TORSORS ON THE COMPLEMENT OF A SMOOTH DIVISOR

KESTUTIS CESNAVICIUS

ABSTRACT. We complete the proof of the Nisnevich conjecture in equal characteristic: for a smooth
algebraic variety X over a field k, a k-smooth divisor D < X, and a reductive X-group G whose
base change Gp is totally isotropic, we show that each generically trivial G-torsor on X\ D trivializes
Zariski semilocally on X. In mixed characteristic, we show the same when k is a replaced by a
discrete valuation ring O, the divisor D is the closed O-fiber of X, and either G is quasi-split or G
is only defined over X\D but descends to a quasi-split group over Frac(O) (a Kisin—Pappas type
variant). Our arguments combine Gabber—Quillen style presentation lemmas with excision and
reembedding dévissages to reduce to analyzing generically trivial torsors over a relative affine line.
As a byproduct of this analysis, we give a new proof for the Bass—Quillen conjecture for reductive
group torsors over A% in equal characteristic.
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1. THE CORRECTED STATEMENT OF THE NISNEVICH CONJECTURE AND OUR MAIN RESULTS

In [Nis89, Conjecture 1.3], Nisnevich proposed a common generalization of the Quillen conjecture

[Qui76, (2) on page 170| that had grown out of Serre’s problem about vector bundles on affine

spaces and of the Grothendieck—Serre conjecture [Ser58, page 31, Remarque|, [Gro58, pages 26-27,
Remarques 3| about Zariski local triviality of generically trivial torsors under reductive groups. In
its geometric case, the Nisnevich conjecture predicts that, for a reductive group scheme G over a
smooth variety X over a field k and a k-smooth divisor D < X, every generically trivial G-torsor on

X\D trivializes Zariski locally on X. Recent counterexamples of Fedorov [Fed23, Proposition 4.1]
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show that this fails for anisotropic G, so, to bypass them, one considers the following isotropicity
condition whose relevance for problems about torsors has been observed already in [Rag89].

Definition 1.1 ([Ces22a, Definition 8.1]). Let S be a scheme and let G be a reductive S-group
scheme. We say that G is totally isotropic' if in the canonical decomposition

of [SGA 3111 new, exposé XXIV, proposition 5.10 (i)], in which 7 ranges over the types of connected
Dynkin diagrams, S; is a finite étale S-scheme, and G; is an adjoint semisimple S;-group with simple
geometric fibers of type ¢, Zariski locally on S each G; has G, s, as a subgroup.

Intuitively, G is totally isotropic if and only if its simple factors are isotropic. Recall from [SGA 3111 new,
exposé XX VI, corollaire 6.12] that in Definition 1.1 it is equivalent to require that Zariski locally on
S each G; has a parabolic S;-subgroup that contains no S;-fiber of GG;. For instance, every quasi-split,
so also every split, group is totally isotropic, as is every torus.

With the total isotropicity in place, the Nisnevich conjecture becomes the following statement.

Conjecture 1.2 (Nisnevich). For a regular semilocal ring R, an r € R that is a regular parameter
in the sense that r ¢ m? for each mazimal ideal m = R, and a reductive R-group scheme G such that
GRry(r) is totally isotropic, every generically trivial G-torsor over R[%] 18 trivial, that 1s,

Ker(HY(R[1],G) — H'(Frac(R),G)) = {*}.

For instance, in the case when r is a unit, the total isotropicity condition holds for every reductive
R-group G and we recover the Grothendieck—Serre conjecture. The condition also holds in the
case when ( is a torus, and this case follows from the known toral case of the Grothendieck—Serre
conjecture, see [Ces22b, Section 3.4.2 (1)]. In [Fed23], Fedorov settled the Nisnevich conjecture in
the case when R contains an infinite field and G itself is totally isotropic. Other than this, some low
dimensional cases are known, see [608221), Section 3.4.2]—for instance, the case when R is local of
dimension < 3 and G is either GL,, or PGL,, is a result of Gabber [Gab81, Chapter I, Theorem 1].

We settle the Nisnevich conjecture in equal characteristic and in some mixed characteristic cases.

Theorem 1.3. Let R be a reqular semilocal Ting, let r € R be a reqular parameter in the sense that
r ¢ m? for each mazimal ideal m R, and let G be a reductive R[%]—group. In the following cases,

Ker(H'(R[}],G) — H'(Frac(R),G)) = {+},
i other words, in the following cases every generically trivial G-torsor over R[%] 18 trivial:

(1) (88.2) if R contains a field and G extends to a reductive R-group G with Gg(, totally isotropic;

(2) (85.4) if R is geometrically regular’ over a Dedekind subring O containing v and G either
extends to a quasi-split reductive R-group or descends to a quasi-split reductive O[%]—group.

The mixed characteristic case (2) is new already for vector bundles, that is, for G = GL,,. In contrast,
at least for local R, the vector bundle case of the equicharacteristic (1) is due to Bhatwadekar-Rao
[BR83, Theorem 2.5]. When r € R*, Theorem 1.3 recovers the equal and mixed characteristic cases
of the Grothendieck-Serre conjecture settled in [FP15], [Pan20], [Ces22al, so we reprove these here.

'n [Fed22] and [Fed23], the terminology ‘strongly locally isotropic’ was used for the same notion.
2For a ring A, recall that an A-algebra B is geometrically reqular if it is flat and the base change of each of its
A-fibers to any finite field extension of the corresponding residue field of A is regular, see [SP, Definition 0382|. For
instance, R could be a semilocal ring of a smooth algebra over a discrete valuation ring O with r as a uniformizer.
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In the mixed characteristic case (2), the requirement that r € O is quite restrictive relative to the
assumptions of Conjecture 1.2. However, the case of (2) in which G descends to an O[%]—group but
need not extend to a reductive R-group was inspired by Kisin—Pappas [KP18, Section 1.4, especially,
Lemma 1.4.6], who used such a statement for some 2-dimensional R under further assumptions on G.

The geometric version of Theorem 1.3 (1) is the following statement announced in the abstract.

Theorem 1.4. For a field k, a smooth k-scheme X, a k-smooth divisor D < X, and a reductive
X -group scheme G such that Gp is totally isotropic, every generically trivial G-torsor E over X\D
18 trivial Zariski semilocally on X, that is, for every x1,...,x, € X that lie in a single affine open,
there is an affine open U = X containing all the x; such that E|y\p is trivial.

Theorem 1.4 follows by applying Theorem 1.3 (1) to the semilocal ring of X at x1,...,z,, (built via
prime avoidance, see [SP, Lemma 00DS]) and spreading out. Even when X is affine, the stronger
statement that E extends to a G-torsor over X is false: for G = GL,, this had been a question of
Quillen [Qui76, (3) on page 170| that was answered negatively by Swan in [Swa78, Section 2|. Even
for GL,,, Theorem 1.4 typically fails if D is singular or if X is singular, see [Lam06, pages 34-35|.

We use Theorem 1.3 to reprove the following equal characteristic case of the generalization of the
Bass—Quillen conjecture to torsors under reductive group schemes [Ces22b, Conjecture 3.6.1].

Theorem 1.5 (§9.2). For a reqular ring R containing a field and a totally isotropic reductive R-group
scheme G, every generically trivial G-torsor over A% descends to a G-torsor over R, equivalently,

H%ar(Rv G) — H%ar(Ad ) G) or, Zf one prefers, HI%Iis(Ra G) — Hllfis(Ade G)

The equivalence of the three formulations in Theorem 1.5 follows from the Grothendieck—Serre
conjecture: by Theorem 1.3, a G-torsor over AdR is generically trivial, if and only if it is Zariski
locally trivial, if and only if it is Nisnevich locally trivial. The generic triviality assumption is needed
because, for instance, for every separably closed field k that is not algebraically closed, there are
nontrivial PGL,-torsors over A, see [CTS21, Theorem 5.6.1 (vi)]. The total isotropicity assumption
is needed because of [BS17, Proposition 4.9], where Balwe and Sawant show that a Bass—Quillen
statement cannot hold beyond totally isotropic G. For earlier counterexamples to generalizations of
the Bass—Quillen conjecture beyond totally isotropic reductive groups, see [OS71, Propositions 1
and 2|, [Par78] and [Fed16, Theorem 3 (ii) (whose assumptions can be met by Remark 2.6 (i))].

