65, II.§3] and is proved in [Maz72, Appendix]. Our argument is more
direct: in the proof of loc. cit. the absence of Theorem 7.2 is circumvented with a diagram
chase that uses cohomology with supports exact sequences.

1.6. In Theorem 1.1 (a), it is possible to relate SelφA and H1
fppfpOK ,Arφsq under weaker hy-

potheses than those of (ii), see Proposition 9.8 (a).

1.7. The interpretation of Selmer groups as flat cohomology groups is useful beyond the case when
φ is multiplication by an integer. For an example, see the last sentence of Remark 9.10.

1.8. Theorem 1.1 is stronger than its restriction to the case L “ K. Indeed, the analogue of
ep ă p´ 1 may fail for L but hold for K. This comes at the expense of ALrφs and SelφAL
being determined by ArφspLq as a GalpL{Kq-module, rather than as a GalpL{Lq-module.

1.9. To determine an explicit finite set of rational primes Σ depending on K, L, A, and B such
that SelφAL is determined by the GalpL{Kq-module ArφspLq whenever deg φ is coprime to
the elements of Σ, let Σ consist of all primes below a place of bad reduction for A, all primes
dividing a local Tamagawa factor of AL or BL, the prime 2, and all odd primes p ramified in
K for which ep ě p´ 1 (since ep ď rK : Qs, one can include all the primes p ď rK : Qs ` 1
for simplicity). Taking L “ K and A “ B yields the set Σ promised in the abstract.

1.10. In Theorem 1.1, is the subgroup BpLq{φApLq (equivalently, the quotient XpALqrφs) also
determined by ArφspLq? The answer is ‘no’. Indeed, in [CM00, p. 24] Cremona and Mazur
report3 that the elliptic curves 2534E1 and 2534G1 over Q have isomorphic mod 3 repre-
sentations, but 2534E1 has rank 0, whereas 2534G1 has rank 2. Since 3 is prime to the
conductor 2534 and the local Tamagawa factors c2 “ 44, c7 “ 1, c181 “ 2 (resp., c2 “ 13,
c7 “ 2, c181 “ 1) of 2534E1 (resp., 2534G1), Theorem 1.1 indeed applies to these curves.
Another example (loc. cit.) is the pair 4592D1 and 4592G1 with φ “ 5 and ranks 0 and 2.

For an odd prime p and elliptic curves E and E1 over Q with Erps – E1rps and prime
to p conductors and local Tamagawa factors, Theorem 1.1, expected finiteness of X, and
Cassels–Tate pairing predict that rkEpQq ” rkE1pQq mod 2. Can one prove this directly?

The analogue of Theorem 1.1 in the function field case is

Theorem 1.11. Let S be a (connected) proper smooth curve over a finite field, let K be its function
field, let φ : AÑ B be a K-isogeny between abelian varieties, and let Arφs Ñ S be the kernel of the
induced homomorphism between the Néron models over S. For a closed point s P S, let pOS,s be the

3Assuming the Birch and Swinnerton-Dyer conjecture to compute Shafarevich–Tate groups analytically. This is
unnecessary for us, since full 2-descent finds provably correct ranks of 2534E1, 2534G1, 4592D1, and 4592G1.
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completion of the local ring at s, let pKS,s be the fraction field of pOS,s, and let cA,s and cB,s be the
corresponding local Tamagawa factors (cf. §8.7).

(a) (i) (Corollary 7.3.) The pullback map H1
fppfpS,Arφsq Ñ H1

fppfpK,Arφsq is an isomorphism
onto the preimage of

ś

sH
1
fppfp

pOS,s,Arφsq Ă
ś

sH
1
fppfp

pKS,s, Arφsq where the products
are indexed by the closed s P S.

(ii) (Proposition 8.9 (e).) If charK - deg φ, then H1
fppfpS,Arφsq Ă H1pK,Arφsq consists of

the everywhere unramified cohomology classes.

(iii) (Proposition 9.8 (d).) If the reduction of A is semiabelian everywhere and deg φ is prime
to

ś

s cA,scB,s, then H
1
fppfpS,Arφsq “ SelφA inside H1

fppfpK,Arφsq.

(b) (Corollary 3.9.) If charK - deg φ, then the S-group scheme Arφs is determined up to isomor-
phism by Arφs; actually, Arφs Ñ S is just the Néron model of Arφs Ñ SpecK.

Thus, if pdeg φ, charK
ś

s cA,scB,sq “ 1, then the φ-Selmer subgroup SelφA Ă H1pK,Arφsq is deter-
mined by Arφs and in fact consists of the everywhere unramified cohomology classes of H1pK,Arφsq.

Remarks.

1.12. The prevalence of the unramified condition in the final conclusion of Theorem 1.11 is due
to the following extension of a well-known lemma of Cassels [Cas65, 4.1] proved in Proposi-
tion 8.9 (f): for a nonarchimedean place v of a global field K and a K-isogeny φ : AÑ B, if
pdeg φ, cA,vcB,v charFvq “ 1, then the condition at v defining the φ-Selmer group is the un-
ramified cohomology subgroup H1

nrpKv, Arφsq Ă H1pKv, Arφsq; Cassels assumes in addition
that v is a place of good reduction (when cA,v “ cB,v “ 1). If A is an elliptic curve and K is
a number field, this generalization has also been observed by Schaefer and Stoll [SS04, 4.5].

If pdeg φ, cA,vcB,v charFvq “ 1, then H1
nrpKv, Arφsq “ H1

fppfpOv,Arφsq inside H1pKv, Arφsq

by Proposition 8.9 (f). Thus, a further extension of Cassels’ lemma to all residue characteris-
tics is Proposition 8.8 (e): if pdeg φ, cA,vcB,vq “ 1 and A has semiabelian reduction at v in case
charFv | deg φ, then the condition at v defining SelφA is H1

fppfpOv,Arφsq Ă H1pKv, Arφsq.
This conclusion has also been observed by Mazur and Rubin [MR13, Prop. 5.8] in the case
dimA “ 1 and φ “ pm.

1.13. Injectivity of the pullback maps in Theorems 1.1 (i) and 1.11 (i) are special cases of The-
orem 6.1: such injectivity continues to hold with a closed subgroup of a Néron model as
coefficients for the cohomology groups (or pointed sets in the noncommutative case).

1.14. Models of finite group schemes over global bases. The glueing techniques developed in
§4 with the purpose of proving Theorem 1.1 (b) apply to the study of finite flat group schemes over
global bases. More precisely, letK be a number field, let OK be its ring of integers, and fix a rational
prime p. An OK-model (of its generic fiber) is a commutative quasi-finite flat separated OK-group
scheme G killed by a power of p such that GOK r 1p s

Ñ SpecOKr
1
p s is a Néron model (cf. §2.2 for Néron

models) and GOv Ñ SpecOv is finite flat for each v | p; see §5.1 for the definition in the general
setting. A commutative finite flat OK-group scheme G of p-power order is precisely a finite OK-
model, which in turn is nothing else than an OK-model G for which the GalpK{Kq-module GpKq is
unramified away from p (cf. §5.1). Studying general OK-models amounts to allowing ramification
away from p.

Our main results concerning OK-models G are Corollary 4.4 together with Theorem 5.4, which say
that G is determined by GK together with pGOvqv|p; moreover, a compatible tuple pGK , pGOvqv|pq
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glues to an OK-model G. Effectively, the study of OK-models of a fixed generic fiber G amounts to
the study of finite flat Ov-models of GKv for v | p, permitting us to transfer many of the known local
results to the global setting. For instance, we obtain uniqueness of OK-models of a fixed generic
fiber G for K of low ramification at places above p (Proposition 5.7 (c)), show that the product
over all v | p of Kisin’s moduli of finite flat group schemes varieties continues to parametrize models
over global bases (Proposition 5.17), and show that a p-divisible group over K extends (uniquely)
to OK if and only if all its layers have finite OK-models (§5.19 and Proposition 5.21); see §5 for
other results of this sort. The description of H1

fppfpOK ,Gq Ă H1pK,GKq by local conditions as in
Remark 1.5 holds for every OK-model G; see §§9.2–9.5 for a discussion of this.

Example 1.15. We illustrate the utility of our methods and results by estimating the 5-Selmer
group of the base change EK of the elliptic curve E “ 11A1 to any number field K. This curve has
also been considered by Tom Fisher, who described in [Fis03, 2.1] the φ-Selmer groups of EK for
the two degree 5 isogenies φ of EK defined over Q. We restrict to 11A1 for the sake of concreteness
(and to get precise conclusions (a)–(f)), although our argument leads to estimates analogous to
(1.15.2) for every elliptic curve A over Q and an odd prime p of good reduction for A such that
Arps – Z{pZ‘ µp.

Let EK Ñ SpecOK be the Néron model of EK . Since Er5s – Z{5Z‘µ5 (compare [Gre99, pp. 120–
121]), by Proposition 5.9 and its proof, EKr5s – Z{5ZOK

‘µ5. Thus, exploiting the exact sequence

0 Ñ µ5 Ñ Gm
5
ÝÑ Gm Ñ 0 together with Example 9.3,

dimF5 H
1
fppfpOK , EKr5sq “ 2 dimF5 ClKr5s ` dimF5 OˆK{O

ˆ5
K “ 2hK5 ` r

K
1 ` r

K
2 ´ 1` uK5 , (1.15.1)

where ClK is the ideal class group, rK1 and rK2 are the numbers of real and complex places, and

hK5 :“ dimF5 ClKr5s, uK5 :“ dimF5 µ5pOKq.

Since component groups of Néron models of elliptic curves with split multiplicative reduction are
cyclic, (1.15.1) and Proposition 9.8 (a) give

2hK5 `r
K
1 `r

K
2 ´1`uK5 ´#tv | 11u ď dimF5 Sel5EK ď 2hK5 `r

K
1 `r

K
2 ´1`uK5 `#tv | 11u. (1.15.2)

Thus, the obtained estimate is most precise when K has a single place above 11. Also,

dimF5 Sel5EK ” rK1 ` r
K
2 ´ 1` uK5 `#tv | 11u mod 2, (1.15.3)

because the 5-parity conjecture is known for EK [DD08]. When K ranges over the quadratic
extensions of Q, due to (1.15.2), the conjectured unboundedness of 5-ranks hK5 of ideal class groups
(which a priori has nothing to do with E) is equivalent to the unboundedness of dimF5 Sel5EK ;
in particular, it is implied by the folklore4 conjecture that the ranks of quadratic twists of a fixed
elliptic curve over Q (in our case, E) are unbounded.

It is curious to observe some concrete conclusions that (1.15.2) and (1.15.3) offer (note that pre-
cise rank expectations are possible due to (1.15.2)—the sole growth follows already from parity
considerations):

(a) As is also well known, rkEpQq “ 0.

(b) If K is imaginary quadratic with hK5 “ 0 and 11 is inert or ramified in K, then rkEpKq “ 0.

(c) If K is imaginary quadratic with hK5 “ 0 and 11 splits in K, then either rkEpKq “ 1, or
rkEpKq “ 0 and corkZ5 XpEKqr5

8s “ 1. Mazur in [Maz79, Thm. on p. 237] and Gross in
[Gro82, Prop. 3] proved that rkEpKq “ 1.

4Which does not mean “widely believed”.
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(d) If F is a quadratic extension of a K as in (c) in which none of the places of K above 11 split
and hF5 “ 0, then either rkEpF q “ 2, or XpEF qr5

8s is infinite.

(e) If K is real quadratic with hK5 “ 0 and 11 is inert or ramified in K, then either rkEpKq “ 1,
or rkEpKq “ 0 and corkZ5 XpEKqr5

8s “ 1. In the latter case XpEKqrp
8s is infinite for

every prime p, because the p-parity conjecture is known for EK for every p by [DD10, 1.4]
(applied to E and its quadratic twist by K). Gross proved in [Gro82, Prop. 2] that if 11 is
inert, then rkEpKq “ 1.

(f) If K is cubic with a complex place (or quartic totally imaginary), a single place above 11,
and hK5 “ 0, then either rkEpKq “ 1, or rkEpKq “ 0 and corkZ5 XpEKqr5

8s “ 1.

How can one construct the predicted rational points? In (c) and the inert case of (e), [Gro82]
explains that Heegner point constructions account for the predicted rank growth. However, (d) and
(f) concern situations that seem to be beyond the scope of applicability of the existing methods for
systematic construction of rational points of infinite order.

1.16. The contents of the paper. We begin by collecting several general results concerning
Néron models and their torsors in §2 and proceed in §3 by proving various short exact sequences
involving open subgroups of Néron models of abelian varieties. These give appropriate analogues
of Kummer sequences when working with Néron models. We devote §4 to a standard fpqc descent
result enabling us to glue schemes over global bases from their local base changes, which leads
in §5 to global analogues of familiar local results concerning finite flat group schemes. Injectivity
of (1.1.1) and related maps is argued in §6, which also discusses embeddings of finite flat group
schemes into Néron models. In §7, exploiting §4, we study the question of H1

fppf with appropriate
coefficients over Dedekind bases being described by local conditions. We restrict to local bases in
§8 to compare the subgroups BpKvq{φApKvq, H1

fppfpOv,Arφsq, and H1
nrpKv, Arφsq of H1pKv, Arφsq

under appropriate hypotheses. The local analysis is used in §9 to compare the φ-Selmer group and
H1

fppfpOK ,Arφsq. For cross-reference purposes, several known results from algebraic geometry are
gathered in Appendix A.

1.17. Conventions. When needed, a choice of a separable closure K of a field K will be made
implicitly, as will be a choice of an embedding K ãÑ L for an overfield L{K. If v is a place of a
global field K, then Kv is the corresponding completion; for v - 8, the ring of integers and the
residue field of Kv are denoted by Ov and Fv. If K is a number field, OK is its ring of integers. For
a local ring R, its henselization, strict henselization, and completion are Rh, Rsh, and pR. For s P S
with S a scheme, OS,s, mS,s, and kpsq are the local ring at s, its maximal ideal, and its residue field.
We call a morphism fppf if it is flat, surjective, and locally of finite presentation. An fppf torsor is
a torsor for the fppf topology (as opposed to a torsor that itself is fppf over the base). The fppf,
big étale, and étale sites of S are Sfppf , SÉt, and Sét; the objects of Sfppf and SÉt are all S-schemes,
while those of Sét are all schemes étale over S. The cohomology groups computed in Sét and Sfppf

are denoted by H i
étpS,Gq and H i

fppfpS,Gq; usually G will be represented by a commutative S-group
algebraic space locally of finite presentation. Galois cohomology groups are denoted by H i. For
G as above, the δ-functorial identification H i

étpK,Gq – H ipK,GpKqq is made implicitly (similarly
in the noncommutative case for i ď 1, cf. §A.4). So is H i

étpS,Gq – H i
fppfpS,Gq for smooth G as in

Proposition A.2 (see Proposition A.6 for the noncommutative case); it is δ-functorial as well. In
the presence of f : S1 Ñ S, it is understood that H i

fppfpS,Gq Ñ H i
fppfpS

1, f˚Gq is the δ-functorial
pullback. We frequent the shorthand XT for the base change of X Ñ S along T Ñ S. An algebraic
group over a field K is a finite type smooth K-group scheme. For an integer n and a scheme S, the
open subscheme on which n is invertible is Sr 1

n s.
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Since [SP, Definition 025Y] is our definition of an algebraic space (see also [SP, Lemma 076M]),
when citing other references we need to make sure that the implicit quasi-separatedness assumption
is met. Better behavior under descent is our reason for resorting to algebraic spaces. The reader
only interested in Theorems 1.1 and 1.11 can stick to schemes: due to affineness of Arφs, its torsors
are schemes (see Proposition 3.3).
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2. Néron models

Our analysis of Selmer groups will be based on a study of Néron models of abelian varieties. This
section is devoted to various concepts and results in the theory of Néron models. We set notation
in §§2.1–2.2, record ways to recognize and construct Néron models in §§2.3–2.17, and investigate
their torsors in §§2.18–2.21.

