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Abstract. We resolve the Grothendieck–Serre question over an arbitrary base field k: for a smooth
k-group scheme G and a smooth k-variety X, we show that every generically trivial G-torsor over X
trivializes Zariski semilocally on X. This was known when G is reductive or when k is perfect, and
to settle it in general we uncover a wealth of new arithmetic phenomena over imperfect k.

We build our arguments on new purity theorems for torsors under pseudo-complete, pseudo-
proper, and pseudo-finite k-groups, for instance, respectively, under wound unipotent k-groups,
under pseudo-abelian varieties, and under the kernels KerpiGq of comparison maps iG that relate
pseudo-reductive groups to restrictions of scalars of reductive groups. We then deduce an Auslander–
Buchsbaum type extension theorem for torsors under quasi-reductive k-groups; for instance, we show
that torsors over A2

kztp0, 0qu under wound unipotent k-groups extend to torsors over A2
k, in striking

contrast to the case of split unipotent groups. For a quasi-reductive k-group G, this extension
theorem allows us to quickly classify G-torsors over P1

k by an argument that already simplifies the
reductive case and to establish Birkhoff, Cartan, and Iwasawa decompositions for Gpkpptqqq.

We combine these new results with deep inputs from recent work on the structure of pseudo-
reductive and quasi-reductive k-groups to show an unramifiedness statement for the Whitehead
group (the unstable K1-group) of a quasi-reductive k-group, and then use it to argue that, for
a smooth k-group G and a semilocal k-algebra A, every G-torsor over P1

A trivial at tt “ 8u is
also trivial at tt “ 0u, which is known to imply the Grothendieck–Serre conclusion via geometric
arguments. To achieve all this, we develop and heavily use the structure theory of k-group schemes
locally of finite type.
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1. The Grothendieck–Serre question

1.1. The main result

In 1958, Grothendieck [Gro58, pages 26–27, remarques 3˝] and Serre [Ser58, page 31, remarque]
predicted that, for an algebraically closed field k, a finite type, smooth k-group scheme G, and
a smooth k-scheme X, every generically trivial G-torsor over X trivializes Zariski locally on X.
In [CTO92], Colliot-Thélène and Ojanguren proved that this is the case, and they also established
several special cases of the analogous prediction over any base field k.

We fully resolve the Grothendieck–Serre question over an arbitrary base field k, with the main
novelty being in the case of an imperfect k with a nonreductive G. Over a general (imperfect) k,
smooth group schemes have a rich structure, in which wound unipotent groups, pseudo-reductive and
quasi-reductive groups, and pseudo-abelian varieties play major roles, see §2.1 for a review of this
and for these terms. Consequently, the Grothendieck–Serre question over an imperfect k is vastly
more intricate. On the other hand, allowing general G is important: for instance, recent “inverse
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Galois” type results of [Flo23], [BS24] say that essentially any G occurs as the automorphism group
of a projective k-variety Y , and then G-torsors amount to forms of Y .

We work directly with geometrically regular, semilocal k-algebras: in the special case of local rings
of smooth varieties X, this recovers the setting above. Allowing semilocal rings is an additional
complication because Example 8.2.3 rules out direct reductions to the local case.

Theorem 1.1.1 (Theorem 8.1.2). Let k be a field, let R be a geometrically regular, semilocal k-algebra
with K :“ FracpRq, and let G be a smooth k-group scheme (more generally, a locally of finite type
k-group scheme such that every k-torus of Gk lies in pGgredqk, where Ggred ď G is the largest smooth
k-subgroup). Every generically trivial G-torsor over R is trivial, that is,

Ker
`

H1pR,Gq Ñ H1pK,Gq
˘

“ t˚u. (1.1.1.1)

The parenthetical condition on G was introduced by Gabber in [Gab12] for a different purpose,
and it holds if k is perfect or if G is locally of finite type and either is a normal k-subgroup of a
smooth k-group or is nilpotent, see Remark 2.2.13. These cases cover many groups that appear “in
nature,” for instance, Picard group schemes, which are always commutative, even though in general
the parenthetical condition seems delicate to check.

Theorem 1.1.1 is optimal in that its parenthetical condition on G cannot be dropped and its
conclusion (1.1.1.1) cannot be strengthened to injectivity; relatedly, the parenthetical condition
is lost by inner forms, as examples of Florence–Gille [FG21, Examples 7.2, Remark 7.3] show.
In Example 8.2.4, we give a further example of this with G being the automorphism group of a
pseudo-semisimple k-group and illustrate how to use Theorem 1.1.1 to show that this automorphism
group is not a normal k-subgroup of any smooth k-group.
1.1.2. Known cases. Theorem 1.1.1 has so far been established in the following cases.

‚ When k is perfect by Colliot-Thélène–Ojanguren [CTO92] if k is infinite and by Gabber
(unpublished) if k is finite. These works make additional assumptions on the k-group G
locally of finite type that are, however, not difficult to remove because their k is perfect.

‚ When G is reductive by Raghunathan [Rag94], [Rag95] if k is infinite and by Gabber
(unpublished) if k is finite. The reductive case has subsequently been taken much further,
culminating in the equal characteristic setting in the works of Fedorov–Panin [FP15] if k is
infinite and of Panin [Pan20a] if k is finite, where they showed that (1.1.1.1) also holds if the
reductive G is defined merely over R and need not descend to k. In Examples 8.2.1 and 8.2.2,
we give new examples showing the failure of such a generalization beyond reductive G.

‚ When G is affine and R – kJtK by Florence–Gille in [FG21, Theorem 6.3].

Theorem 1.1.1 is genuinely new over imperfect k and beyond reductive G, although Gabber also
considered this direction in unpublished work using methods different from ours (private communi-
cation).1 In fact, our Theorem 1.1.1 is the culmination of a succession of intermediate results of
independent interest about purity and torsors under smooth (and often quasi-reductive) k-group
schemes overviewed in §§1.2–1.5 below.

We recall that a k-group scheme G is quasi-reductive if it is connected, smooth, affine, and has
no nontrivial split unipotent normal k-subgroups. If k is perfect, then this is nothing else than
being reductive, but it is much more general otherwise: as special cases, quasi-reductive groups

1As far as we are aware, Gabber’s approach was based on establishing the Birkhoff decomposition Theorem 1.4.1 (a)
for quasi-reductive k-groups G (compare with the approach of [Rag94] in the reductive case) by building a suitable
generalization of a refined Tits system on Gpkpptqqq in the sense of Kac–Peterson [KP85].
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include both smooth, connected, wound unipotent groups, which are abundant over imperfect k
due to the additivity of p-polynomials (example: tx “ xp ` typu ď G2

a,Fpptq), and pseudo-reductive
groups (example: ResFppt1{pq{FpptqpGLn,Fppt1{pqq). Already in the case of pseudo-reductive groups, the
structure theory is vast and complex, although we have the enormous benefit of having the recent
books [CGP15], [CP16], as well as the survey [CP17], where this theory developed by Tits and Conrad–
Gabber–Prasad is presented. The classification of pseudo-reductive groups is not the key to the
Grothendieck–Serre problem for their torsors—much like in the reductive case, where the usefulness
of the classification in terms of root data only helps to understand the overall landscape—still, we
apply and refine a significant number of results from these works while arguing Theorem 1.1.1.

We stress that our attention to quasi-reductive groups or, for that matter, to wound unipotent groups,
pseudo-reductive groups, or pseudo-abelian varieties, all of which play important roles in the proof of
Theorem 1.1.1, is not dictated by cravings for baroque generalizations but rather by sober realities of
the situation. Indeed, all of these groups are subquotients of the fundamental filtration describing the
structure of a general k-group scheme locally of finite type (see §2.1.2), so we must handle them to
obtain Theorem 1.1.1. The reason why quasi-reductive groups and not, for instance, pseudo-abelian
varieties form the core case of the Grothendieck–Serre problem is that pseudo-abelian varieties G
over k satisfy more: for them, not only is every generically trivial G-torsor E over R trivial, but also
trivializations extend uniquely, that is, EpRq – EpKq (see Theorem 3.2.2 (ii)), as was observed in
the abelian variety case already by Serre himself [Ser58, p. 22, preuve du lemme 4]. This allows for
stronger dévissage in exact sequences, so we may “peel off” the pseudo-abelian variety part of the
fundamental filtration when proving Theorem 1.1.1. Likewise, since Ga has no nontrivial torsors
over affine schemes, we may also “peel off” the split unipotent part. What is left is a quasi-reductive
group, for which further direct reductions of the Grothendieck–Serre problem appear delicate. This
matches experience with the reductive case, in which reducing to semisimple or simply connected
groups is both desirable and remarkably complex: such a reduction was the main goal of [Pan20b].

1.2. Purity and extension theorems for torsors

We build Theorem 1.1.1 on the purity Theorem 1.2.2 for torsors under groups that satisfy the
following generalizations of finiteness or properness.

Definition 1.2.1. A finite type, separated scheme X over a field k is

(i) (Definition 2.2.2) pseudo-finite if Xpksq is finite;

(ii) (Definition 3.1.1) pseudo-proper (resp., pseudo-complete) if it satisfies the valuative criterion
of properness with respect to those discrete valuation rings over k that are geometrically
regular (resp., whose residue field is separable over k).

As an example, a pseudo-proper X is required to satisfy the valuative criterion of properness with
respect to local rings of smooth curves over k, but not necessarily with respect to local rings of
smooth curves over purely inseparable field extensions of k. Restrictions of scalars of proper schemes
along such extensions are always pseudo-proper (granted that they are schemes and not merely
algebraic spaces), but in most cases they are not proper. If k is perfect, then an X is pseudo-finite
(resp., pseudo-proper or pseudo-complete) if and only if it is finite (resp., proper), but in general
only the ‘if’ holds and we have strict implications

pseudo-finite ñ pseudo-proper ñ pseudo-complete.

We show in Proposition 3.1.5 that a finite type k-group scheme G is pseudo-finite precisely when its
largest connected, smooth k-subgroup is trivial, and that G is pseudo-proper (resp., pseudo-complete)
precisely when its largest connected, smooth, affine k-subgroup is strongly wound unipotent (resp., is
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wound unipotent) in the sense that it is unipotent and has no nontrivial unirational k-subgroups.
For instance, pseudo-abelian varieties in the sense of Totaro [Tot13] are pseudo-proper, and they are
proper precisely when they are abelian varieties.

Pseudo-properness is a robust geometric refinement of the older notion of pseudo-completeness: for
instance, conditionally on resolving singularities, a k-smooth, integral X is pseudo-proper if and only
if for every proper, regular compactification X Ă X over k with XzX a divisor, the k-smooth locus
of X is precisely X. As for pseudo-completeness, Borel–Tits [BT78, Proposition 1], Tits [Tit13, cours
1992–1993, section 2.5], and Conrad–Gabber–Prasad [CGP15, Proposition C.1.6] showed that G{P
is pseudo-complete for every pseudo-parabolic k-subgroup P of a connected, smooth, affine k-group
G. In Theorem 3.3.1, we show (via a new argument) that such G{P are even pseudo-proper.

Theorem 1.2.2. Let k be a field, let S be a geometrically regular k-scheme, let Z Ă S be a closed
subset of codimension ě 2, and let G be a finite type k-group scheme. If either

(i) (Theorem 4.1.3). G is pseudo-finite and commutative; or

(ii) (Theorem 4.2.1). G is pseudo-proper and smooth; or

(iii) (Theorem 4.3.1). G is pseudo-complete and smooth, and every z P Z of codimension 2 in
S lies in a geometrically regular k-subscheme Sz Ă S of codimension ą 0 (when kz{k is
separable, we may take Sz to be a sufficiently small open of tzu);

then pullback induces an equivalence of categories

tG-torsors over Su
„
ÝÑ tG-torsors over SzZu.

For instance, Theorem 1.2.2 (iii) says that for a smooth, wound unipotent k-group G, every G-torsor
over A2

kztp0, 0qu extends uniquely to a G-torsor over A2
k. This came as a surprise because wound

groups tend to have many nontrivial torsors (see [Ros25, Theorem 1.6]), whereas Ga has many
nontrivial torsors over A2

kztp0, 0qu none of which extends (which is how one sees, via Čech cohomology,
that A2

kztp0, 0qu is not affine).

