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Abstract

Arithmetic duality theorems over a local field k are delicate to prove if char k > 0. In this case, the
proofs often exploit topologies carried by the cohomology groups H n(k,G) for commutative finite
type k-group schemes G. These ‘Čech topologies’, defined using Čech cohomology, are impractical
due to the lack of proofs of their basic properties, such as continuity of connecting maps in long
exact sequences. We propose another way to topologize H n(k,G): in the key case when n = 1,
identify H 1(k,G) with the set of isomorphism classes of objects of the groupoid of k-points of
the classifying stack BG and invoke Moret-Bailly’s general method of topologizing k-points of
locally of finite type k-algebraic stacks. Geometric arguments prove that these ‘classifying stack
topologies’ enjoy the properties expected from the Čech topologies. With this as the key input, we
prove that the Čech and the classifying stack topologies actually agree. The expected properties of
the Čech topologies follow, and these properties streamline a number of arithmetic duality proofs
given elsewhere.

2010 Mathematics Subject Classification: 11S99 (primary); 11S25, 14A20 (secondary)

1. Introduction

1.1. The need for topology on cohomology. Let k be a nonarchimedean local
field of characteristic p > 0. The study of cohomology groups H n(k,G)
for commutative finite k-group schemes G is facilitated by Tate local duality
(extended to the p | #G case in [Sha64]):

H n(k,G) and H 2−n(k,G D) are Pontryagin duals, (‡)
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where G D is the Cartier dual of G. If p - #G, then H n(k,G) is finite, but if p | #G
(when H n abbreviates H n

fppf), then such finiteness fails: for instance,

H 1(Fp((t)), αp) ∼= Fp((t))/Fp((t))p.

Therefore, in general one endows H n(k,G) with a topology and interprets (‡) as
Pontryagin duality of Hausdorff locally compact abelian topological groups.

The above illustrates a general phenomenon: local arithmetic duality theorems
face complications in positive characteristic due to the failure of finiteness of
various cohomology groups. These complications are overcome by exploiting
topologies carried by the relevant cohomology groups. The aim of this paper
is to present a new way to define these topologies. This way is outlined in
Section 1.3 and

(1) a priori seems more robust than the ‘Čech cohomology approach’ used
elsewhere;

(2) a posteriori gives the same topology as the usual ‘Čech cohomology
approach’.

The interplay of (1) and (2) has particularly pleasant implications for local
arithmetic duality theorems: as we explain in Section 1.2, it streamlines a number
of proofs given elsewhere.

1.2. The Čech cohomology approach. This way to topologize H n(k,G), where
k is a nonarchimedean local field of characteristic p > 0 and G is a commutative
finite type k-group scheme, is explained in [Mil06, III.Section 6]. It first
establishes a connection with Čech cohomology:

H n(k,G) = lim
−→L

H n(L/k,G),

where L/k runs over finite extensions in an algebraic closure k, and then endows
H n(L/k,G) with the subquotient topology of G(

⊗n
i=0 L), and H n(k,G) with

the direct limit topology. This ‘Čech topology’ on H n(k,G) is discussed further
in Section 5.1.

A quotient topology or a direct limit topology can be difficult to work with
individually, and the Čech topology, which combines them, seems particularly
unwieldy. A number of its expected properties lack proofs; for example, it is not
clear whether H n(k,G) is a topological group, nor whether H n(k,G) is discrete
if G is smooth and n > 1, nor whether connecting maps in long exact cohomology
sequences are continuous. Such continuity is used in the proofs of local arithmetic
duality theorems in positive characteristic; see, for instance, [Mil06, III.6.11 or
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III.7.8]. Not knowing it in general, one resorts to ad hoc modifications of these
proofs to ensure their completeness.

In contrast, the way to topologize H n(k,G) outlined in Section 1.3 permits
geometric proofs of all the desired properties, which illustrates (1). The
corresponding properties of the Čech topology follow thanks to (2). This renders
the ad hoc modifications mentioned earlier unnecessary.

1.3. The classifying stack approach. This way to topologize H n(k,G), where
k and G are as in Section 1.2, uses the identification of H 1(k,G) with the set
of isomorphism classes of G-torsors, that is, the set of isomorphism classes
of objects of the groupoid of k-points of the classifying stack BG. In [MB01,
Section 2], Moret-Bailly showed how to exploit the topologies on X (k) for locally
of finite type k-schemes X to topologize the set of isomorphism classes of objects
of X (k) for any locally of finite type k-algebraic stack X (see Section 2,
especially Section 2.4, for details). His definition applies to X = BG and hence
topologizes H 1(k,G). As for the other H n , the identification H 0(k,G) = G(k)
should be the way to topologize H 0, whereas the topology on H n(k,G) for n > 2
could simply be defined to be discrete. The resulting ‘classifying stack topology’
on H n(k,G) seems convenient to work with for the following reasons.

(a) Its properties follow from geometric arguments; for example, connecting
maps from H 0 to H 1 are continuous because they have underlying
morphisms of algebraic stacks.

(b) Its definition permits other local topological rings (for example, the
ring of integers of k) as bases, which allows us to treat all local fields
simultaneously.

(c) Its definition permits G that are locally of finite type, or noncommutative,
or algebraic spaces, or all of these at once.

We exploit the properties of the classifying stack topology to prove in Remark 5.2
and Theorems 5.11 and 6.5 that this topology actually agrees with the Čech
topology. In particular, the latter is discrete for n > 2; this seems not to have
been noticed in the existing literature.

1.4. A summary of our conclusions. Due to (a)–(c), the classifying stack
topology lends itself to general settings. For convenience of a reader not interested
in generalities (which occupy Sections 3–4), we summarize our findings in the
case of commutative finite type group schemes G over local fields k.

The H n(k,G) are locally compact Hausdorff abelian topological groups that
are discrete for n > 2. If G is smooth (in particular, if char k = 0), then H n(k,G)
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is discrete for n > 1. If k is nonarchimedean, o is its ring of integers, and G is a
finite type flat o-model of G, then H 1(o,G) is compact and

H 1(o,G)→ H 1(k,G)

is continuous and open; if G is separated, then H 1(o,G) is Hausdorff.
For a short exact sequence

0→ H → G → Q → 0

of commutative finite type k-group schemes, all the maps in its long exact
cohomology sequence are continuous.

• If H is smooth (respectively, proper), then

G(k)→ Q(k)

is open (respectively, closed).

• If G is smooth (respectively, proper), then

Q(k)→ H 1(k, H)

is open (respectively, closed).

• If Q is smooth (respectively, proper), then

H 1(k, H)→ H 1(k,G)

is open (respectively, closed).

• Finally,
H 1(k,G)→ H 1(k, Q)

is always open (but possibly not closed).

All the subsequent maps in the long exact cohomology sequence are both open
and closed.

Thanks to Theorems 5.11 and 6.5, all the claims above, except possibly the
ones involving o, also hold for the Čech topology; a number of them seem not to
have appeared in the literature.

1.5. Étale-openness, proper-closedness, and finite-closedness. To take
advantage of the flexibility provided by Section 1.3(a)–(b), for example, to
be able to treat all local fields without distinguishing archimedean cases, we
adopt the axiomatic approach when it comes to the relevant features of the base
topological ring. The key definitions are the following. For a local topological
ring R such that R× ⊂ R is open and is a topological group when endowed with
the subspace topology,
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• R is étale-open if every étale morphism of finite type R-schemes is open on
R-points;

• R is proper-closed if every proper morphism of finite type R-schemes is closed
on R-points;

• R is finite-closed if every finite morphism of finite type R-schemes is closed on
R-points.

Every local field is étale-open and proper-closed (and hence also finite-closed).
For further examples, as well as a more thorough discussion of these notions, see
Sections 2.8 and 2.12.

The axiomatic approach has the added benefit of producing interesting
topologies on cohomology beyond the cases when the base is a local field of
positive characteristic, or its algebraic extension, or its ring of integers. Other
interesting examples in positive characteristic include fields endowed with a
Henselian valuation of arbitrary rank, as well as their rings of integers. However,
a reader who is only interested in local fields could simplify the discussion by
restricting to local field bases throughout.

Remarks.

1.6. Philippe Gille and Laurent Moret-Bailly investigated a similar approach
to topologizing cohomology groups and obtained the comparison
Theorem 5.11 for ground fields K as in Section 2.12(2). In Section 3.2,
we adopt their definition of the topology on H n for n > 2 (initially we used
the discrete topology for such n). This topology is discrete in many cases;
see Proposition 3.5.

1.7. When all the groups involved are affine, properties of the Čech topology have
also been investigated in [BT14]. (The article [BT14] uses a definition of the
Čech topology that a priori differs from the one used here and in [Mil06].
Example 5.12 shows that the analog of [BT14, Theorem on page 562]
becomes false for the Čech topology used here.) Although we have not
been able to understand the arguments of [BT14] completely, the analogs
of [BT14, 3.1, 4.2.1, 5.1, 5.1.2, and 5.1.3] for the classifying stack topology
are special cases of the results of Sections 3–4; see Remark 4.6 for details.
These analogs combine with Theorems 5.11 and 6.5 to give further analogs
for the Čech topology defined in Section 5.1.

1.8. The contents of the paper. In Section 2, which may be consulted as needed,
we investigate Moret-Bailly’s method of topologizing groupoids of rational
points of algebraic stacks and also discuss the axiomatic notions mentioned in
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Section 1.5. In Section 3 we study properties of the topologies defined using
the classifying stack approach, and in Section 4 we study topological properties
of maps arising from a short exact sequence. Although Sections 3–4 are short,
they rely on Section 2 and Appendices A and B, which provide the underlying
geometric arguments. Appendix A, included mostly for convenience, gathers
known facts that concern classifying stacks and their interplay with short exact
sequences. Appendix B removes diagonal quasi-compactness assumptions from
several results in the algebraic space and stack literature. These improvements
eliminate a number of quasi-compactness assumptions in Sections 3–4; other
applications are discussed in Appendix B. The agreement of the classifying stack
and the Čech topologies is the subject of Sections 5–6: Section 5 concerns H 1,
and Section 6 deals with H n for n > 2.

1.9. Notation and conventions. For a field F , its algebraic closure F is chosen
implicitly. For a scheme S, its fppf site Sfppf is the category of S-schemes with
the families of flat, locally of finite presentation, and jointly surjective morphisms
as coverings. The small étale site is denoted by Sét. The fppf topology is our
default choice when taking quotients or considering torsors (synonymously, right
torsors). Similarly for cohomology: H n abbreviates H n

fppf. Topology on H n in
the absence of the ‘Čech’ subscript is always that of Sections 3.1–3.2. For us,
compactness does not entail Hausdorffness, and ‘locally compact’ means that
every point has a compact neighborhood.

We follow the terminology of [SP] when dealing with algebraic spaces and
stacks, albeit for brevity we call a morphism representable if it is representable
by algebraic spaces. To emphasize the parallel with schemes, we denote fiber
categories by X (S) instead of XS , and write x ∈X (S) instead of x ∈ Ob X (S).
We write ∆X /S for the diagonal of an S-algebraic stack X . As in [SP], ∆X /S is
neither separated nor quasi-compact at the outset, so algebraic spaces need not be
quasi-separated. This is useful: for example, if we were to insist on quasi-compact
diagonals, then our results on the topology on H 1(k,G) could not accommodate
locally of finite type but not quasi-compact G. We ignore set-theoretic difficulties
(inherently present in any discussion concerning algebraic stacks) that can be
resolved by the use of universes or by the approach used in [SP].

2. Topologizing R-points of algebraic stacks

As we recall in Section 2.2, the topology on a Hausdorff topological field K
gives rise to a natural topology on X (K ) for every locally of finite type K -
scheme X . In [MB01, Section 2], Moret-Bailly exhibited an elegant way to extend
the definition of this topology to the case when X is an algebraic stack. This
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extension is of major importance for us through the case of a classifying stack
BG. Therefore, in Section 2.4 we review the definition of [MB01, Section 2] (in a
slightly more general setting when the base topological ring R need not be a field)
and proceed to detail the properties of the resulting topologies in the remainder of
Section 2. These properties, especially Proposition 2.9(a) and Proposition 2.14,
are key for our work in Sections 3–4.

2.1. The topology on R. Throughout Section 2, R denotes a local topological
ring that satisfies the following.

(α) The group of units R× is open in R (equivalently, the maximal ideal m ⊂ R
is closed).

(β) The inverse map R×
x 7→x−1

−−−→ R× is continuous when R× ⊂ R is endowed
with the subspace topology.

Examples of R that will be of main interest to us are Hausdorff topological
fields and arbitrary valuation rings (endowed with their valuation topology).

2.2. The scheme case. For locally of finite type R-schemes X , we want to
topologize X (R) so that the following hold.

(i) An R-morphism X → X ′ induces a continuous X (R)→ X ′(R).