2.1. Dedekind schemes. These are the connected Noetherian normal schemes S of dimension
ď 1. Connectedness (due to which S ‰ H) is not necessary but simplifies the notation (though
not the proofs). A nonempty open U Ă S as well as SpecOS,s, SpecOh

S,s, and Spec pOS,s for s P S
are Dedekind schemes as well. The main cases of interest are S being a (connected) proper smooth
curve and S “ SpecOK for the ring of integers OK of a number field or a nonarchimedean local
field K.

Let K be the function field of S. If X is an S-scheme, XK is the generic fiber of X . A nongeneric
s P S is closed, and the complement of a nonempty open subscheme U Ă S is a finite union of
closed points. A normal Noetherian local ring of dimension ď 1, such as OS,s for s P S, is either
a discrete valuation ring or a field. The fraction fields of Oh

S,s, Osh
S,s, and pOS,s will be denoted by

Kh
S,s, K

sh
S,s, and pKS,s, respectively. Note that OS,s, Oh

S,s, Osh
S,s, and pOS,s are either fields (if s is the

generic point) or discrete valuation rings sharing a common uniformizer [BLR90, §2.3 Prop. 10]. In
the latter case, OS,s, Oh

S,s, and pOS,s share the residue fields (cf. [EGA IV4, 18.6.6 (iii)] for Oh
S,s).

The introduced notation will be in force in this section.

2.2. Néron (lft) models. An S-group scheme X is a Néron model (of XK) if it is separated,
of finite type, smooth, and satisfies the Néron property : the restriction to the generic fiber map
HomSpZ,X q Ñ HomKpZK ,XKq is bijective for every smooth S-scheme Z (which determines X
from XK up to a unique isomorphism). Dropping the finite type requirement, one obtains the
definition of a Néron lft model, which is locally of finite type because of smoothness. Of course, a
Néron model is also a Néron lft model. No further generality is obtained if X is an algebraic space in
these definitions: a separated group algebraic space locally of finite type over a locally Noetherian
base of dimension ď 1 is a scheme [Ana73, 4.B].
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Proposition 2.3.

(a) A finite type (resp., locally of finite type) X Ñ S is a Néron model (resp., Néron lft model)
if and only if so is XOS,s Ñ SpecOS,s for every closed s P S.

(b) If X Ñ S is a Néron model (resp., Néron lft model), then so are

XOhS,s
Ñ SpecOh

S,s, X
pOS,s Ñ Spec pOS,s, and XOshS,s

Ñ SpecOsh
S,s

for a closed s P S.

Proof.

(a) See [BLR90, §1.2 Prop. 4] and [BLR90, p. 290].

(b) Combine (a) and [BLR90, §10.1 Prop. 3]. �

Proposition 2.4. A proper smooth S-group scheme G is a Néron model.

Proof. Proposition 2.3 (a) reduces to the local case S “ SpecOS,s, when the conclusion is clear due to
[BLR90, §7.1 Thm. 1] as GpOsh

S,sq Ñ GpKsh
S,sq is bijective by the valuative criterion of properness. �

Proposition 2.5. Let G and H be Néron models over S. A sheaf of groups E on Sfppf that is an
extension 1 Ñ HÑ E Ñ G Ñ 1 is represented by a Néron model.

Proof. By Proposition A.8, the S-group algebraic space E is separated, of finite type, and smooth,
and so in fact a scheme [BLR90, §6.6 Cor. 3]. The proof of [BLR90, §7.5 Prop. 1 (b)] based on the
same method as the proof of Proposition 2.4 now shows that E is a Néron model. �

Remark 2.6. One can use Proposition 2.5 to reduce Proposition 2.4 to the familiar cases of G being
an abelian scheme or finite étale. Indeed, as we now show, a proper smooth group scheme G over
a connected base scheme S is an extension of a finite étale S-group scheme by an abelian scheme.
Let G0 Ă G be the open S-subgroup scheme such that pG0qs is the identity component of Gs for
every s P S [EGA IV3, 15.6.5]. We claim that G0 Ă G is also closed, rendering the smooth G0 Ñ S
proper. Granting this, due to the constancy of fiber dimension of G [EGA IV3, 15.6.6 (iii) β)]
(this is the only place where connectedness of S is used), G0 Ñ S is an abelian scheme, and, by
Proposition A.13 (c)–(d), G{G0 is a separated smooth S-algebraic space of finite type. Working
fiberwise, G{G0 Ñ S is quasi-finite by [SP, Lemma 06RW], and hence a scheme by [LMB00, A.2].
It then inherits properness from G [EGA II, 5.4.3 (ii)], and hence is finite étale [EGA IV3, 8.11.1].
To complete the argument we now show that G0 Ă G is closed. Since G Ñ S is of finite presentation
and the formation G0 commutes with arbitrary base change, due to the usual limit arguments, we
can assume that S is affine, then Noetherian, then also local, and finally also complete (using fpqc
descent in this last step). In the latter case, [EGA III1, 5.5.2] applied to the connected G0 shows
that G0 Ñ S inherits properness from its special fiber. The desired properness of G0 Ă G follows.

An important source of Néron models is Theorem 2.13; for its formulation, we recall the notions of

2.7. Schematic image and schematic dominance. For a scheme morphism X
f
ÝÑ Y , its

schematic image is the initial closed subscheme Y 1 Ñ Y through which f factors. By [SP, Lemma
01R6], the schematic image exists. If for each open U Ă Y the schematic image of fU is U , then
f is schematically dominant [EGA IV3, 11.10.2]. If f is quasi-compact, then the induced X Ñ Y 1

is schematically dominant [SP, Lemma 01R8], and in this case the formation of Y 1 commutes with
flat base change [EGA IV3, 11.10.5 (ii) a)].
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The schematic image of a morphism of algebraic spaces is defined analogously to the case of schemes;
its existence is guaranteed by [SP, Lemma 082X]. If the morphism is in addition quasi-compact,
then the formation of the schematic image again commutes with flat base change [SP, Lemma 089E].

Lemma 2.8 (Transitivity of schematic images for algebraic spaces). For a scheme T and morphisms
of T -algebraic spaces f : X Ñ Y and g : Y Ñ Z, let Y 1 ãÑ Y and Z 1 ãÑ Z be the schematic images
of f and g|Y 1 . Then Z 1 ãÑ Z is also the schematic image of g ˝ f .

Proof. Since a section of a closed immersion of algebraic spaces is an isomorphism, the proof of
[EGA I, 9.5.5] given for schemes continues to work for algebraic spaces. �

Lemma 2.9. Let T be a scheme and f : X Ñ Y and g1, g2 : Y Ñ Z morphisms of T -algebraic
spaces. If Z Ñ T is separated, g1 ˝ f “ g2 ˝ f , and the schematic image of f is Y , then g1 “ g2.

Proof. The proof of [EGA I, 9.5.6] given for schemes continues to work for algebraic spaces. �

Recall that S is a connected Dedekind scheme with function field K.

Proposition 2.10. Let Y be an S-algebraic space and H a closed subalgebraic space of YK .

(a) The schematic image H of H Ñ Y is the unique S-flat closed subalgebraic space of Y with
generic fiber H. In particular, a flat Y is the schematic image of its generic fiber.

(b) For an S-algebraic space Y 1 and a closed subalgebraic space H 1 Ă Y 1K whose schematic image
in Y 1 is denoted by H1, the schematic image of H ˆK H 1 Ñ Y ˆS Y 1 is HˆS H1.

(c) For a flat S-algebraic space X , an S-morphism f : X Ñ Y factors through H if and only if
fK factors through H.

(d) If Y is an S-group and H is a K-subgroup, then H is an S-subgroup of Y.

(e) If X is a flat S-algebraic space and Y is separated, then there is at most one S-morphism
X Ñ Y extending a given XK Ñ YK .

(f) If Y is a separated S-group and H is a K-subgroup, then the closed S-subgroup H is separated.
Moreover, H is killed by n (resp., is commutative) if so is H.

(g) If Y is a finite type S-group and H is a finite K-group, then H is a quasi-finite S-group.

Proof.

(a) Choose an étale surjection U Ñ Y for some scheme U . By the known scheme case [EGA IV2,
2.8.5] and the flat base change aspect of §2.7, HˆYU is the unique S-flat closed subscheme of
U with generic fiberHˆYKUK . Its S-flatness implies that ofH thanks to [SP, Lemma 06ET].

For the uniqueness claim, the interpretation in [SP, Lemma 03MB] of closed subalgebraic
spaces in terms of their quasi-coherent sheaves of ideals reduces to showing that S-flat closed
subalgebraic spaces H1 Ă H2 Ă Y sharing H as their generic fiber are equal. Due to
[SP, Lemma 041Y], this can be checked étale locally on Y, and it holds after base change to U .

(b) This results from the S-flatness and uniqueness claims of (a).

(c) Combine the definition of H, Lemma 2.8 applied to the composition XK Ñ X f
ÝÑ Y, and (a).

(d) The diagrams giving the group scheme structure of Y restrict to H due to (a), (b), and (c).

(e) Combine (a) and Lemma 2.9.
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(f) Separatedness is inherited from Y. The rest follows from (e).

(g) By (a) and (d), H is a finite type flat S-group with HK “ H. Choose an étale surjection
U Ñ H with U a locally of finite type flat S-scheme. The generic fiber UK is locally quasi-
finite. By [SP, Definition 03XJ], it remains to check that U is also locally quasi-finite. For
this, working locally on U , we assume that U u

ÝÑ S is affine. Since we seek to show that the
fibers of u are finite, we may also assume that S is local.

Due to flatness and (a), U is the scheme-theoretic union of the schematic images of the
irreducible components of UK . To show the finiteness of the special fiber of U , we can
therefore pass to these S-flat schematic images and assume that U is irreducible, in which
case the conclusion results from [BLR90, §2.4 Prop. 4]. �

Proposition 2.10 enables us to extend [GMB13, Prop. 3.1] beyond the affine case:

Proposition 2.11. Let S be a connected Dedekind scheme, K its function field, G Ñ S a separated
S-group algebraic space, and rG Ă G the schematic image of GK Ñ G, so rG is an S-flat closed
subgroup of G by Proposition 2.10 (a) and (d). For a torsor X Ñ S under G for the fppf topology,
the schematic image rX of XK Ñ X is a torsor under rG for the fppf topology. The assignment
X ÞÑ rX is functorial and furnishes an equivalence of categories between torsors under G and those
under rG. The “change of group” functor resulting from rG Ă G is quasi-inverse to X ÞÑ rX . In
particular, H1

fppfpS,
rGq Ñ H1

fppfpS,Gq is bijective.

Proof. Torsor sheaves are the same as torsor algebraic spaces thanks to Proposition A.5.

The action morphism G ˆS X Ñ X restricts to rG ˆS rX Ñ rX thanks to Proposition 2.10 (c), which
also shows that rX pT q “ X pT q for every fppf T Ñ S, so rXpT q ‰ H for some such T . Since X , and
hence also rX , inherits separatedness from G, employing in addition Proposition 2.10 (b) and (e),

we see that the isomorphism G ˆS X pg,xqÞÑpgx,xq
ÝÝÝÝÝÝÝÝÑ X ˆS X and its inverse restrict to the analogous

isomorphism rG ˆS rX Ñ rX ˆS rX and its inverse. In conclusion, rX is a torsor under rG for the fppf
topology. The functoriality of X ÞÑ rX also results from Proposition 2.10 (c).

We turn to the remaining quasi-inverse claim. For a torsor X 1 under rG for the fppf topology, the
natural map i : X 1 ãÑ X 1ˆ rGG “: X is a closed immersion, as one checks fppf locally on S. Moreover,
iK is an isomorphism and X 1 inherits flatness from rG. Thus, due to Proposition 2.10 (a) and (c),
X 1 “ rX inside X functorially in X 1. Conversely, for a torsor X under G, the natural rX ˆ rG G Ñ X
is an isomorphism, as can be checked fppf locally on S; this isomorphism is functorial in X . �

2.12. Group smoothenings. For a finite type S-group scheme G with smooth generic fiber, its
group smoothening is an S-homomorphism G1 t

ÝÑ G with a finite type smooth S-group scheme G1
satisfying: for a finite type smooth Z Ñ S, every S-morphism Z Ñ G factors uniquely through t.
If a group smoothening of G exists, it is unique up to a unique isomorphism. Due to spreading out
(applied to Z), the formation of G1 commutes with localization on S, so tK is an isomorphism.

Theorem 2.13 ([BLR90, §7.1 Cor. 6]). A closed K-smooth subgroup scheme G Ă XK of the generic
fiber of a Néron model X Ñ S admits a Néron model, which is given by the group smoothening of
the schematic image G of GÑ X . Consequently, G is a Néron model if and only if it is S-smooth.

Corollary 2.14. A smooth S-group scheme G is a closed subgroup of a Néron model if and only if
it is a Néron model itself.

10

http://stacks.math.columbia.edu/tag/03XJ


Proof. To see that G inherits the Néron property, use Proposition 2.10 (c) for smooth schemes X . �

Étale Néron models are particularly pleasant to deal with due to

Proposition 2.15. Let G be a finite étale K-group scheme.

(a) The Néron model G Ñ S of G exists and is separated quasi-finite étale.

(b) G Ñ S is finite if and only if GpKq is unramified at all nongeneric s P S (i.e., if and only if
the finite p pKS,sq

nr-group G
p pKS,sqnr is constant for all such s, where p pKS,sq

nr :“ Fracp pOS,sq
sh).

(c) G ÞÑ GK is an equivalence between the category of étale Néron models over S and that of finite
étale K-group schemes that is compatible with kernels and finite products. When restricted
to the full subcategory of finite étale G, it is also compatible with quotients.

(d) Commutative finite étale S-group schemes form an abelian subcategory of the category of
abelian sheaves on Sét that is equivalent by the exact generic fiber functor to the category of
finite discrete GalpK{Kq-modules that are unramified at all nongeneric points of S.

Proof. The Néron property of a finite étale S-group scheme can be verified directly by reducing to
the constant case (alternatively, use Proposition 2.4). Thus, for existence in (a), spreading-out and
[BLR90, §1.4 Prop. 1 and §6.5 Cor. 3] reduces to the case of a strictly local S, when G Ñ S is
obtained from G by extending the constant subgroup GpKq

K
Ă G to a constant subgroup over S

[BLR90, §7.1 Thm. 1]. The other claims of (a), as well as (b), are immediate from construction.
Since a quotient of finite étale group schemes is finite étale, (c) follows, and it implies (d). �

Remarks.

2.16. The existence in (a) can also be argued with the help of restriction of scalars and normaliza-
tion to reduce to the constant case.