Thus, for the extendability of torsors, wound unipotent groups are much closer to reductive groups
than to split unipotent groups. For instance, reductive group torsors over A2

kztp0, 0qu extend to
those over A2

k, and likewise over all regular schemes of dimension 2, thanks to the Auslander–
Buchsbaum formula, which gives the key case of vector bundles (see [CTS79, Corollary 6.13], or
[Čes22b, Section 1.3.9] for a review). We use the purity Theorem 1.2.2 to generalize this extendability
result to quasi-reductive groups as follows.

Theorem 1.2.3 (Theorem 4.4.1). Let k be a field, let S be a geometrically regular k-scheme of
dimension 2, let z P S be a point of height 2, and let G be a quasi-reductive k-group. Suppose that
either G is pseudo-reductive or z lies on a geometrically regular k-subscheme Sz Ă S of codimension
ą 0 (when kz{k is separable, we may take Sz “ z). Pullback induces an equivalence of categories

tG-torsors over Su
„
ÝÑ tG-torsors over Szzu.

Theorem 1.2.3 directly reduces to vector bundles only in the reductive case: by the Matsushima
theorem [Alp14, Theorems 9.4.1 and 9.7.5], a connected, smooth subgroup G ď GLn is reductive if
and only if the homogeneous space GLn{G is affine, and this affineness is critical because it implies
that reductions of GLn-torsors to G-torsors over Szz extend uniquely to those over S. Moreover,
Theorem 1.2.3 is specific to dimension 2, as nontrivial vector bundles exist already over the punctured

spectrum of CJs, t, uK: indeed, the kernel of the map CJs, t, uK‘3 ps, t, uq
ÝÝÝÝÑ CJs, t, uK is such by the

Auslander–Buchsbaum formula applied to the cokernel. We argue Theorems 1.2.2 and 1.2.3 by
5



extensive dévissage both in S and in G that uses the “classical” cases of these theorems (finite groups,
abelian varieties, or reductive groups) to reduce to when S is (roughly) SpecpkJs, tKq and G is wound
unipotent, given by the vanishing of some p-polynomial F , and then by computing with this F
(woundness amounts to a nonvanishing property of the principal part of F , which is critical in the
computation). The main inputs to the dévissage in S are the Gabber–Quillen geometric presentation
theorem and the Popescu theorem. The dévissage in G is more intricate, for instance, it requires a
fresh common perspective on the theories of pseudo-reductive groups and pseudo-abelian varieties.
Our point of view on both is that it is fruitful to study them via the comparison map

iG : G Ñ Resk1{kpGq

where k1{k is the finite, purely inseparable field of definition of the geometric unipotent radical
Ru, kpGkq and G :“ Gk1{Ru, k1pGk1q is the associated reductive k1-group (resp., an abelian variety
over k1). Except perhaps for the pseudo-abelian variety aspect, this is not new: the map iG also
appeared in [CGP15], then to a much larger extent in [CP16] and in [CP17]. What is new is the
affineness of the homogeneous space Resk1{kpGq{iGpGq that we show in Proposition 2.3.5 by building
on ideas from [Čes19, Lemma 2.1]. As we already saw when discussing the Matsushima theorem
above, affineness of homogeneous spaces is both delicate and key for handling torsors. As for the
kernel KerpiGq, it is unipotent, pseudo-finite, and, in situations to which it is easy to reduce to, also
commutative (see §2.4.2 and §2.5.2), so Theorem 1.2.2 (i) applies to it. This control of the kernel
and the “cokernel” translates into the control of torsors when passing from G to iGpGq, then to
Resk1{kpGq, and, finally, to the “classical” case of G, so it enables our dévissage in G.

This sequence of reductions from G to G is also how we argue the aforementioned pseudo-properness
of G{P in Theorem 3.3.1. Another argument for the latter is to note that Theorem 1.2.3 implies
that the affine Grassmannian of a quasi-reductive k-group is ind-pseudo-proper and to then realize
pG{P qks as a closed subscheme of some such affine Grassmannian. For the sake of focus, we do
not include this alternative approach to Theorem 3.3.1 but we hope to return to it, especially since
ind-pseudo-properness combined with the loop rotation action also gives alternative proofs for the
Birkhoff and Cartan decompositions of Theorem 1.4.1 below.

1.3. Classification of G-torsors over P1
k

For a field k, torsors over P1
k under a reductive k-group G form a well-studied subject, with key

classification results of Grothendieck [Gro57], Harder [Har68], and Biswas–Nagaraj [BN09], and
subsequent simplifications of Anschütz [Ans18] and Wedhorn [Wed24], among others. We extend this
classification to when G is merely quasi-reductive, and simultaneously quickly reprove the reductive
case by combining Theorem 1.2.3 with results of Alper–Hall–Rydh [AHR25] (or of Wedhorn [Wed24])
about lifting sections over Henselian pairs. Our approach is more robust already in the reductive
case, for instance, we do not need our smooth k-group to be connected or even affine.

Theorem 1.3.1 (Theorem 5.2.4). For a field k and a smooth k-group scheme G whose largest
connected, smooth, affine k-subgroup Gsm, lin ď G is quasi-reductive,

H1pP1
k, Gq – H1pBGm, Gq and H1

ZarpP1
k, Gq – Homk-gppGm, Gq{Gpkq,

moreover, a G-torsor E over P1
k is Zariski locally trivial if and only if it is trivial at a single k-point,

in which case it reduces to the Gm-torsor Op1q along some k-homomorphism λ : Gm, k Ñ G.

The key idea is to view P1
k as rpA2

kzt0uq{Gms, that is, as the open complement of the stacky origin
BGm Ă rA2

k{Gms, and to then apply Theorem 1.2.3 (in its finer form given in Theorem 4.4.1) to
uniquely extend G-torsors over P1

k to those over rA2
k{Gms. We then classify G-torsors over rA2

k{Gms

for any smooth k-group G by reducing to lifting results from [AHR25], see Lemma 5.2.2.
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In contrast, it seems difficult to directly adapt known arguments from the reductive case because
they critically use the reductivity, for instance, the Tannakian approach of Anschütz [Ans18] rests
on Haboush’s theorem from [Hab75]. Relatedly, the classification Theorem 1.3.1 fails for general
connected, smooth, affine k-groups G, see Remark 5.2.5.

1.4. The Birkhoff, Cartan, and Iwasawa decompositions

Theorem 1.3.1 and its proof method allow us to quickly establish the Birkhoff and the Cartan
decompositions of a quasi-reductive k-group, once more even after dropping the connectedness or the
affineness assumptions. Our argument for the Birkhoff decomposition is new and simpler already in
the reductive case, it is inspired by the Alper–Heinloth–Halpern-Leistner approach to the reductive
case of the Cartan decomposition from [AHHL21].

Theorem 1.4.1. Let k be a field, let G be a k-group scheme G locally of finite type, and let
Gsm, lin ď G be the largest connected, smooth, affine k-subgroup (see §2.1.2 (4)).

(a) (Birkhoff decomposition, Theorem 6.1.1). If Gsm, lin is quasi-reductive, then

Gpkpptqqq “
š

λPHomk-gppGm, Gq{Gpkq Gpkrt´1sqtλGpkJtKq;

(b) (Cartan decomposition, Theorem 6.2.2). If Gsm, lin is quasi-reductive, then

Gpkpptqqq “
š

λPHomk-gppGm, Gq{Gpkq GpkJtKqtλGpkJtKq;

(c) (Iwasawa decomposition, Theorem 8.3.1). For each pseudo-parabolic k-subgroup P ď Gsm, lin,

Gpkpptqqq “ P pkpptqqqGpkJtKq.

The Iwasawa decomposition results by combining the pseudo-properness of (the connected components
of) G{P with a special case of Theorem 1.1.1. In the Birkhoff and Cartan decompositions, for
a maximal split k-torus S ď G, the indexing set Homk-gppGm, Gq{Gpkq may be identified with
Homk-gppGm, Sq{NGpSqpkq, see Lemma 5.2.3. Thus, if G contains no nontrivial split k-tori, then
the Cartan decomposition gives Gpkpptqqq “ GpkJtKq, see Corollary 6.2.3. This consequence leads
to simple new proofs of some key results of [CGP15, Appendix C]: in Corollaries 6.2.4 and 6.2.5,
we show that the maximal split unipotent k-subgroups are precisely the unipotent radicals of the
minimal pseudo-parabolic k-subgroups (a generalization of a result of Borel–Tits from [BT71]), and
that if a quasi-reductive k-group has Ga, k as a k-subgroup, then it also has Gm, k as a k-subgroup.

To link the Birkhoff decomposition to Theorem 1.3.1 it suffices to note that, by patching, the set of
double cosets Gpkrt´1sqzGpkpptqqq{GpkJtKq is identified with the set of isomorphism classes of those G-
torsors over P1

k that trivialize over both P1
kztt “ 0u and tt “ 0u, so with the set of isomorphism classes

of Zariski locally trivial G-torsors over P1
k. Similarly, the set GpkJtKqzGpkpptqqq{GpkJtKq is identified

with the set of isomorphism classes of thoseG-torsors over the glueing SpecpkJtKq
Ť

Specpkpptqqq SpecpkJtKq

that trivialize over both copies of SpecpkJtKq. After noting that this glueing is the open complement
of ts “ s1 “ 0u in the quotient stack rSpecpkJtKrs, s1s{pss1 ´ tqq{Gms, where Gm acts over kJtK by
scaling s (resp., s1) via the character of weight 1 (resp., ´1), we apply the Auslander–Buchsbaum
extension Theorem 1.2.3 to extend them to G-torsors over the entire quotient stack. We then classify
G-torsors over the latter by applying results of Wedhorn [Wed24] (or of Alper–Hall–Rydh [AHR25]).

In the case when k is finite but the quasi-reductive group G is defined merely over kpptqq, Solleveld
established Cartan decompositions in [Sol18, Theorem 5] using methods from Bruhat–Tits theory.
Although the finiteness of k is very restrictive, he manages to decompose Gpkpptqqq with respect to
double cosets of more general subgroups than our GpkJtKq. It would be very interesting to find a
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way to adapt our geometric approach to these more general subgroups and to obtain the general
Cartan decompositions without restrictions on k.

1.5. Unramifiedness of the Whitehead group and torsors over P1
A

Geometric simplifications of our geometrically regular, semilocal k-algebra R, more precisely, the
geometric approach to the Grothendieck–Serre conjecture developed in [CTO92], [FP15], [Pan20a],
[Čes22a], and [ČF23], reduce our goal Theorem 1.1.1 to the study of G-torsors over P1

R, more precisely,
to arguing that a G-torsor over P1

R that is trivial at tt “ 8u is also trivial at tt “ 0u. In the toy
case when R is a field, this sectionwise triviality follows from the classification Theorem 1.3.1, so the
problem becomes that of bootstrapping this statement from the residue fields of R. For reductive
groups, this was carried out in [ČF23, Theorem 3.5] (see also [PS25]) using the geometry of BunG.
In our setting, a relevant extension of Theorem 1.3.1 is the following theorem.

Theorem 1.5.1 (Theorem 7.2.1). For a field k, a smooth k-group G, a semilocal k-algebra A, and a
G-torsor E over P1

A, if E|tt“8u is trivial, then so is E|tt“0u.

Theorem 1.5.1 is the most technically demanding part of the proof of Theorem 1.1.1 and rests on
some of the deepest aspects of the structure theory of pseudo-reductive and quasi-reductive k-groups
that were recently developed in [CGP15] and [CP16]. For instance, after reducing to a G that is
quasi-semisimple, that is, quasi-reductive and perfect, we critically rely on the theory of the simply
connected cover of a quasi-semisimple k-group supplied by [CP16, Theorem 5.1.3], as well as on
inputs from [CGP15, Appendix C] about the existence of Levi subgroups of quasi-reductive groups
and about the subgroup Gpkq` ď Gpkq generated by the “elementary matrices” (by the k-points of
the unipotent radicals of the pseudo-parabolic k-subgroups). Indeed, as in the reductive case, a
crucial step towards Theorem 1.5.1 is the so-called unramifiedness of the Whitehead group

W pk,Gq :“ Gpkq{Gpkq`

that we argue in a sufficient for our purposes pseudo-split case in Proposition 7.1.6.