Theorem 1.5 was established by Stavrova in [Sta22, Corollary 5.5] by a different method, and in
the case when R contains an infinite field already in the earlier [Stal9, Theorem 4.4]|. Prior to
that, the case when R is smooth over a field k£ and G is defined and totally isotropic over k was
settled by Asok-Hoyois-Wendt: they used methods of A'-homotopy theory of Morel-Voevodsky to
verify axioms of Colliot-Théléne-Ojanguren [CTO92| that were known to imply the statement, see
[AHW18, Theorem 3.3.7| for infinite £ and [AHW20, Theorem 2.4| for finite k. For regular R of
mixed characteristic, Theorem 1.5 is only known in sporadic cases, for instance, when G is a torus,
see [('TS87, Lemma 2.4], as well as [Ces22b, Section 3.6.4] for an overview.

We obtain Theorem 1.3 by refining the Grothendieck-Serre strategies used in [Fed23] and [Ces22a].
In fact, we establish the following version of Grothendieck—Serre valid over arbitrary base rings.

Theorem 1.6 (Remark 4.6). For a reductive group G over a ring A, every G-torsor over a smooth
affine A-curve C that is trivial away from some A-finite Z < C trivializes Zariski semilocally on C.

Theorem 1.6, more precisely, its finer version given in Theorem 4.5, is our ultimate source of triviality
of torsors under reductive groups, and it generalizes [Fed22, Theorem 4], as well as several earlier
3
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results in the literature. Armed with it we quickly reprove the cases of the Grothendieck—Serre
conjecture that have been settled in [FP15], [Pan20], [Ces22a]: more precisely, we use Popescu
approximation and presentation lemmas in the style of Gabber—Quillen to reduce these cases to the
relative curve setting of Theorem 1.6, and in this way we dissect the overall argument into a part
that works over arbitrary rings and a part that is specific to regular rings.

Coming back to the Nisnevich conjecture itself, a key novelty of our approach is the following
extension result for G-torsors over smooth relative curves.

Theorem 1.7 (Proposition 7.3 and Theorem 6.1). Let R be a regular semilocal ring containing a
field and let G be a reductive R-group. For a smooth affine R-scheme C' of pure relative dimension 1
and an R-(finite étale) closed Y = C' such that Gy is totally isotropic, every G-torsor E over C\Y
that is trivial away from some R-finite closed Z < C' extends to a G-torsor over C.

Roughly, extending a G-torsor to all of C' in Theorem 1.7 corresponds to extending a G-torsor in
Theorem 1.3 (1) to all of R, in effect, to reducing the Nisnevich conjecture to the Grothendieck—Serre
conjecture—this is why Theorem 1.7 is crucial for us. Conversely, to reduce Theorem 1.3 (1) to
Theorem 1.7 we use a presentation lemma that extends its variants due to Quillen and Gabber:
we first use Popescu theorem to pass to the geometric setting of Theorem 1.4 and then show in
Lemma 8.1 that, up to replacing X by an affine open neighborhood of x1, ..., z,,, we can express X
as a smooth relative curve over some affine open of Az_l in such a way that D is relatively finite étale
and our generically trivial G-torsor over X is trivial away from a relatively finite closed subscheme.

As for Theorem 1.7, in §7 we present a series of excision and patching dévissages to reduce to when
C = AL and C\Y descends to a smooth curve defined over a subfield £ = R. In this “constant” case,
we show that our G-torsor over C\Y is even trivial by the “relative Grothendieck—Serre” theorem
of Fedorov from |Fed22| (with an earlier version due to Panin-Stavrova—Vavilov [PSV15]) that we
reprove in Theorem 6.1: for every k-algebra W, no nontrivial G-torsor over R ®; W trivializes
over Frac(R) ®; W the total isotropicity assumption is crucial for this beyond the “classical” case
W = Spec(k). As for the excision and patching techniques, finite field obstructions are a well-known,
delicate difficulty in the field. We overcome them with a novel version of Panin’s “finite field tricks”
presented in Proposition 3.2. The wide scope of these techniques makes our overall approach to
Theorem 1.3 quite axiomatic, and although we do not pursue this here, it would be interesting to
have similar results for other functors, for instance, for the unstable Ki-functor studied by Stavrova
and her coauthors, compare, for instance, with [Sta22]|, [Stal9] and earlier articles cited there.

1.8. Notation and conventions. All rings we consider are commutative and unital. For a point s
of a scheme (resp., for a prime ideal p of a ring), we let ky (resp., k) denote its residue field. For a
scheme S over a ring A and an A-algebra B, we write S ®4 B for the base change S Xgpec 4 Spec B.
For a global section s of a scheme S, we write S [%] < S for the open locus where s does not vanish.
For a ring A, we let Frac(A) denote its total ring of fractions. For a semilocal regular ring R, we say
that an r € R is a regular parameter if r ¢ m? for every maximal ideal m — R.

For reductive groups, we use the terminology from SGA 3, as reviewed in [Ces22b, Section 1.3|. For

a parabolic subgroup P of a reductive group scheme G, we let %, (P) denote its unipotent radical

constructed in [SGA 3111 yew, exposé XXVI, proposition 1.6 (i)]. We say that a torus 7" over a scheme

S is isotrivial if it splits over some finite étale cover over S; this always holds if either S is locally

Noetherian and geometrically unibranch (in the sense that the map from the normalization of Syeq

to S is a universal homeomorphism), see [SGA 31, exposé X, théoréme 5.16], or if T is of rank < 1.
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2. TORSORS OVER A%

Our eventual source of triviality of torsors is the following general result about torsors over IP’}4. Its
part (b) is how the total isotropicity assumption ultimately enters into the geometric approach to
the Nisnevich conjecture 1.2 that is developed in this article building on [Fed23|. Earlier weaker
versions of Theorem 2.1 contained in [Ces22b, Proposition 5.3.6] or in [Fed22, Theorem 6] would
suffice for us as well, but we prefer to take a clean general statement as our point of departure.

Theorem 2.1. Let G be a reductive group over a ring A and let & be a G-torsor over Ph.
(a) (|CF23, Theorem 3.6]). If A is semilocal, then Elfr—oy =~ Elji—oy-

(b) (|CF23, Theorem 4.2]). If G is totally isotropic and &l ft=coy 18 trivial, then £|A,14 is trivial.

Proof. The claims are proved in a self-contained manner in the indicated references, although for (a)
we could alternatively cite [PS24|. Let us briefly indicate what goes into the arguments.

The key geometric input is the open immersion i: BG — Bung from the algebraic A-stack BG
parametrizing G-torsors over A to the algebraic A-stack Bung parametrizing G-torsors over P,l4,
which one argues by using deformation theory for G-torsors. Moreover, in (b) one uses Quillen
patching for G-torsors over Al to reduce to local A. In both (a) and (b), the geometry of Bung and
the study of multiplicative group gerbes over }P’h allows one to pass to simply connected G.

In both (a) and (b), one knows the conclusion when A is a field k thanks to the classification of
G-torsors over ]P’,}/, from, for instance, [Ans18], and the goal is to pass to semilocal A using the open
immersion i. This bootstrap is based on the Borel-Tits theorem [Gil09, fait 4.3, lemme 4.5] (which
uses the total isotropicity and the simply connectedness of GG), by which certain glueings of trivial
torsors can be obtained using “elementary matrices.” Since elementary matrices, and so the relevant
glueings, lift across surjections, in (b) one gets that the G-torsor &| Al extends to a G-torsor &
over IP’}4 whose closed A-fiber is trivial; thanks to the openness of i, this means that & , and so also
& AL is trivial. The argument for (a) is similar, except that, since G is not totally isotropic, the

lifting of glueings now happens along an A-(finite étale) closed Y < Gy, o such that Gy is totally
isotropic. ]

The following consequence of Theorem 2.1 (b) is sharp in that it fails if the reductive A-group G is
no longer totally isotropic, see [Fed16, Theorem 3 and what follows|.

Corollary 2.2. For a totally isotropic reductive group G over a ring A and an A-finite closed
Z C A% with d > 0, every G-torsor over Affl that trivializes over every affine Aﬁ\Z—scheme is trivial.

Proof. Let E be the G-torsor over Aj in question. To show that FE is trivial, it suffices to show that its

pullback under any section s € Afg (A) is trivial: indeed, as Gabber pointed out, by applying this after
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base change to the coordinate ring A[t] of Al and to the “diagonal” section of A}Ll[t] — Spec(A[t]),

we would get that F itself is trivial. Any A-point s of Ai factors through some Aff(l—point, SO we
may replace A by A[t,...,tq—1] to reduce to d = 1. In the case d = 1, since the coordinate ring of
Z is a finite A-module, some monic polynomial in A[t] vanishes on Z, so we may replace Z by this
vanishing locus to arrange that AL\Z be affine. The advantage of this is that then F is even trivial
over AL\Z. We then patch E with the trivial torsor over PL\Z to extend E to a G-torsor over P}
whose fiber at {t = oo} is trivial. By Theorem 2.1 (b), then E itself is trivial, as desired. O

Remark 2.3. In Corollary 2.2, if d > 1 and if the G-torsor in question trivializes over all of Aj\Z

(not merely over every affine A%\Z-scheme), then the conclusion is an immediate consequence of
[EGA IV, Proposition 19.9.8] and holds for any affine A-group G (that need not be reductive).