2.17. Without restricting to finite étale G in (c), compatibility with quotients fails. Indeed, short
exactness of a sequence of GalpK{Kq-modules does not imply that of the corresponding
sequence of Néron models. An example is a nonsemisimple ramified extension H of two
trivial mod p characters: by (b), the Néron model of H is not finite, whereas every extension
of finite S-group schemes must again be finite due to Proposition A.8.

We now consider fppf (equivalently, étale, cf. Proposition A.6) torsors under a Néron (lft) model.

Proposition 2.18 ([Ray70, Thm. XI 3.1 1)]). Every fppf torsor under a Néron model is repre-
sentable by a scheme.

We do not know whether representability by schemes fails for torsors under Néron lft models.

Proposition 2.19. An fppf torsor T Ñ S under a Néron lft model X Ñ S is a separated smooth
S-algebraic space that has the Néron property for smooth S-algebraic spaces. If X is a Néron model,
then T Ñ S is of finite type.

Proof. By Propositions A.5 and A.6, T trivializes over an étale cover S1 Ñ S and is representable by
an S-algebraic space. Every S-algebraic space Z is the quotient of an étale equivalence relation of
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schemes, so in checking Néron bijectivity of T pZq Ñ T pZKq, one is reduced to the case of a smooth
S-scheme Z. As Néron property is preserved under étale base change, in the commutative diagram

T pZq //

a

��

T pZS1q //
//

b
��

T pZS1ˆSS1q

c

��

T pZKq // T ppZS1qKq //
// T ppZS1ˆSS1qKq

with equalizer rows, b and c are bijective, hence so is a, giving the Néron property of T . The other
claimed properties are inherited from X by descent [SP, Lemmas 0421, 0429, and 041U]. �

Corollary 2.20. For a Néron lft model X Ñ S,

H1
fppfpS,X q

ι
ÝÑ H1

fppfpK,XKq
§1.17
– H1pK,XKq (2.20.1)

is injective (cf. §A.4 for the notation).

Proof. An fppf torsor under X is determined by its generic fiber due to Proposition 2.19. �

If S is local, it is possible to determine the image of (2.20.1):

Proposition 2.21. Let R be a discrete valuation ring, and set K :“ FracR and Ksh :“ FracRsh.
For a Néron lft model X over S “ SpecR, the image of the injection ι from (2.20.1) is the unramified
cohomology subset

I :“ KerpH1pK,XKq Ñ H1pKsh,XKshqq,

which consists of all the XK-torsors that trivialize over Ksh. In other words, an XK-torsor T extends
to an X -torsor if and only if T pKshq ‰ H.

Proof. By Proposition A.6, every X -torsor T trivializes over an étale cover U Ñ S. Moreover,
SpecRsh Ñ SpecR factors through U , so T trivializes over Rsh. This yields Im ι Ă I.

By construction, Rsh is a filtered direct limit of local étale R-algebras R1 which are discrete valuation
rings sharing a uniformizer with R; if K 1 “ FracR1, then Ksh “ lim

ÝÑ
K 1. Let T be an XK-torsor

with T pKshq ‰ H; we will show that it extends to an X -torsor T , thus proving I Ă Im ι. Since T
is locally of finite presentation, T pKshq “ lim

ÝÑ
T pK 1q [LMB00, 4.18 (i)], so T trivializes over some

K 1; we fix the corresponding R1. The descent datum on TK1 with respect to K 1{K transports along
an isomorphism of torsors to XK1 and then, since Néron property is preserved under étale base
change, to a descent datum on XR1 with respect to R1{R, all compatibly with the torsor structure.
This compatibility together with the effectivity of the descent datum on XR1 for algebraic spaces
[LMB00, 1.6.4], equips the descended T Ñ SpecR with the structure of an X -torsor trivialized over
R1. By construction, TK – T as XK-torsors. �

3. Exact sequences involving Néron models of abelian varieties

The short exact sequences gathered in this section are crucial for the fppf cohomological approach to
Selmer groups and have been used repeatedly in the literature, but their proofs seem hard to locate.

3.1. Open subgroups of A. Let S be a connected Dedekind scheme (cf. §2.1), let K be its
function field, let A Ñ SpecK be an abelian variety, and let A Ñ S be its Néron model. For a
nongeneric s P S, let Φs be the finite étale kpsq-group scheme As{A0

s of connected components of
the special fiber As. For each s, choose a kpsq-subgroup Γs Ă Φs (equivalently, a Galpkpsq{kpsqq-
submodule Γspkpsqq Ă Φspkpsqq). For all s but finitely many, As is an abelian variety, so Φs “ 0
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and Γs “ Φs. Consequently, one obtains the open S-subgroup scheme AΓ Ă A by removing for each
s the connected components of As not in Γs. By construction, for each S-scheme T , the sections in
AΓpT q are those T f

ÝÑ A for which the composition of fs : Ts Ñ As and As Ñ Φs factors through
Γs Ă Φs. If Γs “ 0 for each s, one obtains the open S-subgroup A0 Ă A that fiberwise consists of
connected components of identity. Of course, Γs “ Φs for all s leads to AΦ “ A. For s P S, we
denote the base change pAΓqs by AΓ

s .

For a closed s P S, denote by is : Spec kpsq Ñ S the resulting closed immersion. Since i˚sAΓ “ AΓ
s ,

under the adjunction i˚s % is˚ the homomorphism AΓ
s

πs
ÝÑ Γs corresponds to the homomorphism

AΓ Ñ is˚AΓ
s

is˚pπsq
ÝÝÝÝÑ is˚Γs mapping f P AΓpT q to πs ˝ fs. In particular, for every choice of rΓs Ă Γs,

there is a Cartesian square

ArΓ � � //

��

AΓ

��
À

s is˚
rΓs
� � //

À

s is˚Γs.

(3.1.1)

Proposition 3.2. For all choices of subgroups rΓs Ă Γs Ă Φs, the sequence

0 Ñ ArΓ Ñ AΓ a
ÝÑ

à

s

is˚pΓs{rΓsq Ñ 0

is exact in Sét, SÉt, and Sfppf .

Proof. Left exactness is clear from (3.1.1) and left exactness of is˚, whereas to check the remaining
surjectivity of a in SÉt on stalks, it suffices to consider strictly local rings pO,mq of SÉt centered at
a nongeneric s P S with rΓs ‰ Γs. Let a Ă m be the ideal generated by the image of mS,s. In the
commutative diagram

AΓpOq
apOq

//

b
����

pΓs{rΓsqpO{aq

do
��

AΓpO{mq c // // pΓs{rΓsqpO{mq,

b is surjective due to Hensel-lifting for the smoothAΓ
O Ñ SpecO [BLR90, §2.3 Prop. 5], c is surjective

due to invariance of the rational component group of the smooth AΓ
kpsq

Ñ Spec kpsq upon passage

to a separably closed overfield [EGA IV4, 17.16.3 (ii)], whereas d is bijective since pΓs{rΓsqO{a is
finite étale over the Henselian local pO{a,m{aq [EGA IV4, 18.5.15]. The desired surjectivity of apOq
follows (by limit arguments [EGA IV3, 8.14.2], a induces apOq on the stalk at O). �

Let A φ
ÝÑ B be a K-isogeny of abelian varieties. This induces A φ

ÝÑ B on the Néron models over S.

Proposition 3.3. The kernel Arφs Ñ S is affine. Every torsor under Arφs for the fppf topology is
representable.

Proof. Affineness is a special case of [Ana73, 2.3.2]. Representability of torsors is a special case of
Proposition A.7. �

Lemma 3.4. The following are equivalent:

(a) A φ
ÝÑ B is quasi-finite;
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(b) A0 φ
ÝÑ B0 is surjective (as a morphism of schemes);

(c) A φ
ÝÑ B is flat.

When the equivalent conditions hold, A0 φ
ÝÑ B0 is a surjection of fppf sheaves.

Proof. Due to the fibral criterion of flatness [EGA IV3, 11.3.11] to handle (c), the conditions (a)–(c)
can be checked fiberwise on S. We show that they are equivalent for the fiber at s P S.

Since A, B are fppf over S, by [BLR90, §2.4 Prop. 4], dimAs “ dimA, dimBs “ dimB, and hence
dimAs “ dimBs. Therefore, by [SGA 3I new, VIB, 1.2 et 1.3], (a)ô(b). If φs is flat, then φspA0

sq is
both open and closed (loc. cit.), and hence equals B0

s . Thus, (c)ñ(b). Conversely, if φs is surjective,
it is flat [SGA 3I new, VIA 5.4.1], so (b)ñ(c).

For the last claim, by (b) and (c), φ is fppf, and hence a surjection of represented fppf sheaves. �

3.5. Semiabelian reduction. One says that A has semiabelian reduction at a nongeneric s P S if
A0
s is an extension of an abelian variety by a torus.

Lemma 3.6. The equivalent conditions of Lemma 3.4 hold if

(d) A has semiabelian reduction at all nongeneric s P S with char kpsq | deg φ.

If φ is multiplication by n, then (d) is equivalent to the conditions of Lemma 3.4.

Proof. For a commutative connected algebraic groupG over a field k, multiplication by n is surjective
on G, provided that G is a semiabelian variety if char k - n: it is surjective on abelian varieties and
tori for every k and induces an isomorphism on LieG if char k - n, so [SGA 3I new, VIB 1.2] applies.
This gives (d)ñ(b) by considering the isogeny ψ : B Ñ A with kernel φpArdeg φsq, so φ˝ψ “ deg φ.

To argue that (a)ñ(d) if φ “ n, take an s P S with char kpsq | n. Quasi-finiteness of multiplication
by n prevents A0

kpsqalg from having Ga as a subgroup, so A0
kpsqalg is of unipotent rank 0, and hence

A0
s is a semiabelian variety as explained in [BLR90, §7.3 p. 178]. �

Remark 3.7. For an arbitrary φ, (d) is not equivalent to (a)–(c) of Lemma 3.4: take

φ “ idA1 ˆn : A1 ˆA2 Ñ A1 ˆA2

for an n for which (d) holds for A2; (c) holds for this φ, but (d) fails in general since A1 is arbitrary.

Corollary 3.8. Suppose that A φ
ÝÑ B is flat (due to Lemma 3.6, this is the case if A has semiabelian

reduction at every nongeneric s P S with char kpsq | deg φ). Then Arφs Ñ S is quasi-finite flat and
affine; it is also finite if A has good reduction everywhere.

Proof. By Lemma 3.4, AÑ B is quasi-finite flat, and Arφs Ñ S inherits these properties. Affineness
results from Proposition 3.3 (or also from [SGA 3I new, XXV, 4.1]). If A has good reduction, then
A is proper over S, and hence so is its closed subscheme Arφs, which then is finite due to quasi-
finiteness [EGA IV3, 8.11.1]. �

Corollary 3.9. If char kpsq - deg φ for all s P S, then Arφs is the Néron model of Arφs.

Proof. By Proposition 2.10 and Corollary 3.8, Arφs is the schematic image of Arφs Ñ A and is
killed by deg φ. Thus, due to Corollary 3.8 and Proposition A.9, Arφs Ñ S is étale, and one invokes
Theorem 2.13. �

14



The analogue of 0 Ñ Arφs Ñ A
φ
ÝÑ B Ñ 0 for A φ

ÝÑ B faces complications due to possibly discon-
nected closed fibers. To state it in Proposition 3.10 (a), note that a choice of Γs Ă Φs yields φspΓsq,
which give the open subgroup BφpΓq Ă B as in §3.1, and φ : AΓ Ñ B factors through BφpΓq ãÑ B.

Proposition 3.10. If A φ
ÝÑ B is flat (e.g., if A has semiabelian reduction at all nongeneric s P S

with char kpsq | deg φ, cf. Lemma 3.6), then for all choices Γs Ă Φs the sequences

(a) 0 Ñ AΓrφs Ñ AΓ φ
ÝÑ BφpΓq Ñ 0,

(b) 0 Ñ A0rφs Ñ AΓrφs Ñ
À

s is˚pΓsrφssq Ñ 0

are exact in Sfppf .

Proof. In the commutative diagram

0 // A0rφs� _

��

// AΓrφs� _

��

//
À

s is˚pΓsrφssq� _

��

// 0

0 // A0

φ
����

// AΓ //

φ

��

À

s is˚Γs
//

‘sis˚φs
����

0

0 // B0 // BφpΓq //
À

s is˚pφspΓsqq
// 0,

the bottom horizontal sequences are short exact by Proposition 3.2, the left bottom φ is surjective
by Lemma 3.4, and the right vertical sequence is short exact in Sfppf because it is so in SÉt due to
exactness of each is˚ in the étale topology. Both claims follow by invoking snake lemma. �

Corollary 3.11. Suppose that A φ
ÝÑ B is flat. For an isogeny B ψ

ÝÑ C of abelian varieties, which
induces B ψ

ÝÑ C on Néron models, and for every choice of Γs Ă Φs, the sequence

0 Ñ AΓrφs Ñ AΓrψ ˝ φs
φ
ÝÑ BφpΓqrψs Ñ 0

is exact in Sfppf .

Proof. Due to universality of quotients [Ray67, §3 iii)], pulling back Proposition 3.10 (a) along
BφpΓqrψs ãÑ BφpΓq gives the claim. �

Remark 3.12. Corollary 3.11 requires no assumption on B ψ
ÝÑ C. For instance, it applies when

φ “ n and ψ “ m are multiplication by n and m isogenies and A has semiabelian reduction at all
nongeneric s P S with char kpsq | n.

4. Glueing schemes over global bases

Let S be a connected Dedekind scheme and K its function field. For a nongeneric s P S, set
KS,s :“ FracOS,s. The purpose of this convention (note that KS,s “ K) is to clarify the statement
of Lemma 4.1 by making OS,s and KS,s notationally analogous to Oh

S,s and K
h
S,s.

A standard descent lemma 4.1 formalizes the idea that an S-scheme amounts to a V -scheme for a
nonempty open V Ă S together with a compatible pOS,s-scheme for every s P S´V . We use it in §5
through Corollary 4.4 to reduce questions about group schemes over global bases to the local case.
Its special case Claim 4.1.1 is key for Selmer type descriptions of sets of fppf torsors in §7.
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Lemma 4.1. Let s1, . . . , sn P S be distinct nongeneric points, V :“ S ´ ts1, . . . , snu the comple-
mentary open subscheme, and F the functor

X ÞÑ pXV , XOS,s1 , . . . , XOS,sn , αi : pXV qKS,si
„
ÝÑ pXOS,si qKS,si for 1 ď i ď nq

from the category of S-algebraic spaces to the category of tuples consisting of a V -algebraic space, an
OS,si-algebraic space for each i, and isomorphisms α1, . . . , αn as indicated (“glueing data”). Mor-
phisms in the target category are tuples of morphisms of V - and OS,si-algebraic spaces that are
compatible with the αi’s.

(a) When restricted to the full subcategory of S-schemes, F is an equivalence onto the full sub-
category of tuples of schemes that admit a quasi-affine open covering (see the proof for
the definition). The same conclusion holds with OS,si and KS,si replaced by Oh

S,si
and

Kh
S,si

:“ FracOh
S,si

or by pOS,si and pKS,si :“ Frac pOS,si.

(b) When restricted to the full subcategory of S-algebraic spaces of finite presentation, F is an
equivalence onto the full subcategory of tuples involving only algebraic spaces of finite presen-
tation. The same conclusion holds with OS,si and KS,si replaced by Oh

S,si
and Kh

S,si
.