The Whitehead group is an invariant of K-theoretic flavor, for instance, the stabilization (the
direct limit over n) of the Whitehead groups W pk,GLnq is K1pkq. The strategy for bootstrapping
Theorem 1.5.1 from the case of the residue fields of A supplied by Theorem 1.3.1 is to modify E
along a well-chosen A-(finite étale) closed Y Ă Gm,A in order to force E to be residually trivial over
A and to then use the rigidity of G-torsors over P1 that results from deformation theory. Thus,
restricting for the sake of illustration to when A is local with residue field k and Y is an A-point
cut out by a τ :“ t ´ y, the relevance of the Whitehead group W pkppτqq, Gq stems from the fact
that Gpkppτqqq parametrizes patchings of torsors along the formal completion of tτ “ 0u in P1

k, while
Gpkppτqqq` parametrizes “elementary” patchings, which are straightforward to lift to patchings along
the formal completion of tτ “ 0u in P1

A. The problem of controlling the difference between general
patchings and the “elementary” ones becomes the problem of controlling the Whitehead group, and
the unramifiedness of the latter, expressed concretely as

Gpkppτqqq
?
“ Gpkppτqqq`GpkJτKq,

becomes the key to the liftability of the relevant patchings to P1
A, so also to the bootstrap argument.

1.6. Fixed base field. Throughout this article, we fix an arbitrary base field k. The main case to
keep in mind is when k is imperfect because that of a perfect k is much simpler.
1.7. Notation and conventions. For a field K, we let Ks (resp., K) denote a choice of its separable
closure (resp., denote the algebraic closure of Ks). We let αp (resp., µp) denote the kernel of the
endomorphism of Ga,K (resp., Gm,K) given by t ÞÑ tp, where p is the characteristic exponent of
K (so p “ 1 if charpKq “ 0, and else p “ charpKq). A K-algebra R is geometrically regular if
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R bK K 1 is a regular Noetherian ring for every finite field extension K 1{K; by Popescu’s theorem
[SP, Theorem 07GC] (a deep result!), this amounts to R being Noetherian and a filtered direct limit
of smooth k-algebras. We let Fracp´q denote the total ring of fractions. For a ring A, we write Attu
for the Henselization of Arts along tArts.

We freely use various widely-known properties of restriction of scalars reviewed in [BLR90, Section 7.6]
and in [CGP15, Section A.5], in particular, its left exactness and commutation with quotients by
faithful actions of smooth groups (which is in essence immediate from [SP, Lemma 04GH], see also
[CGP15, Corollary A.5.4 (3)]). We will also freely use the representability by algebraic spaces of
restrictions of scalars of algebraic spaces along finite flat maps, see [SP, Proposition 05YF]. In general,
analogous representability for schemes needs the quasi-compact opens to all be quasi-projective, but
when dealing with k-group schemes locally of finite type this will not be an issue because the results
that we review in §2.1.1 supply such quasi-projectivity.

We recall from [SGA 3II, exposé XVII, définition 1.1, propositions 1.2, théorème 3.5, lemme 3.9]
that a k-group scheme U is unipotent if Uk is a finite successive extension of closed k-subgroups
of Ga, k (which may all be taken to be Ga, k if U is smooth and connected), equivalently, if U is
a closed k-subgroup of the group of upper unitriangular matrices of some GLn, k. We recall from
[SGA 3II, exposé XVII, propositions 2.1, 2.2] that unipotent groups are affine, of finite type, and
stable under closed subgroups, quotients (which are therefore affine, see also Lemma 2.3.4), extensions,
base change, and, by [CGP15, Proposition A.5.12], [SGA 3I new, exposé VIIA, proposition 8.3], and
embedding a large Frobenius kernel into GLn, k, also under restrictions of scalars along field extensions.

We do not assume algebraic spaces to be quasi-separated, that is, we use [SP, Definition 025Y]. For a
group fppf sheaf G over a scheme S, as in [Ray70, chapitre VI, définitions VI 1.1], a homogeneous space
(resp., a torsor) under G is an fppf S-sheaf E that fppf locally on S has a section and is equipped

with a right G-action such that the map GˆS E
pg, eqÞÑpeg, eq
ÝÝÝÝÝÝÝÝÑ E ˆS E is an fppf cover (resp., is an

isomorphism), in particular, throughout we work with torsors for the fppf topology. We freely use
well-known representability properties of torsors and of quotients reviewed in [Čes22b, Section 1.2.3].

Acknowledgements. We thank Ofer Gabber for many helpful interactions; as the reader will
notice, this article owes a significant intellectual debt to his ideas. We thank Michel Brion, Brian
Conrad, Christophe Cornut, Roman Fedorov, Philippe Gille, Ning Guo, Mathieu Florence, Shang Li,
João Lourenço, Siddharth Mathur, Zev Rosengarten, and Anis Zidani for helpful conversations and
correspondence. We thank the Institute for Advanced Study for ideal conditions while working on
parts of this project. This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 851146). This project is based upon work supported by the National Science Foundation under
Grant No. DMS-1926686. This project was supported by the Simons Collaboration on Perfection in
Algebra, Geometry, and Topology, award ID MP-SCMPS-00001529-10.

2. The structure of k-group schemes locally of finite type

Our main result, Theorem 1.1.1, deals with arbitrary group schemes G locally of finite type over a
field, so we begin by reviewing the structure theory of such G in this chapter. This both prepares
us for subsequent work by reviewing critical notions specific to imperfect fields (wound unipotent,
quasi-reductive, pseudo-(abelian variety), pseudo-parabolic, etc.) and also shows how these notions
arise naturally from an arbitrary G. More precisely, in §2.1, we review a fundamental filtration
of G by k-subgroups whose study is a fruitful way to approach an arbitrary G, and in subsequent
§§2.2–2.6 we present techniques for attacking critical subquotients in this filtration. Most of this
material is essentially a review, even if of facts that deserve to be known more widely, although
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the affineness of the “cokernel” of iG,G established in Proposition 2.3.5 is a new result that will be
critically important in subsequent chapters.

2.1. The fundamental filtration by k-subgroups and its subquotients

We start by reviewing the structure theory of arbitrary k-group schemes locally of finite type.
2.1.1. k-groups locally of finite type. Throughout §2.1, we fix a k-group scheme G locally of
finite type. We recall from [BLR90, Section 7.1, Lemma 2] that such a G is automatically separated,
and, from [SGA 3I new, exposé VIA, proposition 2.5.2 (c)], that a quasi-compact monomorphism of
k-groups locally of finite type is necessarily a closed immersion. Certainly, this fails for non-quasi-
compact monomorphisms, such as for Zk

1ÞÑ1
ÝÝÝÑ Ga, k with k of characteristic 0, for which, relatedly,

the k-group algebraic space Ga, k{Zk locally of finite type is not quasi-separated (see also §1.7).

On the other hand, we recall from [Art69, Lemma 4.2] that every quasi-separated k-group algebraic
space is representable by a scheme. This means that we would not gain much by allowing G to
be an algebraic space and, more significantly, that G{H is representable by a k-group scheme
locally of finite type for any closed normal k-subgroup H ◁ G (see also §1.7). Moreover, by the
Chevalley theorem [SGA 3I new, exposé VIB, théorème 11.17], these quotient groups G{H are all
affine as soon as so is G. As far as their representability goes, however, much more is true: by
[Ray70, chapitre VI, corollaire 2.6] (with [SGA 3I new, exposé VIA, théorème 3.2 (ii), (iv) (a1); exposé
V, théorème 4.1 (iv)]), every quasi-separated homogeneous space under G over k is representable by
a k-scheme each of whose quasi-compact opens is quasi-projective. Knowing this quasi-projectivity
is useful when dealing with the representability question of restrictions of scalars, see §1.7.
2.1.2. The fundamental filtration. To study our general G, it is useful to keep in mind its
following (closed) k-subgroups.

quotient is quasi-reductive
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

quotient is
pseudo-reductive

Pλ

ď

ÝÝ
Ý

Ý
Ý

Ý
Ý

Ý
Ý

Ý
Ý

Ý
Ý

Ý
Ý

Ý
ÝÑ

quotient is an
abelian variety

Ggred ď G

Rus, kpGq ◁ Ru, kpGq ◁ Gsm, lin ◁ Glin ◁ pGgredq0

◁

ď G0

◁
...

◁

...

◁

Guni

◁

loooooooooomoooooooooon

quotient is a
pseudo-(abelian variety)

loooomoooon

quotient is
wound unipotent

loooomoooon

has a filtration
with quotients

Ă Resk1{kpfiniteq

pRus, kpGqqi

◁

pRu, kpGqqj

◁

Gtor

◁

ÝÝ
ÝÑ

...

◁

...

◁

pRus, kpGqq1

◁

pRu, kpGqq1

◁

pRus, kpGqq0 “ 1 “

◁

pRu, kpGqq0

◁
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We now define the notation appearing in this diagram, discuss the respective subgroups and their
associated subquotients, and give forward references to more detailed further discussions.

(1) The identity component G0 of G. This is the connected component of G through which
the identity section factors. By [SGA 3I new, exposé VIA, théorème 2.6.5], this G0 is a
clopen, geometrically connected, quasi-compact (so of finite type), normal k-subgroup of G.
The formation of G0 commutes with base change to any field extension and with passage to
quotients by connected, normal k-subgroups ofG. In particular (or by [SGA 3I new, exposé VIA,
proposition 5.5.1]), the quotient G{G0 is étale, its base change to ks becomes a ks-group
scheme associated to some abstract group.

(2) The smooth part Ggred of G. This is the largest smooth, closed k-subgroup of G,
equivalently, the largest geometrically reduced, closed k-subscheme of G (hence the notation
p´qgred; see [SGA 3I new, exposé VIA, proposition 1.3.1 (2)] for the equivalence), we review
its construction in §2.2.1 below. The formation of Ggred commutes with base change to any
separable field extension and with passage to quotients by smooth, normal, closed k-subgroups
of G. In §2.2.8 below, we recall that the inclusion pGgredq0 ď G0 may be refined by further
closed subgroups whose successive subquotients are subschemes of restrictions of scalars of
the form Resk1{kpfinite k1-schemeq for some finite, purely inseparable field extensions k1{k;
this tends to be useful for reducing to smooth groups. One reason why smooth k-groups are
preferable is that, by Grothendieck’s theorem [CGP15, Lemma C.4.4], they always have a
maximal torus defined over k (the same also holds for commutative groups but not in general,
see [SGA 3I new, exposé XVII, remarque 5.9.1]).

(3) The linear part Glin of G. This is the smallest connected, affine, normal k-subgroup

Glin ◁ pGgredq0 such that Gav :“ pGgredq0{Glin is an abelian variety.

The Chevalley theorem [BLR90, Section 9.2, Theorem 1] (see also [Ray70, lemme IX.2.7 ii)]
and [Bri17, Proposition 4.1.4 (2) and Theorem 4.3.4]) ensures that this Glin exists, and, in
the case when k is perfect, that Glin is smooth and that its formation commutes with base
change to any field extension k1{k. In contrast, when k is imperfect, Glin need not be smooth
(see, for instance, §2.4.1 below) and, by a limit, spreading out, and Galois descent argument,
the base change property only holds for separable field extensions. Nevertheless, regardless of
what k is, Glin has no nontrivial infinitesimal k-group quotients: indeed, if the intersection
of the kernels of all such quotients was smaller than Glin, then that would contradict the
definition of Glin.

It might be more appropriate to call Glin the connected linear part of G, but we prefer brevity.

(4) The smooth linear part Gsm, lin of G. This is the largest connected, smooth, affine
k-subgroup of G, more succinctly, it is simply

Gsm, lin :“ ppGlinqgredq0.

It might be more appropriate to call Gsm, lin the connected smooth linear part of G, but we
again prefer brevity because this seems unlikely to cause confusion. Indeed, a general G has
no largest smooth, affine k-subgroup, as the example of the constant k-group Q{Z shows.

The formation of Gsm, lin commutes with base change to any separable field extension and
with passage to quotients by connected, smooth, affine normal k-subgroups of G. Its stability
under conjugation by ks-points of G ensures that Gsm, lin is normal in Ggred.
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Thanks to its smoothness, Gsm, lin is more manageable than Glin, although the quotient

Gpav :“ pGgredq0{Gsm, lin

is no longer an abelian variety, but only a pseudo-abelian variety in the sense of Totaro, that
is, it is smooth, connected, and has no nontrivial smooth, connected, affine k-subgroups. We
review some aspects of pseudo-abelian varieties in §2.4 below, and in Proposition 3.1.5 we show
that they are pseudo-proper (in the sense of Definition 3.1.1). This pseudo-properness is useful
for controlling Gpav, so also for reducing to connected, smooth, affine k-groups in practice.
The quotient Glin{Gsm, lin is identified with pGpavqlin, so it is pseudo-finite in the sense that
its largest smooth, closed k-subgroup pGlin{Gsm, linqgred is étale (see Definition 2.2.2).