(ii) For each n > 0, the identification An(R) = Rn is a homeomorphism.

(iii) A closed immersion X ↪→ X ′ induces an embedding X (R) ↪→ X ′(R).

(iv) An open immersion X ↪→ X ′ induces an open embedding X (R) ↪→ X ′(R).

Claim 2.2.1. Such a topologization must also satisfy the following.

(v) The identifications

(X ′ ×X X ′′)(R) = X ′(R)×X (R) X ′′(R)

are homeomorphisms.

Proof. The case when X = Spec R with X ′ and X ′′ affine is settled by (ii)–(iii),
which show that any choice of closed immersions

i ′ : X ′ ↪→ An′ and i ′′ : X ′′ ↪→ An′′

induces topological embeddings

i ′(R) : X ′(R) ↪→ Rn′, i ′′(R) : X ′′(R) ↪→ Rn′′,
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and
(i ′ ×R i ′′)(R) : (X ′ ×R X ′′)(R) ↪→ Rn′+n′′ .

In the case when X = Spec R, we begin by covering X ′ and X ′′ by open
affines: X ′ =

⋃
i U ′i and X ′′ =

⋃
j U ′′j . Then we recall that R is local to obtain the

bijections
X ′(R) =

⋃
i

U ′i (R), X ′′(R) =
⋃

j

U ′′j (R),

and
(X ′ ×R X ′′)(R) =

⋃
i, j

(U ′i ×R U ′′j )(R),

which are covers by open subsets due to (iv). We conclude by using the previous
case.

In the general case, both the diagonal ∆X/R and its base change

X ′ ×X X ′′ ↪→ X ′ ×R X ′′

are immersions. Thus, by (iii)–(iv), (X ′ ×X X ′′)(R) has the subspace topology of
(X ′ ×R X ′′)(R). However, by the X = Spec R case, this subspace topology is the
topology of X ′(R)×X (R) X ′′(R).

Uniqueness of the sought topologization is ensured by (ii)–(iv), whereas
[Con12, Proposition 3.1] supplies the existence. Conditions (α) and (β) are
crucial for the existence: along with the requirement that R is local, they ensure
that the topologies on R-points interact well with glueing along opens.

Loc. cit. and [Con12, Proposition 2.1] also give further useful properties of the
resulting topologies.

(vi) If R is Hausdorff, then a closed immersion X ↪→ X ′ induces a closed
embedding X (R) ↪→ X ′(R).

(vii) If R is locally compact and Hausdorff, then X (R) is locally compact.

Let R′ be another local topological ring satisfying (α)–(β), and let R
h
−→ R′ be

a continuous homomorphism.

(viii) Each map X (R)→ X (R′) is continuous.

(ix) If h is an open embedding, then each X (R)→ X (R′) induced by h is open.

(x) If h is local and a closed embedding, then each X (R)→ X (R′) induced by
h is closed.
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Proof of (viii)–(x). By considering affine open covers as in the proof of (v), all
the claims reduce to the case of an affine X . The affine case is in turn addressed
in [Con12, Ex. 2.2].

REMARK 2.2.2. Although loc. cit. shows that for affine X the condition that h was
local in (x) is not needed, the condition cannot be dropped in general. Namely,
let k be a nonarchimedean local field, o its ring of integers, and h the closed
embedding o ↪→ k. Build X by glueing the Néron lft model of (Gm)k over o with
A1

k along (Gm)k ⊂ A1
k . Then X (o)→ X (k) is the inclusion k× ↪→ k, which is not

closed.

2.3. The algebraic space case. Locally of finite type R-algebraic spaces X are
in particular algebraic stacks, so we use the procedure described in Section 2.4 to
topologize X (R).

2.4. The stack case. For a locally of finite type R-algebraic stack X , we declare
a subcategory U ⊂ X (R) to be open if it is full, stable under isomorphisms in
X (R), and, for every R-morphism f : X →X with X a locally of finite type R-
scheme, f (R)−1(U ) is open in X (R) (the latter is topologized as in Section 2.2).
In the last condition, due to (iv), one can also restrict to affine X .

The above definition topologizes X (R) in the sense that arbitrary unions
and finite intersections of opens are open. In particular, the set of isomorphism
classes of objects of X (R) becomes a bona fide topological space, which,
thanks to (i), is none other than that of Section 2.2 if X is representable by
a scheme. The topology on this set of isomorphism classes uniquely recovers
the collection of open subcategories, and hence also the ‘topology’, of X (R).
When discussing the latter we freely use evident analogs of familiar notions (for
example, closedness or continuity), which always correspond to bona fide notions
after taking isomorphism classes of objects.

Some of the properties (i)–(x) have analogs for algebraic stacks; see
Corollary 2.7 and Proposition 2.9(b), (c), and (e).

2.5. The presheaf case. For a set-valued presheaf F on the category of locally
of finite type R-schemes, we declare U ⊂F (R) to be open if, for every presheaf
morphism f : X → F with X a locally of finite type R-scheme, f (R)−1(U )
is open in X (R). Similarly to Section 2.4, this topologizes F (R). A presheaf
morphism F →F ′ induces a continuous F (R)→F ′(R). If F is the presheaf
of isomorphism classes of objects of fiber categories of a locally of finite type
R-algebraic stack X , then the resulting topology on F (R) agrees with that of
Section 2.4, and hence also with that of Section 2.2 if X is a scheme (that is, if
F is representable).
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Our main case of interest is F = H n(−,G) for an n ∈ Z>0 and a commutative
flat locally of finite presentation R-group algebraic space G; in this case, see
Proposition 3.5(b)–(d) and Proposition 3.6 for conditions that ensure that F (R)
is a topological group.

In the study of openness or closedness of induced maps on R-points, the
following lemma often provides a robust reduction to the algebraic space case.

LEMMA 2.6. For a representable morphism f : X → Y of locally of finite type
R-algebraic stacks and an R-morphism s : Y → Y with Y a finite type affine
R-scheme, consider the Cartesian square

X

s′

��

f ′ // Y

s
��

X
f // Y .

(2.6.1)

If f ′(R) is open (respectively, closed) for every s as above, then f (R) is open
(respectively, closed).

Proof. For an open (respectively, closed) U ⊂ X (R), its full essential image
f (R)(U ) ⊂ Y (R) is open (respectively, closed) if so is s(R)−1( f (R)(U )) for
every s. It remains to observe the equality

s(R)−1( f (R)(U )) = f ′(R)(s ′(R)−1(U ))

that is provided by the Cartesian property of (2.6.1).

COROLLARY 2.7. The topologies of Section 2.4 satisfy the analogs of (i), (iv),
(vi), and (viii).

Proof. Lemma 2.6 gives (iv) and (vi); (viii) follows from the scheme case; (i) is
clear.

2.8. Étale-openness. Let R be a local topological ring that satisfies (α)–(β). We
call R étale-open if, for every étale morphism f : X → Y of locally of finite type
R-schemes, f (R) is open. Due to (iv), the further requirement that X and Y are
affine results in the same class of étale-open R.

Before proceeding, we give some examples of étale-open R; all R in the
examples are Henselian.

(1) R and C.

(2) The fraction field K of a Henselian valuation ring A.
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Proof. If A = K , then K and Y (K ) are discrete. If A 6= K , then, according
to [GGMB14, 3.1.4], for every étale morphism f : X → Y between finite
type K -schemes, the induced morphism f (K ) : X (K ) → Y (K ) is a local
homeomorphism; in particular, f (K ) is open.

(3) A Henselian valuation ring A.

Proof. We use (iv) to assume that X and Y are affine, and we let K denote the
fraction field of A. By (viii)–(ix), both X (A) ↪→ X (K ) and Y (A) ↪→ Y (K ) are
inclusions of open subsets, so the openness of f (A) : X (A)→ Y (A) results from
that of f (K ) : X (K )→ Y (K ) supplied by (2).

(4) A nonarchimedean local field and its ring of integers.

Proof. These are special cases of (2) and (3).

Due to the étale-local nature of algebraic spaces and the smooth-local nature
of algebraic stacks, the étale-openness condition is key for the topologies on R-
points of algebraic stacks to be well behaved. This condition is often accompanied
by the requirement that R is Henselian, which through Corollary B.7 ensures
that R-points lift to some smooth scheme neighborhood (such liftings facilitate
reductions to scheme cases). We record some of the resulting desirable properties
in the following proposition.

PROPOSITION 2.9. Let h : R → R′ be a continuous homomorphism between
Henselian local topological rings that satisfy (α)–(β) and are étale-open, and let
X , Y be locally of finite type R-algebraic stacks such that∆X /R has a separated
R-fiber over the closed point of Spec R.

(a) If f : X → Y is a smooth morphism, then f (R) is open.

(b) If ∆Y /R also has a separated R-fiber over the closed point of Spec R, then
the identification

(X ×R Y )(R)
∼

−→X (R)× Y (R)

is a homeomorphism (compare with (v)).

(c) If R is locally compact and Hausdorff, then X (R) is locally compact
(compare with (vii)).

(d) If R is compact Hausdorff and the number of isomorphism classes of objects
of X (R/m) is finite, where m ⊂ R is the maximal ideal, then X (R) is
compact.
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(e) If h is an open embedding, then the map

X (R)→X (R′)

induced by h is open (compare with (ix)).

Proof. We use Corollary B.7 to choose a smooth X -scheme X with

X (R)→X (R)

essentially surjective; for (d), we choose X to be, in addition, affine.

(a) We use the continuity and the essential surjectivity of X (R) → X (R) to
replace X by X , and then we use Lemma 2.6 to assume that Y is a scheme
and X is an algebraic space. We then once more replace X by X to reduce
to the case when both X and Y are schemes.

Due to (iv), we may work locally on X . Therefore, due to [BLR90,
Section 2.2/11], we may assume that f factors as X

g
−→ An

Y

π
−→ Y , where

g is étale and π is the canonical projection. It remains to observe that g(R)
is open by the étale-openness of R, and that π(R) is a projection onto a
direct factor by (v), and hence is also open.

(b) We use Corollary B.7 to choose a smooth Y -scheme Y with Y (R)→ Y (R)
essentially surjective. By the aspect (i) of Corollary 2.7, the identification
in question is continuous. By (a), it inherits openness from the
homeomorphism

(X ×R Y )(R)
∼

−→ X (R)× Y (R).

(c) The claim follows by combining (a) applied to X → X with (vii) applied
to X .

(d) Since X is affine, X (R) is compact by (ii) and (vi); thus, so is its continuous
image X (R).

(e) By (ix) applied to X , the map X (R)→ X (R′) induced by h is open. By (a),
the maps

X (R)→X (R) and X (R′)→X (R′)

are also open; moreover, X (R) → X (R) is essentially surjective by
construction. Therefore, by combining these observations, the map
X (R)→X (R′) induced by h is open, too.
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2.10. Restriction of scalars. Let R and R′ be local topological rings that satisfy
(α)–(β), and let h : R → R′ be a continuous homomorphism that makes R′ a
finite free R-module (both algebraically and topologically). Let X ′ be a locally
of finite type R′-algebraic stack, and let

X := ResR′/R X ′

be its restriction of scalars defined as the category fibered in groupoids over
Spec R with S-points X ′(SR′), functorially in the R-scheme S. Assume that X
is a locally of finite type R-algebraic stack. By [Ols06, 1.5], this assumption is
met if X ′ is locally of finite presentation over R′ and ∆X ′/R′ is finite; by [SP,
05YF and 04AK] (compare with [BLR90, 7.6/4–5]), it is also met if X ′ is an
algebraic space that is locally of finite presentation over R′.

We wish to describe some situations in which the identification

X ′(R′) ∼=X (R)

is a homeomorphism.

PROPOSITION 2.11. In Section 2.10, the identification

ι : X ′(R′) ∼=X (R)

is a homeomorphism

(a) if X ′ is a scheme; or

(b) if R and R′ are Henselian étale-open and ∆X ′/R′ has a separated R′-fiber
over the closed point of Spec R′.

Proof. Let x ′ ∈X ′(R′) be arbitrary.

(a) If X ′ is affine, then let X ′ ↪→ An
R′ be a closed immersion. By [BLR90,

7.6/2(ii)], the restriction of scalars X ↪→ Adn
R with d determined by

R′ ∼= R⊕d

is also a closed immersion. Therefore, since the isomorphism R′ ∼= R⊕d

agrees with the topologies, (ii) and (iii) settle the case of affine X ′.