Proof. In (a), we say that a tuple of schemes admits a quasi-affine open covering if XV “
Ť

jPJ Uj
and XOS,si “

Ť

jPJ Ui,j for 1 ď i ď n with quasi-affine (over respective bases) open Uj , Ui,j for
which the αi restrict to isomorphisms pUjqKS,si

„
ÝÑ pUi,jqKS,si . The definition is analogous in the

case of henselizations or completions, or for various categories of tuples considered below. Note that
F takes values in the claimed subcategory: an affine open covering of X gives a quasi-affine open
covering F pXq.

Since F is the composite of X ÞÑ pXS´ts1u, XOS,s1 , α1q and its analogue for s2, . . . , sn P S ´ ts1u

(and similarly for henselizations and completions), induction reduces us to the n “ 1 case (in (a),
a quasi-affine open covering of an n-tuple descends to a quasi-affine open covering of the first entry
of the triple due to the inductive hypothesis applied to the schemes in the covering). In the sequel
s1 “ s, α1 “ α, V “ S ´ tsu, and we stop writing KS,s for K.

Postponing the cases of henselizations and completions, we now prove (a) and (b):

(a) Giving a descent datum with respect to the fpqc V
Ů

SpecOS,s Ñ S amounts to giving
α because there are no nontrivial triple intersections. Thus, F is fully faithful [BLR90,
§6.1 Thm. 6 (a)]. For essential surjectivity, by [SP, Lemma 0247], the quasi-affine open cover
descends and glues along descended quasi-affine open intersections to a desired X.

(b) Let π P K be a uniformizer of OS,s; note that OS,s is a filtered direct limit lim
ÝÑ

R of coordinate
rings of affine open subschemes of S containing s on which π is regular and vanishes only at
s. For essential surjectivity, given a pY,Y, α : YK

„
ÝÑ YKq with Y Ñ V and Y Ñ SpecOS,s

of finite presentation, first spread out Y to Y 1 Ñ SpecR and α to α1 : YRr 1
π
s

„
ÝÑ Y 1

Rr 1
π
s
for

some R as above using limit considerations of [Ols06, proof of Prop. 2.2]. As in (a), α1 gives
a descent datum with respect to V

Ů

SpecR Ñ S which is effective [LMB00, 1.6.4], thus
yielding a desired X. Full faithfulness follows from analogous limit arguments using étale
(or Zariski) descent for morphisms of sheaves on SÉt and [LMB00, 4.18 (i)].

Before dealing with henselizations and completions we make a preliminary reduction concentrating
on the case of Oh

S,s and Kh
S,s (that of pOS,s and pKS,s is completely analogous). In the categories

described below morphisms are tuples of morphisms which are compatible with the isomorphisms
that are specified as part of the data of an object.

16

http://stacks.math.columbia.edu/tag/0247


Let C be the target category of F , and C h its analogue in the case of henselizations. We proved that
F is an equivalence when restricted to the subcategories of (a) and (b), so it remains to show that

G : C Ñ C h, pY,Y, α : YK
„
ÝÑ YKq ÞÑ

´

Y,YOhS,s
, αKh

S,s
: YKh

S,s

„
ÝÑ pYOhS,s

qKh
S,s

¯

is too. Let D be the category of OS,s-algebraic spaces and Dh the category of triples

pZ,Z, β : ZKh
S,s

„
ÝÑ ZKh

S,s
q

consisting of aK-algebraic space, an Oh
S,s-algebraic space, and an isomorphism as indicated. Let Dp

be the analogous category of triples with Oh
S,s and K

h
S,s replaced by pOS,s and pKS,s. Let B : D Ñ Dh

be the base change functor and E the category of triples

pY, pZ,Z, βq P Dh, γ : YK
„
ÝÑ Zq

with Y a V -algebraic space. The diagram of functors

C
G //

pid,B,idq
��

C h

H

��

pY,Y, αq � G //

_

pid,B,idq

��

pY,YOhS,s
, αKh

S,s
q

_

H

��

pY,Z, αhq
_

H

��

E , pY, pYK ,YOhS,s
, idq, αq – pY, pYK ,YOhS,s

, αKh
S,s
q, idq, pY, pYK ,Z, αhq, idq.

is commutative up to a natural isomorphism given by the α’s. Moreover, H is an equivalence,
because the functor pY, pZ,Z, βq, γq ÞÑ pY,Z, β ˝ γKh

S,s
q is inverse to H. Thus, the restriction of G

to appropriate subcategories as in (a) and (b) is an equivalence if and only if pid, B, idq is, which is
the case if the restriction of B is an equivalence. It remains to prove

Claim 4.1.1. Let B : D Ñ Dh be the base change functor.

(a) When restricted to the full subcategory of OS,s-schemes, B is an equivalence onto the full
subcategory of triples of schemes that admit a quasi-affine open covering. The analogous
conclusion holds with Oh

S,s, K
h
S,s, and Dh replaced by pOS,s, pKS,s, and Dp.

(b) When restricted to the full subcategory of OS,s-algebraic spaces of finite presentation, B is
an equivalence onto the full subcategory of triples involving only algebraic spaces of finite
presentation.

To complete the proof of Lemma 4.1, we prove Claim 4.1.1:

(a) See [BLR90, §6.2 Prop. D.4 (b)].

(b) The method of proof was suggested to me by Brian Conrad. We first treat the case of Oh
S,s

and Kh
S,s. By construction, Oh

S,s is a filtered direct limit of local étale OS,s-algebras R which
are discrete valuation rings sharing the residue field and a uniformizer with OS,s. Given
an object T “ pZ,Z, β : ZKh

S,s

„
ÝÑ ZKh

S,s
q of Dh with Z Ñ SpecK and Z Ñ SpecOh

S,s

of finite presentation, to show that it is in the essential image of the restricted B we first
descend Z to Z 1 Ñ SpecR for some R as above using limit considerations as in [Ols06, proof
of Prop. 2.2]. Similarly, Kh

S,s “ lim
ÝÑ

FracpRq and β descends to β1 : ZFracpRq
„
ÝÑ Z 1FracpRq

after possibly increasing R. Transporting the descent datum on ZFracpRq with respect to
FracpRq{K along β1, one gets a descent datum on Z 1FracpRq, which, as explained in [BLR90,
§6.2 proof of Lemma C.2], extends uniquely to a descent datum on Z 1 with respect to
R{OS,s. By [LMB00, 1.6.4], the descent datum is effective, giving an OS,s-algebraic space X;
by construction, BpXq – T , and by [SP, Lemma 041V], X is of finite presentation. The full
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faithfulness of B follows from a similar limit argument using étale descent for morphisms of
sheaves on pOS,sqÉt and [LMB00, 4.18 (i)]. �

Remarks.

4.2. As is immediate from fpqc descent, if P is a property of morphisms of schemes (resp., alge-
braic spaces) that is stable under base change and is fpqc local on the base, then analogues of
(a) (resp., (b)) hold after restricting further to subcategories involving only schemes (resp., al-
gebraic spaces) possessing P.

4.3. The functor F commutes with fiber products since those in the target category are formed
componentwise. This continues to hold after restricting to the subcategories of (a)5 and (b),
and also further to subcategories of schemes or algebraic spaces possessing P as in 4.2 if P
is in addition stable under composition. In particular, we obtain

Corollary 4.4. In the notation of Lemma 4.1, the functor

G ÞÑ pGV ,GOS,s1 , . . . ,GOS,sn , αi : pGV qKS,si
„
ÝÑ pGOS,si qKS,si for 1 ď i ď nq (4.4.1)

is an equivalence of categories from the category of S-quasi-affine S-group schemes to the category of
tuples consisting of a V -quasi-affine V -group scheme, a quasi-affine OS,si-group scheme for each i,
and isomorphisms α1, . . . , αn as indicated. The same conclusion holds with OS,si and KS,si replaced
by Oh

S,si
and Kh

S,si
or by pOS,si and pKS,si . If P is a property of morphisms of schemes stable under

base change and composition and fpqc local on the base, the same conclusions hold after restricting
to subcategories involving only quasi-affine (over their bases) group schemes possessing P.

5. Models of finite group schemes over global bases

Let S be a connected Dedekind scheme, K its function field, and G a finite commutative K-group
scheme. We study separated quasi-finite flat S-group schemes G equipped with an isomorphism
G

„
ÝÑ GK . Propositions 2.10 and A.11 show that such a G is commutative and allow to assume, as

we do for the rest of the section, that #G “ pm for some prime p, in which case G is killed by pm.
If S is the spectrum of the ring of integers of a finite extension of Qp, finite flat G are the subject
of a vast body of literature starting with [TO70] and [Ray74]. The goal of the present section is to
use Corollary 4.4 to transfer some of the known results over local bases to those over global ones.
Since we cannot prove much otherwise, we assume that charK ‰ p.

5.1. S-models. Let V :“ Sr1p s be the open subscheme of S obtained by inverting p; the points
s1, . . . , sn of S ´ V have residue characteristic p. A commutative quasi-finite S-group scheme G
with GK of p-power order is an S-model (of its generic fiber) if GV Ñ V is a Néron model and each
GOS,si Ñ SpecOS,si is finite flat. An S-model is separated and flat because these properties are fpqc
local; it is also S-affine due to [SGA 3I new, XXV, 4.1] (applied to the homomorphism towards the
zero group). A morphism of S-models is a morphism of S-group schemes. A commutative finite flat
S-group scheme of p-power order is an S-model due to Propositions 2.4 and A.9; allowing GV Ñ V
to be Néron instead of finite flat amounts to allowing ramification away from p, cf. Proposition 2.15.

Proposition 5.2. Let G and H be S-models.

(a) A morphism of S-models G Ñ H is determined by its generic fiber.

5For (a), a quasi-affine open covering of the fiber product tuple T1 ˆT2 T3 is given by the fiber products of the
opens in coverings of T1, T2, and T3 and is indexed by J1 ˆ J2 ˆ J3, where Ji indexes a covering of Ti.
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(b) A sheaf of abelian groups E on Sfppf that is an extension of S-models 0 Ñ HÑ E Ñ G Ñ 0
is represented by an S-model.

Proof.

(a) This is a special case of Proposition 2.10 (e).

(b) By Proposition A.8, E is represented by a quasi-finite S-group scheme which is finite flat over
each OS,si . Since EK is of p-power order, E is an S-model by Proposition 2.5. �

5.3. S-models of a fixed G. These are S-models G Ñ S equipped with a K-group scheme
isomorphism α : G

„
ÝÑ GK ; their morphisms are required to be compatible with the α’s. Let

M pG,Sq be the resulting category of S-models of G; by Proposition 5.2 (a), the objects of M pG,Sq
have no nontrivial automorphisms. By Proposition 2.15 (a), M pG,V q is the terminal category. Note
that M pG,OS,siq, M pGKh

S,si

,Oh
S,si
q, and M pG

pKS,si
, pOS,siq are simply the categories of finite flat

models of the base changed G, where Kh
S,si

:“ FracOh
S,si

and pKS,si :“ Frac pOS,si .

Theorem 5.4. The base change functors

M pG,Sq ÑM pG,OS,s1q ˆ ¨ ¨ ¨ ˆM pG,OS,snq,

M pG,Sq ÑM pGKh
S,s1

,Oh
S,s1q ˆ ¨ ¨ ¨ ˆM pGKh

S,sn
,Oh

S,snq,

M pG,Sq ÑM pG
pKS,s1

, pOS,s1q ˆ ¨ ¨ ¨ ˆM pG
pKS,sn

, pOS,snq

are equivalences of categories.

Proof. This follows from Corollary 4.4 by restricting the functors there to appropriate subcategories;
the cases of henselizations and completions being analogous, we explicate that of localizations.
Restrict (4.4.1) to the full subcategories of group schemes that are finite flat over each OS,si and are
Néron models over V with K-fiber isomorphic to G. At this point, making the latter isomorphism
part of the data of an object identifies the source category with M pG,Sq and the target category
with M pG,OS,s1q ˆ ¨ ¨ ¨ ˆM pG,OS,snq (both up to equivalences). �

Remark 5.5. Theorem 5.4 continues to hold after relaxing the definition of an S-model by requiring
it to be separated quasi-finite flat over each OS,si (and Néron over V ). Indeed, such an S-model is
affine [SGA 3I new, XXV, 4.1], so Corollary 4.4 still applies.6

5.6. Integrally closed subdomains R of a number field K. Necessarily, R is the ring of Σ-
integers OK,Σ for a possibly infinite set Σ of finite places of K, namely, the places appearing in
prime factorizations of denominators of elements of R. The Dedekind scheme SpecR has function
field K; its nongeneric points correspond to finite places v of K not in Σ. The nonempty open
subschemes of SpecOK are the SpecOK,Σ as above with finite Σ.

Proposition 5.7. Suppose that K is a number field and S “ SpecOK,Σ for an integrally closed
subdomain OK,Σ Ă K (as in §5.6). Fix a finite commutative K-group scheme G of p-power order
(equivalently, a GalpK{Kq-representation GpKq on a finite p-primary abelian group).

(a) A tuple consisting of a finite flat Ov-model of GKv for each v R Σ above p arises from a
unique OK,Σ-model of G. Up to isomorphism there are only finitely many OK,Σ-models of G.

6Reliance on loc. cit. here and in §5.1 is superficial: Corollary 4.4 holds with “affine” replaced by “quasi-affine”
throughout, whereas a separated quasi-finite S-scheme is quasi-affine [EGA IV3, 8.11.2].
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(b) A finite flat OK,Σ-model of G exists if and only if GpKq is unramified outside of ΣY tv | pu
and a finite flat Ov-model of GKv exists for each v R Σ above p. In this case every OK,Σ-model
of G is finite flat.

(c) If each v R Σ above p has absolute ramification index ă p´ 1, then up to isomorphism there
is at most one OK,Σ-model of G.

(d) For OK,Σ-models G1 and G2 of G, a tuple consisting of a morphism pG1qOv Ñ pG2qOv of
Ov-models of GKv for each v R Σ above p arises from a unique morphism G1 Ñ G2 of OK,Σ-
models of G, in which case we write G1 ě G2. There is at most one morphism G1 Ñ G2, so
ě defines a partial order on the set of isomorphism classes of OK,Σ-models of G.

(e) Two OK,Σ-models G1 and G2 of G have the supremum and the infimum with respect to ě.

(f) If an OK,Σ-model of G exists, then the set of isomorphism classes of OK,Σ-models of G has
the unique maximum G` and the unique minimum G´ with respect to ě.

Proof. Combine Theorem 5.4 with

(a) Finiteness of the set of isomorphism classes of objects of M pGKv ,Ovq [Maz70, top of p. 221];

(b) Proposition 2.15 (b);

(c) The corresponding local result [Ray74, Thm. 3.3.3];

(d) Proposition 5.2 (a);

(e) The corresponding local result [Ray74, Prop. 2.2.2];

(f) The corresponding local result [Ray74, Cor. 2.2.3]. �

Remark 5.8. In the case of finite flat models of order p, Proposition 5.7 (a) is [TO70, Lemma 4].

Proposition 5.9 (Theorem 1.1 (b)). Let L{K be an extension of number fields, φ : A Ñ B a
K-isogeny between abelian varieties, S :“ SpecOL, and ALrφs the kernel of the homomorphism
induced by φL between the Néron models over S. Assume that

(i) A has good reduction at all places v | deg φ of K;

(ii) ep ă p´1 for every prime p | deg φ, where ep :“ maxv|p ev and ev is the absolute ramification
index of v.