(5) The unipotent k-radical Ru, kpGq of G. This is the largest connected, smooth, unipotent
(see below), normal k-subgroup of the smooth linear part Gsm, lin (equivalently, of Ggred),
its existence is immediate from the definition, alternatively, one may refer to [SGA 3I new,
exposé VIB, corollaire 7.1.1]. The formation of Ru, kpGq commutes with base change to any
separable field extension and with passage to quotients by connected, smooth, unipotent,
normal k-subgroups of G. The quotient2

Gpred :“ Gsm, lin{Ru, kpGq

is a pseudo-reductive k-group in the sense that it is connected, smooth, affine, and has a
trivial unipotent k-radical, that is, Ru, kpGpredq “ 1. Pseudo-reductive groups form the most
delicate part of the entire diagram above, and analyzing them is subtle. In §§2.3–2.5 below,
we present a widely useful and somewhat underappreciated framework for handling them,
more precisely, for reducing to reductive groups.

(6) The split unipotent k-radical Rus, kpGq of G. This is the largest split unipotent (see
below), normal k-subgroup of the unipotent k-radical Ru, kpGq (equivalently, of Ggred), it
exists by, for instance, [CGP15, Theorem B.3.4]. Here we recall that a unipotent k-group
is split if it is an iterated extension of the additive group Ga, k. It is then also connected
and smooth, equivalently, a connected, smooth, unipotent k-group is split if and only if it
admits a dominant k-morphism from some An

k , in which case it is even isomorphic to An
k as

a k-scheme, so that every k-group quotient of a split unipotent k-group is split unipotent,
see [Con15, Corollary 3.9]. In contrast, a unipotent k-group is wound if it has no Ga, k as a
k-subgroup (see [Ros25, Proposition A.1] for equivalent characterizations of woundness).3 By
[CGP15, Theorem B.3.4], the formation of Rus, kpGq commutes with base change to separable
field extensions and with passage to quotients by split unipotent, normal k-subgroups of G.

The quotient Ru, kpGq{Rus, kpGq is wound unipotent, so

Gqred :“ Gsm, lin{Rus, kpGq

is a quasi-reductive k-group in the sense that it is connected, smooth, affine, and has a
trivial split unipotent k-radical, so that Rus, kpGqredq “ 1, equivalently, so that its unipotent
k-radical Ru, kpGq is wound.

(7) The iterated cckp kernels pRu, kpGqqi and pRus, kpGqqj. These are defined inductively
for any smooth, unipotent k-group U as follows: U has a unique largest connected, smooth,
central, p-torsion k-subgroup U1 ◁ U , the cckp kernel of U (see [CGP15, Definition B.3.1]),

2We use the notation Gpred even when k is perfect, for instance, algebraically closed, even though then Gpred is
necessarily reductive. We reserve p´q

red for denoting the underlying reduced closed subscheme.
3Some authors require wound unipotent groups to be smooth by definition; our terminology agrees with [BLR90, top

of p. 174], except that we do not require wound groups to be connected.
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and for i ą 1 one inductively sets Ui :“ pU{Ui´1q1. By loc. cit. and [CGP15, Corollary B.3.3],
the filtration tUiuiě0 is exhaustive, its formation commutes with base change to separable
field extensions, and if U is wound (resp., strongly wound, see Definition 2.7.3 below), then so
is every subquotient Ui1{Ui for i1 ě i (see Lemma 2.7.5 below). This last aspect is remarkable
because woundness is most often not inherited by quotients, see §2.7.1 below or [Ros25, before
Definition 1.2, also Proposition 7.7].

(8) The pseudo-parabolic subgroups Pλ ď Gsm, lin. These are certain connected, smooth,
affine k-subgroups that contain Ru, kpGq and are associated to k-group homomorphisms
λ : Gm, k Ñ G, we review them in §2.6.2 below. By [CGP15, Proposition 3.5.2 (1)], the
pseudo-parabolicity of a smooth k-subgroup P ď G may be tested after base change to any
separable field extension k1{k, and it is also insensitive to base change to any such extension.
Each pseudo-parabolic Pλ is the preimage of the corresponding pseudo-parabolic of Gpred.
If the induced λ : Gm, k Ñ Gpred is noncentral, then Pλ is strictly smaller than Gsm, lin, so
the pseudo-reductive k-group P pred

λ is “smaller” than Gpred, and is even commutative when
pPλqks is minimal among the pseudo-parabolics of Gks . Thus, pseudo-parabolics aid the
study of the most delicate part Gpred of the diagram above by facilitating passage to “smaller”
pseudo-reductive groups, all the way up to commutative pseudo-reductive groups, for which
nonabelian complexities disappear. To aid this further, we prove in Theorem 3.3.1 below that
the homogeneous spaces Gsm, lin{Pλ, in fact, already the pGgredq0{Pλ, are all pseudo-proper.

(9) The largest unirational k-subgroup Guni ď G. This is the largest unirational (closed)
k-subgroup of G, it exists by [BLR90, bottom of p. 310]. Here we recall that a finite type,
reduced k-scheme X is unirational if there is a dominant rational k-morphism An

k 99K X
(see [Bor91, Section AG.13.7]), equivalently, if X is integral with a function field that is a
subfield of some purely transcendental extension kpt1, . . . , tnq over k. For every nonempty
open U of a unirational X and every semilocal k-algebra A with infinite residue fields, we
have UpAq ‰ H, in particular, if k is infinite, then Xpkq is Zariski dense in X. Every
unirational X is generically smooth, in particular, our Guni is smooth and connected, and
every quotient of Guni is again unirational. All maps from A1

k to abelian varieties are constant,
so Guni ď Gsm, lin, in other words, Guni is affine.

By a recent result of Rosengarten [Ros24, Theorem 1.6], the formation of Guni commutes
with base change to separable field extensions, in particular, Guni is normal in Ggred. By
considering function fields, we see that the formation of Guni also commutes with passage
to quotients by split unipotent, normal k-subgroups of G. For a smooth k-group G we may
keep iteratively forming quotients by p´quni to eventually reduce to the case when Guni “ 1.
Bosch–Lütkebohmert–Raynaud have characterized groups at which this process stops in the
commutative case, more precisely, by [BLR90, Section 10.3, Theorem 1], for a connected,
smooth, commutative k-group G, the following are equivalent:

(i) Guni “ 0;

(ii) GpSq
„
ÝÑ GpUq for every dense open immersion U Ă S of smooth k-schemes;

and, granted that G is a dense open in a proper, regular k-scheme G, these are equivalent to

(iii) Gsm
“ G, that is, G is precisely the k-smooth locus of G.

By the resolution of singularities conjecture, such a G ought to exist, and in practice one may
sometimes build it, for instance, for groups given by the vanishing of p-polynomials as in
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§2.7.1 below, compare with [Tot13, Example 9.7]. For a version of the criterion above beyond
commutative groups, see Proposition 3.1.5 (b) below.

(10) The k-subgroup Gtor ď G generated by the k-tori. This is the k-subgroup of G,
equivalently, of Gsm, lin, generated by the k-tori of G. It is connected, smooth, affine, and
unirational over k because k-tori are unirational (see [Bor91, Chapter III, Example 8.13 (2)]),
so that Gtor lies in Guni. By [CGP15, Proposition A.2.11] (and (4) above), the formation
of Gtor commutes with base change to any separable field extension (and even to any field
extension if G is smooth), Gtor is normal in Ggred, and Gsm, lin{Gtor is unipotent. If G is
quasi-reductive (resp., pseudo-reductive), then, by normality, so are Gtor and Guni. Conversely,
Gtor “ 1 if and only if Gsm, lin is unipotent, that is, if and only if Gpred “ 1; whereas Guni “ 1
if and only if Gsm, lin is strongly wound unipotent (see Definition 2.7.3 below).

The formation of the subgroups (1)–(10), so of the entire diagram above, is functorial in G and
commutes with products and with base change to separable field extensions, so also with restrictions
of scalars along finite separable field extensions. In particular, being a pseudo-abelian variety
(resp., a pseudo-reductive group; resp., a quasi-reductive group; resp., a wound unipotent group)
commutes with and may be tested after such a base change, and if a smooth k-group acts by group
automorphisms on G, or even merely on Ggred, then this action preserves the k-subgroups Ggred,
pGgredq0, Glin, Gsm, lin, Guni, Gtor, Ru, kpGq, Rus, kpGq, pRu, kpGqqi, and pRus, kpGqqj . By letting this
action be that of Ggred on itself by conjugation, we see that these subgroups are normal even in Ggred.

Granted that we discard G0, Glin, Guni, and Gtor, the formation of the diagram displayed above
also commutes with restrictions of scalars along arbitrary finite field extensions: for this, the settled
separable case reduces us to purely inseparable extensions, then we note the preservation of Ggred

(see §1.7 and §2.2.1), then also of pGgredq0 (also use [CGP15, Proposition A.5.9]), then also of
Gsm, lin, Ru, kpGq, Rus, kpGq (see also [CGP15, proof of Proposition 1.1.10]), then also of the pseudo-
parabolic subgroups (see [CGP15, Proposition 2.2.13]), and finally of the cckp filtrations (combine
[CGP15, Proposition A.5.15 (1)] with the previous steps). In particular, pseudo-abelian varieties
(resp., pseudo-reductive groups; resp., quasi-reductive groups; resp., smooth, wound unipotent groups)
are stable under restrictions of scalars, and they are also stable under extensions and under passage
to connected, smooth, normal k-subgroups.
2.1.3. The case when k is perfect. We will be especially interested in the case when the field k
is imperfect: this is when the geometric phenomena are particularly rich and when all the inclusions
of subgroups in the diagram displayed above are in general strict. In contrast, in the case when k is
perfect, the structure theory above simplifies as follows.

(i) We have Glin “ Gsm, lin and the pseudo-abelian variety Gpav is an abelian variety, see (3). In
fact, the following inclusion is an equality precisely over perfect fields:

tabelian varietiesu Ď tpseudo-abelian varietiesu

(to see the strictness of the inclusion over every imperfect field, consider restrictions of scalars
of abelian varieties from purely inseparable extensions and see [CGP15, Example A.5.6]; for
more interesting examples, see [Tot13, Corollaries 6.5 and 7.3]).

(ii) We have Rus, kpGq “ Ru, kpGq, both of them descend Ru, kpGkq to k, and both Gpred and
Gqred are reductive, see (5) and (6). In fact, each of the following inclusions is an equality
precisely over perfect fields:

treductive groupsu Ď tpseudo-reductive groupsu Ď tquasi-reductive groupsu
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(for strictness of the inclusions over every imperfect field, again consider restrictions of scalars).
Moreover, over perfect fields every connected, smooth unipotent group is split, that is, the
woundness phenomenon is specific to imperfect fields.

In the case when k is even of characteristic 0, by the Cartier theorem [SGA 3I new, exposé VIB,
corollaire 1.6.1], every locally of finite type k-group is smooth, that is,

(iii) We have Ggred “ G.

Over a general field k, the Cartier theorem has a useful generalization: by [SGA 3I new, exposé VIIA,
proposition 8.3], for any k-group scheme G locally of finite type, there is an infinitesimal, normal
k-subgroup αG ◁G that may be chosen to be any sufficiently large Frobenius kernel of G such that
the k-group G{αG is smooth.
2.1.4. The derived subgroup DpGq. In addition to the subgroups presented in §2.1.2, every
smooth k-group scheme G has a derived subgroup DpGq defined as the smallest closed k-subgroup

containing the image of the commutator map GˆkG
pg, hq ÞÑ ghg´1h´1

ÝÝÝÝÝÝÝÝÝÝÝÑ G, see [SGA 3I new, exposé VIB,
définition 7.2.2 b)]. By [SGA 3I new, exposé VIB, proposition 7.1, corollaire 7.3], this DpGq exists, is
smooth and normal in G, its formation commutes with base change to arbitrary field extensions,
G{DpGq is commutative, and G is commutative if and only if DpGq “ 1. By [SGA 3I new, exposé VIB,
corollaire 7.2.1, proposition 7.8, corollaire 7.10], if G is of finite type, then DpGq is the image (as
fpqc sheaves) of the commutator map above and DpGqpkq is the derived subgroup of Gpkq, and if G
is connected, then so is DpGq.