If X ′ is arbitrary, then let U ′ ⊂ X ′ be an affine open through which x ′

factors. By [BLR90, 7.6/2(i)], the restriction of scalars U ⊂X is an open
immersion. Therefore, by the aspect (iv) of Corollary 2.7,

U (R) ⊂X (R) and U ′(R′) ⊂X ′(R′)

http://stacks.math.columbia.edu/tag/05YF
http://stacks.math.columbia.edu/tag/04AK
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are inclusions of open subsets, so ι is a local homeomorphism at x ′ by
the settled affine case. Since ι is bijective and x ′ was arbitrary, ι must be
a homeomorphism.

(b) By Theorem B.5, x ′ lifts to an x̃ ′ ∈ X ′(R′) for some affine scheme X ′

equipped with a smooth morphism f ′ : X ′ → X ′. By the infinitesimal
lifting criterion [LMB00, 4.15],

ResR′/R f ′ : X →X

is smooth. (The proof of loc. cit. makes no use of the general conventions
of [LMB00] that the base schemes are quasi-separated and that the
diagonals of algebraic stacks are separated and quasi-compact.) Thus, (a)
and Proposition 2.9(a) show that ι is a local homeomorphism at x ′. Since ι
is also bijective, it must be a homeomorphism.

In addition to étale-openness, another pleasant situation is when finite or, more
generally, proper morphisms induce closed maps on R-points. We axiomatize this
in the following notions.

2.12. Proper-closedness and finite-closedness. Let R be a local topological ring
that satisfies (α)–(β). We call R finite-closed (respectively, proper-closed) if, for
every finite (respectively, proper) morphism f : X → Y of locally of finite type
R-schemes, f (R) is closed. Thanks to (iv), these concepts are unaltered if one
further requires Y to be affine. A proper-closed R is also finite-closed. An R that
is finite-closed (or proper-closed) is also Hausdorff: take f to be the inclusion of
the origin of A1

R .

LEMMA 2.12.1. If k is a local field, then the following hold.

(a) The field k is proper-closed (and hence also finite-closed).

(b) The topological space X (k) is compact for every proper k-algebraic space
X.

(c) The map f (k) is closed for every proper representable morphism

f : X → Y

of locally of finite type k-algebraic stacks.

If, in addition, k is nonarchimedean and o is its ring of integers, then (a) and (b)
also hold with o in place of k (for (c), see Proposition 2.16).
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Proof. The key input is Chow’s lemma due to Knutson [Knu71, IV.3.1]; we use
its following form.

LEMMA 2.12.2 [SP, 088U]. For a proper map f : X → Y of separated k-
algebraic spaces of finite type, there is a proper map g : X ′ → X of k-algebraic
spaces such that g−1(U ) ∼= U for a dense open subspace U ⊂ X and f ◦g factors
through a closed immersion into Pn

Y for some n > 0.

Lemma 2.12.2 suggests the following strategy, which we borrow from [Con12,
proof of Proposition 4.4]: reduce the claim in question to the cases when X is
replaced by a relative projective space or the reduced closed subspace Z ( X
complementary to U . Since the underlying topological space of X is Noetherian,
iteration will shrink Z to the empty space, leaving only the first case to consider.

(a) Assume that Y in Lemma 2.12.2 is an affine scheme. Since

X (k) = g(k)(X ′(k)) ∪ Z(k), (2.12.3)

the strategy above and (v)–(vi) reduce closedness of f (k) to that of the
second projection

Pn(k)× Y (k)→ Y (k) for n > 0,

which follows from the compactness of Pn(k).

(b) Combine the strategy above, (2.12.3), and the compactness of X ′(k)
inherited from Pn(k).

(c) Combine Lemma 2.6 and the proof of (a).

We now turn to the variants for o in place of k. All of them reduce to their
counterparts for k.

(a) Fix a proper morphism f : X → Y of finite type o-schemes with Y affine,
so Y (o) ⊂ Y (k) is a closed embedding by (x) and Remark 2.2.2. By the
valuative criterion,

f (k)−1(Y (o)) = X (o)

in X (k), so f (k)|X (o) = f (o) by (ix).

(b) By the valuative criterion of properness for algebraic spaces [SP, 0A40],
Corollary 2.7(viii), and Proposition 2.9(e) (with Section 2.8(3)),

X (o)→ X (k)

is a homeomorphism. If X is a scheme, (ix) applies directly.

http://stacks.math.columbia.edu/tag/088U
http://stacks.math.columbia.edu/tag/0A40
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Before proceeding, we give some examples of proper-closed and finite-
closed R.

(1) A local field k is proper-closed. So is its ring of integers o if k is
nonarchimedean.

Proof. This is a special case of Lemma 2.12.1.

(2) Let A be a Henselian valuation ring, K := Frac(A), and K̂ the completion
of K . If K̂/K is a separable field extension, then both A and K are finite-
closed.

Proof. If A = K , then K and Y (K ) are discrete. If A 6= K , then K is finite-closed
by [GGMB14, 4.2.6], and A is then also finite-closed by the method of proof of
Lemma 2.12.1(a) for o.

REMARK 2.13. The étale-open and finite-closed conditions have already
appeared in the literature: they are properties (H) and (F) in [MB12, Section 2.1]
in the case of a Hausdorff topological field.

In Propositions 2.14–2.16 we record several situations in which morphisms
of algebraic stacks (for example, of schemes) induce closed maps on R-points.
These results will be useful in Section 4; see the proof of Proposition 4.4.
Proposition 2.14 allows quite general R at the expense of stringent conditions on
the morphism, whereas Propositions 2.15 and 2.16 allow more general morphisms
but restrict R.

PROPOSITION 2.14. Let R be a local topological ring that satisfies (α)–(β), and
let

f : X → Y

be a morphism of locally of finite type R-algebraic stacks.

(a) If R is finite-closed and f is finite (and hence representable by schemes),
then f (R) is a closed map.

(b) If R is proper-closed and f is proper and representable by schemes, then
f (R) is a closed map.

Proof. The claims follow from Lemma 2.6 and from the definitions.

PROPOSITION 2.15. Let R be a local topological ring that is Hausdorff, satisfies
(α)–(β), and such that R× is closed in R (for example, R could be a valuation
ring). Let

f : X → Y
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be a representable by schemes morphism of locally of finite type R-algebraic
stacks.

(a) If f is a quasi-compact immersion, then f (R) is a closed embedding.

(b) If R is finite-closed and f is quasi-finite, then f (R) is a closed map.

(c) If R is proper-closed and f is of finite type, then f (R) is a closed map.

Proof. In (a), we need to show that the continuous monomorphism f (R) is
closed. In all cases Lemma 2.6 permits us to assume that Y is an affine scheme
Spec B (so f is a scheme morphism).

(a) By Section 2.2(vi), we may assume that f is a quasi-compact open
immersion. By quasi-compactness, we may further assume that f is the
inclusion of a principal open affine Spec B[1/b]. We view b as a morphism
b : Y → A1

R . Then the closedness of R× implies that of

f (R)(X (R)) = b(R)−1(R×),

so the claim results from Section 2.2(iv).

Thanks to the quasi-compactness of f , in the proof of (b) and (c) we may
replace X by an open affine, and hence further assume that f is separated.

(b) Combine [EGA IV4, 18.12.13] (that is, Zariski’s main theorem) and (a).

(c) Combine [Con07b, Theorem 4.1] (that is, Nagata’s embedding theorem)
and (a).

PROPOSITION 2.16. Let o be the ring of integers of a nonarchimedean local field
k. For every representable, separated, finite type morphism

f : X → Y

of locally of finite type o-algebraic stacks, the map f (o) is closed.

Proof. Lemma 2.6 reduces to the case when Y is an affine scheme. Nagata’s
embedding theorem for algebraic spaces [CLO12, Theorem 1.2.1] and
Proposition 2.15(a) reduce further to proper f . By Section 2.2(viii) and the first
part of the first sentence of Remark 2.2.2, Y (o) ⊂ Y (k) is a closed embedding.
By the valuative criterion of properness for algebraic spaces [SP, 0A40],

f (k)−1(Y (o)) =X (o)

http://stacks.math.columbia.edu/tag/0A40
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in X (k), so the embedding X (o) ⊂ X (k) that results from Proposition 2.9(e)
has a closed image, and hence is a closed embedding. It remains to note that f (k)
is closed by Lemma 2.12.1(c).

We close Section 2 by surveying conditions which ensure that X (R) is
Hausdorff.

PROPOSITION 2.17. Let R be a local topological ring that is Hausdorff and
satisfies (α)–(β), and let X be a locally of finite type R-algebraic stack such
that ∆X /R has a separated R-fiber over the closed point of Spec R. If

(1) X is a separated R-scheme; or

(2) R× is closed in R (for example, R is valuation ring), and X is a quasi-
separated R-scheme;

then X (R) is Hausdorff. If R is Henselian and étale-open and

(3) X is a separated R-algebraic space; or

(4) R× is closed in R, and X is a quasi-separated R-algebraic space with
∆X /R an immersion; or

(5) R is finite-closed and ∆X /R is finite; or

(6) R is finite-closed, R× is closed in R, and ∆X /R is quasi-finite and
separated; or

(7) R is a local field and X is R-separated (that is, ∆X /R is proper); or

(8) R is the ring of integers of a nonarchimedean local field, and∆X /R is quasi-
compact and separated; or

(9) R is proper-closed, and ∆X /R is proper and representable by schemes; or

(10) R is proper-closed, R× is closed in R, and ∆X /R is quasi-compact and
representable by schemes;

then X (R) is Hausdorff.

Proof. The identification (X ×R X )(R)
∼

−→ X (R) × X (R) is a homeo-
morphism:

• in cases (1)–(2), this follows from Section 2.2(v);

• in cases (3)–(10), this follows from Proposition 2.9(b).
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It remains to note that the diagonal map ∆X /R(R) is closed:

• in case (1), this follows from Section 2.2(vi);

• in cases (2) and (4), this follows from Proposition 2.15(a);

• in case (3), this follows from the aspect (vi) of Corollary 2.7;

• in case (5), this follows from Proposition 2.14(a);

• in case (6), this follows from Proposition 2.15(b) (representability of ∆X /R by
schemes is guaranteed by [LMB00, A.2]);

• in case (7), this follows from Lemma 2.12.1(c);

• in case (8), this follows from Proposition 2.16 (quasi-compactness ensures that
∆X /R is of finite type because it is always locally of finite type by [SP, 04XS]
or by [LMB00, 4.2 and its proof]);

• in case (9), this follows from Proposition 2.14(b);

• in case (10), this follows from Proposition 2.15(c) (supplemented by [SP,
04XS] or by [LMB00, 4.2] again).

3. Topologies on cohomology sets via classifying stacks

The setup introduced in Section 3.1 is valid throughout Section 3. Our main
goal in Sections 3–4 is to detail the properties of the topologies introduced in
Sections 3.1–3.2.

3.1. Topology on H 0(R,G) and H 1(R,G). Let R be a local topological ring
that satisfies (α) and (β) of Section 2.1; that is, R× ⊂ R is open and a topological
group when endowed with the subspace topology. Let G be a flat and locally of
finite presentation R-group algebraic space, and let BG be its classifying stack,
which is algebraic and R-smooth by Section A.1 and Proposition A.3. We use
Section 2.4 to topologize

H 0(R,G) = G(R) and H 1(R,G)

by viewing the latter as the set of isomorphism classes of objects of BG(R).

http://stacks.math.columbia.edu/tag/04XS
http://stacks.math.columbia.edu/tag/04XS
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Although in most examples G is a scheme, allowing algebraic spaces leads to a
more robust theory and more flexible proofs: for instance, group algebraic spaces
behave better than group schemes with respect to representability of quotients or
of inner forms.

3.2. Topology on H n(R,G) for n > 2. If, in the setup of Section 3.1, G
is in addition commutative, then we use the definitions of Section 2.5 with
F = H n(−,G) to topologize

H n(R,G) for n > 2.

(One can also use Section 2.5 in the n = 0 and n = 1 cases: the discussion in
Section 2.5 guarantees agreement with Section 3.1.)

The following two propositions illustrate the functoriality inherent in the
definitions.

PROPOSITION 3.3. For a homomorphism G → G ′ between flat and locally of
finite presentation R-group algebraic spaces, the induced maps

H n(R,G)→ H n(R,G ′)

are continuous for n 6 1, and also for n > 2 if G and G ′ are commutative.

Proof. There is an underlying presheaf morphism

H n(−,G)→ H n(−,G ′),

so the continuity follows from the discussion of Section 2.5.

PROPOSITION 3.4. Let T be a right G-torsor, and let T G := AutG(T ) be the
corresponding inner form of G. Twisting by T induces a homeomorphism

H 1(R,G) ∼= H 1(R, T G)

that sends the class of T to the neutral class.

Proof. By [Gir71, III.2.6.1(i)], twisting by T induces an underlying isomorphism

BG ∼= BT G

of algebraic stacks over R. This isomorphism is defined by X 7→ HomG(T, X),
and hence sends the class of T to the neutral class.