Then the OL-group scheme ALrφs is determined up to isomorphism by the GalpL{Kq-module ArφspLq.

Proof. The p-primary decomposition of ALrφs from Proposition A.11 induces the K-rational p-
primary decomposition of the generic fiber, so by Proposition 2.10 (a) and Corollary 3.8, the factors
of the former are ALrψs for K-isogenies ψ of prime power degree, reducing to the case deg φ “ pn.

By Corollaries 3.8 and 3.9, ALrφsSr 1
p
s is the Néron model of the finite étale ArφsL, whereas ALrφsOw

is finite flat for every place w of L above p. In conclusion, ALrφs is an S-model of ArφsL, and, due
to Proposition 5.7 (c), the claim follows if L “ K. Thus, AKrφs is determined, and it remains to
apply Proposition 5.7 (a): indeed, an abelian scheme is a Néron model (compare Proposition 2.4),
so in general ALrφsOw “ pAKrφsOvqOw where v is the place of K below w. �

Remarks.

5.10. For a global field K of positive characteristic prime to deg φ, the analogue of Proposition 5.9
is a special case of Corollary 3.9.
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5.11. Dropping (ii) but keeping (i) (or assuming instead of (i) and (ii) that A has semiabelian
reduction at all v | deg φ and L “ K), the proof continues to give the same conclusion as
long as one argues that in the situation at hand AKrφsOv is determined for each v | deg φ (in
the semiabelian reduction case one has to use Remark 5.5 instead of Proposition 5.7 (a)).

Although (ii) excludes the 2 | deg φ cases, Remark 5.11 can sometimes overcome this:

Example 5.12. Let K be a number field of odd discriminant, and let A Ñ SpecK be an elliptic
curve with good reduction at all v | 2. Assume that Ar2spKvq ‰ pZ{2Zq2 for every v | 2, so Ar2sKv
has at most one Kv-subgroup of order 2 for every such v. We show that under this assumption the
conclusion of Proposition 5.9 holds for 2: A Ñ A, so, in particular, if

ś

v-8 cA,v is odd and K is
totally imaginary, Ar2s determines Sel2A by Theorem 1.1.

Remark 5.11 reduces to proving that AKr2sOv is determined by Ar2sKv for each v | 2; one of the key
assumptions is the unramifiedness of Kv{Q2. We analyze the ordinary and supersingular reduction
cases separately; this is permissible since the cases are distinguishable: in the former, Ar2sKv is
reducible, whereas in the latter it is not.

In the supersingular case, by [Ser72, p. 275, Prop. 12], Ar2sKnr
v

is irreducible and also an F4-vector
space scheme of dimension 1. By [Ray74, 3.3.2 3o], Ar2sOnr

v
is its unique finite flat Onr

v -model. By
schematic density (cf. Proposition 2.10 (e)) and limit considerations, the descent datum on AKr2sOnr

v

with respect to Onr
v {Ov is uniquely determined by its restriction to the generic fiber, which in turn is

determined by Ar2sKv . Fpqc descent along Onr
v {Ov then implies that Ar2sKv determines AKr2sOv .

In the ordinary case, the connected-étale decomposition shows that AKr2sOv is an extension of
Z{2ZOv

by pµ2qOv . Therefore, since we assumed that Ar2sKv determines its subgroup pµ2qKv , it
also determines AKr2sOv due to the injectivity of

Ext1
OvpZ{2Z, µ2q – H1

fppfpOv, µ2q Ñ H1
fppfpKv, µ2q – Ext1

KvpZ{2Z, µ2q

(extensions in the category of fppf sheaves of Z{2Z-modules, compare Example 6.14).

In the remainder of the section we collect several other results about S-models which, due to Corol-
lary 4.4, are consequences of their local counterparts. Unlike in Proposition 5.7, we no longer fix G.

Proposition 5.13. Suppose that K is a number field and S “ SpecOK,Σ for an integrally closed
subdomain OK,Σ Ă K (as in §5.6).

(a) Every automorphism of G extends to an automorphism of its maximal and minimal OK,Σ-
models G` and G´ (cf. Proposition 5.7 (f)).

If ev ă p´ 1 for every v R Σ above p, then

(b) For OK,Σ-models G and H, every homomorphism GK Ñ HK extends uniquely to G Ñ H;

(c) For OK,Σ-models G and H, the map ExtOK,ΣpG,Hq Ñ ExtKpGK ,HKq (extensions of sheaves
of abelian groups on the fppf site) is injective;

(d) The kernel of a morphism of OK,Σ-models is again a OK,Σ-model;

(e) Finite flat OK,Σ-models form an abelian subcategory of the category of abelian sheaves on
Sfppf that is equivalent by the exact generic fiber functor to the category of finite discrete
p-primary GalpK{Kq-modules that are unramified outside Σ Y tv | pu and flat at all v R Σ
above p (i.e., whose restrictions to GalpKv{Kvq admit finite flat Ov-models for all v R Σ).
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Proof.

(a) Use Corollary 4.4 to replace morphisms of OK,Σ-models by morphisms of tuples as in (4.4.1),
and then use the Néron property to identify V -morphisms of the first entry with their generic
fibers. It remains to prove the corresponding well-known local result, as can be done by
considering Hopf algebras.

(b) After reasoning as in (a), apply the corresponding local result [Ray74, 3.3.6 1o].

(c) Combine (b) and Proposition 5.2 (b).

(d) Combine Proposition 2.15 (c) and the corresponding local result [Ray74, 3.3.6 1o].

(e) The full faithfulness and essential surjectivity follow from (b), Proposition 2.15 (b) and
Proposition 5.7 (a). For the abelian subcategory claim, existence of products, kernels, and
cokernels within the subcategory follows from (d), Proposition 2.15 (d), and [Ray74, 3.3.6 1o].
The generic fiber functor is exact because it is compatible with short exact sequences. �

5.14. F-vector space schemes. Fix a characteristic p finite field F. A group scheme G is an
F-vector space scheme if its functor of points factors through the category of F-vector spaces (in
particular, G is commutative). An S-model of G that has an F-vector space scheme structure
extending that of G is an F-vector space S-model of G. Classification of finite locally free F-vector
space schemes of rank #F over certain bases is the subject of [Ray74]. Due to the restriction [Ray74,
p. 245 p‹q], typically this classification does not apply over global bases. We use Corollary 4.4 to
transfer some of the local results to the global setting.

Proposition 5.15. Suppose that K is a number field and S “ SpecOK,Σ for an integrally closed
subdomain OK,Σ Ă K (as in §5.6). Fix a finite F-vector space K-scheme G.

(a) If the maximal and minimal OK,Σ-models G` and G´ of G exist (cf. Proposition 5.7 (f)),
they are F-vector space OK,Σ-models of G.

(b) If #G “ #F and for every v R Σ above p, either ev ă p ´ 1, or ev “ p ´ 1 and the
GalpKv{Kvq-representation GpKvq is simple, then the F-vector space scheme structure of G
extends to every OK,Σ-model.

Proof.

(a) Apply Proposition 5.13 (a) to the automorphisms of G given by the elements of Fˆ.

(b) To extend the automorphisms of G given by the elements of Fˆ to an OK,Σ-model of G,
argue as in the proof of Proposition 5.13 (a) and apply [Ray74, 3.3.2 2o et 3o]. �

5.16. Kisin’s moduli. Suppose thatK is a number field. Fix a continuous GalpK{Kq-representation
on a finite dimensional F-vector space V , which identifies with an étale F-vector space K-scheme.
For a place v of K above p, Kisin constructed [Kis09, 2.1.13] a projective F-scheme G RVKv ,0

whose
F1-points are in bijection with isomorphism classes of F1-vector space Ov-models of the extension of
scalars pVKvqF1 for every finite extension F1{F (this alone need not determine G RVKv ,0

).

Proposition 5.17. Suppose that K is a number field and S “ SpecOK,Σ for an integrally closed
subdomain OK,Σ Ă K (as in §5.6). Fix a finite F-vector space K-scheme V and set

KV :“
ź

vRΣ
v|p

G RVKv ,0
.
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For every finite extension F1{F, the F1-points of the projective F-scheme KV are in bijection with
isomorphism classes of F1-vector space OK,Σ-models of the extension of scalars VF1.

Proof. An F1-vector space OK,Σ-model of VF1 is an OK,Σ-model of VF1 to which the automorphisms
of VF1 given by the elements of F1ˆ extend. Due to Corollary 4.4 and the Néron property, it is
equivalent to require this for the base changed Ov-models for every v R Σ above p. Thus, the third
equivalence of Theorem 5.4 for G “ VF1 and S “ SpecOK,Σ restricts to that between categories
involving only F1-vector space models. �

Remark 5.18. Proposition 5.17 and the Weil conjectures prove the existence of algebraic integers
α1, . . . , αa and β1, . . . , βb such that for every n and a degree n extension F1{F, the number of
isomorphism classes of F1-vector space OK,Σ-models of VF1 is αn1 ` ¨ ¨ ¨ ` αna ´ βn1 ´ . . .´ βnb .

5.19. p-divisible S-models. Returning to general S, a p-divisible S-model of height h is a sequence
G “ pGrpns, inqně0 of S-models Grpns for which #GrpnsK “ pnh and

0 Ñ Grpns in
ÝÑ Grpn`1s

pn
ÝÑ Grpn`1s (5.19.1)

is exact for every n. A morphism G Ñ H of p-divisible S-models (of possibly distinct heights) is a
compatible with the in’s sequence of morphisms Grpns Ñ Hrpns of S-models; thus,

HompG,Hq “ lim
ÐÝ

HompGrpns,Hrpnsq.
Evidently, GOS,si , GOhS,si

, G
pOS,si

, and GK are p-divisible groups of height h over respective bases.

Since charK ‰ p, the continuous GalpK{Kq-representation GpKq :“ lim
ÐÝ

GrpnspKq on a finite free
Zp-module of rank h determines the étale GK . The category of p-divisible S-models contains that
of p-divisible groups over S as the full subcategory of G with all Grpns finite; much like in §5.1, the
difference between the two categories stems from the possible ramification of GpKq away from p for
an arbitrary p-divisible S-model G.

Tate’s full faithfulness theorem for p-divisible groups continues to hold for p-divisible S-models:

Proposition 5.20. The generic fiber functor from the category of p-divisible S-models to that of
p-divisible groups over K is fully faithful, i.e., for p-divisible S-models G and H, every Zp-linear
homomorphism GpKq Ñ HpKq of GalpK{Kq-representations is induced from a unique morphism
G Ñ H. In particular, a p-divisible S-model is determined by its generic fiber.

Proof. Due to Corollary 4.4 and the Néron property, giving a morphism G Ñ H amounts to giving
GpKq Ñ HpKq (i.e., a morphism of the generic fiber p-divisible groups) together with its extensions
to morphisms GOS,si Ñ HOS,si . The latter exist and are unique due to [Tat67, Thm. 4]. �

Raynaud’s criterion for existence of a p-divisible model continues to hold, too:

Proposition 5.21. For a p-divisible group G “ pGrpns, inqně0 over K, the following are equivalent:

(a) G has a p-divisible S-model;

(a1) Each Grpns has an S-model;

(b) G extends to a p-divisible group over every OS,si ;

(b1) Each Grpns has a finite flat model over every OS,si .

The same conclusion holds if in (b) and (b1) one replaces G, Grpns, and OS,si by GKh
S,si

, GrpnsKh
S,si

,

and Oh
S,si

or by G
pKS,si

, Grpns
pKS,si

, and pOS,si .
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Proof. We treat the case of localizations; those of henselizations and completions are similar.

By [Ray74, 2.3.1], (b)ô(b1), whereas (a)ñ(a1)ñ(b1) are evident. We prove the remaining (b)ñ(a).
By Theorem 5.4, the layers of the extensions over OS,si give rise to S-models Grpns of Grpns, whereas
Corollary 4.4 and the Néron property furnish extensions

in : Grpns Ñ Grpn`1s of in : Grpns Ñ Grpn`1s.

The remaining exactness of (5.19.1) can be checked fpqc locally and hence follows from Proposi-
tion 2.15 (c) and the definition of a p-divisible group over OS,si . �

6. Closed subgroups of Néron models

Let S be a connected Dedekind scheme and K its function field. The main result of this section,
Theorem 6.1, yields an obstruction for an S-group scheme G to occur as a closed subgroup of
a Néron (lft) model over S. The obstruction is trivial for finite flat G, and we investigate the
possibility of commutative such G always occurring as closed subgroups of Néron models in the
discussion following Question 6.5.

Theorem 6.1. For an S-group scheme G, the map

H1
fppfpS,Gq Ñ H1

fppfpK,GKq (6.1.1)

(cf. §A.4) is injective if there is a closed immersion G ãÑ X of S-group schemes with either

(a) X a Néron lft model, or

(b) X commutative satisfying

(i) X Ñ S is separated and locally of finite presentation,

(ii) X pSq Ñ X pKq is surjective, and

(iii) H1
fppfpS,X q Ñ H1

fppfpK,XKq is injective.

Proof. In both cases, by replacing G with the schematic image of its generic fiber and invoking
Proposition 2.11, we may and do assume that G is flat.

(a) In terms of descent data with respect to a trivializing fppf S1 Ñ S, an fppf G-torsor T is
described by the automorphism of the trivial right GS1ˆSS1-torsor given by left translation by
a g P GpS1ˆS S1q. The image of g in X pS1ˆS S1q describes an fppf X -torsor T X ; by descent,
there is a G-equivariant closed immersion T Ă T X .

For generically isomorphic fppf G-torsors T1 and T2, take a common trivializing S1 Ñ S.
For the injectivity of (6.1.1), we seek a G-torsor isomorphism α : T1

„
ÝÑ T2. In terms of

descent data, an isomorphism αK : pT1qK
„
ÝÑ pT2qK of right GK-torsors is induced by left

multiplication by a certain h P GpS1Kq; its image in X pS1Kq extends αK to an XK-torsor
isomorphism βK : pT X

1 qK
„
ÝÑ pT X

2 qK . By Proposition 2.19, βK extends to an X -torsor
isomorphism β : T X

1
„
ÝÑ T X

2 . Due to flatness of Ti Ñ S, the schematic image of pTiqK Ñ T X
i

is Ti [SP, Lemma 089E]. Thus, β restricts to a desired α : T1
„
ÝÑ T2 by Lemma 2.8.
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(b) By Proposition A.13 (d), Q :“ X {G is a commutative separated S-group algebraic space. By
Proposition 2.10 (e), q is injective in

X pSq //

����

QpSq //
� _

q

��

H1
fppfpS,Gq //

��

H1
fppfpS,X q� _

��

X pKq // QpKq // H1
fppfpK,GKq // H1

fppfpK,XKq,

and it remains to apply the four lemma. �

Since a closed subalgebraic space of a scheme is a scheme, Proposition 2.18 and the proof of Theo-
rem 6.1 (a) reprove a special case of [Ana73, 4.D]:

Corollary 6.2. Every torsor under a closed subgroup scheme of a Néron model over S is repre-
sentable by a scheme.

Theorem 6.1 gives no obstruction for proper G:

Proposition 6.3. For a proper flat S-group scheme G,

H1
fppfpS,Gq Ñ H1

fppfpK,GKq

(cf. §A.4) is injective.