If a smooth k-group G is affine (resp., pseudo-reductive; resp., quasi-reductive; resp., unipotent;
resp., wound unipotent; resp., unirational), then so is DpGq. If G “ Gtor, then [CGP15, Propo-
sitions A.2.8, A.2.10] ensure that G{DpGq is a torus (it is connected, smooth, commutative, and
generated by its k-tori) that is a quotient of any maximal k-torus of G.

A smooth k-group scheme G is perfect if DpGq “ G. By §2.1.2 and [CGP15, Proposition A.2.11], a
connected, smooth, perfect k-group G is generated by tori, that is, G “ Gtor. A pseudo-semisimple
(resp., quasi-semisimple) k-group is a pseudo-reductive (resp., quasi-reductive) k-group that is perfect,
so a reductive k-group is quasi-semisimple (resp., pseudo-semisimple) if and only if it is semisimple.

2.2. Passage to smooth groups and pseudo-finiteness

Other than the identity component G0 discussed in §2.1.2 (1), the first piece of the fundamental
filtration of G is the largest smooth, closed k-subgroup Ggred. We review the construction of Ggred

and recall a useful technique for passing from G to Ggred.
2.2.1. The underlying geometrically reduced subspace Xgred Ă X. Each locally of finite type
k-algebraic space X has the largest geometrically reduced, closed k-subspace

Xgred Ď Xred Ď X

defined as follows. One defines Xgred by Galois descent by declaring pXgredqks to be the schematic
(or merely Zariski) closure of Xpksq in Xks , see [SP, Lemmas 082X and 0830]. By loc. cit., the
definition is compatible with pullback under any étale k-morphism X 1 Ñ X, so, by considering an
atlas, the claim that this Xgred is the largest geometrically reduced, closed subspace reduces to the
scheme case that was settled in [CGP15, Lemma C.4.1]. Of course, if k is perfect, then we simply
have Xgred “ Xred, but this fails for imperfect k: for instance, if X “ Specpk1q for a nontrivial,
finite, purely inseparable extension k1{k, then Xgred “ H.

By definition, Xgred is functorial in X and commutes with pullback along any smooth k-morphism
X 1 Ñ X. Moreover, as in loc. cit., Xgredpk1q “ Xpk1q for every separable field extension k1{k and
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the formation of Xgred commutes with products and with base change to any such k1 (in particular,
if Xpk1q ‰ H, then already Xpksq ‰ H). Therefore, the inclusion

XgredpSq Ď XpSq

is an equality for every integral k-algebraic space S whose function field is a separable extension of k
(the pullback of Xgred under any S-point of X is a closed subspace of S that contains the generic
point), see [SP, Definition 0ENE].

The compatibility with products and the functoriality of Xgred imply that if X is a k-group, then
Xgred is its closed k-subgroup, the largest smooth (see §2.1.2 (2)), closed k-subgroup of X. Similarly,
if X is a k-group and E is an X-torsor over k, then Xgred is either empty or a Xgred-torsor whose
induced X-torsor is E: in fact, Xgred ‰ H exactly when E trivializes over some separable extension
of k, equivalently, over ks.

Definition 2.2.2. A k-algebraic space X is

‚ pseudo-(locally quasi-finite) if it is locally of finite type and Xgred is locally quasi-finite (equiv-
alently, étale; equivalently, X has no positive-dimensional k-smooth subspaces; equivalently,
each quasi-compact open subscheme of X has only finitely many ks-points);

‚ pseudo-finite if it is separated, of finite type, and Xgred is finite (equivalently, finite étale;
equivalently, X has only finitely many ks-points).

Being pseudo-finite is what occurs in practice, although being pseudo-(locally quasi-finite) is useful
for making some statements sharp, without unnecessary hypotheses. In §2.3.1, §2.4.2, and 2.5.2 below,
we will see many pseudo-finite, positive-dimensional k-groups relevant for the study of pseudo-abelian
varieties and pseudo-reductive groups.

Remark 2.2.3. By §2.2.1, being pseudo-(locally quasi-finite) (resp., pseudo-finite) is stable under
and may be tested after base change to any separable field extension k1{k. Moreover, if X is
pseudo-(locally quasi-finite), then Xgred is a separated (étale) k-scheme, see [SP, Lemma 06LZ].

Remark 2.2.4. Pseudo-(locally quasi-finite) (resp., pseudo-finite) k-group schemes are stable under
passing to k-subgroups and extensions, but are not stable under quotients.

Remark 2.2.5. For perfect k, an X is pseudo-(locally quasi-finite) (resp., pseudo-finite) if and
only if it is locally quasi-finite (resp., finite). Over imperfect k, however, pseudo-finite yet positive-
dimensional k-schemes are pervasive, as the following examples show.

Example 2.2.6. If X is pseudo-finite, then so is every k-subspace of a quasi-finite, separated
X-algebraic space X 1. For instance, every finite k-scheme is pseudo-finite and, more interestingly, for
every finite extension k1{k and every finite (or merely pseudo-finite) k1-scheme X 1, every subspace of
X :“ Resk1{kX

1 is pseudo-finite. When k1{k is not separable, such X may have an arbitrarily large
dimension, as happens already with X 1 “ αp.

Example 2.2.7. For a k-group scheme G locally of finite type, the quotient G{Ggred is pseudo-
(locally quasi-finite) (resp., even pseudo-finite if G is of finite type): indeed, its only ks-point is
the identity section. Similarly, for a G-torsor E over k, the quotient E{Ggred is pseudo-(locally
quasi-finite) and pE{Ggredqgred ‰ H if and only if E trivializes over ks.

To study pseudo-finite groups effectively, and also to pass from G to Ggred for general k-group
schemes of finite type, we use the following method of going deeper into G until we reach Ggred.
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2.2.8. Filtration by stabilizers (compare with [GGMB14, section 5.4]). As we will see, any
k-group scheme G of finite type has a filtration by k-subgroups

Ggred “ Gpnq ň Gpn´1q ň ¨ ¨ ¨ ň Gp0q “ G pso that Ggred “ pGpiqqgred for all iq

such that each Gpiq acts on the affine k-scheme Reski{kpQiq for some finite, purely inseparable field
extension ki{k and ki-group quotient Qi :“ G

piq
ki

{pG
piq
ki

qred, and Gpi`1q is the stabilizer of the unique
k-point of Reski{kpQiq. Indeed, inductively on i,

‚ we choose ki to be a field of definition of the kperf -subgroup pG
piq

kperf
qred ď G

piq

kperf
, so that

pG
piq
ki

qgred is a ki-subgroup of Gpiq
ki

that descends pG
piq

kperf
qred and pG

piq
ki

qgred – pG
piq
ki

qred;

‚ we set Qi :“ G
piq
ki

{pG
piq
ki

qgred, so that Qi is ki-finite, connected, and Qipkiq and Qipk
s
i q are

both singletons (see Example 2.2.7);

‚ we note that the Gpiq
ki

-action on Qi gives rise to a Reski{kpG
piq
ki

q-action on Reski{kpQiq, so, by

restricting to Gpiq ď Reski{kpG
piq
ki

q, also to a Gpiq-action on Reski{kpQiq;

‚ we let Gpi`1q ď Gpiq be the stabilizer of the unique k-point of Reski{kpQiq;

‚ we note that Gpi`1q does not depend on the choice of ki because enlarging the latter has the
effect of Gpiq-equivariantly embedding Reski{kpQiq into a larger such restriction of scalars.

If Qi is not reduced, then Gpi`1q ň Gpiq: indeed, the counit pReski{kp´qqki Ñ p´q of the adjunction
is functorial and commutes with products, so pReski{kpQiqqki Ñ Qi is Gpiq

ki
-equivariant, to the effect

that if we had Gpi`1q “ Gpiq, then Gpiq
ki

could not act transitively on Qi. Moreover, Gpi`1q contains
pGpiqqgred – Ggred because pReski{kpQiqqpksq is a singleton and Gpiqpksq is schematically dense in
pGpiqqgred. By Noetherian induction, since G is of finite type and we have Gpi`1q ň Gpiq whenever
Ggred ň Gpiq, the filtration eventually stabilizes at Ggred.

By construction, the filtration (2.2.8) is functorial in G and commutes with products and with base
change along separable field extensions, so also with restriction of scalars along finite separable field
extensions. In particular, if a smooth k-group acts by k-group automorphisms on G, then this action
preserves the k-subgroups Gpiq.

Lemma 2.2.9. In §2.2.8, for every k-group G of finite type, the Gpiq{Gpi1q for i1 ě i are quasi-affine.
In particular, a pseudo-finite k-group scheme is affine.

Proof. Each Gpiq{Gpi`1q is quasi-affine: by [GGMB14, remarques 2.1.4 (i)], it is a subscheme of the
affine k-scheme Reski{kpQiq. Thus, by induction and descent for quasi-affine maps [SP, Lemma 02L7],
each Gpiq{Gpi1q is quasi-affine. If G is pseudo-finite, then Ggred is finite étale, so it follows that G is
quasi-affine. Then [SGA 3I new, exposé VIB, proposition 11.11] shows that G is affine. □

Remark 2.2.10. In [Tot13, Lemma 6.3], assuming that k is imperfect, Totaro constructs pseudo-
finite, commutative extensions of connected, smooth, commutative, p-torsion k-groups U by αp.
Lemma 2.2.9 implies that such extensions do not exist if instead, for instance, U is a nonzero abelian
variety, although this also follows already from [Gro62, proposition 3.1].

Lemma 2.2.11. Let G be a k-group scheme of finite type and let X be a quasi-affine k-scheme of
finite type equipped with a G-action.
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(a) Let Gx Ă G be the schematic stabilizer of an x P Xpkq. If every k-torus of Gk stabilizes x
(that is, lies in pGxqk), then the orbit G ¨ x – G{Gx is closed in X.

(b) If every k-torus of Gk lies in pGgredqk (see Remark 2.2.13), then each Gpiq{Gpi`1q Ď Reski{kpQiq

in §2.2.8 is a closed immersion, the Gpiq{Gpi1q for i1 ě i are all affine, and G{Ggred is affine.

Proof. The claim (b) follows from (a) and the affineness of Reski{kpQiq, so we focus on (a). In the
latter, the orbit G ¨ x is a subscheme of X, see, for instance, [GGMB14, remarques 2.1.4 (i)]. To
show that it is closed, we proceed similarly to [GGMB14, lemme 2.4.7] that treated the case when G
is affine. We first replace k by k and G by Gred to reduce to when k “ k and G is smooth. We then
consider finitely many translates of G0 ¨ x to reduce further to when G is also connected. Moreover,
we replace X by the schematic closure of G ¨ x to assume that G ¨ x is schematically dense in X.

By the anti-Chevalley theorem [CGP15, Theorem A.3.9], then G is an extension of a smooth affine
k-group Gaff by a semi-abelian variety A. By assumption, the toral part T of A fixes x, so, since it
is also normal in G, it fixes every k-point of G ¨ x. Since k-points of G ¨ x are schematically dense
in X, we find that T acts trivially on X, in other words, the action of G factors through G{T .
Moreover, by [CGP15, Proposition C.4.5 (2)], the maximal k-tori of G{T are precisely the images
of the maximal tori of G. Thus, by replacing G by G{T , we retain our assumption about Gx, and
hence reduce to the case when A is an abelian variety. However, X is quasi-affine and A is normal
in G, so we likewise find that A fixes every k-point of G ¨ x. It then acts trivially on X, so we may
replace G by Gaff to reduce to when G is affine.

In the affine case, the k-subgroup Gtor ď G generated by the k-tori of G is connected, smooth, and
normal with G{Gtor unipotent (see [CGP15, Proposition A.2.11]). By our assumption on Gx and
the argument with k-points as above, Gtor acts trivially on X. We may therefore pass to G{Gtor to
reduce to the case when G is unipotent. Then, however, the desired closedness of G ¨ x Ă X is the
Rosenlicht lemma [SGA 3II, exposé XVII, lemme 5.7.3]. □

Remark 2.2.12. Lemma 2.2.11 fails if G is merely locally of finite type (and not quasi-compact).
For instance, for any a P kˆ, the constant k-group Z acts on A1

k by pn, tq ÞÑ ant, where t is the
coordinate of A1

k; if a is not a root of unity, then the orbit of the k-point t “ 1 is not closed in A1
k.