3. OVERCOMING THE FINITE FIELD OBSTRUCTIONS

A part of the reason of why we are able to progress beyond the cases of the Nisnevich conjecture
established in [Fed23] is that in the critical Proposition 3.2 below we find a way to bypass the finite
field obstruction that hinders the geometric approach to the Nisnevich conjecture over finite fields.
Even though in the Nisnevich case this obstruction is significantly more delicate, we still start with
Panin’s “finite field tricks” that have been used in every paper about the finite field or unramified
mixed characteristic cases of the Grothendieck—Serre conjecture to overcome the corresponding
obstacle in that context, see [COSQQa, Lemma 6.1] or earlier works of Panin and of Fedorov.

Definition 3.1. For a ring A, a quasi-finite A-scheme Z, and an A-scheme X, there is no finite field
obstruction to embedding Z into X if for each maximal ideal m < A with ky, finite, we have

#{z € Zy, ||kz: km] =m} < #{z€ Xy, |[k: : km] =m} for every m > 1. ()

Proposition 3.2. Let A be a semilocal ring, let Z be a quasi-finite, separated A-scheme, let Y < Z
be an A-finite closed subscheme, and let X be an A-scheme such that for every maximal ideal
m C A with ky finite, some subscheme of Xy is of finite type over ky, positive dimensional, and
geometrically irreducible. Suppose that' Y = Yy u Yy with a Yy that has no finite field obstruction to
embedding it into X. For every n > 0 and every large N > 0, there is a finite étale surjection

7 = Spec(O4[t]/(f(t)) - Z (3.2.1)
with f(t) monic of degree N such that there is no finite field obstruction to embedding Z into X and
Y=Y X 7 7 isa disjoint union Y = }70 L 371 such that }70 =Y

and each connected component of Yi is a scheme over Spec B for some finite Z-algebra B each of
whose residue fields k of characteristic p | n satisfies

#k >n-deg(Z/7).
To be clear, the Z-algebra B depends on the connected component of 171 in question.

Proof. We may replace Z by any A-finite scheme containing Z as an open, so we use the Zariski Main
Theorem [EGA 1V, Corollaire 18.12.13] to assume that Z = Spec(A’) for an A-finite A’. To explain
the role of the assumption on X, recall that by the Weil conjectures [Pool7, Theorem 7.7.1 (ii)], it
implies that for every d > 0, every maximal ideal m < A with ky, finite, and every large m > 0,

#{z € Xiy [ [kz 1 k] =m} > d (thatis, lm  #{ze€ Xy, [[k::kn] =m}=00). (3.2.2)
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Moreover, if the claim holds for n, then it also holds for every divisor of n (with the same A ). Thus,
we may replace n by any of its multiples, so we may assume that n > 1 and that it is divisible by all
the positive residue characteristics of A. Moreover, we may assume that Y contains all the closed
points of Z by adding some of these points to Y7 if needed. Granted this, for each N > 2 we choose

e an fy,(t) € Z[t] that is the product of ¢ and a monic polynomial of degree N — 1 whose
reduction modulo every prime p | n is irreducible (and not linear because N > 2);

e a monic fy, (t) € Z[t] of degree N whose reduction modulo every prime p | n is irreducible.

We write Y; = Spec(A]), view fy,(t) as an element of Al[t], and choose a monic polynomial
f(t) € A'[t] whose image in A}[t] is fy,(t). With f(¢) fixed, we let Z be defined by the formula
(3.2.1). Since f(t) is monic, this Z is finite and flat over A. To then check that Z is even finite
étale over A it suffices to check that the reduction of f(¢) modulo every maximal ideal m < A is a
separable polynomial over ky,. This is so by construction because Y contains all the closed points of
Z and the images of the fy;(t) in [, [t] with p | n and also in Q[t] are separable (in fact, even either
irreducible or a product of ¢t and a nonlinear irreducible polynomial).

We let Yy be the component of Yy x z 7 cut out by the factor ¢ of fy,(t), so that Yo =5 Y. By
the choice of the fy,(t), each connected component of the complement }N’l of 370 inY xz 7 is an
algebra over a finite Z-algebra B that is either Z[t]/(t~! fy, (t)) or Z[t]/(fy,(t)). Each residue field k
of characteristic p > 0 with p | n of this B has degree either N — 1 or N over [, and, for large N,

#k >nN =n-deg(Z/2).

It remains to show that there is no finite field obstruction to embedding Z into X. An irreducible
polynomial in F,[t] of degree N splits into at most i irreducible factors in F:[t], each of degree at
least N/i. We now let i range over the degrees of the finite residue fields of Z. By construction of Z )
we therefore get that, as N grows, the number of closed points of Z not in }N/o with a finite residue
field remains bounded by the sum of the degrees of the finite residue fields of Z. Moreover, as N
grows, the degrees of the finite residue fields of closed point of Z not in Yy are all > eN for some
e > 0 that does not depend on N (roughly, € is the inverse of the maximum of the degrees of the
finite residue fields of Z, except that we have to take it slightly smaller than that and let N be large
because the degree of t~1fy, (¢) is N — 1 and not N). In particular, for large N, by (3.2.2), there is
no finite field obstruction to embedding the resulting Z into X: indeed, when N is large, (f) with VA
in place of Z is automatic for m < e/N because there is no finite field obstruction to embedding Y
(so also Yp) into X and Y7 does not contribute to the left side of (1), whereas if m > €N, then the
left side of (f) remains bounded while the right side tends to infinity in the view of (3.2.2). O

Remarks.

3.3. As its proof shows, Proposition 3.2 simplifies when A is an [F,-algebra: then B may be chosen
to be a product of finite field extensions k of F), each satisfying #k > n - deg(Z/2).

3.4. The A-quasi-finite Z to be modified as in Proposition 3.2 to avoid the finite field obstruction
to embedding it into X often occurs as a closed subscheme of a smooth affine A-scheme C,
and it is useful to lift the resulting Z — Z to a finite étale cover C' — D of an affine open
neighborhood D < C of Z. Since Zis explicit, this is possible to arrange: it suffices to lift
f(t) to a monic polynomial with coefficients in the coordinate ring of the semilocalization of
C' at the closed points of Z (built via prime avoidance [SP, Lemma 00DS]) and to spread out.

7
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The absence of finite field obstructions lets us reembed finite schemes Z into A}L‘ as follows. This
reembedding statement extends [CF23, Lemma 2.5] and [Ces22a, Lemma 6.3] (so also earlier versions
due to Panin and Fedorov, see loc. cit.), but for applications to the Nisnevich conjecture we critically
need its aspect about the compatibility f|y = ¢y, which the previous references do not supply.

Proposition 3.5. Let A be a semilocal ring, let U < A}L‘ be an A-fiberwise nonempty open, and let
Z be a finite A-scheme. If there is no finite field obstruction to embedding Z into U and Z is a
closed subscheme of some A-smooth affine scheme C of relative dimension 1, then there is a closed
immersion t: Z — U. Moreover, then ¢ may be chosen to be excisive: there are an affine open
D < C containing Z and an étale A-morphism f: D — U that fits into a Cartesian square

77— D

{ fl (3.5.1)

7'——U,

in particular, such that f embeds Z as a closed subscheme Z' < U; in addition, for every A-finite
closed subscheme Y < Z and an embedding vy : Y — U, there are D and f as above with f|y = vy .

Proof. We fix embeddings Z < C and ty: Y — U, let ez < C be the first infinitesimal neighborhood
of Z in C, so that £z is also finite over A, and let k£ be the product of the residue fields of the
maximal ideals of A. Since there is no finite field obstruction to embedding (¢z); into U, by
[CFQS, Lemma 2.4|, there is such an embedding 7j,: Z, < Uy, that extends (1y ), on Yi. The closed
immersions 7; and ¢y are compatible, so there is a global section of ez whose restriction to (ez)x
(resp., Y) is the 7;-pullback (resp., ty-pullback) of the standard coordinate of Ali. By sending the
standard coordinate of Ai‘ to this global section, we obtain an A-morphism 7: ez < U that extends
the fixed ty. By construction and the Nakayama lemma [SP, Lemma 00DV], this 7 is a closed
immersion. Its restriction to Z is then the desired closed immersion ¢: Z — U.