Topology on cohomology of local fields 21

Before proceeding to discuss finer topological properties, we record conditions
which ensure discreteness of the topologies introduced in Sections 3.1–3.2.

PROPOSITION 3.5. If R is Henselian and étale-open (in the sense of Section 2.8),
then

(a) H 1(R,G) is discrete if G is smooth;

(b) H n(R,G) is discrete for n > 1 if G is commutative and smooth;

(c) H n(R,G) is discrete for n > 2 if G is commutative and of finite
presentation;

(d) H n(R,G) is discrete for n > 2 if G is commutative and R is excellent (and
hence Noetherian).

Proof. We fix a locally of finite type R-scheme X , an a ∈ H n(R,G), and an
f ∈ H n(X,G), which corresponds to a presheaf morphism f : X → H n(−,G).
We need to show that

f (R)−1(a) ⊂ X (R)

is open. For every x ∈ f (R)−1(a), we will build an étale gx : Ux → X such that

x ∈ gx(R)(Ux(R)) and f |Ux = a|Ux in H n(Ux ,G).

The latter forces
gx(R)(Ux(R)) ⊂ f (R)−1(a),

so the étale-openness of R will prove the desired openness of f (R)−1(a) ⊂ X (R).
For the construction of Ux , we view x as an R-morphism Spec R

x
−→ X , let

s ∈ Spec R be the closed point, and let O be the Henselization of X at x(s). Since
R is Henselian, x factors through SpecO → X ; being an R-morphism, x also
identifies the residue fields at s and x(s). Therefore,

f |O = a|O in H n(O,G)

by Remark B.11 for (a), Theorem B.18 for (b), Proposition B.13 for (c), and
[Toë11, 3.4] together with [EGA IV2, 7.8.3] and [EGA IV4, 18.7.6] for (d).
It remains to employ limit formalism [SGA 4II, VII, 5.9] to find a desired gx

through which SpecO → X factors. (We use analogs of loc. cit. for algebraic
spaces instead of schemes and fppf cohomology of algebraic spaces instead of
étale cohomology of schemes. The proofs based on topos-theoretic generalities
of [SGA 4II, VI] are analogous, too.)
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In the remainder of Section 3 we suppress mentioning H n(R,−) for n > 2; in
the cases of such n we have nothing to add to the frequent discreteness given by
Proposition 3.5(b)–(d).

For n = 0 and n = 1, the following conditions ensure that H n(R,G) is a
topological group.

PROPOSITION 3.6. Let m ⊂ R be the maximal ideal.

(a) If G is a scheme, then H 0(R,G) is a topological group.

(b) If R is Henselian and étale-open, then H 0(R,G) is a topological group.

(c) If R is Henselian and étale-open, G is commutative, and either G is smooth
or G R/m is a scheme (by [Art69, 4.2], G R/m is a scheme if, for instance, it
is quasi-separated), then H 1(R,G) is an abelian topological group.

Proof. The inverse map of the group H n(R,G) is continuous because it is
induced by an underlying morphism of algebraic stacks (even of schemes in (a)
and of algebraic spaces in (b)), as mentioned in the last paragraph of Section A.1
in case (c). Likewise, we deduce that the multiplication map is also continuous
once we argue that the bijection

H n(R,G × G) ∼= H n(R,G)× H n(R,G) (3.6.1)

is a homeomorphism.

• In (a), (3.6.1) is a homeomorphism by Section 2.2(v).

• In (b), (3.6.1) is a homeomorphism by Proposition 2.9(b).

• In (c), if G is smooth, then both sides of (3.6.1) are discrete by
Proposition 3.5(a).

• In (c), if G R/m is a scheme, then G R/m is separated, so ∆BG R/m is also
separated by Lemma A.2(b), and hence (3.6.1) is a homeomorphism by
Proposition 2.9(b).

In the following proposition we record conditions which ensure that H n(R,G)
is locally compact. Local compactness (as well as Hausdorffness) is important
to know in practice: for instance, Pontryagin duality concerns locally compact
Hausdorff abelian topological groups, so to make sense of Tate–Shatz local
duality over nonarchimedean local fields of positive characteristic one needs to
know that the cohomology groups in question are locally compact and Hausdorff.



Topology on cohomology of local fields 23

PROPOSITION 3.7. Suppose that R is locally compact and Hausdorff.

(a) If G is a scheme, then H 0(R,G) is locally compact.

(b) If R is Henselian and étale-open, then H 0(R,G) is locally compact.

(c) If R is Henselian and étale-open and G R/m is a scheme, then H 1(R,G) is
locally compact.

Proof.

(a) The claim is a special case of Section 2.2(vii).

(b) The claim is a special case of Proposition 2.9(c).

(c) If G R/m is a scheme, then it is separated, so ∆BG R/m is also separated by
Lemma A.2(b). The local compactness of H 1(R,G) therefore follows from
Proposition 2.9(c).

We proceed to record conditions that ensure Hausdorffness of H 1(R,G). For
conditions that ensure Hausdorffness of H 0(R,G), see Proposition 2.17.

PROPOSITION 3.8. Suppose that R is Henselian and étale-open.

(1) If G is smooth; or

(2) if R is finite-closed (in the sense of Section 2.12) and G is finite; or

(3) if R is finite-closed, R× is closed in R, and G is quasi-finite and separated;
or

(4) if R is a local field and G is proper; or

(5) if R is the ring of integers of a nonarchimedean local field and G is quasi-
compact and separated; or

(6) if R is proper-closed, R× is closed in R, and G is quasi-affine;

then H 1(R,G) is Hausdorff.

Proof. In case (1), the claim follows from Proposition 3.5(a). In cases (2)–(6),
the claim follows from Proposition 2.17(5)–(8) and (10) (one also uses
Lemma A.2(b)).

The following further Hausdorffness result was pointed out to us by Laurent
Moret-Bailly. It proves in particular that H 1(k,G) is Hausdorff if k is a
nonarchimedean local field and G is a commutative k-group scheme of finite type.
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PROPOSITION 3.9. Let k be the fraction field of a Henselian valuation ring, k̂
the completion of k, and G a k-group scheme of finite type. Suppose that the field
extension k̂/k is separable. If the identity component G◦ is commutative or if Gk

has no nonzero subtorus, then H 1(k,G) is T1; that is, its points are closed. In
particular, if G is commutative, then H 1(k,G) is Hausdorff.

Proof. If G is commutative, then H 1(k,G) is an abelian topological group by
Proposition 3.6(c) (together with Section 2.8(2)), so the last sentence follows from
the rest.

If k is discrete, then so is H 1(k,G). If k is nondiscrete, then [GGMB14,
Theorem 1.2(1)(c)] proves that for every finite type k-scheme Y and every
GY -torsor f : X → Y the image of the induced map

f (k) : X (k)→ Y (k)

is closed. In other words, for every k-morphism Y
f
−→ BG, the preimage of the

neutral class of BG(k) is closed in Y (k); that is, the neutral element of H 1(k,G)
is closed. The closedness of the other elements of H 1(k,G) then follows from
Proposition 3.4 because the assumptions on G◦ or on Gk may be checked after
replacing G by its base change to a finite subextension of k/k and are therefore
inherited by the inner forms T G.

We close Section 3 with a result that describes topological properties of
the pointed set H 1(R,G) in the case when R is the ring of integers of a
nonarchimedean local field.

PROPOSITION 3.10. Let k be a nonarchimedean local field, o its ring of integers,
F its residue field, and G a flat and locally of finite type o-group algebraic space.
The pullback map

p : H 1(o,G)→ H 1(k,G)

is continuous. If GF is a scheme, then p is open. If, in addition to GF being a
scheme, G is quasi-compact (respectively, quasi-compact and separated), then
H 1(o,G) is compact (respectively, compact and Hausdorff).

Proof. The continuity of p follows from the aspect (viii) of Corollary 2.7 applied
to X = BG. If GF is a scheme, then ∆BGF is separated by Lemma A.2(b),
and hence p is open by Proposition 2.9(e). If GF is a scheme and G is quasi-
compact, then GF is a group scheme of finite type over a finite field, so H 1(F,G)
is finite and the compactness of H 1(o,G) follows from Proposition 2.9(d). The
Hausdorffness claim follows from Proposition 3.8(5).



Topology on cohomology of local fields 25

4. Topological properties of maps in cohomology sequences

4.1. The setup. As in Section 3, let R be a local topological ring that satisfies
(α)–(β) of Section 2.1. Similarly to Proposition A.4, let

ι : H ↪→ G

be a monomorphism of flat R-group algebraic spaces locally of finite presentation,
use ι to identify H with a subspace of G, and let

Q := G/H

be the resulting quotient R-algebraic space, which is flat and locally of finite
presentation by Proposition A.4(a) and [SP, 06ET and 06EV].

In this section, we investigate the topological properties of the maps in the long
exact sequence

1→ H(R)
ι(R)
−−→ G(R)→ Q(R)→ H 1(R, H)

→ H 1(R,G)
x
−→ H 1(R, Q)

y
−→ H 2(R, H)

z
−→ · · · ,

(F)

where x (respectively, y) is defined if ι(H) is normal (respectively, central) in G,
and z and the subsequent maps are defined if G is commutative.

As in Section 3, we have nothing to add to Proposition 3.5(b)–(d) concerning
the topological study of H n(R,−)with n > 2. Throughout Section 4 we therefore
mostly omit such n from consideration.

PROPOSITION 4.2. All the maps in (F) are continuous (whenever defined).

Proof. All the maps have underlying morphisms of presheaves, so the discussion
of Section 2.5 applies.

In Proposition 4.3 (respectively, Proposition 4.4), we record conditions which
ensure that the maps appearing in the long exact sequence (F) are open
(respectively, closed). Knowledge of these conditions will be handy in the proofs
of the comparison with the Čech topology carried out in Sections 5–6.

PROPOSITION 4.3. Suppose that (R,m) is Henselian and étale-open.

(a) If H → Spec R is smooth, then

G(R)→ Q(R)

is open.

http://stacks.math.columbia.edu/tag/06ET
http://stacks.math.columbia.edu/tag/06EV
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(b) If G → Spec R is smooth, then

Q(R)→ H 1(R, H)

is open.

(c) If Q → Spec R is smooth and HR/m is a scheme, then

H 1(R, H)→ H 1(R,G)

is open.

(d) If ι(H) is normal in G and G R/m is a scheme, then

H 1(R,G)
x
−→ H 1(R, Q)

is open.

Proof. The claims follow by combining Proposition A.4 for P = ‘smooth’ and
Proposition 2.9(a) (together with the last sentence of Remark B.6 to ensure that
the diagonal assumption of Proposition 2.9 is met).

PROPOSITION 4.4. Consider the following conditions.

(1) R is a local field.

(2) R is the ring of integers of a nonarchimedean local field.

(3) R is finite-closed.

(4) R is proper-closed.

(5) R is finite-closed and R× is closed in R.

(6) R is proper-closed and R× is closed in R.

Then

(a) If H → Spec R is proper (respectively, quasi-compact and
separated, respectively, finite, respectively, proper and G is a scheme,
respectively, quasi-finite and G is a scheme, respectively, quasi-compact
and G is a scheme) and R satisfies (1) (respectively, (2), respectively, (3),
respectively, (4), respectively, (5), respectively, (6)), then

G(R)→ Q(R) is closed.

(b) If G → Spec R is proper (respectively, quasi-compact and separated,
respectively, finite, respectively, proper, Q is a scheme, and H is a quasi-
affine scheme, respectively, quasi-finite, Q is a scheme, and H is a quasi-
affine scheme, respectively, quasi-compact, Q is a scheme, and H is a
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quasi-affine scheme) and R satisfies (1) (respectively, (2), respectively, (3),
respectively, (4), respectively, (5), respectively, (6)), then

Q(R)→ H 1(R, H) is closed.

(c) If Q → Spec R is proper (respectively, quasi-compact and separated,
respectively, finite, respectively, quasi-finite and separated, respectively,
quasi-affine) and R satisfies (1) (respectively, (2), respectively, (3),
respectively, (5), respectively, (6)), then

H 1(R, H)→ H 1(R,G) is closed.