Remark 2.2.13. By [GGMB14, lemme 2.4.5], [SGA 3III new, exposé XVII, théorème 7.3.1] (applied
to pGlinq0), and [SGA 3II, exposé XII, proposition 1.12], for a k-group scheme G locally of finite
type, every k-torus of Gk lies in pGgredqk, that is, pGkqtor ď pGgredqk, in each of the following cases:

(i) if G0 is a normal subgroup of smooth k-group scheme (in particular, if G is smooth); or

(ii) if G0 is nilpotent (for instance, either commutative or unipotent, see [SGA 3III new, ex-
posé XVII, corollaire 3.7]).

For a k-group scheme locally of finite type, the condition that every k-torus of Gk lies in pGgredqk is
stable under base change to any field extension k1{k and may be tested after base change to any
separable field extension (see §2.1.2 (10) and §2.2.1). In general, it is not inherited by inner forms, see
[FG21, Example 7.2 (b) and Remark 7.3 (b)]. As an example, if a pseudo-finite k-group G satisfies
this condition, then §2.1.2 (10) implies that pG0

k
qred is unipotent (compare with Lemma 2.2.9 above).

2.3. The comparison map iG,G

We approach pseudo-reductive groups (resp., and pseudo-abelian varieties to some extent) via a
comparison map iG,G that relates them to restrictions of scalars of reductive groups (resp., of
abelian varieties). We now analyze this map in an abstract setting and establish Propositions 2.3.3
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and 2.3.5 that allow us to control its kernel and “cokernel.” Although the map iG,G is known to
play a prominent role in the theory of pseudo-reductive groups, even in this case the affineness of its
“cokernel” established in Proposition 2.3.5 seems new.
2.3.1. The comparison map iG,G and its kernel. Let G be a k-group scheme locally of finite
type, let k1{k be a finite field extension, and let q : Gk1 ↠ G be a k1-group scheme quotient. By the
universal property, q corresponds to a k-group scheme homomorphism

iG,G : G Ñ Resk1{kpGq

(see §1.7 and §2.1.1). The corresponding k1-group homomorphism KerpiG,Gqk1 Ñ G is trivial, so
KerpiG,Gqk1 ◁ Kerpqq. Even if the choice of k1 appears to be noncanonical, this does not matter:
enlarging k1 and using the corresponding base change of G amounts to postcomposing iG,G with a
closed immersion, see [BLR90, bottom of p. 197].

To analyze the kernel of iG,G in Proposition 2.3.3, we use the following lemma.

Lemma 2.3.2. For a finite, purely inseparable field extension k1{k and a k1-group scheme G locally
of finite type, the counit map pResk1{kpGqqk1 ↠ G has unipotent kernel that is split if G is smooth.

Proof. The counit map is given by the functoriality of the restriction of scalars relative to the
diagonal map k1 bk k

1 ↠ k1. Since k1{k is purely inseparable, this diagonal map is simply the
quotient of a local Artinian k1-algebra A :“ k1 bk k

1 by its maximal ideal m. Thus, by filtering by
powers of m and using §1.7 and formal smoothness, it suffices to show that the kernel of the map
RespA{mn`1q{k1pGA{mn`1q Ñ RespA{mnq{k1pGA{mnq is a power of Ga, k1 . This, however, follows from
deformation theory [SGA 3I new, exposé III, théorème 0.1.8]. □

Proposition 2.3.3. In the setting of §2.3.1,

(a) If Kerpqq is quasi-compact (e.g., if so is G), then both iG,G and KerpiG,Gq are quasi-compact;

(b) If Kerpqq0 (resp., Kerpqq) is unipotent, then so is KerpiG,Gq0 (resp., KerpiG,Gq);

(c) If Kerpqq0 is unipotent (resp., and Kerpqq is quasi-compact) and Ggred has no nontrivial,
connected, smooth, unipotent, normal k-subgroups, then KerpiG,Gq is pseudo-(locally quasi-
finite) (resp., pseudo-finite).

Proof.

(a) By Lemma 2.3.2, the kernels of the horizontal maps in the commutative square

pResk1{kpGk1qqk1 // //

��

Gk1

q
����

pResk1{kpGqqk1 // // G

are unipotent, so these maps are affine. The quasi-compactness of Kerpqq then ensures that
the vertical maps are quasi-compact. Thus, since G ãÑ Resk1{kpGk1q is a closed immersion by
[BLR90, bottom of p. 197], we conclude that iG,G is quasi-compact. By base change, then
KerpiG,Gq is also quasi-compact.

(b) It suffices to recall that KerpiG,Gqk1 ◁Kerpqq and to review §1.7.
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(c) Since KerpiG,Gq is normal in G and of formation compatible with base change to separable
extensions, Gpksq-conjugation preserves KerpiG,Gqgred. Thus, the latter is normal in Ggred

(see §2.1.2 (2)). Our assumption on Ggred and the unipotence of KerpiG,Gq0 given by (b)
now ensure that pKerpiG,Gqgredq0 is trivial, to the effect that KerpiG,Gq is pseudo-(locally
quasi-finite). If Kerpqq is quasi-compact, then, by (a), so is KerpiG,Gq, so that it is even
pseudo-finite (see Definition 2.2.2). □

To analyze the “cokernel” of iG,G in Proposition 2.3.5, we use the following lemma.

Lemma 2.3.4. Let G be a k-group scheme locally of finite type with G0 an extension of a solvable,
affine k-group by an infinitesimal k-group. For any closed k-subgroup H ď G, the connected
components of G{H are clopen and affine, in particular, if G is of finite type, then G{H is affine.

Proof. The key aspect is the affineness: indeed, G{H is a separated k-scheme locally of finite type
by the results reviewed in §2.1.1, and so its connected components are clopen by [SP, Lemmas 04MF
and 04ME]. By the end of §2.1.3, for a sufficiently large Frobenius kernel αG ◁G, both G :“ G{αG

and H :“ H{pαG X Hq are smooth k-groups and, by our assumption, G0 is solvable. Moreover,
the flat, separated surjection G{H ↠ G{H is finite: indeed, its base change along itself admits a
surjection from αG ˆk G{H, so [SP, Lemmas 0AH6 and 02LS] give the claimed finiteness. Thus, it
suffices to show that every connected component of G{H is affine. In effect, we may assume that G0

is solvable, affine, and that G and H are smooth, so that so is G{H.

The map G{H0 Ñ G{H is an H{H0-torsor, so, by §2.1.2 (1) and [SGA 3II, exposé X, corollaire 5.14],
the connected components of G{H0 are finite étale over those of G{H. By [SP, Lemma 01YQ], it
then suffices to argue that every connected component of G{H0 is affine, that is, we may assume
that H is connected. Once H is connected, the connected components of G{H are precisely the
images of the connected components of G. Moreover, each component of G becomes a finite
union of G0-torsors after base change to some finite separable extension of k. Thus, effectivity of
descent for affine schemes [SP, Lemma 0245] allows us to replace G by G0 to reduce to the case
when G is also connected. Once both G and H are smooth and connected, since we may base
change to k (see [SP, Lemma 02L5]), the affineness is a special case of [Con15, Example 5.5] and
[Bor91, Theorem 15.11] (or [Bri21, Theorem 1]). □

Proposition 2.3.5. In the setting of §2.3.1, suppose that k1{k is purely inseparable and that Kerpqq

is quasi-compact. Then

QG,G :“ Resk1{kpGq{iG,GpGq

is an affine scheme, and if G is commutative, then QG,G is a commutative, unipotent k-group.

Proof. When q is an isomorphism, a similar result was established over any base in [Čes19, Lemma 2.1],
so we will build on its method. Since iG,G is quasi-compact by Proposition 2.3.3 (a), arguments as
in the proof of Lemma 2.3.4 ensure that QG,G is a separated k-scheme locally of finite type.

By descent for affineness [SP, Lemma 02L5] and §1.7, it is enough to show that pQG,Gqk1 is affine
(resp., and is unipotent when G is commutative). Over k1 we have the counit map

pResk1{kpGqqk1 – Resk1bkk1{k1pGk1bkk1q
h
ÝÑ Resk1{k1pGq – G,
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as well as a diagram of k1-group homomorphisms

1 // Kerpqq //

i

��

Gk1

q
//

piG,Gqk1

��

G // 1

1 // Kerphq // pResk1{kpGqqk1
h // G // 1,

whose commutativity follows from the case when q is the identity. We conclude that h is surjective
and, by a diagram chase, that

Kerphq{ipKerpqqq – pQG,Gqk1 . (2.3.5.1)

Moreover, Kerphq is unipotent by Lemma 2.3.2 and i inherits quasi-compactness from iG,G. At this
point, by (2.3.5.1) and §1.7, Lemma 2.3.4 gives the claim. □

2.4. From pseudo-abelian varieties to abelian varieties

Pseudo-abelian varieties were introduced by Totaro in [Tot13]. In this section, we review the aspects
of their theory relevant for us, stressing the comparison map iG of §2.3 because this highlights the
analogy with the theory of pseudo-reductive groups.
2.4.1. Pseudo-abelian varieties. A pseudo-abelian variety is a smooth, connected k-group scheme
G that has no nontrivial connected, smooth, affine, normal k-subgroups, see [Tot13, Definition 0.1].
By [Tot13, Theorem 2.1], a pseudo-abelian variety G is automatically commutative, in particular,
the normality assumption in the definition could be dropped: G has no nontrivial connected, smooth,
affine k-subgroup, in other words, Gsm, lin “ 1. In addition, by loc. cit., a pseudo-abelian variety G
is in a unique way an extension

0 Ñ Gab Ñ G Ñ Gunip Ñ 0 (2.4.1.1)

of a connected, smooth, commutative, unipotent k-group Gunip by an abelian variety Gab. In
particular, G is proper if and only if it is an abelian variety.

On the other hand, §2.1.2 gives us an extension in the other order:

0 Ñ Glin Ñ G Ñ Gav Ñ 0. (2.4.1.2)

The definition and the commutativity of pseudo-abelian varieties imply that the connected, affine k-
group Glin has no positive-dimensional smooth k-subgroups, so Glin is pseudo-finite, see §2.2.1. Since
there are no nontrivial homomorphisms from a torus to a unipotent group, nor to an abelian variety,
(2.4.1.1) and §2.1.2 imply that the connected, smooth, affine, commutative k-group ppGlinqkqred is
unipotent and is identified with pGkqlin.

Both extensions (2.4.1.1) and (2.4.1.2) help in practice, and it is useful to keep in mind the relationship
between them. Namely, the map of abelian varieties

Gab ↠ Gav

is an isogeny: it is surjective because the affine group Gunip cannot surject on a nonzero abelian
variety, and its kernel Gab XGlin is finite because it is both proper and affine. Similarly,

Glin ↠ Gunip

is an isogeny: it is surjective because the abelian variety Gav cannot surject on a positive-dimensional
affine group, and its kernel Gab X Glin is finite. The order of the common kernel Gab X Glin, and
hence also the common degree, of these two isogenies is a power of the characteristic exponent p of k
because the component group of pGab XGlinqk inherits unipotence from ppGlinqkqred, see §1.7.
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By [Tot13, Corollary 6.5], if k is imperfect of characteristic p, then every connected, smooth,
commutative, unipotent k-group of exponent p (such as Ga) occurs as Gunip for some pseudo-abelian
variety G over k. In particular, the isogenies Glin ↠ Gunip exhibit many pseudo-finite, commutative
covers of split unipotent k-groups, see also [Tot13, Lemma 6.3].
2.4.2. The comparison map iG for pseudo-abelian varieties. Let G be a pseudo-abelian
variety over k. Since p´qsm, lin and p´qlin agree over perfect fields (see §2.1.3 (i)), by [EGA IV2,
corollaire 4.8.11], there is the smallest finite, purely inseparable field extension k1{k such that pGk1qlin

is smooth, in other words, such that it is a k1-descent of the smooth, unipotent k-subgroup pGkqlin.
Similarly to (2.4.1.2), we set G :“ pGk1qav – Gk1{pGk1qlin and consider the resulting comparison map

iG : G Ñ Resk1{kpGq,

whose formation commutes with base change to any separable extension of k. The image iGpGq is
smooth and connected, so it is a pseudo-abelian subvariety of the pseudo-abelian variety Resk1{kpGq,
see the final part of §2.1.2. The k1 and G remain the same for ipGq and the map iipGq is the inclusion
iGpGq Ă Resk1{kpGq, compare with the proof of [CGP15, Lemma 9.2.1]. Propositions 2.3.3 and 2.3.5
ensure that KerpiGq is pseudo-finite and unipotent, while CokerpiGq is connected, smooth, and
unipotent. With this control of the (co)kernel, it is fruitful to study the pseudo-abelian variety G by
reducing to the pseudo-abelian variety iGpGq and then to the abelian variety G.