Proof. For an fppf G-torsor T , let T G :“ AutGT (the fppf sheaf of G-automorphisms of T ) be the
corresponding inner twist of G (compare [Gir71, III.1.4.8]). Since T G is fppf locally isomorphic to G,
it is a proper flat S-group scheme [SP, Lemma 04SK], [Ana73, 4.B]. By [Gir71, III.2.6.3, V.1.5.1.2],
there is a commutative diagram

H1
fppfpS,Gq

„ //

��

H1
fppfpS,

T Gq

��

H1
fppfpK,GKq

„ // H1
fppfpK,

T GKq

in which the horizontal “subtraction of the class of T ” (resp., TK) isomorphisms map the class of
T (resp., TK) to the class of the trivial torsor. Replacing G by T G and a generically isomorphic to
T fppf G-torsor T 1 by the corresponding T G-torsor, it remains to argue that a generically trivial
G-torsor T is trivial. We fix such a T , which is a scheme [Ana73, 4.D].

Fix a p P T pKq with the intention of lifting it to a P P T pSq. Since T inherits properness from
G, the valuative criterion extends p to ps P T pOS,sq for every s P S. Each ps spreads out to a
neighborhood Us of s, compatibly on intersections Us X Us1 by Proposition 2.10 (e), and glueing
gives a desired P . �

Remark 6.4. Proposition 6.3 applies to finite flat S-group schemes G. Its conclusion also holds for
the commutative S-models of §5.1: letting T be a generically trivial torsor under an S-model G,
a P P T pKq extends to an Sr1p s-point due to Proposition 2.19 and also to an OS,si-point for each
si due to properness of TOS,si ; hence, Lemma 4.1 (a) extends P to an S-point trivializing T . In
conclusion, Theorem 6.1 furnishes no obstruction regarding Questions 6.5 and 6.51:

Question 6.5. For a number field K, is every commutative finite flat OK-group scheme a closed
subgroup of a Néron model of an abelian variety?
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Question 6.51. For a prime p and a number field K, is every OK-model (cf. §5.1) a closed subgroup
of a Néron model of an abelian variety?

Remarks.

6.6. By Proposition A.11, Question 6.51 generalizes Question 6.5.

6.7. The answers are negative if one insists on abelian schemes (which are Néron models, cf. Propo-
sition 2.4): the only abelian scheme over Z is the trivial one [Fon85, p. 517 Corollaire],
[Abr87, Thm. 5].

6.8. Over local rings embeddings of finite flat group schemes into abelian schemes are possible
due to a theorem of Raynaud [BBM82, 3.1.1] (and [Mat89, 7.10]).

In the remainder of the section we discuss variants of these questions, settling the K “ Q case:

Proposition 6.9. Fix a prime p ‰ charK. If S has at most one point s of residue characteristic
p, then every S-model G (cf. §5.1) is a closed subgroup of the Néron model A of an abelian variety
A “ AK having good reduction at s (if s exists).

Proof. If no such s exists, then G is a Néron model itself. Take a closed immersion GK ãÑ A into
an abelian variety over K (construct it over a finite separable extension trivializing G and take
restriction of scalars [CGP10, A.5.1, A.5.5, A.5.7, A.5.9], [BLR90, §7.6 Prop. 5 (f), (h)]). Letting
AÑ S be the Néron model of A and H the schematic image of GK Ñ A, Propositions 2.10 and A.9
with Corollary 2.14 give the desired G – H.

If s exists, then [BBM82, 3.1.1] gives a closed immersion i : GOS,s ãÑ AOS,s of OS,s-group schemes
into an abelian scheme, which by Proposition 2.4 is the Néron model of A :“ pAOS,sqK . Letting
A Ñ S be the Néron model of A, Proposition 2.3 (a) justifies the notation, whereas i spreads
out [EGA IV3, 8.8.2 (i) et 8.10.5 (iv)] to a closed immersion GU ãÑ AU of U -group schemes for
some open U Ă S containing s. As in the first paragraph, the unique GS´tsu Ñ AS´tsu extending
GK ãÑ AK is a closed immersion and similarly over U X pS ´ tsuq, so a desired closed immersion
G Ñ A results by glueing. �

Remarks.

6.10. For a prime p ‰ charK, let Sppq be the semilocal Dedekind scheme obtained from S by
localizing away from p. The proof above continues to answer Question 6.51 affirmatively as
long as GSppq Ñ Sppq is a closed subgroup of the Néron model of an abelian variety.

6.11. The answer to Question 6.5 is negative if G is allowed to be separated quasi-finite flat. For
instance, an open subgroup G of a finite étale OK-group scheme N with GK “ NK but G ‰ N
cannot be a closed subgroup of a Néron model due to Proposition 2.4 and Corollary 2.14.
To construct such G, take N “ Z{pZOK

and remove the closed subscheme complementary
to the identity section in some nongeneric fiber.

6.12. For an S-flat closed subgroup G of a Néron model X and a smooth S-scheme T , due to
Proposition 2.10 (c), GpT q identifies with the set of S-morphisms T Ñ X whose generic fiber
factors through GK . In particular, GpT q Ñ GKpTKq is bijective due to the Néron property
of X . Failure of this bijectivity obstructs realizing G as a closed subgroup of a Néron model.
In Remark 6.11 this is witnessed with T “ N .

Question 6.13. For local S, which commutative separated quasi-finite flat S-group schemes are
closed subgroups of a Néron model?
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Example 6.14. We construct a commutative separated quasi-finite flat group scheme G over
S :“ SpecZp for which, due to Theorem 6.1, failure of the injectivity ofH1

fppfpS,Gq Ñ H1
fppfpK,GKq

obstructs being a closed subgroup of a Néron model. Due to Corollary 2.14, we seek non-étale G.

Since 1 ‰ Zˆp {Z
ˆp
p – H1

fppfpS, µpq – Ext1
SpZ{pZ, µpq (extensions in the category of sheaves of

Z{pZ-modules on Sfppf), there is a nonsplit extension

0 Ñ µp Ñ HÑ Z{pZ
S
Ñ 0. (6.14.1)

By Proposition A.8, H is represented by a finite flat S-group scheme. Let U Ă Z{pZ
S
be the open

subgroup obtained by removing the closed subscheme of the special fiber complementary to the
identity section, set G :“ HˆZ{pZ

S
U , and observe the commutative diagram

0 // µp // G //
� _

��

U //� _

��

0

0 // µp // H // Z{pZ
S

// 0.

By construction, G is an open subgroup ofH, so it is separated quasi-finite flat (but not étale because
it admits a nontrivial homomorphism from µp). It remains to argue thatH1

fppfpS,Gq
a
ÝÑ H1

fppfpK,GKq
is not injective. Since H Ñ S is proper and (6.14.1) is nonsplit, HpKq “ HpSq “ µppSq “ 0.
Therefore, since H{G – Z{pZ

S
{U , the injectivity of a would entail that of

pZ{pZ
S
{UqpSq

b
ÝÑ pZ{pZ

S
{UqpKq “ 0,

which fails because pZ{pZ
S
{UqpSq contains pZ{pZ

S
qpSq – Z{pZ.

7. Selmer type descriptions of sets of torsors

The main result of this section is Theorem 7.2, which forms the basis of our approach to fppf
cohomological interpretation of Selmer groups by describing certain sets of torsors by local condi-
tions. In Proposition 7.5 it leads to a short reproof of a result of Mazur that gives étale (or fppf)
cohomological interpretation of Shafarevich–Tate groups.

Lemma 7.1. Let R be a discrete valuation ring, Rh its henselization, and set K :“ FracR and
Kh :“ FracRh. For a flat R-group algebraic space G of finite presentation, if the horizontal arrows in

H1
fppfpR,Gq

� � //

��

H1
fppfpK,GKq

��

H1
fppfpR

h,GRhq
� � // H1

fppfpK
h,GKhq

(cf. §A.4) are injective, then the square is Cartesian. The same conclusion holds under analogous
assumptions with Rh and Kh replaced by pR and pK if G is quasi-affine.

Proof. We first treat the case of Rh and Kh. We need to show that every GK-torsor TK which,
when base changed to Kh, extends to a GRh-torsor TRh , already extends to a G-torsor T Ñ SpecR.
By Claim 4.1.1 (b), TRh descends to an fppf R-algebraic space T , and various diagrams defining the
G-action descend, too. To argue that T is a G-torsor, it remains to note that

G ˆR T Ñ T ˆR T , pg, tq ÞÑ pgt, tq (7.1.1)
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is an isomorphism, because it is so over Rh. In the similar proof for pR and pK, to apply Claim 4.1.1
one appeals to Proposition A.7. �

Let S be a connected Dedekind scheme and K its function field. As in §4, to clarify analogies in
Theorem 7.2, we set KS,s :“ FracOS,s for a nongeneric s P S.

Theorem 7.2. For a flat S-group algebraic space G of finite presentation, if the horizontal arrows
in (the products are indexed by the nongeneric s P S)

H1
fppfpS,Gq

� � //

��

H1
fppfpK,GKq

��
ś

sH
1
fppfpOS,s,GOS,sq

� � //
ś

sH
1
fppfpKS,s,GKS,sq

(7.2.1)

(cf. §A.4) are injective and so is

H1
fppfpV,GV q Ñ H1

fppfpK,GKq (7.2.2)

for every open V Ă S, then (7.2.1) is Cartesian. The same conclusion holds with OS,s and KS,s

replaced by Oh
S,s and K

h
S,s (resp., pOS,s and pKS,s if G is a quasi-affine S-group scheme), if in addition

the bottom horizontal arrow in (7.2.1) stays injective with OS,s and KS,s replaced by Oh
S,s and K

h
S,s

(resp., pOS,s and pKS,s).

Proof. By Lemma 7.1, assuming injectivity of the bottom horizontal arrow, the diagram
ś

sH
1
fppfpOS,s,GOS,sq

� � //

��

ś

sH
1
fppfpKS,s,GKS,sq

��
ś

sH
1
fppfpOh

S,s,GOhS,s
q
� � //

ś

sH
1
fppfpK

h
S,s,GKh

S,s
q

is Cartesian and likewise for pOS,s and pKS,s. It remains to argue that (7.2.1) is Cartesian.

We need to show that every GK-torsor TK which extends to a GOS,s-torsor TOS,s for every nongeneric
s P S already extends to a G-torsor T . Since TK Ñ SpecK inherits finite presentation from GK , by
[Ols06, Prop. 2.2 and its proof] and [LMB00, 4.18 (i)], for some nonempty open U Ă S, it spreads
out to a TU Ñ U which is faithfully flat, of finite presentation, has a GU -action, and for which the
analogue of (7.1.1) over U is bijective. Consequently, TU is a GU -torsor.

To increase U by extending TU over some s P S ´ U , use limit arguments as above to spread out
TOS,s to a GW -torsor TW over some open neighborhood W Ă S of s. Since (7.2.2) is injective with
V “ U XW , the torsors TU and TW are isomorphic over U XW , permitting us to glue them and
increase U . Iterating we arrive at the desired U “ S. �

Corollary 7.3. Let φ : AÑ B be a K-isogeny between abelian varieties, and Arφs the kernel of the
induced S-homomorphism between the Néron models. The square

H1
fppfpS,Arφsq

� � //

��

H1
fppfpK,Arφsq

��
ś

sH
1
fppfp

pOS,s,Arφs
pOS,sq

� � //
ś

sH
1
fppfp

pKS,s,Arφs
pKS,s
q

is Cartesian (the products are indexed by the nongeneric s P S).
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Proof. Theorem 7.2 applies due to Proposition 2.3, Theorem 6.1, and Proposition 3.3. �

Remark 7.4. Due to Remark 6.4, another possible choice for G in Theorem 7.2 is a finite flat
S-group scheme or an S-model.

We now use Theorem 7.2 to give an alternative proof of the results of [Maz72, Appendix].

Proposition 7.5. Suppose that S has a finite residue field at every nongeneric point. Fix an abelian
variety AÑ SpecK, its Néron model AÑ S, and set

XpAq :“ Ker

˜

H1
étpS,Aq Ñ

ź

s

H1
étp

pOS,s,A
pOS,sq

¸

,

where the product is indexed by the nongeneric s P S.

(a) Let cs be the local Tamagawa factor of A at s (i.e., cs is the number of connected components
of As possessing a rational point). Then

rH1
étpS,Aq : XpAqs ď

ź

s

cs.

(b) XpAq “ ImpH1
étpS,A0q Ñ H1

étpS,Aqq.

(c) XpAq “ KerpH1pK,Aq Ñ
ś

sH
1p pKS,s, Aqq.

(d) If S is the spectrum of the ring of integers of a number field or a proper smooth curve over
a finite field and XpAq :“ KerpH1pK,Aq Ñ

ś

vH
1pKv, Aqq (the product is indexed by the

places of K) is the Shafarevich–Tate group of A, then XpAq ĂXpAq and

rXpAq : XpAqs ď
ź

real v

#π0pApKvqq ď 2#treal vu¨dimA,

where π0pApKvqq is the group of connected components of the compact real Lie group ApKvq.

(e) XpAq is finite if and only if so is H1
étpS,Aq.

Proof. Smoothness of AÑ S permits the interchangeable use of étale and fppf cohomology groups,
cf. Proposition A.2 (a).

(a) Indeed, it will be proved in Lemma 8.6 that #H1
étp

pOS,s,A
pOS,sq “ cs.

(b) Combine the cohomology sequence of the sequence from Proposition 3.2 with Lemma 8.6.

(c) Indeed, Theorem 7.2 and Corollary 2.20 give the Cartesian diagram

H1
étpS,Aq

� � //

��

H1pK,Aq

��
ś

sH
1
étpOh

S,s,AOhS,s
q
� � //

ś

sH
1pKh

S,s, Aq.

Working with henselizations suffices thanks to the injectivity of

H1pKh
S,s, Aq Ñ H1p pKS,s, Aq,

for which we refer to [BLR90, §3.6 Cor. 10] (see also Proposition 2.18), and the bijectivity of

H1
étpOh

S,s,AOhS,s
q Ñ H1

étp
pOS,s,A

pOS,sq,

which follows from Proposition A.2 (b).
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(d) Since H1pKv, Aq – π0pApKvqq and #π0pApKvqq ď 2dimA for real v (compare [GH81,
1.1 (3) and 1.3]), the claim follows from (c).

(e) Combine (a) and (d). �

8. Images of local Kummer homomorphisms as flat cohomology groups

8.1. The image of the Kummer map. For a field k and a k-isogeny φ : A Ñ B of abelian
varieties, Proposition 3.10 (a) yields the exact sequence

0 Ñ Arφs Ñ A
φ
ÝÑ B Ñ 0 (8.1.1)

in the fppf topos of k. Its cohomology sequence gives the Kummer map Bpkq
κφ
ÝÑ H1

fppfpk,Arφsq

with image Bpkq{φApkq – Imκφ Ă H1
fppfpk,Arφsq.

If char k - deg φ and ψ : B Ñ A is the isogeny with kerψ “ φpArdeg φsq, then 1
deg φ Lieψ is the

inverse of Lieφ, proving étaleness of φ [BLR90, §2.2 Cor. 10], [SGA 3I new, IVB 1.3]. In this case, φ
is an étale surjection, (8.1.1) is exact already in the big étale topos, Arφs Ñ Spec k is finite étale, and

H1
fppfpk,Arφsq

A.2
– H1

étpk,Arφsq
§1.17
– H1pk,Arφsq,

which restrict to identifications of the images of Kummer maps.