Proof. Due to Proposition A.4, depending on whether we are in the situation (a),
or (b), or (c), the morphism G → Q, or Q → BH , or BH → BG inherits the
geometric properties imposed on H , or G, or Q, respectively. Therefore,

• in case (1), claims (a), (b), and (c) follow from Lemma 2.12.1(c);

• in case (2), claims (a), (b), and (c) follow from Proposition 2.16;

• in case (3), claims (a), (b), and (c) follow from Proposition 2.14(a);

• in case (4), claims (a) and (b) follow from Proposition 2.14(b) (for claim (b),
one uses the quasi-affineness of H through Lemma A.2(b) to argue that ∆BH/R

is quasi-affine, so that Q → BH is representable by schemes);

• in case (5), claims (a), (b), and (c) follow from Proposition 2.15(b), which
applies because finite-closedness implies Hausdorffness (see Section 2.12),
whereas the representability by schemes of the morphism in question is argued
for claim (b) as in the proof of case (4), and is argued for claim (c) via the fact
[LMB00, A.2] that a quasi-finite separated algebraic space over a scheme is a
scheme;

• in case (6), claims (a), (b), and (c) follow from Proposition 2.15(c), which
applies thanks to reasoning analogous to that of the proof of case (5).

Remarks.

4.5. Consider a single statement of Proposition 4.3 or Proposition 4.4,
and let t denote the map of (F) studied there. A continuous open
(respectively, closed) surjection is a quotient map, so, if in addition to
the assumptions of the statement in question also the map of (F) succeeding
t is defined and vanishes, then the target of t inherits a quotient topology
from the source.
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4.6. The approach of [BT14] is based on an analog of Remark 4.5 as follows. The
article [BT14] assumes that R is the fraction field of a complete rank-one
valuation ring and H is affine, embeds H into a suitable smooth G for which
H 1(R,G) vanishes (for example, into GLn), and endows H 1(R, H)with the
resulting quotient topology. It then argues in [BT14, 2.1.1] that the choice
of G did not matter and claims in [BT14, 3.1] that the quotient topology
agrees with the Čech topology (defined in [BT14, 2.2]). Conclusions about
the Čech topology use this analysis; an analog of Proposition 4.2 is [BT14,
5.1], that of Proposition 4.3(c) is [BT14, 5.1.2], and that of Proposition 3.5(a)
is [BT14, 5.1.3]. However, as mentioned in Remark 1.7, the Čech topology
used in [BT14] is a priori different from the one used here and in [Mil06,
III, Section 6], so we cannot use the results cited above to shorten the proofs
given in Sections 5–6 below.

4.7. In contrast to Proposition 4.3(d), x need not be closed even if R is a local
field and H , G, and Q are commutative and finite. For example, consider

0→ αp → αp2 → αp → 0

over R := Fp((t)). The vanishing of H n(R,Ga) for n > 1 combines with
Remark 4.5 to show that

H 1(R, αp2) = R/R p2
and H 1(R, αp) = R/R p

both algebraically and topologically, and, moreover, that x identifies with the
quotient map

R/R p2
� R/R p.

The latter is not closed:

{tn
+ t−pn

}n>1 and p-n ⊂ R

has a closed image in R/R p2 but not in R/R p. Also, the p-power
map R/R p

→ R/R p2 is not open, so the smoothness assumption of
Proposition 4.3(c) cannot be dropped. Neither can that of Proposition 4.3(b)
because R/R p is nondiscrete.

5. Comparison with the Čech topology on H1(k, G)

The main goal of the present section is Theorem 5.11, which shows that the
topology on H 1(k,G) introduced in Section 3.1 agrees with the Čech topology
used by other authors.
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5.1. The Čech topology. Let k be a Hausdorff topological field and G a locally
of finite type k-group scheme. For a finite subextension k/L/k and n > 0, set

Ln :=

n⊗
i=0

L (tensor product over k).

Consider the restriction of scalars

Cn
:= ResLn/k(GLn ).

By [EGA IV3, 9.1.5] and [CGP10, A.3.5], the connected components of G are
quasi-projective. Therefore, every finite set of points of GLn is contained in an
open affine, and hence Cn is a locally of finite type k-group scheme by [BLR90,
7.6/4]. We call Cn the scheme of n-cochains (for G with respect to L/k). The
coboundaries

dn
: Cn
→ Cn+1,

which are defined using the usual formulas, are morphisms of k-schemes; they
are even group homomorphisms if G is commutative. Let en : Spec k → Cn be
the unit section, and let

Z n
:= Cn

×dn ,Cn+1,en+1 Spec k

be the scheme of n-cocycles (for G with respect to L/k).
The group C0(k) acts on the right on Z 1(k) by

(z1, c0) 7→ p∗1(k)(c
0)−1z1 p∗0(k)(c

0),

where p∗i : C0
→ C1 is the map induced by the i th projection Spec L1→ Spec L

(so d0
= (p∗1)

−1 p∗0). We endow the orbit space

H 1(L/k,G) := Z 1(k)/C0(k)

with the quotient topology. Its points correspond to G-torsors trivialized by L/k,
so

H 1(L/k,G) ↪→ H 1(k,G).

If L ′ is contained in L , then the inclusion H 1(L ′/k,G) ↪→ H 1(L/k,G) is
continuous because it is induced by a k-morphism Z 1

L ′/k → Z 1
L/k . The transition

maps in
H 1(k,G) = lim

−→L
H 1(L/k,G)

are therefore continuous, and we write H 1(k,G)Čech for H 1(k,G) endowed with
the direct limit topology. A subset U ⊂ H 1(k,G)Čech is open if and only if so is
its preimage in every Z 1(k).
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If G is commutative, then (Cn(k), dn(k))n>0 is a complex of abelian groups.
We endow its cohomology groups H n(L/k,G) with the subquotient topology. If
G is locally of finite type, then

H n(k,G) = lim
−→L

H n(L/k,G)

by [Sha72, page 208, Theorem 42], and we write H n(k,G)Čech for H n(k,G)
endowed with the direct limit topology. (Loc. cit. assumes that G is of finite
type, but the method of proof there continues to work for locally of finite type
G because such a G is an extension of a smooth k-group by a finite k-group due
to Lemma 5.8.)

The agreement of our definition of the Čech topology with the one used in
[Mil06, III, Section 6] follows from Proposition 2.11(a). The absence of the Čech
subscript indicates the topologies of Sections 3.1–3.2.

REMARK 5.2. The bijection

H 0(k,G)Čech → H 0(k,G)

is a homeomorphism. In fact, both topologies agree with the topology on G(k): for
H 0(k,G)Čech, this follows from Section 2.2(x); for H 0(k,G), this follows from
the definition given in Section 3.1.

LEMMA 5.3. The bijection

bG : H 1(k,G)Čech → H 1(k,G)

is continuous.

Proof. We need to argue that for every L the composite

Z 1(k)→ H 1(k,G)Čech → H 1(k,G)

is continuous (as before, Z 1 depends on L). For this, it suffices to exhibit an
underlying morphism

Z 1 a
−→ BG.

On the category of k-schemes, Z 1 represents the functor of 1-cocycles for G with
respect to L/k. The universal 1-cocycle corresponding to idZ1 gives rise to a torsor
under G Z1 → Z 1, and this torsor corresponds to a.

COROLLARY 5.4. If k is étale-open and G → Spec k is smooth, then bG is a
homeomorphism and H 1(k,G)Čech is discrete.
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Proof. By Proposition 3.5(a), H 1(k,G) is discrete, so continuity of bG gives the
claim.

LEMMA 5.5. For a homomorphism f : H → G of locally of finite type k-group
schemes, the resulting morphism

H 1(k, H)Čech → H 1(k,G)Čech

is continuous.

Proof. For a finite subextension k/L/k, write fZ1 : Z 1
H → Z 1

G for the k-morphism
of schemes of 1-cocycles induced by f . The claim results from the commutativity
of

Z 1
H (k)

fZ1 (k) //

��

Z 1
G(k)

��
H 1(k, H)Čech

// H 1(k,G)Čech

and the continuity of fZ1(k).

LEMMA 5.6. Let T be a right G-torsor, and let T G := AutG(T ) be the
corresponding inner form of G. Twisting by T induces a homeomorphism

H 1(k,G)Čech
∼= H 1(k, T G)Čech

that sends the class of T to the neutral class.

Proof. We write Z 1
L/k,G for the Z 1 of Section 5.1 and choose a finite subextension

k/L/k that trivializes T and an

x ∈ Z 1
L/k,G(k)

that gives the class of T in H 1(L/k,G). For every finite subextension k/L ′/L ,
right multiplication by the pullback of x−1 induces an isomorphism

i : Z 1
L ′/k,G

∼

−→ Z 1
L ′/k,T G

(compare with [Ser02, I, Section 5, Proposition 35 bis]). Moreover, the
homeomorphism i(k) intertwines the actions of C0

L ′/k,G(k) and C0
L ′/k,T G(k).

Thus, the resulting ‘twist by T ’ bijection

H 1(L ′/k,G)
∼

−→ H 1(L ′/k, T G)

is a homeomorphism. It remains to take lim
−→L ′

.
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LEMMA 5.7. Let K be a field of characteristic p, and let G be a finite connected
K -group scheme.

(a) Every G-torsor X → Spec K for the étale topology is trivial.

(b) For some n > 0 with pn 6 (#G)!, every G-torsor X → Spec K for the fppf
topology is trivial over K 1/pn

⊂ K (with the convention that 00
= 1). In

particular, if K is perfect, then H 1(K ,G) is trivial.

Proof. If p = 0, then G is trivial, so we assume that p > 0.

(a) If A is a reduced K -algebra, then G(A) is a singleton. We take A = L
⊗

K L
for a finite separable extension L/K to see that there are no nontrivial G-
torsors trivialized by L/K .

(b) For a subextension K/K ′/K of degree at most #G, let N ⊂ K be its normal
closure, so [N : K ] 6 (#G)!. Let n be such that

pn 6 (#G)! but pn+1 > (#G)!.

Set L := K 1/pn .

If K ′ is a residue field of X , then, by [BouA, V.73, Proposition 13], N L/L
is separable. Thus, X L trivializes over an étale cover of Spec L . Since GL is
connected, it remains to apply (a).

LEMMA 5.8. Let K be a field. Every locally of finite type K -group scheme G is
an extension

1→ H → G → Q → 1

with Q smooth and H finite, connected, and closed and normal in G.

Proof. If char K = 0, then G is smooth by Cartier’s theorem [SGA 3I new, VIB,
1.6.1], so the trivial subgroup H = 1 suffices. If char K > 0, then [SGA 3I new,
VIIA, 8.3] gives the claim (with H a large enough relative Frobenius kernel).

5.9. The ground field. For the rest of Section 5, k is a Hausdorff topological
field that is étale-open and finite-closed in the sense of Sections 2.8 and 2.12 and
such that every finite extension L of k is finite-closed when endowed with the
topology resulting from some (equivalently, any) k-module identification L ∼= kn .
For instance, as justified in Sections 2.8 and 2.12, k could be a local field or a
field that is complete with respect to a nonarchimedean valuation of rank 1. We
set p := char k.
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LEMMA 5.10. Assume that [k : k p
] < ∞ if p > 0. For a locally of finite

type k-group scheme G, a finite connected closed subgroup H 6 G (that need
not be normal), and Q := G/H (which is a locally of finite type k-scheme by
[SGA 3I new, VIA, 3.2]), the connecting map

δ(k) : Q(k)→ H 1(k, H)Čech

is continuous.

Proof. We use Lemma 5.7(b) to fix a finite subextension k/L/k for which
H 1(L/k, H) ↪→ H 1(k, H) is bijective. We indicate the relevant groups by
subscripts, and consider the Cartesian square

F �
� i //

g

��

C0
G

d0
G
��

Z 1
H
� � // Z 1

G,

in which the horizontal maps are closed immersions thanks to [BLR90, 7.6/2(ii)].
Claim 5.10.1. There is a Cartesian square (for the bottom map, we recall the
notation C0

G = ResL/k(GL))

F� _
i

��

f // Q� _

��
C0

G
// ResL/k(QL).

(5.10.2)

Proof. The claim is a manifestation of fppf descent: for a k-scheme S, the two
pullbacks

p∗0(x), p∗1(x) ∈ C1
G(S) = G(SL ×S SL) of an element x ∈ C0

G(S) = G(SL)

satisfy
p∗0(x) = p∗1(x)y for some y ∈ Z 1

H (S) ⊂ H(SL ×S SL)

if and only if the image of x in Q(SL) lands in Q(S).

Claim 5.10.3. f (k) : F(k)→ Q(k) is continuous, closed, and surjective.

Proof. Continuity is clear (from Section 2.2(i)). By the assumptions of
Section 5.9, L is finite-closed, so

G(L)→ Q(L)
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is closed. To deduce the same for f (k), we evaluate (5.10.2) on k-points and apply
Section 2.2(vi) to i , Proposition 2.11(a) to C0

G , and Section 2.2(viii) to

Q(k)→ Q(L).

By the choice of L , every k-point of Q lifts to an L-point of G, so (5.10.2) also
gives the surjectivity of f (k).

Claim 5.10.4. The following diagram commutes:

F(k)
f (k) //

g(k)

��

Q(k)

δ(k)

��
Z 1

H (k)
π // H 1(k, H)Čech.