2.5. From quasi-reductive groups to reductive groups

Pseudo-reductive groups were introduced by Tits [Tit13, cours 1991–1992] and have been studied
extensively by him and, more recently, by Conrad–Gabber–Prasad [CGP15] and Conrad–Prasad
[CP16], [CP17]. We now frame the pseudo-reductive theory around the comparison map of §2.3 and
review some aspects needed for our later arguments.
2.5.1. Notation. Throughout this section, we fix a connected, smooth, affine k-group G.
2.5.2. The comparison map iG. We may choose the smallest finite, purely inseparable field
extension k1{k such that Ru, k1pGk1q is a k1-descent of Ru, kpGkq (see [EGA IV2, corollaire 4.8.11]
for the existence of the smallest such k1), in other words, such that the k1-group G :“ pGk1qpred of
((5)) is reductive (recall from §2.1.3 (ii) that the unipotent radical over a perfect field descends the
geometric unipotent radical). We say that G is simply connected (resp., adjoint) if G is semisimple
and simply connected (resp., adjoint). In general, we consider the resulting comparison map

iG : G Ñ Resk1{kpGq,

whose formation commutes with base change to any separable extension of k. Proposition 2.3.3
ensures that KerpiGq is unipotent and that it is pseudo-finite if and only if G is pseudo-reductive.
In fact, for pseudo-reductive G, as we will review in §2.5.3 below, KerpiGq is a central extension of
commutative, pseudo-finite, unipotent k-groups (and is even itself commutative if charpkq ‰ 2). Even
if G is pseudo-reductive, KerpiGq need not be connected or smooth, see [CGP15, Example 1.6.3,
Remark 9.1.11, Theorem 9.8.1 (3)–(4)].

By [CGP15, Lemma 9.2.1], the image iGpGq is pseudo-reductive, the k1 and G remain the same
for iGpGq, and the map iiGpGq is the inclusion iGpGq ď Resk1{kpGq. By Proposition 2.3.5, the
homogeneous space Resk1{kpGq{iGpGq is connected, smooth, and affine.

With this control of the kernel and the “cokernel,” it is often fruitful to approach the study of G by
first reducing to the pseudo-reductive group iGpGq and then to the reductive group G.
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2.5.3. Passage to pseudo-reductive groups of minimal type. Suppose now that G is
pseudo-reductive. By [CGP15, Proposition 9.4.2 (i)], for a maximal k-torus T Ă G (which ex-
ists, see §2.1.2 (2)), the subgroup

CG :“ KerpiGq X ZGpT q Ă KerpiGq

is central in G and does not depend on the choice of T . Of course, CG is also pseudo-finite and
unipotent because it inherits these properties from KerpiGq. By [CGP15, Proposition 9.4.2 (i)–(ii)]
and [CGP15, Corollary 9.4.3], the quotient G :“ G{CG is pseudo-reductive with CG “ 1, and the
map iG is the composition of iG and the quotient G↠ G . A pseudo-reductive k-group G is

‚ of minimal type if CG “ 1 (see [CGP15, Definition 9.4.4]), equivalently, if G – G ;

‚ ultraminimal if iG is injective, equivalently, if G is of minimal type and Gks has a reduced
root system (see [CGP15, Theorem 9.4.7]).

For instance, by the above, iGpGq is an ultraminimal pseudo-reductive k-group. Pseudo-reductive
groups of minimal type that are not ultraminimal exist only in characteristic 2, and they cause by
far the most complications in the general theory; for instance, they are the raison d’être for the book
[CP16]. In practice, since CG is central, it is often straightforward to reduce to the minimal type
case, but passing to ultraminimal groups tends to be more delicate.

One may control KerpiGq even if G is of minimal type but not ultraminimal. Namely, in this case, by
[CGP15, Theorem 9.4.7], the pseudo-finite, unipotent k-group KerpiGq is connected, commutative,
but not central, and if G contains a split maximal k-torus T , then KerpiGq is the direct product of
its intersections with the root groups of the multipliable roots of T .

2.6. The control of pseudo-parabolic subgroups

The study of connected, smooth, affine k-groups benefits from the theory of pseudo-parabolic
subgroups introduced by Borel–Tits in [BT78], as these are means for passing to smaller pseudo-
reductive groups, see §2.1.2 (8). We review some aspects of the pseudo-parabolic subgroup theory
for use in subsequent chapters.
2.6.1. Subgroups associated to Gm-actions. Let A be a ring and let G be a finitely presented,
affine A-group scheme equipped with a left action of Gm,A over A:

λ : Gm,A ˆG Ñ G.

A common case is when the action is conjugation composed with an A-homomorphism Gm,A Ñ G
(often also denoted λ for simplicity). By [CGP15, Remark 2.1.11 (with Lemma 2.1.5)], the Gm,A-
action gives rise to the finitely presented, closed A-subgroups:

(1) PGpλq ď G, the attractor subgroup, i.e., the subfunctor parametrizing those A-algebra valued
points g of G for which the action map t ÞÑ t ¨ g extends to a map A1 Ñ G;

(2) UGpλq ◁ PGpλq, the subfunctor parametrizing those such g for which the resulting map
A1 Ñ G sends the zero section of A1 to the identity section of G;

(3) ZGpλq ď PGpλq, the subfunctor parametrizing the λ-stable sections of G.

The formation of PGpλq, UGpλq, and ZGpλq commutes with arbitrary base change in A, as well
as with intersections with λ-stable, closed, finitely presented A-subgroups of G, and, by [CGP15,
Remark 2.1.11 (with Proposition 2.1.8 (2))], we have

PGpλq – UGpλq ¸ ZGpλq.
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By [CGP15, Remark 2.1.11 (with Lemma 2.1.5 and Proposition 2.1.8 (4))], the A-group UGpλq has
connected, unipotent A-fibers, and if the A-fibers of G are connected, then so are those of PGpλq

and ZGpλq. By [CGP15, Remark 2.1.11 (with Propositions 2.1.8 (3) and 2.1.10)], if G is A-smooth,
then so are PGpλq, UGpλq, and ZGpλq, and the A-fibers of UGpλq are even split unipotent.

Letting ´λ denote the Gm,A-action on G obtained from λ by precomposing with the inversion of
Gm,A, by loc. cit. and [EGA IV4, corollaire 17.9.5], the multiplication map

UGp´λq ˆ PGpλq Ñ G (2.6.1.1)

is an open immersion provided that its source is A-flat (which holds if either G is A-smooth or A is
a field). If (2.6.1.1) is an open immersion and the reduced geometric A-fibers of G are connected
and solvable, then (2.6.1.1) is even an isomorphism: indeed, we may assume that A is a field and
G is smooth, note that G{PGpλq is affine by [Con15, Example 5.5] and [Bor91, Theorem 15.11] (or
[Bri21, Theorem 1]), and then conclude from Lemma 2.2.11 (a) that the open UGp´λq Ă G{PGpλq

is simultaneously closed (this argument reproves [CGP15, Proposition 2.1.12 (1)]).

The formation of the open immersion (2.6.1.1) commutes with intersections with λ-stable, closed,
finitely presented A-subgroups G1 ď G for which UG1p´λq ˆ PG1pλq is A-flat. Similarly, the PGpλq,
UGpλq, and ZGpλq are compatible with flat surjections as follows: by [CGP15, Remark 2.1.11 (with
Corollary 2.1.9)] and [EGA IV3, corollaire 11.3.11], if G has connected A-fibers, PGpλq (resp., UGpλq;
resp., ZGpλq) is A-flat, and π : G↠ G1 is a faithfully flat, Gm,A-equivariant surjection onto a finitely
presented, affine A-group G1 with a Gm,A-action λ1, then π induces a flat surjection PGpλq ↠ PG1pλ1q

(resp., UGpλq ↠ UG1pλ1q; resp., ZGpλq ↠ ZG1pλ1q) whose target is also A-flat.
2.6.2. Pseudo-parabolic subgroups. For a connected, smooth, affine k-group scheme G, a k-
subgroup P ď G is pseudo-parabolic if it has the form

P “ Pλ :“ PGpλqRu, kpGq, equivalently, P “ Pλ :“ PGpλqRus, kpGq

for a k-homomorphism λ : Gm, k Ñ G, see [CGP15, Definition 2.2.1 and Proposition 2.2.4].

By §2.6.1, pseudo-parabolic k-subgroups are connected, smooth, and affine. Moreover, by [CGP15,
Corollary 2.2.5], we have

Ru, kpPλq “ UGpλqRu, kpGq and Rus, kpPλq “ UGpλqRus, kpGq,

so that Rus, kpPλq “ UGpλq when G is quasi-reductive, and Ru, kpPλq is split unipotent when G is
pseudo-reductive. By [CGP15, Proposition 3.5.2 (1)] (with the final aspect of §2.1.2 (2)), a k-subgroup
P ď G is pseudo-parabolic if and only if Pk1 ď Gk1 is pseudo-parabolic for some (equivalently, any)
separable extension k1{k. A pseudo-parabolic k-subgroup P ď G is a pseudo-Borel if Pks ď Gks is a
minimal pseudo-parabolic of Gks , equivalently, by [CGP15, Proposition 3.5.4], if the image of Pk is a
Borel subgroup of pGkqpred. By [CGP15, Proposition 2.2.9], the pseudo-parabolic (resp., pseudo-
Borel) k-subgroups of a reductive k-group are precisely its parabolic (resp., Borel) k-subgroups.
By [CP17, Corollary 4.3.5] (resp., [CGP15, Proposition 3.5.8]), pseudo-parabolic k-subgroups of a
pseudo-parabolic P ď G (resp., smooth k-subgroups of G containing P ) are pseudo-parabolic.

By [CGP15, Proposition 2.2.10], the pseudo-parabolic k-subgroups of G are the preimages of the
pseudo-parabolic k-subgroups of Gpred (so also of those of Gqred). We may even replace Gpred by
its pseudo-reductive quotient of minimal type (see §2.5.3): by [CGP15, Proposition 2.2.12 (3)], for
every quotient G ↠ G1 of pseudo-reductive k-groups with a central kernel, the pseudo-parabolic
k-subgroups of G are the preimages of the pseudo-parabolic k-subgroups of G1. Of course, by
definition, the pseudo-parabolic k-subgroups of a quasi-reductive G are precisely the PGpλq for
k-homomorphisms λ : Gm, k Ñ G.
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In the case when G “ Resk1{kpG1q for a nonzero, finite, reduced k-algebra k1 and a k1-group G1

with pseudo-reductive k1-fibers, by [CGP15, Proposition 2.2.13], the pseudo-parabolic k-subgroups
P ď G correspond to the fiberwise pseudo-parabolic k1-subgroups P 1 ď G1 via the inverse bijections
P 1 ÞÑ Resk1{kpP 1q and P ÞÑ πpPk1q, where π : Gk1 Ñ G1 is the counit of the adjunction. In this
setting, by [CGP15, Corollary A.5.4 (3)] (with §1.7), for the corresponding P and P 1, we have
G{P – Resk1{kpG1{P 1q. To reach such restrictions of scalars in practice, we use the following lemmas.

The following lemma pointed out to us by Gabber controls pseudo-parabolic k-subgroups when
passing from a pseudo-reductive k-group of minimal type to its ultraminimal quotient.

Lemma 2.6.3. Let G be a pseudo-reductive k-group of minimal type, let iG : G Ñ Resk1{kpGq be the
map as in §2.5.2, and let P ď G be a pseudo-parabolic k-subgroup. The k-subgroup iGpP q ď iGpGq is
pseudo-parabolic and, for a k-scheme S and an S-point y of iGpGq{iGpP q, the y-fiber of the map

G{P Ñ iGpGq{iGpP q

is a torsor under an S-form of the k-group KerpiGq{pKerpiGqXP q, and this S-form is trivial whenever
y lifts to an S-point of iGpGq. Moreover, we have

KerpiGq » pKerpiGq X P q ˆ KerpiGq{pKerpiGq X P q. (2.6.3.1)

Proof. By §§2.6.1–2.6.2, the k-subgroup iGpP q ď iGpGq is pseudo-parabolic. The k-group KerpiGq

(or even G) acts on G{P , and if an x P GpSq lifts y, then the y-fiber of the map G{P Ñ iGpGq{iGpP q

is KerpiGq-equivariantly isomorphic to

KerpiGqS{pKerpiGqS X xPSx
´1q – xpKerpiGq{pKerpiGq X P qqSx

´1,

which is a base change of KerpiGq{pKerpiGqXP q. Since G is of minimal type, KerpiGq is commutative
(see §2.5.3), so the conjugation action of G on KerpiGq factors through iGpGq. By fppf descent,
we conclude that if y merely lifts to an S-point of iGpGq, then the aforementioned y-fiber is a
KerpiGq{pKerpiGq X P q-torsor over S, and that in general the y-fiber is a torsor under an S-form of
KerpiGq{pKerpiGq X P q, as claimed.