In this section we compare Imκφ with other natural subgroups of H1
fppfpk,Arφsq for k as in

8.2. The setup. For the rest of the section, let S “ Spec o for a Henselian discrete valuation ring o,
let k “ Frac o, let F be the residue field of o, let i : SpecFÑ Spec o be the closed point, let φ : AÑ B
be a k-isogeny of abelian varieties, let φ : A Ñ B be the induced S-homomorphism between the
Néron models, and let ΦA and ΦB be the étale F-group schemes of connected components of As and
Bs; write φ for φs : As Ñ Bs and also for the induced ΦA Ñ ΦB. We use various open subgroups of
A and B constructed in §3.1.

8.3. The three subgroups of interest. The first one is Imκφ Ă H1
fppfpk,Arφsq from §8.1.

The second subgroup is the image ofH1
fppfpo,Arφsq

a
ÝÑ H1

fppfpk,Arφsq. By Theorem 6.1, a is injective,
and we identify H1

fppfpo,Arφsq – Im a Ă H1
fppfpk,Arφsq.

The third subgroup is defined if char k - deg φ (so Arφs is étale, cf. §8.1); it is the unramified subgroup

H1
nrpk,Arφsq :“ KerpH1pk,Arφsq Ñ H1pksh, Arφsqq Ă H1pk,Arφsq, (8.3.1)

where ksh :“ Frac osh. If o is the ring of integers of a nonarchimedean local field k, then ksh is its
maximal unramified extension, and (8.3.1) recovers the usual unramified subgroup.

While Imκφ is used to define the φ-Selmer group, H1
fppfpo,Arφsq andH1

nrpk,Arφsq are easier to study
as they depend only on Arφs. We investigate Imκφ by detailing its relations with H1

fppfpo,Arφsq
and H1

nrpk,Arφsq in Propositions 8.8 and 8.9.

Lemma 8.4. If F is finite and G Ñ SpecF is a commutative connected algebraic group, then
HjpF, Gq “ 0 for j ě 1.

Proof. The case j ą 1 holds since F has cohomological dimension 1 and GpFq is a torsion group (as
F is finite), and the case j “ 1 is a well-known result of Lang [Lan56, Thm. 2]. �
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Lemma 8.5. If GalpF{Fq – pZ and M is a finite discrete GalpF{Fq-module, then

#H0pF,Mq “ #H1pF,Mq.

Proof. The maps in H1pF,Mq “ lim
ÝÑrFn:Fs“nH

1pFn{F,MGalpF{Fnqq are inflation injections, whereas

#H1pFn{F,MGalpF{Fnqq “ #H0pF,Mq [Ser79, VIII.§4 Prop. 8]. �

Lemma 8.6. Suppose that F is finite. For a subgroup Γ Ă ΦA and j ě 1, pullback induces
isomorphisms Hj

fppfpo,A
Γq – HjpF,Γq. In particular, #H1

fppfpo,AΓq “ #ΓpFq and Hj
fppfpo,A

Γq “ 0
for j ě 2.

Proof. Combine the cohomology sequence of 0 Ñ A0
F Ñ AΓ

F Ñ Γ Ñ 0, Proposition A.2 (b), and
Lemmas 8.4 and 8.5. �

8.7. The local Tamagawa factors. These are cA :“ #ΦApFq and cB :“ #ΦBpFq, i.e., the
numbers of rational components of the special fibers of the Néron models A and B. If A and B
have good reduction, i.e., A and B are abelian schemes, then cA “ cB “ 1. The sequences

0 Ñ ΦArφspFq ÑΦApFq Ñ pφpΦAqqpFq Ñ 0,

0 Ñ pφpΦAqqpFq ÑΦBpFq Ñ pΦB{φpΦAqqpFq Ñ 0

of discrete GalpF{Fq-modules are exact, and hence

#ΦApFq
#pφpΦAqqpFq

ď #ΦArφspFq,
#ΦBpFq

#pφpΦAqqpFq
ď #

ˆ

ΦB

φpΦAq

˙

pFq. (8.7.1)

We now compare the subgroups Imκφ and H1
fppfpo,Arφsq of H1

fppfpk,Arφsq discussed in §8.3:

Proposition 8.8. Suppose that F is finite and A φ
ÝÑ B is flat (the latter assumption holds if A has

semiabelian reduction in case charF | deg φ, cf. Lemma 3.4).

(a) Then

#

˜

H1
fppfpo,Arφsq

H1
fppfpo,Arφsq X Imκφ

¸

“
#ΦApFq

#pφpΦAqqpFq
(8.7.1)
ď #ΦArφspFq,

#

˜

Imκφ
H1

fppfpo,Arφsq X Imκφ

¸

“
#ΦBpFq

#pφpΦAqqpFq
(8.7.1)
ď #

ˆ

ΦB

φpΦAq

˙

pFq.

(b) There is an injection

Imκφ
H1

fppfpo,Arφsq X Imκφ
ãÑ

ˆ

ΦB

φpΦAq

˙

pFq.

(c) If deg φ is prime to cB, then ΦBpFq “ pφpΦAqqpFq, and hence, by (a), Imκφ Ă H1
fppfpo,Arφsq.

(d) If deg φ is prime to cA, then ΦApFq “ pφpΦAqqpFq, and hence, by (a), H1
fppfpo,Arφsq Ă Imκφ.

(e) If deg φ is prime to cAcB, then Imκφ “ H1
fppfpo,Arφsq.

Proof.
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(a) Let H1
fppfpφq denote the map H1

fppfpo,Aq Ñ H1
fppfpo,BφpΦAqq induced by φ. The short exact

sequence 0 Ñ Arφs Ñ A φ
ÝÑ BφpΦAq Ñ 0 of Proposition 3.10 (a) together with A.12 (b) give

the commutative diagram

0 // BφpΦAqpoq{φApoq //
� _

��

// H1
fppfpo,Arφsq // //

� _

��

KerH1
fppfpφq

//
� _

��

0

0 // Bpkq{φApkq
κφ

// H1
fppfpk,Arφsq

// H1
fppfpk,Aqrφs

// 0,

where the injectivity of the vertical arrows follows from the Néron property and Theorem 6.1.
By Lemma 8.6, H1

fppfpφq identifies with H
1pF,ΦAq

h
ÝÑ H1pF, φpΦAqq induced by φ; moreover,

h is onto. Since
H1

fppfpo,Arφsq
H1

fppfpo,Arφsq X Imκφ
– KerH1

fppfpφq – Kerh

and

# Kerh “
#H1pF,ΦAq

#H1pF, φpΦAqq

8.5
“

#ΦApFq
#pφpΦAqqpFq

,

the first claim follows. On the other hand,
Imκφ

H1
fppfpo,Arφsq X Imκφ

–
Bpkq{φApkq

BφpΦAqpoq{φApoq
–

Bpoq{φApoq
BφpΦAqpoq{φApoq

–
Bpoq

BφpΦAqpoq
. (8.8.1)

Lemma 8.6 and the étale cohomology sequence of 0 Ñ BφpΦAq Ñ B Ñ i˚pΦB{φpΦAqq Ñ 0
from Proposition 3.2 give the exact sequence (cf. also Proposition A.2 (a))

0 Ñ
Bpoq

BφpΦAqpoq
Ñ

ˆ

ΦB

φpΦAq

˙

pFq Ñ H1pF, φpΦAqq Ñ H1pF,ΦBq� H1

ˆ

F,
ΦB

φpΦAq

˙

, (8.8.2)

where we have used the exactness of i˚ for the étale topology to obtain the last term.
Combining (8.8.1) and (8.8.2) yields the remaining

#

˜

Imκφ
H1

fppfpo,Arφsq X Imκφ

¸

“
#pΦB{φpΦAqqpFq ¨#H1pF,ΦBq

#H1pF, φpΦAqq ¨#H1pF,ΦB{φpΦAqq

8.5
“

#ΦBpFq
#pφpΦAqqpFq

.

(b) Combine (8.8.1) and (8.8.2).

(c) Let ψ : B Ñ A be the isogeny with kerψ “ φpArdeg φsq, so ψ ˝ φ “ deg φ, and thus also
φ ˝ ψ “ deg φ. If pdeg φ,#ΦBpFqq “ 1, then

ΦBpFq “ pdeg φqpΦBpFqq Ă ppdeg φqpΦBqqpFq Ă pφpΦAqqpFq Ă ΦBpFq,

giving the desired ΦBpFq “ pφpΦAqqpFq.

(d) Considering ψ as in the proof of (c), ΦArφs Ă ΦArdeg φs, so if pdeg φ,#ΦApFqq “ 1, then
ΦArφspFq “ 0. The resulting ΦApFq ãÑ φpΦAqpFq is onto, since #H1pF,ΦArφsq “ #ΦArφspFq.

(e) Combine (c) and (d). �

We now compare the third subgroupH1
nrpk,Arφsq Ă H1pk,Arφsq of §8.3 to Imκφ andH1

fppfpo,Arφsq:

Proposition 8.9. Suppose that char k - deg φ.

(a) The Néron model G Ñ Spec o of Arφs Ñ Spec k exists and is étale.
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(b) H1
fppfpo,Gq Ñ H1pk,Arφsq is an isomorphism onto H1

nrpk,Arφsq.

(c) The image of H1
fppfpo,Arφsq Ñ H1pk,Arφsq contains H1

nrpk,Arφsq.

(d) H1
nrpk,Arφsq Ă Imκφ, if in addition

(a) F is finite,

(b) A φ
ÝÑ B is flat if charF | deg φ, and

(c) deg φ is prime to cA or, more generally (cf. Proposition 8.8 (d)), #ΦApFq “ #pφpΦAqqpFq.

(e) If charF - deg φ, then H1
fppfpo,Arφsq “ H1

nrpk,Arφsq.

(f) Imκφ “ H1
fppfpo,Arφsq “ H1

nrpk,Arφsq, if in addition

(i) F is finite,

(ii) charF - deg φ, and

(iii) deg φ is prime to cAcB or, more generally (cf. Proposition 8.8 (c)–(d)),

#ΦApFq “ #pφpΦAqqpFq “ #ΦBpFq.

Proof.

(a) By 8.1, if char k - deg φ, then Arφs Ñ Spec k is finite étale, so Proposition 2.15 applies.

(b) This is a special case of Proposition 2.21.

(c) Due to (b), it suffices to find an o-homomorphism G Ñ Arφs inducing an isomorphism on
generic fibers, which is provided by Theorem 2.13 (and §2.12).

(d) By Proposition 8.8 (a), H1
fppfpo,Arφsq Ă Imκφ, so the conclusion results from (c).

(e) This follows from (b), because if charF - deg φ, then G “ Arφs by Corollary 3.9.

(f) By Proposition 8.8 (a), Imκφ “ H1
fppfpo,Arφsq, so the conclusion results from (e). �

9. Selmer groups as flat cohomology groups

Let K be a global field. If K is a number field, let S “ SpecOK ; if K is a function field, let S
be the proper smooth curve with function field K. A nonarchimedean place v of K corresponds
to a closed s P S, rendering Kv, Ov, and Fv synonymous to pKS,s, pOS,s, and kpsq. This section
is concerned with relations between Selmer groups and certain flat cohomology groups of S: we
investigate Selmer groups of abelian varieties in §§9.7–9.10 and also those associated to an S-model
in §§9.2–9.5.

9.1. Selmer structures. Fix a finite discrete GalpK{Kq-module M . A Selmer structure on M
is a choice of a subgroup of H1pKv,Mq for each place v such that for all v but finitely many, the
unramified subgroup H1

nrpKv,Mq Ă H1pKv,Mq is chosen (compare [MR07, Def. 1.2]); its Selmer
group is the subgroup of H1pK,Mq obtained by imposing the chosen local conditions, i.e., it consists
of the cohomology classes whose restrictions to every H1pKv,Mq lie in the chosen subgroups.
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9.2. The Selmer structure of an S-model G with #GK “ pm. It is given by the subgroups

H1
fppfpOv,GOvq Ă H1

fppfpKv,GKvq
§1.17
– H1pKv,GKvq, if v - 8, and

H1pKv,GKvq Ă H1pKv,GKvq, if v | 8,
(9.2.1)

which is a legitimate choice by Remark 6.4 and Proposition 2.21 (implicitly, p ‰ charK). By The-
orem 7.2 and Remark 7.4, the resulting Selmer group is nothing else but H1

fppfpS,Gq Ă H1pK,GKq,
which is finite, being contained in the finite (cf. [Mil06, II.2.13 (a)]) H1

étpSr
1
p s,GSr 1p sq Ă H1pK,GKq

(only the conditions away from p are imposed).

Example 9.3. IfK is a number field and G “ Z{pnZOK
, then (9.2.1) consists of the unramified sub-

groups for v - 8. The resulting Selmer subgroup of H1pK,Z{pnZq – HomcontpGalpK{Kq,Z{pnZq
consists of the homomorphisms unramified at all the finite places. By the theory of the narrow
Hilbert class field, it identifies with HompPic`pOKq,Z{pnZq, where Pic`pOKq is the narrow class
group of K. This is consistent with the description of H1

fppfpOK ,Z{pnZq – H1
étpOK ,Z{pnZq as

Homcontpπ
ét
1 pOKq,Z{pnZq.

9.4. Morphisms of S-models and Selmer groups. The mapH1pK,GKq Ñ H1pK,HKq induced
by a morphism G f

ÝÑ H of S-models respects the Selmer subgroups: H1
fppfpS,Gq Ă H1pK,GKq maps

into H1
fppfpS,Hq Ă H1pK,HKq. In particular, if G and H are S-models of a fixed G as in §5.3,

then f induces the inclusion H1
fppfpS,Gq Ă H1

fppfpS,Hq inside H1pK,Gq. Motivated by the local
analogue (admitting a positive answer [Maz70]), one may ask whether an S-model is determined by
its Selmer group, i.e., whether the functor

G ÞÑ pGK , H1
fppfpS,Gq Ă H1pK,GKqq

is fully faithful. The answer is negative:

Example 9.5. For a prime p, let K “ Qpζpnq for some n ě 1 excluding the pp, nq “ p2, 1q case and
consider S-models of G “ Z{pZ

K
. Letting v be the place above p, by the Oort–Tate classification

[TO70, pp. 14–16 Remarks 1 and 5] and [Tat97, 4.4.1 (c)], there are pn´1 ` 1 nonisomorphic finite
flat Ov-models of GKv which correspond to factorizations p1 ´ ζpnq

pp´1qi ¨
p

p1´ζpn qpp´1qi “ p for

0 ď i ď pn´1 and are linearly ordered, i.e., each maps to the next one. Proposition 5.7 (a) and
(d) therefore give pn´1 ` 1 nonisomorphic linearly ordered S-models of G. If p is regular, i.e., p
does not divide the class number of K (e.g., p “ 2 [Was97, 10.5]), then the Selmer groups of these
S-models are subgroups of the

´

pn´1pp´1q
2 ` 1

¯

-dimensional H1
étpSr

1
p s, µpq – Zrζpn , 1

p s
ˆ{Zrζpn , 1

p s
ˆp

(only the conditions away from p are imposed). Due to dimension reasons, for p “ 2 and n ě 3 this
space cannot have a flag of pn´1`1 distinct subspaces, forcing some Selmer groups to coincide. We
do not know, however, if distinct S-models of Z{pZ

K
can have coinciding Selmer groups for odd

p. Their defining local subgroups at v have been worked out by Mazur and Roberts [MR69, 9.3],
[Rob73, Thm. 1].