By lifting the 7-pullbacks of the standard coordinate of Al, we may extend 7 to an A-morphism
f C — AA By construction, the a priori open locus of C where f is quasi-finite (see [SP,
Lemma 01TI|) contains the points of Z. Thus, since Z has finitely many closed points, we may use
prime avoidance [SP, Lemma 00DS] to shrink C' around Z to arrange that f is quasi-finite. The
flatness criteria [EGA IV, Proposition 6.1.5] and [EGA 1V, Corollaire 11.3.11] then ensure that f is
flat at the points of Z, so, by construction, fis even étale at the points of Z. Consequently, we may
shrink C' further around Z to arrange that fis étale and factors through U. A section of a separated
étale morphism, such as f~1(f(2)) — f(Z ), is an inclusion of a clopen subset, so, by shrinking C
around Z once more, we arrange that Z = f1(f(Z)). This equality means that the square (3.5.1)
is Cartesian, so, granted all the shrinking above, it remains to set D := C' and f = f. O

4. GROTHENDIECK—SERRE FOR SMOOTH RELATIVE CURVES OVER ARBITRARY RINGS

We use the reembedding techniques discussed in Proposition 3.5 to present a Grothendieck—Serre
phenomenon over arbitrary base rings: in Theorem 4.5 we show that torsors under reductive groups
over smooth relative curves are Zariski semilocally trivial as soon as they are trivial away from some
relatively finite closed subscheme. To approach this beyond constant GG, we first establish Lemma 4.3
about equating reductive groups, which is a variant of [PSV15, Theorem 3.6] of Panin—-Stavrova—
Vavilov and combines ideas from [Ces22a, Lemma 5.1] with those from the survey [Ces22b, Chapter 6].
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Definition 4.1 ([Ces22b, (x) in the beginning of Section 6.2]). For a ring A and an ideal I ¢ A, we
consider the following property of a set-valued functor .# defined on the category of A-algebras:

for every x € F(A/I), there are a faithfully flat, finite, étale A-algebra ﬁ, (%)
*

an A/I-point a: A — A/I, and an ¥ € .Z (A) whose a-pullback is z.

Of course, since A is étale over A, faithful flatness amounts to the surjectivity of Spec(A) — Spec(A).
Moreover, any .% that is representable by a faithfully flat, finite, étale A-scheme satisfies ().

Remark 4.2. Let f: . — .7’ be a map of functors on the category of A-algebras and, for a
ye F'(A), let #, c .Z denote the f-fiber of y. If #’ has property () with respect to I ¢ A and,

for every faithfully flat, finite, étale A-algebra A and every y € .7’ (ﬁ), the fiber (7| 3), has property

(%) with respect to any ideal T = A with ﬁ/.’f ~ A/I, then .Z itself has property (%) with respect to
I < A. This straight-forward dévissage is useful in practice for dealing with short exact sequences.

Lemma 4.3. For a semilocal ring A, an ideal I < A, reductive A-groups G and G’ that on geometric
A-fibers have the same type and whose mazimal central tori rad(G) and rad(G') are isotrivial,
mazimal A-tori T < G and T" < G', and an A/I-group isomorphism

v Gayr — G/A/I such that 1(Ty)r) = TA/I,

there are a faithfully flat, finite, étale A-algebra A equipped with an A/I-point a: A A/I and an
A-group isomorphism T: G 3 — G’g whose a-pullback is v and such that 7(T3) = TIIZ'

Proof. By passing to connected components, we may assume that Spec(A) is connected, so that the
types of the geometric fibers of G and G’ are constant. The claim is that the functor

X = Isomg, (G, T), (G, T")

that parametrizes those group scheme isomorphisms between base changes of G' and G’ that bring
T to T' has property (%) with respect to I < A. By [SGA 3] pew, exposé XXIV, corollaires 1.10
et 2.2 (i)], the normalizer Ngaa(T?) of the A-torus 72 < G* induced by T acts freely on X and,
thanks to the assumption about the geometric fibers of G' and G’, the quotient

X := X /Ngaa(T?)

is a faithfully flat A-scheme that becomes constant étale locally on A. We claim that X has property
(%) with respect to I = A, more generally, that each quasi-compact subset of X is contained is
some A-(finite étale) clopen subscheme of X (such a clopen satisfies (%), as we pointed out after
Definition 4.1). The advantage of the claim about the existence of an A-(finite étale) clopen is that
it suffices to argue it after base change along any finite étale cover of A. Thus, we may combine
our assumption on rad(G) and rad(G’) with [SGA 311 peyw, exposé XXIV, théoréme 4.1.5] to assume
that both G and G’ are split. In this case, however, [SGA 3] yew, exposé XXIV, théoréme 1.3 (iii)
et corollaire 2.2 (i)| ensure that X is a constant A-scheme, so the claim is clear.

With the property (%) of X in hand, by Remark 4.2, we may replace A by a finite étale cover
to reduce to showing that every Ngaa(T?4)-torsor has property (). However, Ngaa(T?d) is an
extension of a finite étale A-group scheme by T4 (see, for instance, [Ces22b, Section 1.3.2]), so we
may repeat the same reduction based on Remark 4.2 and be left with showing that every T%-torsor
has property (%) with respect to I < A. By [SGA 3111 new, exposé XXIV, théoréme 4.1.5 (i)], the
assumed isotriviality of rad(G) ensures that the maximal torus 72 = G2 is isotrivial, and hence,
A being semilocal, that every T?-torsor over A is isotrivial as well. The desired property (%)
9



for T#-torsors then follows from [Ces22b, Corollary 6.3.2 and its proof] (based on building an
equivariant projective compactification of the A-torus 724 using toric geometry): indeed, although
the statement of loc. cit. assumes that the local rings of A are geometrically unibranch, its proof uses
this assumption only to ensure that both 724 and its torsor in question are isotrivial, which we have
argued directly, whereas the Noetherianity assumption may be arranged by a limit argument. [

Remark 4.4. Lemma 4.3 continues to hold if instead of the maximal A-tori T'c G and T7 < G,
the groups G' and G’ come equipped with fixed quasi-pinnings extending Borel A-subgroups B < G
and B’ ¢ G/, and if ¢ and 7 are required to respect these quasi-pinnings, see [Ces22a, Lemma 5.1].

We are ready for the following promised Grothendieck—Serre type result over arbitrary base rings.

Theorem 4.5. Let A be a ring, let B be an A-algebra, let C' be a smooth affine A-scheme of pure
relative dimension d > 0, let & be a totally isotropic reductive (C ®4 B)-group scheme that descends
to a reductive C-group & whose mazimal central torus rad(fg ) is isotrivial Zariski semilocally on C
(resp., that descends to a reductive B- -group G) and let & < 94 be a parabolic (C ®4 B)-subgroup

that descends to a parabolic C-subgroup Pcqg (resp., to a parabolic B-subgroup P < G). FEvery
G -torsor & over C ®4 B whose restriction to (C\Z) ®a B for some A-finite Z < C reduces to a
R (P)-torsor trivializes Zariski semilocally on C, that is, for every ci,...,c, € C, there is an affine
open C" < C containing all the c; such that & trivializes over C' ® 4 B.

Proof. Let A’ be the semilocal ring of C' at cy,...,c,, so that, by a limit argument, it suffices to
show that & trivializes over A’ ®4 B. After base change to A’ the map Spec(A’) — C induces a
“diagonal” section of C', so, by performing such a base change and replacing B by A’®4 B, we reduce
to showing that, when A is semilocal, the pullback of & under s ®4 B for any s € C'(A) is trivial. In
addition, we enlarge Z if necessary to ensure that s € Z(A).

Granted this reformulation of the goal statement, let k be the product of the residue fields of the
maximal ideals of A. It follows from the presentation lemma [Ces22a, Proposition 3.6 (vii)] (choose
Y = & there), alternatively, from Lemma 5.1 below (choose O = k and Z = & there), that there
are a principal affine open C" < C containing Zj, and a smooth k-morphism my,: C}, — AZ_I of pure
relative dimension 1. By lifting the images of the standard coordinates, m lifts to a morphism
m: O — AdAfl. By the fibral criterion [EGA IV3, théoréme 11.3.10], this 7 is flat, so even smooth
of pure relative dimension 1, at every point of Z;. Thus, by shrinking C’ while keeping Z;, < C’,
so also Z < (', we may arrange 7 to be smooth. At this point, we may replace C' by C’ and A by
Alty,...,tq-1] (so B by A[t1,...,t4-1]®4 B) to reduce the initial statement to the case when d = 1.
We then repeat the reductions of the paragraph above to make A semilocal again, with an s € C'(A).