(5.10.5)

Proof. We fix a q ∈ Q(k), let X → Spec k be the corresponding fiber of G→ Q,
and view X as an H -torsor trivialized by L/k. To build a

z ∈ Z 1
H (k) ⊂ H

(
L
⊗

k

L
)

that gives the class of X in H 1(L/k, H), one takes any

x ∈ X (L)
(5.10.2)
⊂ F(k) ⊂ G(L)

and sets z := d0
G(x) to be the H(L

⊗
k L)-difference of the two pullbacks of x to

X (L
⊗

k L). This gives the claim because d0
G(x) = g(k)(x).

To prove the continuity of δ(k), let Z ⊂ H 1(k, H)Čech be closed. The continuity
of π and g(k) gives the closedness of

g(k)−1(π−1(Z)) (5.10.5)
= f (k)−1(δ(k)−1(Z)),

so Claim 5.10.3 gives that of δ(k)−1(Z).

THEOREM 5.11. Let k be a Hausdorff topological field of characteristic p > 0
such that k is étale-open, every finite extension of k endowed with the k-vector
space topology is finite-closed, and [k : k p

] <∞ if p > 0. (For instance, k could
be a local field.) For a locally of finite type k-group scheme G, the bijection

bG : H 1(k,G)Čech → H 1(k,G)

is a homeomorphism.
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Proof. We begin with the case of a finite connected G. We embed G into some
GLn , and set Q := GLn /G. By Proposition 4.3(b) (with Remark 4.5), the
connecting map

δ(k) : Q(k)� H 1(k,G)

is a quotient map. On the other hand, by Lemma 5.10,

δ(k) : Q(k)� H 1(k,G)Čech

is continuous. Therefore,

bG : H 1(k,G)Čech → H 1(k,G)

is open, and hence is also a homeomorphism thanks to its continuity supplied by
Lemma 5.3.

We now turn to the general case. By Lemma 5.8, there is an exact sequence

1→ H → G → Q → 1

with H finite connected, Q smooth, and H closed and normal in G. Its
cohomology sequence gives the commutative diagram

H 1(k, H)Čech
ǎ //

bH

��

H 1(k,G)Čech
č //

bG

��

H 1(k, Q)Čech

bQ

��
H 1(k, H) a // H 1(k,G) // H 1(k, Q),

in which the horizontal maps are continuous by Proposition 4.2 and Lemma 5.5.
By Corollary 5.4, H 1(k, Q)Čech is discrete, so the fibers of č are open. By
Lemma 5.3, bG is continuous, so it remains to argue that the restrictions of bG to
the fibers of č are open morphisms. In the case of the neutral fiber, the restriction
bG |Im ǎ is open because bH is a homeomorphism by the finite connected case and
a is open by Proposition 4.3(c). We will argue that the openness of the restrictions
of bG to the other fibers of č follows from the settled case of the neutral fiber.

Let T be a G-torsor, and let T G := AutG(T ) be the resulting inner form of G.
By Proposition 3.4 and Lemma 5.6, twisting by T induces homeomorphisms

H 1(k,G)Čech
∼= H 1(k, T G)Čech

and
H 1(k,G) ∼= H 1(k, T G),
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which, moreover, are compatible with bG and bT G . By [Gir71, III.3.3.5], these
homeomorphisms identify the č-fiber containing the class of T with the neutral
fiber of

H 1(k, T G)Čech → H 1(k, T/H Q)Čech,

where T/H is regarded as a Q-torsor and T/H Q := AutQ(T/H) is the resulting
inner form of Q. This identification achieves the desired reduction to the
case of the neutral fiber because T/H Q is smooth and Ker(T G → T/H Q) is
finite connected, as may be checked after base change to a finite extension
trivializing T .

Example 5.12. We show that the assumption on [k : k p
] cannot be dropped in

Theorem 5.11. We take

k = Fp(x1, x2, . . . )((t)) and G = αp.

Since k is a complete discrete valuation ring, it satisfies the assumptions
of Theorem 5.11 with the exception of the requirement on [k : k p

]. By
Proposition 4.3(b) and Remark 4.5, H 1(k,G) identifies with k/k p equipped
with the quotient topology. In particular,

{xntnp
}n>1 ⊂ H 1(k,G)

has 0 as a limit point, and hence is not closed. On the other hand, only finitely
many xn have a pth root in a fixed finite subextension k/L/k, so the preimage of

{xntnp
}n>1 ⊂ H 1(k,G)Čech

in H 1(L/k,G) is finite. Since C0(k) = αp(L) is finite, the further preimage in
Z 1(k) is also finite, and hence closed thanks to Proposition 2.17(1). In conclusion,

{xntnp
}n>1 ⊂ H 1(k,G)Čech

is closed, so bG is not a homeomorphism.

6. Comparison with the Čech topology on Hn(k, G) for n > 2

The goal of Section 6 is Theorem 6.5: for commutative G and n > 2,
the Čech topology on H n(k,G) is simply the discrete topology, which by
Proposition 3.5(b) agrees with the topology of Section 3.2.

6.1. The ground field. Throughout Section 6, k is a Hausdorff topological field
that is étale-open in the sense of Section 2.8. For instance, k could be a local field
or the fraction field of a Henselian valuation ring.
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6.2. The Čech topology. Focussing on commutative G, we study the Čech
topology defined in Section 5.1.

We begin with the analog of Corollary 5.4 in the commutative case.

LEMMA 6.3. If G is a commutative smooth k-group scheme, then H n(k,G)Čech
is discrete for n > 1.

Proof. Fix a finite subextension k/L/k. By Proposition 2.9(a) and Lemma B.15,
the fibers of

Z n(k)→ H n(L/k,G)

are open. Thus, H n(L/k,G) is discrete, and hence so is H n(k,G)Čech.

LEMMA 6.4. For a field K , every commutative locally of finite type K -group
scheme H is a closed subgroup of a commutative smooth K -group scheme G,
which can be chosen to be quasi-compact if so is H.

Proof. By Lemma 5.8, there is a short exact sequence

0→ H0 → H → H ′→ 0 with H0 finite connected and H ′ smooth.

Let H D
0 be the Cartier dual of H0, so that H0 = Hom(H D

0 ,Gm). Embed H0 into
the smooth k-group G0 := ResH D

0 /k Gm via the functor

Hom(H D
0 ,Gm) ↪→Mor(H D

0 ,Gm).

The pushout
0 // H0� _

��

// H� _
i

��

// H ′ // 0

0 // G0
// G // H ′ // 0

defines a desired G, because G inherits k-smoothness from G0 and H ′.

THEOREM 6.5. If H is a commutative locally of finite type k-group scheme, then
H n(k, H)Čech is discrete for n > 2.

Proof. When needed, we indicate the relevant groups and subextensions by
subscripts.

Fix an a ∈ H n(k, H)Čech and its preimage b ∈ Z n
L/k,H (k) for a sufficiently

large L . Let V ⊂ Z n
L/k,H (k) be the preimage of an open U ⊂ H n(k, H)Čech. The
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preimage of a+U is the open b+ V . Thus, the translation by a map is open, and
we are reduced to proving the openness of {0} ⊂ H n(k, H)Čech.

Use Lemma 6.4 to embed H into a commutative smooth k-group scheme
G, and set Q := G/H , which is a commutative smooth k-group scheme by
[SGA 3I new, VIA, 3.2]. Let

δ : H n−1(k, Q)Čech → H n(k, H)Čech

be the connecting homomorphism. By Lemma 6.3, for a fixed finite subextension
k/L/k,

X := Ker(Z n−1
Q (k)→ H n−1(k, Q)Čech) is a nonempty open in Z n−1

Q (k).

Let Y ⊂ Cn−1
G (k) be the preimage of X ⊂ Z n−1

Q (k). By [Mil06, proof of III.6.1],
the nonempty

dn−1
G (k)(Y ) ⊂ Z n

H (k) lies in the preimage of δ(0) ∈ H n(k, H)Čech. (6.5.1)

Claim 6.5.2. dn−1
G (k)(Y ) is open in Z n

H (k).

Proof. The proof is similar to that of Lemma 5.10. Define the k-scheme F to be
the fiber product

F� _

��

f // Z n−1
Q � _

��
Cn−1

G
// Cn−1

Q .

Then Y = f (k)−1(X), so the continuity of f (k) guarantees the openness of Y in
F(k).

Left exactness of the restriction of scalars and the definition of F ensure that
the outer square of

F� _

��

dF // Z n
H
� � //
� _

��

Cn
H� _

��
Cn−1

G

dn−1
G // Z n

G
� � // Cn

G

is Cartesian. Since so is the right square, the left one is also. Thus, dF is smooth
because so is dn−1

G by Lemma B.15. Since

dn−1
G (k)(Y ) = dF(Y ),

it remains to combine the openness of Y ⊂ F(k) with Proposition 2.9(a).
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Since Z n
H (k) is a topological group, (6.5.1) combines with Claim 6.5.2 to prove

that the preimage of {0} ⊂ H n(k, H)Čech in Z n
H (k) is open. But L was arbitrary,

so {0} ⊂ H n(k, H)Čech is open.
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Appendix A. Generalities concerning stacks of torsors

We gather generalities about the classifying stack BG that play an important
role in the arguments of the main body of the paper. Specifically, we discuss
algebraicity in Section A.1, properties of the diagonal in Lemma A.2 (which we
use without explicit notice), smoothness in Proposition A.3, and properties of
morphisms arising from a short exact sequence in Proposition A.4.

A.1. Stacks of torsors. Let S be a scheme, and let G be an S-group algebraic
space. Consider the classifying S-stack BG, whose groupoid of S′-points for an
S-scheme S′ is the category of right torsors under G S′ → S′ for the fppf topology
(the torsors are algebraic spaces by [SP, 04SK], or already by [LMB00, 10.4.2]
if S and G → S are quasi-separated). By [SP, 06FI] (compare also [LMB00,
10.13.1]), BG is algebraic if G → S is flat and locally of finite presentation. Let
S

e
−→ BG be the morphism that corresponds to the trivial torsor.
If G is commutative, then the naturality of the contracted product and opposite

torsor constructions shows that BG is a group object in the 2-category of stacks
over S.

LEMMA A.2. Let S be a scheme, and let G be an S-group algebraic space.

(a) The following square is 2-Cartesian:

S e //

e

��

BG

id×e
��

BG
∆BG/S // BG ×S BG.

http://stacks.math.columbia.edu/tag/04SK
http://stacks.math.columbia.edu/tag/06FI
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(b) Let P be a property of morphisms of algebraic spaces that is stable under
base change and is fppf local on the base. If G → S has P , then so do
∆BG/S and S

e
−→ BG.

Proof.

(a) Inspect the definition of a 2-fiber product.

(b) Checking that∆BG/S has P amounts to checking that, for every S-scheme S′

and torsors x and y under G S′ → S′, the algebraic space IsomGS′
(x, y)→ S′

parameterizing torsor isomorphisms has P . But IsomGS′
(x, y) → S′ is a

right torsor for the fppf topology under an inner form of G S′ → S′, and
hence inherits P . The claim that concerns e now follows from (a).

PROPOSITION A.3. Let S be a scheme, and let G be a flat and locally of finite
presentation S-group algebraic space. The algebraic stack BG is S-smooth.

Proof. By Lemma A.2(b), S
e
−→ BG is faithfully flat and locally of finite

presentation, so the algebraic stack analog of [SP, 05B5] (or of [EGA IV4,
17.7.7]) applies to

S
e
−→ BG → S.

In the following result, P = ‘smooth’ is the case of most interest to us.

PROPOSITION A.4. Let S be a scheme, H a flat and locally of finite presentation
S-group algebraic space, ι : H ↪→ G a monomorphism of S-group algebraic
spaces, and Q := G/H the resulting quotient homogeneous space (which is an S-
algebraic space by [SP, 06PH] or, in many situations, already by [LMB00, 8.1.1
and 10.6]). Let P be a property of morphisms of algebraic spaces that is stable
under base change and is fppf local on the base.

(a) If H → S has P , then
G → Q

has P .

(b) If G → S has P , then the representable

Q → BH

that corresponds to G → Q has P .

http://stacks.math.columbia.edu/tag/05B5
http://stacks.math.columbia.edu/tag/06PH
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(c) If Q → S has P and G → S is flat and locally of finite presentation, then

BH
Bι
−→ BG

is representable and has P .

(d) If ι(H) is normal in G and G → S is flat and locally of finite presentation,
then

BG → BQ

is smooth.