9.6. The setup. Let A φ
ÝÑ B be a K-isogeny between abelian varieties, and let A φ

ÝÑ B be the
induced S-homomorphism between their Néron models, which, for v - 8, induces φv : ΦA,v Ñ ΦB,v

between the groups of connected components of the special fibers of A and B at v. Denote the local
Tamagawa factors by cA,v :“ #ΦA,vpFvq and cB,v :“ #ΦB,vpFvq.
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9.7. Two sets of subgroups (compare §8.3). The first one is the images Imκφ,v Ă H1
fppfpKv, Arφsq

of the local Kummer homomorphisms (cf. §8.1) for all places v of K; its Selmer group, defined as
in §9.1, is the φ-Selmer group SelφA Ă H1

fppfpK,Arφsq.

The second one is
H1

fppfpOv,ArφsOvq Ă H1
fppfpKv, Arφsq, if v - 8, and

H1pKv, Arφsq Ă H1pKv, Arφsq, if v | 8,

and has the corresponding Selmer group H1
fppfpS,Arφsq Ă H1

fppfpK,Arφsq by Corollary 7.3.

If charK - deg φ, these are two Selmer structures on Arφs by Proposition 8.9 (f).

Proposition 9.8. Suppose that A φ
ÝÑ B is flat (e.g., that A has semiabelian reduction at all v - 8

with charFv | deg φ, cf. Lemma 3.4).

(a) Taking intersections inside H1
fppfpK,Arφsq, one has

#

˜

SelφA

H1
fppfpS,Arφsq X SelφA

¸

ď
ź

v -8
#

ˆ

ΦB,v

φvpΦA,vq

˙

pFvq,

#

˜

H1
fppfpS,Arφsq

H1
fppfpS,Arφsq X SelφA

¸

ď
ź

v -8
#ΦA,vrφvspFvq ¨

ź

v real

#

ˆ

H1pKv, Arφsq

Imκφ,v

˙

.

(b) If deg φ is prime to
ś

v-8 cB,v, then SelφA Ă H1
fppfpS,Arφsq inside H1

fppfpK,Arφsq.

(c) If deg φ is prime to
ś

v-8 cA,v and either 2 - deg φ or ApKvq equipped with its archimedean
topology is connected for all real v, then H1

fppfpS,Arφsq Ă SelφA inside H1
fppfpK,Arφsq.

(d) If deg φ is prime to
ś

v-8 cA,vcB,v and either 2 - deg φ or ApKvq equipped with its archimedean
topology is connected for all real v, then H1

fppfpS,Arφsq “ SelφA inside H1
fppfpK,Arφsq.

Proof. By §9.7, setting H1
fppfpOv,ArφsOvq :“ H1pKv, Arφsq for v | 8, there are injections

SelφA

H1
fppfpS,Arφsq X SelφA

ãÑ
ź

v -8

Imκφ,v
H1

fppfpOv,ArφsOvq X Imκφ,v
,

H1
fppfpS,Arφsq

H1
fppfpS,Arφsq X SelφA

ãÑ
ź

v

H1
fppfpOv,ArφsOvq

H1
fppfpOv,ArφsOvq X Imκφ,v

.

(9.8.1)

This together with Proposition 8.8 (a), (c), (d), and (e) give the claim, since under the assumptions
of (c) and (d) the factors of (9.8.1) for v | 8 vanish: H1pKv, Arφsq “ 0 unless 2 | deg φ and v is
real, and also, by [GH81, 1.3], H1pKv, Aq – π0pApKvqq. �

Remarks.

9.9. As in Proposition 8.9 (d) and (f), the assumptions on cA,v and cB,v in Proposition 9.8 (b),
(c), and (d) (and hence also in Theorems 1.1 (ii) and 1.11 (iii)) can be weakened to

#ΦB,vpFvq “ #pφvpΦA,vqqpFvq for all v - 8,
#ΦA,vpFvq “ #pφvpΦA,vqqpFvq for all v - 8, and
#ΦA,vpFvq “ #pφvpΦA,vqqpFvq “ #ΦB,vpFvq for all v - 8, respectively.
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9.10. In practice, it is useful not to restrict Proposition 9.8 to the case when A has semiabelian
reduction at all v - 8 with charFv | deg φ. For instance, suppose that K is a number field, A
is an elliptic curve that has complex multiplication by an imaginary quadratic field F Ă K,
and φ “ α P EndKpAq Ă F Ă K. Then AOK r 1

α
s

φ
ÝÑ AOK r 1

α
s is flat (even étale) because it

induces an automorphism of LieAOK r 1
α
s, which is a line bundle on SpecOKr

1
α s. On the other

hand, deg φ need not be invertible on SpecOKr
1
α s. Proposition 9.8 applied to this example

leads to a different proof of [Rub99, 6.4], which facilitates the analysis of Selmer groups of
elliptic curves with complex multiplication by relating them to class groups.

Appendix A.

Let S be a scheme. For convenience of the reader we recall several general facts from algebraic
geometry used in the main body of the text, which mostly concern S-group algebraic spaces and
their torsors.

Lemma A.1. Let O be a Henselian local ring, a Ă O an ideal, and X a smooth O-algebraic space.
If X is not a scheme, assume that it is quasi-separated. Then the natural map XpOq Ñ XpO{aq is
surjective.

Proof. We include a proof for the lack of reference. Assume that a ‰ O, let o be the closed point of
SpecO (or of SpecO{a), and fix a b P XpO{aq with the intention of lifting it to a B P XpOq.

If X is a scheme, the local structure theorem for smooth morphisms [BLR90, §2.2 Prop. 11] applied
at bpoq allows us to assume that X Ñ SpecO factors through X u

ÝÑ AnO with u étale and separated.
Lift u ˝ b P AnOpO{aq to a c P AnOpOq and hence reduce to X being étale and separated over O, in
which case [EGA IV4, 18.5.11 (c) et 18.5.15] provides the unique section B P XpOq with Bpoq “ bpoq.

In general, by [LMB00, 6.3], b|o lifts to a c P Upoq with U a smooth X-scheme. By the surjectivity
in the scheme case, c P pUˆX,bO{aqpoq yields a lift d P UpO{aq of b. Since U is a smooth O-scheme,
d lifts to a D P UpOq, whose image in XpOq is a desired B. �

Proposition A.2. Let G be a commutative smooth S-group algebraic space which is either quasi-
separated or a scheme.

(a) If j : Sfppf Ñ Sét is the canonical morphism of sites, then Rnj˚G “ 0 for n ě 1, and the
natural maps H i

étpS, j˚Gq Ñ H i
fppfpS,Gq are isomorphisms.

(b) If S “ SpecO for a Henselian local ring O with residue field k, then the δ-functorial coho-
mology pullback maps H i

fppfpO,Gq Ñ H i
fppfpk,Gkq are isomorphisms for i ě 1.

Proof. Invoke [Gro68, 11.1 et 11.7] with U “ G (and use Lemma A.1 to check condition (L))—when
(R) in loc. cit. is modified by assuming U to be representable by a smooth algebraic space containing
the zero section, the proofs continue to work with the following caveats:

1. In 11.4, assume in addition that X0 ‰ H;

2. On p. 175, CipUq is a smoothX-algebraic space by [SP, Proposition 05YF and Lemma 04AM];

3. On p. 177, the desired quasi-coherence of N is argued as follows: let a : X0 Ñ U be
the zero section; by [SP, Lemma 061C and Remark 061D], in the notation of loc. cit.,
HomOX0

pa˚ΩU{X , CX0{Xq – N , so the conclusion follows from [SP, Lemmas 05ZF and 03M1];
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4. To obtain 11.7 2˝) and 3˝), assume in addition that (L) and (R) hold for every Henselian
(but not necessarily strictly Henselian) local X-scheme X. �

Remark A.3. As is clear from the proof of Lemma A.1, if G is étale (and either quasi-separated
or a scheme), then the conclusion of Proposition A.2 (b) also holds for i “ 0 .

A.4. H1 and torsors. Let G be an S-group algebraic space. For commutative G, the elements of
the cohomology groups H1

fppfpS,Gq (resp., H1
étpS,Gq) can be put in bijection with fppf (resp., étale)

torsors T under G, under which the trivial torsor corresponds to the identity element, and the
cohomology pullbacks for i “ 1 identify with base change of torsors: T ÞÑ T ˆS S1 (cf. [Gir71,
III.3.5.4, III.2.4.2, III.2.4.5 et V.1.5.3]). Thus, for possibly noncommutative G, one writesH1

fppfpS,Gq
(resp., H1

étpS,Gq) for the set of isomorphism classes of fppf (resp., étale) right torsors under G and
understands that H1

fppfpS,Gq (resp., H1
étpS,Gq) is functorial in S by base change.

Proposition A.5. Every fppf torsor T under an S-group algebraic space G is representable by an
S-algebraic space.

Proof. Being an S-algebraic space is fppf local [SP, Lemma 04SK]. �

Proposition A.6. Every fppf torsor T under a smooth S-group algebraic space G trivializes over an
étale cover of S. In particular, for smooth G, the natural map H1

étpS,Gq Ñ H1
fppfpS,Gq is bijective.

Proof. By Proposition A.5 and [SP, Lemmas 0429 and 041Q], T is a smooth surjective S-algebraic
space. It trivializes over an étale cover of T by a scheme U . Since the smooth U Ñ S has a section
étale locally [EGA IV4, 17.16.3 (ii)], we conclude. �

Proposition A.7. Every fppf torsor under a quasi-affine [EGA II, 5.1.1] S-group scheme G is
representable by a quasi-affine scheme.

Proof. By [SP, Lemma 0247] and [EGA IV2, 2.7.1 (xiv)], representability and quasi-affineness of an
fppf sheaf T f

ÝÑ S can be checked fppf locally on S. �

Proposition A.8. Let 1 Ñ H Ñ E Ñ G Ñ 1 be an exact sequence of sheaves of groups on Sfppf

with G representable by an S-scheme and H representable by an S-algebraic space.

(a) E is representable by an S-algebraic space.

(b) For a property P of morphisms of S-algebraic spaces that is stable under base change and
is fppf local on the base, if H Ñ S has P, then so does E Ñ G. If, in addition, P is stable
under composition and HÑ S and G Ñ S both have P, then so does E Ñ S.

(c) If HÑ S is quasi-affine, then so is E Ñ G and E is representable by an S-scheme.

Proof.

(a) Indeed, E Ñ G is an fppf torsor under HG , so the claim is a special case of Proposition A.5.

(b) Immediate from the proof of (a).

(c) Quasi-affine morphisms are representable [SP, Lemma 03WM], hence the claim by (b). �

Proposition A.9. A quasi-finite fppf S-group scheme G whose fibers have orders that are prime to
the residue characteristic is étale.
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Proof. This is [TO70, p. 17, Lemma 5] if G is finite. In general, the proof is the same: [EGA IV4,
17.6.2 a) ô c2)] reduces to S being the spectrum of an algebraically closed field, in which case G is
finite. One then uses the connected-étale sequence. �

Lemma A.10. For a scheme S, let X, Y be S-schemes with Y pSq ‰ H. If X ˆS Y
a
ÝÑ S is

quasi-compact, locally of finite type, of finite type, separated, or flat, then so is X b
ÝÑ S.

Proof. Working locally on S, in all cases we can assume that S is affine: S “ SpecC. Hence, since
X is a continuous image of X ˆS Y , it is quasi-compact if so is X ˆS Y .

A section c of X ˆS Y Ñ X exists by the Y pSq ‰ H assumption and is locally of finite type
[EGA I, 6.6.6 (v)]. Hence a ˝ c “ b is locally of finite type if so is a.

The finite type case follows by combining the quasi-compact and locally of finite type ones.

Since the diagonal morphism of the monomorphism c is an isomorphism, c is separated, hence so is
a ˝ c “ b if a is.

Flatness can be checked on stalks, reducing further to a local C and affine X “ SpecA, Y “ SpecB.
Since Y pSq ‰ H, the C-module A is a direct summand of AbC B, yielding the claim. �

Proposition A.11 ([BC09, 7.4.2]). Let S be a scheme and G a commutative S-group scheme. If
n,m P Zě1 are relatively prime and nm kills G, then G – Grns ˆS Grms. If G is finite, quasi-finite,
separated, or flat, then so are Grns and Grms. In particular, a commutative separated quasi-finite
flat S-group scheme G killed by an N P Zě1 decomposes as a product of commutative separated
quasi-finite flat S-group schemes killed by prime power divisors of N ; the factors are finite flat if so
is G.

Proof. Checking on sections of represented fppf sheaves, 0 Ñ Grns Ñ G n
ÝÑ Grms Ñ 0 is split exact,

giving the first claim. If G is finite, then so is its closed subscheme Grns; thus, if G is quasi-finite,
then Grns and Grms have finite fibers, hence are quasi-finite by Lemma A.10. Similarly, Grns and
Grms inherit separatedness or flatness from G. �

A.12. Quotients by equivalence relations. Let R and X be sheaves on Sfppf . A monomorphism
R

δ
ÝÑ X ˆS X is an equivalence relation if δpT q is the graph of an equivalence relation on XpT q

for each S-scheme T (cf. [Ray67, §3]). Form the fppf quotient sheaf Y “ X{R. By loc. cit., the
quotient is

(a) Effective, i.e., the canonical map RÑ X ˆY X is an isomorphism;

(b) Universal, i.e., for an fppf sheaf morphism Y 1 Ñ Y , the quotient of X ˆY Y
1 by the base

changed equivalence relation RˆY Y 1 is Y 1.

For us, the case of interest is when H Ñ G is an immersion of S-group algebraic spaces, X “ G,
R “ G ˆS H, and δ : G ˆS HÑ G ˆS G is pg, hq ÞÑ pg, ghq; the resulting quotient is G{H.

Proposition A.13. For an immersion H i
ÝÑ G of S-group algebraic spaces, let Q :“ G{H be the

fppf quotient sheaf. Assume that δ : G ˆS HÑ G ˆS G given by pg, hq ÞÑ pg, ghq is quasi-compact.

(a) If HÑ S is fppf, then Q is a quasi-separated S-algebraic space.

(b) For a property P of morphisms of algebraic spaces that is stable under base change and is
fppf local on the base, if HÑ S has P, then so does G Ñ Q.
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(c) If H Ñ S is fppf (resp., smooth) and P is a property of morphisms of algebraic spaces that
is fppf (resp., smooth) local on the source, then QÑ S has P if and only if G Ñ S does.

(d) If HÑ S is fppf and i is a closed immersion, then Q is a separated S-algebraic space.

Proof. Note that δ is a base change of i, hence is quasi-compact whenever i is.

(a) Letting p1, p2 be the projections of G ˆS G, due to [LMB00, 10.4] it suffices to check that
p1 ˝ δ and p2 ˝ δ are fppf, which is so because both are base changes of HÑ S.

(b) In the proof of [Ray67, Prop. 2] replace schemes by algebraic spaces and fpqc by fppf.

(c) Indeed, G Ñ Q is fppf (resp., smooth) by (b) and [SP, Lemmas 041Q, 041W, 041T, and 0429].

(d) Since δ, being a base change of i, is a closed immersion, and the square

G ˆS H

��

δ // G ˆS G

��

Q ∆ // QˆS Q

is Cartesian by A.12 (a), due to [SP, Lemma 0420] it remains to note that G Ñ Q is fppf. �
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