Granted the above reduction to d = 1 and the reformulation of the goal statement, we will reduce to
the case when ¢ descends to a reductive B-group G, which, being the pullback of ¢ along s ®4 B,
is totally isotropic, and & < ¢ descends to a parabolic B-subgroup P < G. For this, it suffices
to focus on the case when ¢ lifts to a reductive C-group 4 for which rad(fg ) is isotrivial Zariski
semilocally on C' and & c ¥ lifts to a parabolic C’—subgroup P c g? and to reduce this case to
when ¢ descends to a reductive A—group G and & = & descends to a parabohc A-subgroup Pcd.
We begin by defining the candidate Pcd simply as the s-pullback of Pcq.

By shrinking C around the closed points of Z, we may assume that rad(g) is isotrivial, that g
has a maximal torus .7 < ¥ defined over C' (see [SGA 3y, exposé XIV, corollaire 3.20]), and,
by passlng to clopens if needed, that the type of the geometric C-fibers of 4 is constant. We let

T = G be the s- pullback of 7. By Lemma 4.3 and spreading out, there are an affine open D < C
10



containing Z and a finite étale cover C — D for which s lifts to some § € C'(A) such that g|5 ~ é|5‘
Compatibly with the fixed identification of pullbacks along 3. Thus, we may replace C and s by
C and 3 S, respectively, and reduce to the case when & descends, that is, to When g = Gc To
now likewise descend L@ we first pass to Clopens to assume that the type of P as a parabolic
subgroup of GC is constant on C'. Then PC and & are parabolic subgroups of GC of the same type,
s0, by [SGA 3111 new, exposé XXVI, corollaire 5.5 (iv)| and a limit argument, they are conjugate
over some affine open neighborhood of Z in C. Since parabolic subgroups are self-normalizing
[SGA 3111 new, exposé XXVI, proposition 1.2|, the s-pullback of a conjugating section lies in ﬁ SO
we may adjust by this s-pullback to make the conjugating section pull back to the identity by s.
Thus, by shrinking C' and adjusting the identification between 54 and GC by an aforementioned
conjugation, we achieve the promised reduction to the case when P = G descends to P < G.

With & < & now being the base change of P = G, we wish to reduce to the case when C' = Al,.
For this, we begin with our closed immersion Z < C' and combine Proposition 3.2 (with Y =Y
there being the schematic image of our section s), Remark 3.4, and Proposition 3.5 to reduce to
when there is an étale morphism C — A,l4 and a Cartesian square

77— C

|

Z—— AL

By [SP, Lemma 01PG| applied to the quasi-coherent ideal sheaf of Z < IP)}L‘, the A-finite Z A,l4 is
the scheme-theoretic intersection of A-finite, finitely presented closed subschemes of Ai‘ containing it.
By a limit argument, our étale map C — A}L‘ becomes an isomorphism already when based changed to
a small enough some such closed subscheme. Thus, we may enlarge our A-finite Z to make it finitely
presented over A while retaining the Cartesian square above. The square remains Cartesian after
base change to B, so we may apply excision for %, (P)-torsors [60522a, Lemma 7.2 (b), Example 7.3]
(with a limit argument that reduces to the Noetherian setting of loc. cit.; facilitating this limit
argument was the only purpose of making Z finitely presented) and then use patching supplied, for
instance, by [Ccs??b, Proposition 4.2.1|, to descend & to a G-torsor over A}B whose restriction to
(AL\Z)®4 B reduces to an %, (P)-torsor. Effectively, we have reduced to the promised case C' = Al;.

Once C = Al}, we may use the avoidance lemma [CosQQa Lemma 3.1] to enlarge our A-finite Z = A}y
to be the vanishing locus of some hypersurface in P 4> to the effect that Al 4 \Z becomes affine. Then
[SGA 3111 new, exposé XX VI, corollaire 2.2] ensures that & trivializes over (A \Z) ®4 B. It then
suffices to apply Corollary 2.2 to conclude that & is trivial. O

Remark 4.6. In the case when B = A, Theorem 4.5 holds even without assuming that ¢ is totally
isotropic. Indeed, we only used the total isotropicity assumption in the very last sentence of the
proof, in order to apply Corollary 2.2, and without it we could instead change coordinates to make s
be the section ¢t = 0, extend & to a G-torsor over ]P’Il4 by patching it with the trivial torsor at infinity,
and conclude the desired triviality of s*(&’) by applying Theorem 2.1 (a) instead.

5. THE MIXED CHARACTERISTIC CASES OF OUR MAIN RESULT ON THE NISNEVICH CONJECTURE

We deduce the mixed characteristic cases of Theorem 1.3 from the Grothendieck—Serre phenomenon
of Theorem 4.5. To arrive at its relative curve setting, we use the following presentation lemma.

Lemma 5.1 ([CosQQa, Proposition 4.1]). For a smooth, affine scheme X of relative dimension
d > 0 over a semilocal Dedekind ring O, points x1,...,Tm € X, and a closed subscheme Z < X of
11
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codimension = 2, there are an affine open X' < X containing 1, ...,ZTm, an affine open S < Ado_l,
and a smooth morphism f: X' — S of relative dimension 1 such that X' n Z is S-finite. (|

Remark 5.2. In the case when O is a field, the same statement holds under the weaker assumption
that Z is merely of codimension > 1 in X, see |Ces22a, Remark 4.3] or Lemma 8.1 below (whose
proof does not use any other results from the present article).

5.3. The abstract maximal torus. To every reductive group G over a scheme .S one associates an
S-torus T¢, the abstract maximal torus of G defined by étale descent on S as follows. Etale locally
on S, the group G has a Borel B ¢ G, and, letting %,,(B) < B denote the unipotent radical, one sets

Tg := B/%,(B).
Up to a canonical isomorphism, this Tz does not depend on the choice of B, and so it descends to the
original S: indeed, any two Borels are Zariski locally conjugate and, up to multiplying by a section

of B, the conjugating section is unique [SGA 311 yew, exposé XX VI, proposition 1.2, corollaire 5.2],
so it suffices to note that the conjugation action of B on T is trivial because the latter is abelian.

5.4. Proof of Theorem 1.3 (2). We have a semilocal ring R that is flat and geometrically regular
over a Dedekind subring O, an r € O, a reductive R[%]—group G that either extends to a quasi-split

reductive R-group or descends to a quasi-split reductive (’)[%]-group, and a generically trivial G-torsor
E over R[%] We need to show that F is trivial, and we will do this by applying Theorem 4.5.

We use Popescu theorem [SP, Theorem 07GC| and a limit argument to reduce to the case when R is
a semilocal ring of a smooth affine O-scheme X. By passing to connected components if needed, we
may assume that X is connected, of constant relative dimension d over O. If d = 0, then R, and so
also R[%], is a semilocal Dedekind ring, and E is trivial by [Guo22, Theorem 1|; therefore, we lose
no generality by assuming that d > 0. By shrinking X if needed, we may assume that G (resp., E)
begins life over X (resp., over X [%]) In the case when our original G extends to a quasi-split
reductive R-group, we shrink X further to make G extend to a quasi-split reductive X-group G
and we fix a Borel X-subgroup B < G. In the case when our original G' over R[%] descends to a
quasi-split (’)[%]-group, we shrink X further to make sure that our new G over X [%] still descends
to a quasi-split reductive O[1]-group, and we fix a Borel O[1]-subgroup B of this descended group.

By applying the valuative criterion of properness to E/B X[L], We may choose an open U < X [%]

with complement of codimension > 2 such that Ey; reduces to a generically trivial B-torsor £2 over
U. By purity for torsors under tori [CTS79, corollaire 6.9], the Tg-torsor £8/%,(B) over U extends
to a generically trivial Tg-torsor over X [%] To proceed, we use the following claim.

Claim 5.4.1. The abstract maximal torus of G has no nontrivial generically trivial torsors over R[%]:

HY(R[L],T¢) — H'(Frac(R[1]), Tc).