Proof. For (a), note that G → Q is a torsor under H ×S Q → Q for the fppf
topology. In (b)–(d), the stacks in question are algebraic by the discussion in
Section A.1 (for (d), Q is flat and locally of finite presentation by (a) and [SP,
06ET and 06EV]). Moreover, by Lemma A.2(b), e in

G //

��

Q

��

Q //

��

BH

Bι
��

and

BH //

��

BG

��
S e // BH, S e // BG, S e // BQ

is flat and locally of finite presentation in cases (b), (c), and (d). Thus, to conclude
using fppf descent (and Proposition A.3 for (d)), we argue that the squares are
2-Cartesian (in the respective cases).

(b) For a morphism S′
x
−→ Q with S′ an S-scheme, a trivialization of the HS′-

torsor G×Q,x S′→ S′ amounts to an element of G(S′) lifting x , functorially
in S′.

(c) For an H -torsor T ′, a trivialization the associated G-torsor T amounts to
an identification of T ′ with a sub-H -torsor of the trivial G-torsor, that is,
an identification of T ′ with the fiber of G → Q above an S-point of Q,
functorially in S.

(d) For a G-torsor T , a trivialization of the Q-torsor T/H amounts to a sub-H -
torsor T ′ ⊂ T , that is, an H -torsor T ′ whose associated G-torsor identifies
with T , functorially in T and S.

REMARK A.5. The displayed squares remain Cartesian in a more general topos-
theoretic setting; see [IZ15, 1.12, 1.16].

http://stacks.math.columbia.edu/tag/06ET
http://stacks.math.columbia.edu/tag/06EV
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Appendix B. Lifting points of non-quasi-separated algebraic stacks

The prevalent theme of this appendix is elimination of quasi-separatedness
hypotheses from several known results. This is technical but useful: for example,
without our work here Proposition 4.3 would require various quasi-compactness
and separatedness assumptions.

Our main goal is Theorem B.5, which extends [Knu71, II.6.4] and [LMB00,
6.3] by allowing non-quasi-compact diagonals and by replacing fields by
arbitrary Henselian local rings. The proof uses the same techniques as the above
references and is modeled on the proof of [LMB00, 6.3]. After discussing
several consequences of Theorem B.5 (see, for instance, Corollary B.10), we
combine them with Lemma B.15 (which is the backbone of Section 6) to prove
in Theorems B.17 and B.18 the algebraic space analogs of the main results of
[Gro68, Appendix]. The proofs in this part closely follow those of loc. cit.

B.1. SECn(X /Y ). Let S be a scheme,

X → Y

a representable separated morphism of S-algebraic stacks, and

(X /Y )n :=X ×Y · · · ×Y X

the n-fold fiber product for some n > 0. For an S-scheme S′, the groupoid
(X /Y )n(S′) is equivalent to that of (n + 1)-tuples (s ′, x1, . . . , xn), where
s ′ : S′ → Y is an S-morphism and xi is a section of the S-algebraic space
morphism S′ ×s′,Y X → S′. On S′-points,

(X /Y )n → Y

maps (s ′, x1, . . . , xn) to s ′. Define the S-substack

SECn(X /Y ) ⊂ (X /Y )n

by requiring the xi to be disjoint; that is,

S′ ×xi ,S′×s′,Y X ,x j S′ = ∅ for i 6= j.

By [SP, 03KP], each xi is a closed immersion, so the inclusion

SECn(X /Y ) ⊂ (X /Y )n

is representable by open immersions. Thus, SECn(X /Y ) is an algebraic stack by
[SP, 06DC] (applied to the base change of a smooth atlas of (X /Y )n; compare
also with [LMB00, 4.5(ii)]). The formation of

SECn(X /Y ) ⊂ (X /Y )n → Y

commutes with base change along any Y ′
→ Y .

http://stacks.math.columbia.edu/tag/03KP
http://stacks.math.columbia.edu/tag/06DC
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B.2. ETn(X /Y ). In the setup of Section B.1, if Y , and hence also
SECn(X /Y ), is an algebraic space, then the symmetric group Sn acts freely on
SECn(X /Y ) by permuting the xi . Sheafification of the constant presheaf Sn to
the constant group (Sn)S retains both the action and its freeness, so the quotient
sheaf

ETn(X /Y ) := SECn(X /Y )/(Sn)S

is an S-algebraic space by [SP, 06PH] (or, in many situations, already by
[LMB00, 8.1.1 and 10.6]). By descent, if S′ is an S-scheme, then ETn(X /Y )(S′)
is the set of pairs (s ′, x), where s ′ : S′→ Y is an S-morphism and x ⊂ S′×s′,Y X
is a closed subspace with x → S′ finite étale of degree n.

If Y is merely an algebraic stack, then we define the S-stack ETn(X /Y )

by letting ETn(X /Y )(S′) be the groupoid of pairs (s ′, x) as in the previous
sentence. The formation of

SECn(X /Y )→ ETn(X /Y )→ Y

commutes with base change along any y′ : Y ′
→ Y . We choose y′ to be a

smooth cover by a scheme, and combine the previous paragraph with [SP, 05UL]
(compare with [LMB00, 4.3.2]) to deduce that

(1) ETn(X /Y ) is algebraic;

(2) SECn(X /Y ) → ETn(X /Y ) and ETn(X /Y ) → Y are representable;
and

(3) SECn(X /Y )→ ETn(X /Y ) is finite étale of degree n!.

Moreover, (2)–(3) imply the claims about ETn(X /Y )→ Y in (4) below.

(4) If X → Y is smooth (respectively, étale), then so are

SECn(X /Y )→ Y and ETn(X /Y )→ Y .

LEMMA B.3. In the setup of Sections B.1–B.2, suppose that X is a scheme and
Y is an algebraic space.

(a) If X → S is separated and n > 0, then the S-algebraic space ETn(X /Y )

is separated.

(b) If X → S is quasi-affine, Y → S is quasi-separated, X → Y is locally
of finite type, and n > 0, then ETn(X /Y ) is a scheme.

http://stacks.math.columbia.edu/tag/06PH
http://stacks.math.columbia.edu/tag/05UL
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Proof.

(a) By [SP, 03HK], ∆Y /S is separated, so

(X /Y )n → S along with SECn(X /Y )→ S

inherits separatedness of X → S. Thus, [EGA II, 5.4.3(i)] and [EGA IV4,
18.12.6] prove that

SECn(X /Y )×S (Sn)S → SECn(X /Y )×S SECn(X /Y ), (c, σ ) 7→ (c, cσ)

is a closed immersion, and the separatedness of SECn(X /Y )/(Sn)S → S
follows.

(b) By [SP, 03HK] and [EGA IV4, 18.12.12], ∆Y /S is quasi-affine, so
(X /Y )n → S inherits quasi-affineness from X → S. Once the open
immersion

SECn(X /Y ) ↪→ (X /Y )n

is proved to be quasi-compact and hence also quasi-affine,

SECn(X /Y )→ S

will have to be quasi-affine, too, and [SP, 07S7] (or [SGA 3I new, 4.1]) will
give the claim.

The open SECn(X /Y ) ⊂ (X /Y )n is the complement of the union of the
diagonals

∆i, j : (X /Y )n−1 ↪→ (X /Y )n for i 6= j .

Each ∆i, j is a closed immersion that is of finite presentation by [EGA IV1,
1.4.3 (v)]. The inclusion of the complement of ∆i, j is therefore a quasi-
compact open immersion, and hence so is

SECn(X /Y ) ↪→ (X /Y )n.

B.4. Pn(X /Y ). In the setup of Sections B.1–B.2, suppose that n > 0 and X
is an algebraic space. As in Section B.2, (Sn)S acts (possibly nonfreely) on the
algebraic space SECn(X /Y ). We fix a closed embedding ι : (Sn)S ↪→ (GLn)S ,
for example, one furnished by permutation matrices, and set

Pn(X /Y ) := (SECn(X /Y )×S (GLn)S)/(Sn)S,

where (Sn)S acts by
((c, g), σ ) 7→ (cσ, ι(σ )−1g).

http://stacks.math.columbia.edu/tag/03HK
http://stacks.math.columbia.edu/tag/03HK
http://stacks.math.columbia.edu/tag/07S7
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By [SP, 06PH] (or, in many situations, already by [LMB00, 8.1.1 and 10.6]),
Pn(X /Y ) is an S-algebraic space (that depends on ι). The formation of

Pn(X /Y )→ ETn(X /Y )→ Y

commutes with base change along any representable y′ : Y ′
→ Y . Moreover,

Section B.2 proves the following.

(1) If Y is an algebraic space, then Pn(X /Y ) is a GLn-torsor over
ETn(X /Y ).

We choose y′ to be a smooth surjection from an algebraic space and use (1) to
obtain the following.

(2) Pn(X /Y )→ ETn(X /Y ) is smooth.

We are now ready for the main result of this appendix.

THEOREM B.5. Let S be a scheme, Z an S-algebraic stack, and Spec R an S-
scheme with R Henselian local. If the S-fiber of∆Z /S over the image of the closed
point of Spec R is separated (in particular, if Z is an algebraic space), then for
every z ∈ Z (R) there is a smooth (respectively, étale if Z is an algebraic space)
morphism

Z → Z

with Z an affine scheme such that z lifts to Z(R).

See Remark B.6 for an example of how the S-fibral hypothesis on ∆Z /S is
useful practice.

Proof of Theorem B.5 in the case when ∆Z /S is separated and R is a field. We
use [SP, 04X5] (or [Con07a, 1.3]) to change S to SpecZ. (We later use the gained
affineness of S to ensure the quasi-affineness of W → S, which we need for
Lemma B.3(b). Quasi-separatedness of S would suffice (such quasi-separatedness
is an omnipresent convention in [LMB00]).) The new diagonal∆Z /Z is separated,
being the composite

Z
∆Z /S
−−−→ Z ×S Z → Z ×Z Z

in which the second map inherits separatedness from ∆S/Z.
We choose a smooth (respectively, étale if Z is an algebraic space) surjection

W → Z

http://stacks.math.columbia.edu/tag/06PH
http://stacks.math.columbia.edu/tag/04X5
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with W a separated S-scheme, and set

WR := W ×Z ,z Spec R.

Since W → S and ∆Z /S are separated, so is W → Z . Thus, WR is a separated
smooth nonempty R-algebraic space. We retain these properties of WR as well as
smoothness (respectively, étaleness if Z is an algebraic space) but not surjectivity
of W → Z by replacing W by a suitable affine open W ′

⊂ W and WR by

W ′
×W WR;

this gains affineness of W → S.
We apply [EGA IV4, 17.16.3(ii)] to an étale cover of WR by a scheme to find

a finite separable field extension R′/R and a w ∈ WR(R′). We set n := [R′ : R],
and we use [Knu71, II.6.2] to assume that Spec R′

w
−→ WR is a monomorphism,

and hence even a closed immersion by [SP, 04NX and 05W8] (alternatively, by
[LMB00, A.2] and [EGA IV4, 18.12.6]). Then, by Section B.2,

w ∈ ETn(WR/R)(R).

Moreover, w lifts to a p ∈ Pn(WR/R)(R) thanks to the triviality of the (GLn)R-
torsor

Pn(WR/R)×ETn(WR/R),w Spec R.

The images of w in ETn(W/Z )(R) and of p in Pn(W/Z )(R) lift z. As observed
in Section B.2(4) and Section B.4(2), Pn(W/Z ) inherits Z -smoothness from W ,
and ETn(W/Z ) also inherits Z -étaleness if Z is an algebraic space.

We use the argument above to pass to Pn(W/Z ), and hence to reduce to
the case when Z is an algebraic space. Then we use the same argument and
Lemma B.3(a) to pass to ETn(W/Z ) and to assume further that Z is separated.
We repeat using Lemma B.3(b) instead to assume that Z is even a scheme, in
which case an open affine Z ⊂ Z through which z factors suffices.

Proof of Theorem B.5 in the case when R is a field. If Z is an algebraic space,
then ∆Z /S is separated as before. If not, then let

W → Z

be a smooth surjection with W a separated S-scheme. For n > 1, the n-fold fiber
product (W/Z )n is a smooth Z -algebraic space with a (Sn)S-action. By [SP,
04TK and 04X0] (see also [LMB00, 4.3.1]), the quotient stack

(W/Z )n/(Sn)S

http://stacks.math.columbia.edu/tag/04NX
http://stacks.math.columbia.edu/tag/05W8
http://stacks.math.columbia.edu/tag/04TK
http://stacks.math.columbia.edu/tag/04X0
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is algebraic, and
(W/Z )n → (W/Z )n/(Sn)S

is a smooth surjection. Therefore, (W/Z )n/(Sn)S inherits Z -smoothness from
(W/Z )n .
Claim B.5.1. The diagonal of (W/Z )n/(Sn)S → S is separated.

Proof. We need to prove that

a : (W/Z )n ×S (Sn)S → (W/Z )n ×S (W/Z )n, (x, σ ) 7→ (x, xσ)

is separated. The diagonal ∆pr1◦a of the composition of a and

(W/Z )n ×S (W/Z )n
pr1
−→ (W/Z )n

is
(W/Z )n ×S (Sn)S

∆a
−→ F

f
−→ (W/Z )n ×S (Sn)S ×S (Sn)S,

where f is a base change of ∆pr1
. Since

∆pr1◦a = id(W/Z )n ×∆(Sn)S/S

and ∆pr1
is separated, ∆a is a closed immersion.

To reduce to the previous case, it therefore suffices to lift z to
((W/Z )n/(Sn)S)(R) for some n > 1. For this, since the formation of

(W/Z )n → (W/Z )n/(Sn)S → Z

commutes with base change along any S′→ S, we choose S′ to be the point of S
below z to reduce to the case when ∆Z /S is separated. The proof of the previous
case then lifts z to ETn(W/Z )(R) for some n > 1, and the presence of a Z -
morphism

ETn(W/Z )→ (W/Z )n/(Sn)S

obtained from the construction finishes the proof.

Proof of Theorem B.5 in the general case. The result follows by combining the
proved field case with the following lemma.

LEMMA B.5.2. Let S be a scheme, Z an S-algebraic stack, and Spec R an S-
scheme with (R,m) Henselian local. For a smooth S-morphism

Z → Z

with Z an algebraic space, if the pullback z0 ∈ Z (R/m) of a z ∈ Z (R) lifts to a
z̃0 ∈ Z(R/m), then z lifts to a z̃ ∈ Z(R) that pulls back to z̃0.
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Proof. We set
Z R := Z ×Z ,z Spec R,

so z̃0 gives rise to an element z̃0 ∈ Z R(R/m). To lift the latter to a desired section
of

Z R → Spec R,

we use the established field case of Theorem B.5 to replace Z R by an étale Z R-
scheme to which z̃0 lifts and then apply [EGA IV4, 18.5.17].

REMARK B.6. We do not know if the S-fibral separatedness assumption on∆Z /S

is necessary in Theorem B.5. Due to separatedness of group schemes over fields
and Lemma A.2(b), this assumption is met if Z = BG for a flat and locally of
finite presentation S-group algebraic space G whose S-fiber over the image of the
closed point of Spec R is a scheme.

COROLLARY B.7. Let S be a scheme, Spec R an S-scheme with (R,m)
Henselian local, and Z an S-algebraic stack such that ∆Z /S has a separated S-
fiber over the image of the closed point of Spec R. There is a separated S-scheme
Z and a smooth (respectively, étale if Z is an algebraic space) Z → Z for
which

Z(R/a)→ Z (R/a)

is essentially surjective for every ideal a ⊂ R; if the number of isomorphism
classes of objects of Z (R/m) is finite, then Z can be taken to be affine.

Proof. We use Theorem B.5 to build a Z to which every z ∈ Z (R/m) lifts, and
apply Lemma B.5.2.

COROLLARY B.8. For a Henselian local ring R and a smooth R-algebraic stack
Z such that ∆Z /R has a separated R-fiber over the closed point of Spec R, the
pullback map

Z (R)→ Z (R/a)

is essentially surjective for every ideal a ( R.

Proof. Corollary B.7 reduces to the scheme case, which is a known variant of
[EGA IV4, 18.5.17].

We illustrate Corollary B.8 with two special cases recorded in Corollaries B.9
and B.10.
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COROLLARY B.9. For a Henselian local ring R and an ideal a ⊂ R, every
principally polarized abelian scheme over R/a arises as the base change of a
principally polarized abelian scheme over R.

Proof. By [FC90, (i) on page 95], for every g > 0 the moduli stack Ag of
principally polarized abelian schemes of relative dimension g is separated and
smooth over Z, so Corollary B.8 applies to it.

The results of B.10–B.13 play a role in the proof of Proposition 3.5.

COROLLARY B.10. For a Henselian local ring R, an ideal a ⊂ R, and a flat,
locally of finite presentation R-group algebraic space G whose special fiber is a
scheme,

H 1(R,G)→ H 1(R/a,G)

is surjective.

Proof. By Proposition A.3 and Remark B.6, Corollary B.8 applies to BG.

Remarks.

B.11. For a ( R as in Corollary B.10 and G a smooth R-group algebraic space,

H 1(R,G)→ H 1(R/a,G)

is injective: fix G-torsors T and T ′, and apply Corollary B.8 to the fppf
sheaf

IsomG(T, T ′) : S 7→ {G S-torsor isomorphisms TS
∼

−→ T ′S},

which is a torsor under the inner form AutG T of G, and hence also a
smooth R-algebraic space. Thus, if the special fiber of G is a scheme, then
H 1(R,G)→ H 1(R/a,G) is bijective (compare with [SGA 3III new, XXIV,
8.1(iii)]). Likewise if G is commutative; see Theorem B.18.

B.12. See [Toë11, 3.4] for an analog of Corollary B.10 with R Henselian local
excellent, a the maximal ideal, and G commutative, flat, and locally
of finite presentation (but with arbitrary special fiber). Under these
assumptions, loc. cit. also shows the bijectivity of the analogous pullback
for H n with n > 1. The excellence assumption can be removed in many
cases:
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PROPOSITION B.13. For a Henselian local ring (R,m), an ideal a ⊂ m, and a
commutative flat R-group algebraic space G of finite presentation,

H 1(R,G)→ H 1(R/m,G)

is surjective and
H n(R,G)→ H n(R/a,G)

is bijective for n > 2.

Proof. We may assume that a = m. We use [EGA IV4, 18.6.14(ii)] to express
(R,m) as a filtered direct limit of Henselian local rings (Ri ,mi) each of which is
a Henselization of a finite type Z-algebra. By [EGA IV2, 7.8.3] and [EGA IV4,
18.7.6], each Ri is excellent. By [SP, 07SK and 08K0], there is an i for which G
descends to a commutative flat Ri -group algebraic space G i of finite presentation.

For each j > i , we set G j := (G i)R j . By the limit formalism for fppf
cohomology, namely, by the analog of [SGA 4II, VII, 5.9],

H n(R,G) = lim
−→

j

H n(R j ,G j) and H n(R/m,G) = lim
−→

j

H n(R j/m j ,G j).

The claims therefore reduce to the case of an excellent R, which is the subject of
[Toë11, 3.4].

We now turn to the algebraic space analogs of the results of [Gro68, Appendix].
The proofs are analogous, too; we have decided to include them here because
Lemma B.15 is of major importance for Section 6, while the rest are quick
consequences.

LEMMA B.14. Let S be a scheme, j : T ′ ↪→ T a square-zero closed immersion
of S-algebraic spaces, G a commutative smooth T -group algebraic space, and N
the fppf sheaf Ker(G → j∗(GT ′)). There is a quasi-coherent sheaf F on T such
that

N (T̃ ) = Γ (OT̃ ,F |T̃ )
for every flat T -algebraic space T̃ .

Proof. Let CT ′/T be the conormal sheaf of j (see [SP, Definition 04CN]), and let
e : T → G be the unit section. Set

F := j∗HomOT ′
( j∗e∗ΩG/T , CT ′/T ).

By [SP, 04CQ], the formation of CT ′/T commutes with base change along a flat
T̃ → T , so [SP, 061C and 061D] give the claim.

http://stacks.math.columbia.edu/tag/07SK
http://stacks.math.columbia.edu/tag/08K0
http://stacks.math.columbia.edu/tag/04CN
http://stacks.math.columbia.edu/tag/04CQ
http://stacks.math.columbia.edu/tag/061C
http://stacks.math.columbia.edu/tag/061D
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LEMMA B.15. Let S be a scheme, T0 → T a finite locally free morphism of S-
algebraic spaces, and G a commutative smooth T -group algebraic space. For
n > 0, set

Cn
:= ResTn/T (GTn ),

where Tn = T0×T · · · ×T T0 with n+ 1 factors of T0, define the usual coboundary
map dn

: Cn
→ Cn+1, and set Z n := Ker dn . The induced map

dn
: Cn
→ Z n+1

is a smooth morphism of T -group algebraic spaces.

Proof. By [SP, 05YF and 04AK] (see also [Ols06, 1.5]), Cn and Z n+1 are
locally of finite presentation T -group algebraic spaces. By [SP, 04AM] (see also
[LMB00, 4.15(ii)]), it remains to argue that

dn
: Cn
→ Z n+1

is formally smooth. For this, we base change to assume that T is affine,

j : T ′ ↪→ T

is a closed subscheme defined by a square-zero ideal, and a′ ∈ Cn(T ′) is such that

b′ := dn(a′) ∈ Z n+1(T ′)

lifts to a b ∈ Z n+1(T ).
We need to lift a′ to an a ∈ Cn(T ) subject to dn(a) = b. Formal smoothness of

Cn inherited from G lifts a′ to an ã ∈ Cn(T ). We replace b by b−dn (̃a) to reduce
to the case when a′ = b′ = 0. We set

N := Ker(G → j∗(GT ′)),

so the cocycle b is valued in the subsheaf N ⊂ G.
By Lemma B.14,

H n+1(T0/T, N ) = H n+1(T0/T,F)

for some quasi-coherent sheaf F on Tfppf, so H n+1(T0/T, N ) = 0 by [Gro59, B,
Lemme 1.1]. The existence of an N -valued cochain a with dn(a)= b follows.

LEMMA B.16. Let R be a Henselian local ring, a ( R an ideal, G a commutative
smooth R-group algebraic space, R0 an R-algebra that is finite free as an R-
module, T0 = Spec R0, and T = Spec R.

http://stacks.math.columbia.edu/tag/05YF
http://stacks.math.columbia.edu/tag/04AK
http://stacks.math.columbia.edu/tag/04AM
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(a) If R is strictly Henselian and n > 1, then H n(T0/T,G) = 0.

(b) The map
H n(T0/T,G)→ H n((T0)R/a/TR/a,G)

is surjective for n > 0 and bijective for n > 1.

Proof. For an x ∈ Z n(R) with n > 1, we set

Z n
x := Spec R ×x,Zn ,dn−1 Cn−1 (so Z n

0 = Z n−1).

By Lemma B.15, Z n
x is R-smooth, so [EGA IV4, 17.16.3(ii)] proves (a) by

showing that Z n
x (R) 6= ∅. Also, Corollary B.8 applied to Z n

x (respectively, Z n
0 )

proves the injectivity (respectively, surjectivity) in (b).

THEOREM B.17. Let S be a scheme and f : Sfppf → Sét the canonical morphism
of sites. For a commutative smooth S-group algebraic space G, one has

Rn f∗G = 0 for every n > 1;

in particular,
H n

ét(S,G) = H n
fppf(S,G)

for such G and n.

Proof. By [Gro68, 11.1], it suffices to prove that, if S = Spec R with R strictly
Henselian local, then H n

fppf(S,G) = 0 for n > 1. For this, we combine [Gro68,
11.2] with Lemma B.16(a).

THEOREM B.18. Let R be a ring, a ( R an ideal, and G a commutative smooth
R-group algebraic space. If a is nilpotent or if R is Henselian local, then the
pullback map

H n(R,G)→ H n(R/a,G)

is bijective for n > 1.

Proof. For j : Spec R/a ↪→ Spec R, set N := Ker(G → j∗(G R/a)). Thanks to
Corollary B.8,

0→ N → G → j∗(G R/a)→ 0

is short exact in (Spec R)ét. Thus, Theorem B.17 reduces us to proving that

H n
ét(R, N ) = 0 for n > 1.
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The case when a is nilpotent reduces to the case when a2
= 0, in which

H n
ét(R, N ) = 0 for n > 1

by Lemma B.14 combined with the vanishing of quasi-coherent cohomology of
affine schemes.

In the case when R is Henselian local, the analog of [Gro68, 11.2] for étale
cohomology and finite étale covers reduces us to proving that

H n(R0/R, N ) = 0 for n > 1

and an étale R-algebra R0 that is finite as an R-module. We set T0 := Spec R0

and T := Spec R, consider sheaves of cochains for T0/T as in Lemma B.15,
decorate them with subscripts to indicate the relevant groups, and note that by
Corollary B.8

0→ Cn
N (R)→ Cn

G(R)→ Cn
j∗(G R/a)

(R)→ 0

is short exact for n > 0. The resulting short exact sequence of complexes gives
the exact sequence

· · · → H n((T0)R/a/TR/a,G)→ H n+1(T0/T, N )
→ H n+1(T0/T,G)→ H n+1((T0)R/a/TR/a,G)→ · · · ,

so the desired H n(T0/T, N ) = 0 for n > 1 follows from Lemma B.16(b).
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Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)], 21 (Springer, Berlin, 1990); MR 1045822 (91i:14034).
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Études Sci. (28) (1966), 255; MR 0217086 (36 #178).
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Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A.
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