Proof. By our assumption on G and the base change compatibility of the formation of the abstract
maximal torus of a reductive group (see §5.3), our (T¢)gr1y is the base change of a torus 7" defined

over a ring A that is either R or O[1]. By [CTS87, Proposition 1.3], this 7 has a flasque resolution
0—F— RGSA//A(Gm) - T - O,

where A’ is a finite étale A-algebra and F is a flasque A-torus. For now, all we need to know about
flasque tori is that, by the regularity of R[1] and [CTS87, Proposition 1.4, Theorem 2.2 (ii)],

H*(R[], F) — H*(Frac(R[1]), F).
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This reduces our desired claim to the vanishing Pic(R[%] ®4 A’) = 0, which we argue as follows. In
the case A = R, the ring A’ is again regular semilocal, so every line bundle on A’ [%] extends to a line
bundle on A’, and hence is trivial, to the effect that Pic(4’[1]) = 0, as desired. In the case A = O[1],
by [Ser79, Chapter I, Section 4, Proposition 8|, the normalization of O in A’ is a finite O-algebra O,
in particular, @’ is again a Dedekind ring. Thus, RQp O is a finite R-algebra, and hence is semilocal,
but is also flat and geometrically regular over @', so it is regular by [SP, Lemma 033A]. Since
R[1]®4 A’ is a localization of R ®e O, it again follows that Pic(R[1] ®4 A') = 0, as desired. O

Thanks to Claim 5.4.1, we may shrink X around Spec(R) to trivialize the T-torsor £8/%,(B), in
particular, to make Ey reduce to an %, (B)-torsor. Since the complement X[2]\U is of codimension
> 2, its closure Z in X is also of codimension > 2. Thus, by Lemma 5.1, we may shrink X around
Spec(R) to arrange that there exists an affine open S c A%_l and a smooth morphism f: X — S of
relative dimension 1 such that Z is S-finite. We can now apply Theorem 4.5 with A :=T'(S, Og) and
B := A[1] (and §1.8 for the isotriviality condition) to conclude that E is trivial over R[1]; of course,
here we are crucially using our assumption that the element r comes from the base ring O. g

6. THE RELATIVE GROTHENDIECK—SERRE CONJECTURE

In equal characteristic, the approach to Theorem 1.3 is based on the following relative version of the
Grothendieck-Serre conjecture that is a mild improvement to [Fed22, Theorem 1| (with an earlier
more restrictive case due to Panin-Stavrova—Vavilov [PSV15, Theorem 1.1]). Its case (ii), included
here for completeness, reproves the equal characteristic case of the Grothendieck—Serre conjecture.

Theorem 6.1. For a reqular semilocal ring R containing a field k, a reductive R-group G, and an
affine k-scheme W, no nontrivial G-torsor over W ®y, R trivializes over W ®y, Frac(R) if either

(i) G is totally isotropic; or
(ii) of W ®g R is semilocal, for instance, if W = Spec(k).

Proof. Let E be a G-torsor over W ®j R that trivializes over W ®y, Frac(R), let F < k be the prime

subfield, and consider the k-algebra k ®p R. The composition R N k®r R o, R, in which the second
map uses the k-algebra structure of R, is the identity. The base change of E along idy ®g a is a
G-torsor over W ®p R that trivializes over W ®p Frac(R). Thus, it suffices to settle the claim with
k = F because, by then base changing further along idy ®g b, we would get the desired triviality of F.

Since k is now perfect, Popescu theorem [SP, Theorem 07GC| expresses R as a filtered direct limit
of smooth k-algebras. Thus, by passing to connected components of Spec(R) and doing a limit
argument, we may assume that R is a semilocal ring of a smooth, affine, irreducible k-scheme X of
dimension d > 0 and that G and E are defined over all of X. Since E trivializes over W ®;, Frac(X),
is also trivializes over W xy, (X\Z) for some closed Z < X. If d = 0, then E is trivial, and if d > 0,
then we may apply the presentation lemma of Remark 5.2 to shrink X around Spec(R) so that there
exist an affine open S Ai_l and a smooth morphism X — S of relative dimension 1 that makes Z
finite over S. With such a fibration into curves in hand, however, the triviality of £ over W ®; R is
a special case of Theorem 4.5 (with §1.8 for the isotriviality condition) and Remark 4.6 applied with
A=T(S,0s)and B =T(W xS, Owx,s) in (i), and with A = B = T'(W xS, Ow«,s) in (ii). O

We will apply Theorem 6.1 with W < A}C, in which case we may sharpen the assumptions as follows.
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Lemma 6.2 ([Gil02, Corollaire 3.10]). For a reductive group G over a field K and an open U < PL.,
each generically trivial G-torsor E over U reduces to a torsor under a mazimal K -split subtorus of G,
in particular, if U A}(, then, since U has no nontrivial line bundles, E is a trivial G-torsor. [

Corollary 6.3. For a regular semilocal ring R containing a field k, a totally isotropic reductive
R-group G, and a nonempty open W < AL, every generically trivial G-torsor over W ®y, R is trivial.

Proof. Thanks to Lemma 6.2, Theorem 6.1 (i) applies and gives the desired triviality. (]

7. EXTENDING G-TORSORS OVER A FINITE ETALE SUBSCHEME OF A RELATIVE CURVE

A crucial preparation to the equicharacteristic case of the Nisnevich conjecture is a result about
extending G-torsors over a finite étale closed subscheme of a smooth relative curve that we deduce
in Proposition 7.3 from the reembedding techniques of Proposition 3.5. For wider applicability,
we present this extension result axiomatically—it loosely amounts to a reduction of the Nisnevich
conjecture to the Grothendieck—Serre conjecture. The equicharacteristic relative Grothendieck—Serre
conjecture settled in Theorem 6.1 supplies the required axioms in our main case of interest.

Definition 7.1. For a ring A, a contravariant, set-valued functor F' on the category of A-schemes
that are complements of A-quasi-finite closed subschemes in smooth affine A-schemes of pure relative
dimension 1 is excisive if for all Cartesian squares

Z—— 8§
|
7'—— 5’
in which the horizontal maps are closed immersions, Z and Z’ are A-quasi-finite and finitely presented,

S and S’ are complements of A-quasi-finite closed subschemes in smooth affine A-schemes of pure
relative dimension 1, and f is étale and induces an indicated isomorphism Z — Z’, we have

F(S8") = F(S) xp(s\z) F(S\Z').

For instance, for a quasi-affine, flat, finitely presented A-group G, the functor H'(—, G) is excisive,
see |Ces22b, Proposition 4.2.1]. The following lemma is critical for our argument for Theorem 1.3 (1).

Lemma 7.2. Let A be a ring, let S be an A-scheme, let Y < S be an A-(separated étale) closed
subscheme that is locally cut out by a finitely generated ideal, and consider the decomposition

Y x,Y=AuY’
in which A 'Y x4Y is the diagonal copy of Y. The following square is Cartesian:
A—— Sy\Y,

1

Yo 8,

in particular, if F' is an excisive functor as in Definition 7.1 and S is the complement of an A-
quasi-finite closed subscheme in some smooth affine A-scheme of pure relative dimension 1, then an
element of F(S\Y') extends to F(S) if and only if its pullback to F((S\Y)y) extends to F(Sy\Y’);
for instance, for a quasi-affine, flat, finitely presented S-group G, a G-torsor over S\Y extends to a
G-torsor over S if and only if its base change to (S\Y)y extends to a G-torsor over Sy\Y’.
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Proof. The claimed decomposition Y x 4 Y = A 1Y’ exists because any section of a separated étale
morphism, such as the projection Y x4 Y — Y, is both a closed immersion and an open immersion.
Thus, the square in question is Cartesian because the étale map Sy \Y’ — S induces an isomorphism
A Y. The claim about F is then immediate from Definition 7.1. ]

We are ready for our key axiomatic extension result, which extends Fedorov’s [Fed23, Proposition 2.8|.

Proposition 7.3. Let

A be a reduced semilocal ring that contains a field (so also a field k that is either Q or Fp),
e C be a smooth affine A-scheme of pure relative dimension 1,

o Y < C be an A-(finite étale) closed subscheme, and

e F be an excisive, pointed set valued functor as in Definition 7.1.

Suppose that for each finite étale k-algebra k', each finite étale Y -scheme ) that is also a k'-scheme,
each % < A%, that is both a union of finitely many pairwise disjoint Y-points and a base change of a
finite set of k'-points of A}C,, and each Y-finite closed subscheme Z < A%, containing %, we have

Ker(F(A)) — F(AJ\2)) — Ker(F(A)\%) — F(AJ\Z)), (7.3.1)
that is, every element of F(A%,\*Z’/) that trivializes away from some Y-finite Z < A;, containing %
extends to F(A%,) Then, for every A-finite closed subscheme Z — C' containing Y, we have

Ker(F(C) - F(C\Z)) - Ker(F(C\Y) —» F(C\Z)), (7.3.2)

that is, every element of F(C\Y') that trivializes away from some A-finite Z < C containing Y
extends to F(C).

Corollary 6.3 supplies the assumption (7.3.1) when A is regular of equicharacteristic and F'(—) is
H'(—,G) for a reductive A-group G such that Gy is totally isotropic.

For proving Proposition 7.3 and, simultaneously, for potential future applications in mixed charac-
teristic, it is convenient to directly argue the following more general statement in Proposition 7.4. It
incorporates an auxiliary larger curve C’ to help with intermediate reductions in the proof and it
also works over Z instead of over a base field k. Since the finite étale Y-scheme ) in Proposition 7.3
is reduced, any map from a finite Z-algebra B to the coordinate ring of ) factors through some £’
as in Proposition 7.3, so Proposition 7.3 is indeed a special case of Proposition 7.4.

Proposition 7.4. Let
e A be a semilocal ring,
e C' be a smooth affine A-scheme of pure relative dimension 1,
o Y/ < C is an A-(finite étale) closed subscheme with complement C' := C"\Y”,
o Y c C be an A-(finite étale) closed subscheme, and
o I be an excisive, pointed set valued functor as in Definition 7.1.

Suppose that for each finite Z-algebra B, each finite étale (Y 0Y”)-scheme ) that is also a B-scheme,
each % < A%, that is both a union of finitely many pairwise disjoint Y-points and a base change of a
finite set of (possibly nondisjoint) B-points of AL, and each Y-finite closed 2 < A%, containing ¥,
Ker(F(A)) — F(AJ\2Z)) — Ker(F(A}\?) — F(A)\2)). (7.4.1)
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Then, for every A-finite closed subscheme Z < C' containing Y uY’, we have
Ker(F(C) — F(C\Z)) - Ker(F(C\Y) — F(C\Z)). (7.4.2)

The proof is a formal reduction of the property (7.4.2) to the case when C' = A}L‘ and Y is “constant.”

Proof. We fix an a € Ker(F(C\Y) — F(C\Z)) that we wish to extend over Y. The assumption
that F' be excisive is stable under finite étale base change in A. Thus, we may use Lemma 7.2 to
base change along Y — Spec(A) and shrink the base changed C' by removing the off-diagonal part
of Y x4 Y to reduce to the case when Y = Spec(A) (so the base changed C’ is kept and the base
changed Y is enlarged by uniting it with the off-diagonal part of Y x 4 Y'). Moreover, we decompose
A to reduce to the case when Spec(A) is connected, so that deg(Y U Y’/A) is a well-defined integer.

We let n be the product of deg((Y u Y’)/A) and of all the prime numbers p with p ¢ A*. By
Proposition 3.2 (applied with Yy = Y and Y; = Y’) with Remark 3.4, there are an affine open
D < ¢’ containing Z (so also Y U Y’) and a finite étale cover ¢! — D such that there is no finite
field obstruction to embedding Z:=2Z X o ¢’ into Ah and

Y :=Y xo C' decomposes as Y =Yy Y; such that Yy —> Spec(A)

and each component of ¥; or of Y’ := Y’ x¢ C' is a scheme over some finite Z-algebra B each of
whose residue fields k of characteristic p | n satisfies

#k > n-deg(Z/Z) = deg((Y u Y")/A).
By construction, setting C = (D\Y') x¢r ¢, we have a Cartesian square
N A

Y——"s CnD.

Thus, since F' is excisive, to extend « over Y we may first restrict to C'n D (in Definition 7.1, choose
f to be the inclusion C' n D < C and choose Z and Z' there to be our V) and then pass to 5’\?1 In
other words, we may replace Y < C' < C' by Yy 6’\171 " and a by its pullback to 6’\17 to reduce
to the case when Y = Spec(A) and each connected component of Y is an algebra over some finite
Z-algebra B each of whose residue fields k of characteristic p | n satisfies #k > deg((Y v Y’)/A) and
there is no finite field obstruction to embedding Z into A}L‘ (the goal of this step is to prepare for
reducing to Al by excision afterwards). By Proposition 3.5, such an embedding then exists, more
precisely, there are an affine open D < C” containing Z and a Cartesian square

Z“—— D

1] ras

Z'—— AL

in which the map f is étale and embeds Z as a closed subscheme Z' < AY. The square remains
Cartesian after passing to the complements of the A-(finite étale) Y U Y’ viewed inside Z (so also
inside Z'). Thus, for the purpose of extending o over Y, we may use the excisive property of F to
patch the restriction a|p(y_y) with the origin in F(A4\Z’) to reduce to the case when C' = Al;.

In conclusion, at the cost of stepping back to the setting of a more general Y, we have reduced our

overall sought claim about extending « to the case when C' = C = Al; and Y = Spec(A) Ly are

such that each connected component of y is a scheme over some finite Z-algebra B each of whose
16



residue fields k of characteristic p | n satisfies #k > deg(Y/A). To extend « over any fixed connected
component of y, since F' is excisive, we may base change to this component and use Lemma 7.2
(noting that we may use the same n after such a base change and that deg(Y/A) is stable under
such a base change). Thus, we may assume that A itself is an algebra over some finite Z-algebra B
as above: indeed, once we argue the claim under this assumption, by the previous sentence, we will
be able to extend « over y by iteratively extending over each of its components, and this will leave
us with the case y = ¢, in which case we may choose B = Z to force the same assumption.

Granted the reductions above, we now induct on the number of disjoint copies of Spec(A) contained
in Y to reduce to when Y ~ | |Spec(A). Indeed, suppose that Y has a connected component W
that does not map isomorphically to Spec(A), so that W is of degree > 2 over A. Since W x4 W
contains the diagonal copy of W as a clopen (compare with Lemma 7.2), the W-(finite étale) closed
subscheme Y x 4 W < A}, has the same degree deg(Y/A) over W and contains strictly more disjoint
copies of W than Y contained disjoint copies of Spec(A). Thus, by the inductive hypothesis, the
pullback of a to Aj;\(Y x4 W) extends over Y x4 W. By Lemma 7.2, this implies that o extends
over W. By repeating this for each possible W, we effectively eliminate connected components of Y
one by one until we reduce to the desired base case when Y ~ | |Spec(A).

To treat this last case, we set m := deg(Y /A), so that, without losing generality, m > 1, and we
will use our assumption (7.4.1). We take ) := Spec(A), which is, by our assumption, a B-scheme.
However, we cannot simply choose % = Y because, even though Y is a union of m pairwise disjoint
A-points of A}L‘, these points need not be defined over B, that is, Y need not be a base change of a
finite set of B-points of A}; (not even up to an automorphism of A}L‘ if m > 3). Nevertheless, the
condition on the residue fields of B does ensure that A}B has m distinct B-points that pull back to
m pairwise distinct k-points of A}g for every residue field k£ of B of characteristic p with p ¢ A*. The
union of these B-points of AL base changes to a closed subscheme % < Al; that is a union of m
pairwise disjoint A-points of A,l4 (disjointness may be tested over the residue fields of the maximal
ideals of A). This last condition ensures that there is an A-isomorphism Y ~ %' and Proposition 3.5
(especially, its final aspect) then supplies an affine open D < A}L‘ containing Z and a Cartesian square
as in (7.4.3) such that f maps Y isomorphically onto . Thus, since F' is excisive, we reduce to the
case when Y = % inside Al. At this point we conclude by applying our assumption (7.4.1). O

Corollary 7.5. Let R be a regular semilocal ring containing a field, let G be a totally isotropic
reductive R-group scheme, let C' be a smooth affine R-scheme of pure relative dimension 1, and let
Y < C be an R-(finite étale) closed subscheme. Every G-torsor over C\Y that trivializes away from
some R-finite closed subscheme Z < C' containing Y extends to a G-torsor over C.

Proof. By Corollary 6.3, for a product of fields &/, a k’-fiberwise nonempty open W < Ai,, and a
finite étale R-algebra R’ that is a k’-algebra, every generically trivial G-torsor over W ® R’ is
trivial. Thus, the excisive functor F(—) := H'(—, G) fulfils the axiomatic assumption (7.3.1) (let
W < A}, be such that Wy = Ai,\@ ). In effect, Proposition 7.3 applies and gives the claim. O

8. THE NISNEVICH CONJECTURE OVER A FIELD

The final preparation to the equicharacteristic case of the Nisnevich conjecture is the following
geometric presentation lemma in the spirit of Gabber’s refinement [Gab94, Lemma 3.1] of the
Quillen presentation lemma [Qui73, Section 7, Lemma 5.12|, which itself is a variant of the Noether
normalization theorem. For us, it is crucial to have its aspect about the smooth divisor D.
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Lemma 8.1. For a smooth, affine, irreducible scheme X of dimension d > 0 over a field k that is
either finite or of characteristic 0,° points x1,...,Tm € X, a proper closed subscheme Z < X, and a
k-smooth divisor D < X, there are an affine open X' < X containing x1, ..., Ty, an affine open
S c Az_l, and a smooth morphism

f: X' -85
of relative dimension 1 such that

X'nZ=fYS)YnZ isS-finite and X' nD = f1(S)nD isS-(finite étale).

Proof. In the case d = 1, we may choose X’ = X and S = Spec(k), so we assume that d > 1. We
also replace each z; by a specialization to reduce to x; being a closed point (see [SP, Lemma 02J6]),
and in this case we will force each f(x;) to be the origin of Aiil. We embed X into some projective
space Piv and then form closures to arrange that X is an open of a projective X — ]P’]kv of dimension
d with X\ X of dimension < d — 1 and that there are

e a projective D < X of dimension d — 1 with D\D of dimension < d — 2, and
e a projective Z < X of dimension < d — 1 with Z\Z of dimension < d — 2.

We use the avoidance lemma [GLIL15, Theorem 5.1] and postcompose with a Veronese embedding
to build a hyperplane Hy not containing any x; such that (X\X) n Hy is of dimension < d — 2 (to
force the dimension drop, choose appropriate auxiliary closed points and require Hg to not contain
them). By the Bertini theorem [Poo04, Theorem 1.3| of Poonen if & is finite and by the Bertini
theorem of [COSQ2€L, second paragraph of the proof of Lemma 3.2| applied both to X and to D in
place of X if k is of characteristic 0, there is a hypersurface H; < IP){CV such that

e Hi contains xy,...,Tm;

X n Hjp (resp., D n Hy) is k-smooth of dimension d — 1 (resp., d — 2);

Z n Hy is (resp., (D\D) n Hy and (Z\Z) n H; are) of dimension < d — 2 (resp., < d — 3);
e (X\X) N Hy n Hy is of dimension < d — 2.

In particular, by passing to intersections with Hi, we are left with an analogous situation with d
replaced by d — 1. Therefore, by iteratively applying the Bertini theorem in this way, we build
hypersurfaces Hy, ..., Hy 1 such that

(i) the z1,..., 2y liein Hy n...n Hyg_1 but not in Hy;

(i) XnHyn...nHgq (resp., Dn Hyn...n Hy_ 1) is k-smooth of dimension 1 (resp., k-étale);
(iii) (D\D)nHin...nHy 1= (Z\Z)nHin...0 Hy_1= .
(iv) X\X)nHonHin...0nHy 1 = .

By letting 1, wy, ..., wq_1 be the degrees of the hypersurfaces Hy, H1, ..., Hg_1 and choosing defining
equations h; of the H;, we determine a projective morphism f: X — Py(1,w1,...,ws—1) from the

3The assumption on k is likely not optimal but it will suffice and we do not wish to further complicate the proof.
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weighted blowup X = Bl(hg,...,h4—1) to the weighted projective space such that the diagram
X\Ho—— X\(Hyn...AnHy_1)—— X

| | 4

AZ_1(—> ]P’k(l,wl,...,wd,l) Pk(l,wl,...,wd,l)

commutes, where the bottom left arrow is the inclusion of the open locus where the first standard
coordinate of Py (1, w1, ..., wg_,) does not vanish, see [Ces22a, Sections 3.4 and 3.5]. By (i), each
f(x;) is the origin of Azfl. By (ii) and the dimensional flatness criterion [EGA IV, Proposition 6.1.5],
at every point of the fiber above the origin of Az_l, the map f is smooth of relative dimension 1

and its restriction to D is étale. Since f is projective, (iii)—(iv) and the openness of the quasi-finite
locus [SP, Lemma 01TI| ensure that for some affine open neighborhood of the origin S < Aiil both
f71(S)n Z and f~1(S) n D are S-finite (see also [SP, Lemma 020G]). In conclusion, any affine
open of f~1(S) that contains all the z; and all the points of Z and D that lie above the origin of
Az_l becomes a sought X’ after possibly shrinking S further. (|

8.2. Proof of Theorem 1.3 (1). We have a regular semilocal ring R containing a field k, a regular
parameter r € R, a reductive R-group G with Gg/(;,) totally isotropic, and a generically trivial
G-torsor E over R[%] We need to show that FE is trivial, equivalently, by a known case of the
Grothendieck—Serre conjecture Theorem 6.1 (ii), we need to extend F to a G-torsor £ over R. For this,
by Zariski patching and a limit argument, we may semilocalize R along the union of those maximal
ideals m < R that contain r and reduce ourselves to the case when r lies in every maximal ideal
m < R. Moreover, we may replace k by its prime subfield to assume that k is either Q or some F,,.

Popescu theorem [SP, Theorem 07GC]| expresses R as a filtered direct limit of smooth k-algebras.
Thus, by passing to connected components of Spec(R) and doing a limit argument, we may assume
that R is a semilocal ring of a smooth, affine, irreducible k-scheme X of dimension d > 0, that r is
a global section of X that cuts out a k-smooth divisor D < X with complement U := X\D, that
G (resp., E) is defined over all of X (resp., U), and that Gp is totally isotropic. Since E is trivial
over Frac(X), there is a closed 2 & X containing D such that E is trivial over U\Z. If d = 0,
then E is trivial, so we assume that X is of dimension d > 0. Finally, we use [SGA 3y, exposé XIV,
corollaire 3.20| to shrink X further to make G have a maximal torus 7" defined over all of X.

With these preparations, Lemma 8.1 allows us to shrink X around Spec(R) to arrange that there
exist an affine open S Az_l and a smooth morphism f: X — § of relative dimension 1 such that
% is S-finite and D is S-(finite étale). We base change f along the map Spec(R) — S to obtain

e a smooth affine R-scheme C of pure relative dimension 1 (base change of X);

e an R-finite closed subscheme Z < C (base change of Z);

an R-(finite étale) closed subscheme Y < Z (base change of D);

a section s € C'(R) (induced by the “diagonal” section) such that s| g[1 factors through C\Y;

a reductive C-group ¢ with s*(¥¢) =~ G (base change of G) such that % is totally isotropic;

a maximal C-torus .7 < ¢ (base change of T') with s*(.7) = T'; and
e a ¥-torsor & over C\Y (base change of E) that is trivial over C\Z such that

(slp(1))*(6) = B as G-torsors over R[;].
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We replace Z by Zus if needed to arrange that s € Z(R). By Lemma 4.3 (with §1.8 for the isotriviality

~

aspect) and spreading out, there is a finite étale cover C' of some affine open neighborhood of Z in C
such that s lifts to some 3 € C(R) and 9 ~ G, compatibly with an already fixed such isomorphism

after pullback along 5. Thus, we may replace C' and s by C and ¥ and replace Z, Y, ¥, & by their
corresponding base changes to reduce to when ¢ is Go. In this case, however, by Corollary 7.5, the
G-torsor & extends to a G-torsor defined over all of C'. Thus, by pulling back along s, our G-torsor
FE extends to a desired G-torsor € over R. O

9. THE GENERALIZED BASS—QUILLEN CONJECTURE OVER A FIELD

The proof of Theorem 1.5 will use the following general form of Quillen patching.

Lemma 9.1 (Gabber, see [CesQQb, Corollary 5.1.5 (b)]). For a ring A and a locally finitely presented
A-group algebraic space G, a G-torsor (for the fppf topology) over Affx descends to a G-torsor over A
if and only if it does so Zariski locally on Spec(A). O

9.2. Proof of Theorem 1.5. We have a regular ring R containing a field, a totally isotropic
reductive R-group G, and a generically trivial G-torsor E over ACIQ. We need to show that E descends
to a G-torsor over R. For this, by induction on d, we may assume that d = 1. By Quillen patching
of Lemma 9.1, we may assume that R is local. In this key local case, we will show that E is trivial.

For this, by Corollary 2.2, it suffices to show that F is trivial on AL\Z for some R-finite closed
subscheme Z A}z- By a limit argument, it therefore suffices to show that £ becomes trivial over
the localization of R[t] obtained by inverting all the monic polynomials. By the change of variables
x :=t~1, this localization is the localization of ]P’}% along the section o0, and hence is isomorphic to

(}%[x]1+mfﬂ¢]>[%]'

The ring R’ := R[z]144R[x) 1s Tegular, local, and shares its fraction field with AlL. In particular,
the base change of E to R’ is generically trivial. Thus, since z is a regular parameter of R/,
Theorem 1.3 (1) implies that this base change of E is trivial, as desired. O
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