Let λ : Gm, k Ñ G be a k-homomorphism with P “ PGpλq and let T Ă G be a maximal k-torus
through which λ factors. As we reviewed in §2.5.3, the base change KerpiGqks is a direct product
of its intersections KerpiGqks X Ua with the root groups Ua for the multipliable roots a of Tks . In
particular, [CGP15, Proposition 2.1.8 (2)-(3) and Corollary 3.3.12] ensure that pKerpiGqXP qks (resp.,
pKerpiGq{pKerpiGq X P qqks) is isomorphic to the direct product of the intersections KerpiGqks X Ua

for those multipliable roots a of Tks for which xa, λy ě 0 (resp., xa, λy ă 0). In particular,
pKerpiGq{pKerpiGq X P qqks is Galpks{kq-equivariantly identified with a direct factor of KerpiGq

complementary to pKerpiGq X P qks , and Galois descent gives the claimed decomposition

KerpiGq » pKerpiGq X P q ˆ KerpiGq{pKerpiGq X P q. □

For ultraminimal pseudo-reductive G, we control its pseudo-parabolic k-subgroups as follows.

Lemma 2.6.4. Let G be an ultraminimal pseudo-reductive k-group, let iG : G ãÑ Resk1{kpGq be its
comparison map as in §2.5.2, let P ď G be a pseudo-parabolic k-subgroup, and let P ď G be the
image of Pk1. Then iG induces a closed immersion

G{P ãÑ Resk1{kpG{P q.

Proof. Base change to ks allows us to assume that k is separably closed (see §2.5.2 and §2.6.2). Let
λ : Gm, k Ñ G be a k-homomorphism with P “ PGpλq and let λ : Gm, k1 Ñ G be the composition of
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λk1 and Gk1 ↠ G. Then λ is the k1-homomorphism corresponding to λ ˝ iG and P “ PGpλq (see
§2.6.1). Since iG is injective, we shorten λ ˝ iG to λ and note that, by [CGP15, Propositions 2.1.13],

Resk1{kpP q “ PResk1{kpGq
pλq and Resk1{kpUGp´λqq “ UResk1{kpGq

p´λq.

Therefore, by §2.6.1, the following square is Cartesian

UGp´λq ˆ PGpλq
� � //

� _

��

Resk1{kpUGp´λqq ˆ Resk1{kpP q
� _

��

G �
� iG // Resk1{kpGq

and its vertical (resp., horizontal) maps are open (resp., closed) immersions. In particular, since
Resk1{kpGq{Resk1{kpP q – Resk1{kpG{P q (see §2.6.2), the vertical (resp., the top horizontal) maps of

UGp´λq
� � //

� _

��

Resk1{kpUGp´λqq
� _

��

G{P �
�

// Resk1{kpG{P q

are open (resp., closed) immersions, and this square is also Cartesian. To conclude that the bottom
horizontal map is also a closed immersion, by Gpkq-translation, all that remains is to show that the
Gpkq-translates of Resk1{kpUGp´λqq cover Resk1{kpG{P q. For this, since k1{k is purely inseparable,
by [CGP15, Corollary A.5.4 (2)], it suffices to show that the Gpkq-translates of UGp´λq cover G{P ,
which follows from [CGP15, top of p. 587]. □

2.7. The control of unipotent groups

We conclude discussing the diagram of §2.1.2 by reviewing the structure of wound unipotent groups.
2.7.1. Structure of smooth, connected, unipotent k-groups. In general, to handle the
subquotients of the cckp filtration, we need to understand connected, smooth, commutative, p-
torsion, unipotent k-groups G. These can be made explicit: by a result of Tits [BLR90, Section 10.2,
Proposition 10] (or [CGP15, Proposition B.1.13]), every such G is a subgroup of GN`1

a given by the
vanishing locus of some p-polynomial

F “
řN

i“0

řni
j“0 fijt

pj

i P krt0, . . . , tN s with fini ‰ 0 when ni ě 0,

and the smoothness condition amounts to there being a nonzero linear term. This gives a concrete
way to understand cohomology: functorially in a k-algebra R, we have

H0pR,Gq – pRN`1qF“0, H1pR,Gq – R{F pRN`1q, Hě2pR,Gq – 0. (2.7.1.1)

When G is also wound, these references (with [CGP15, Lemma B.1.7 (1)ô(2)], if one prefers) give
more: we may choose an F as above for which the polynomial of principal parts

Fprin :“
řN

i“0 finit
pni

i

has no nontrivial zeros in kN`1, this is critical for working with wound groups in practice. In addition,
once a unipotent group G is given by the vanishing locus of a p-polynomial F , it is sometimes useful
to project onto a proper subset of the coordinates ti: this realizes G as an extension of a power of
Ga by the (possibly nonsmooth) unipotent group given by the vanishing locus of the p-polynomial
obtained from F by setting these ti to 0. This also shows that woundness tends to be destroyed by
passing to quotients.
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Wound groups contain no Ga, k’s as k-subgroups, but they may contain nontrivial unirational k-
subgroups or even be unirational themselves. The latter are somewhat manageable as follows.

Lemma 2.7.2 (Rosengarten, a positive answer to [Ach19, Question 2.21]). Every unirational, wound,
unipotent k-group G that is minimal, in the sense that each of its unirational k-subgroups is either
trivial or G itself, is commutative. The nontrivial, unirational, wound, unipotent k-groups are all of
dimension ě p´ 1, and if k is separably closed of characteristic p ą 0, then the minimal such groups
are precisely the following k-groups with a P kzkp and n ě 1:

Ga, n :“ Res
kpa1{pn´1

q{k

´

Res
kpa1{pn q{kpa1{pn´1

q

´

Gm, kpa1{pn q

¯

{G
m, kpa1{pn´1

q

¯

.

Proof. This lemma and its proof are due to Rosengarten. Since G is unirational, it is smooth and
connected (see §2.1.2 (9)). By §2.1.4 and the cckp filtration, the derived subgroup DpGq is smaller
than G and unirational. Thus, if G is minimal, then DpGq “ 1, so that G is commutative.

The dimension assertion follows from the rest, so we now assume that k is separably closed and that
G is a nontrivial, unirational, wound, unipotent k-group that is minimal (so also commutative). By
[Ros21b, proof of Theorem 1.3 on pp. 442–443] (or [Ach19, Remark 2.6(ii)]), the unirationality implies
that G is a quotient of ResA{kpGm,Aq for some finite k-algebra A. Since ResA{kpGm,Aq is unirational
and decomposes into a product according to the factors of A, the minimality of G allows us to assume
that A is local. By the proof of Lemma 2.3.2, the surjection ResA{kpGm,Aq ↠ ResAred{kpGm,Aredq

has a split unipotent kernel, so, since G is wound, we may pass to Ared to assume that A is a finite,
purely inseparable field extension k1{k. Since k1 is a sum of monogenic subextensions k Ă ki Ă k1,
we check on Lie algebras that Resk1{kpGm, k1q is a quotient of

ś

iReski{kpGm, kiq. Since G is minimal
and nontrivial, we may therefore replace k1 by some ki to reduce to the case when k1 “ kpa1{pnq for
some a P kzkp and n ě 1. By decreasing n if needed and again using the minimality of G, we may
assume that the map Res

kpa1{pn´1
q{k

pG
m, kpa1{pn´1

q
q Ñ G vanishes, so that

Reskpa1{pn q{k

´

Gm, kpa1{pn q

¯

{Res
kpa1{pn´1

q{k

´

G
m, kpa1{pn´1

q

¯

↠ G. (2.7.2.1)

The source of this surjection is Ga, n, see §1.7. Moreover, Ga, n is wound and given by the vanishing of
some p-polynomial F of degree p: indeed, this holds for Ga, 1 (see [Oes84, chapitre VI, proposition 5.3])
and is stable under restrictions of scalars along purely inseparable field extensions (decomposed into
successive extensions of degree p). Thus, by [Ros25, proof of Proposition 7.7], every quotient of Ga, n

by a nontrivial k-subgroup is split unipotent. As G is wound, (2.7.2.1) must then be an isomorphism.

The identification of the source of (2.7.2.1) with Ga, n shows that this wound, unipotent k-group
is unirational, so it remains to show that it is minimal; equivalently, by the argument above, that
it admits no Gb,m with b P kzkp and m ě 1 as a proper k-subgroup. By dimension considerations,
this is not possible if n “ 1, so, arguing by induction for all k at once, we assume that n ą 1
is minimal for which some Ga, n is not minimal, and hence properly contains some Gb,m. The
unipotent k-group Gb,m splits over kpb1{pmq, so Ga, n cannot remain wound over kpb1{pmq. The
extensions kpa1{pnq and kpb1{pmq are then not disjoint over k, that is, kpa1{pq “ kpb1{pq. On the
other hand, by the definition of the Weil restriction, we have a nonzero kpa1{pq-homomorphism
pGb,mqkpa1{pq Ñ Ga1{p, n´1. Lemma 2.3.2 ensures that pGb,mqkpb1{pq is an extension over kpb1{pq of
Gb1{p,m´1 (interpreted to be zero if m “ 1) by a split unipotent group. Since Ga1{p, n´1 is wound,
we obtain a nonzero kpb1{pq-homomorphism Gb1{p,m´1 Ñ Ga1{p, n´1, which, by induction, must be
surjective. Then, however, the dimension of Gb1{p,m´1 is at least that of Ga1{p, n´1, so the dimension
of Gb,m is at least that of Ga, n, and hence that Gb,m cannot be a proper k-subgroup of Ga, n. □

Definition 2.7.3. A unipotent k-group G is strongly wound
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‚ if G has no nontrivial unirational k-subgroups, that is, if Guni “ 1; equivalently,

‚ if G has no nontrivial, commutative, unirational k-subgroups (see Lemma 2.7.2); equivalently,

‚ if G receives no nontrivial k-homomorphism from a unirational k-group.

Example 2.7.4. By Lemma 2.7.2, a wound, unipotent k-group of dimension ă p´1 is strongly wound.

By §2.1.2 (9), this condition is insensitive to base change to a separable field extension. It is also
inherited by the subquotients of the cckp filtration as follows.

Lemma 2.7.5. Let G be a connected, smooth, strongly wound, unipotent k-group. Every subquotient
of the cckp filtration of G is strongly wound (and connected, smooth, unipotent).

Proof. Let G1 ◁ G be the largest connected, smooth, central, p-torsion k-subgroup of G. If
pG{G1quni “ 1, then we may replace G by G{G1 and iterate, so, for the sake of contradiction,
we choose a nontrivial, unirational k-subgroup H ď G{G1 and let rH ď G be its preimage. We have
a central extension of k-groups

1 Ñ G1 Ñ rH Ñ H Ñ 1

and, to obtain a contradiction with the definition of G1, we will show that rH is central in G and
p-torsion. For this, we imitate the proof of [Con15, Proposition 3.2].

We lose no generality by base changing to ks to assume that k is separably closed (see §2.1.2 (7)).
To see that rH is central in G, for a g P Gpkq we consider the k-morphism rH Ñ G given by
h ÞÑ ghg´1h´1. Since G1 is central in G, this morphism factors through a k-morphism H Ñ G.
However, G is strongly wound, so every k-morphism from a unirational k-variety (such as H) to G
that sends some k-point to the identity is constant. Consequently, the commutators ghg´1h´1 all
vanish and, since g is arbitrary and k is separably closed, we get that rH is central in G. Similarly,
since G1 is p-torsion and central in G, the p-power morphism rH Ñ G factors through a k-morphism
H Ñ G that must a posteriori be constant, to the effect that rH is p-torsion. □

For treating nonsmooth, commutative, unipotent groups, the following lemma is useful.

Lemma 2.7.6 ([BLR90, Section 10.2, Lemma 13]). A commutative, connected, (resp., wound) unipo-
tent k-group is a subgroup of a commutative, connected, smooth, (resp., wound) unipotent k-group. □

3. Pseudo-properness and extension results for sections

In §3.1, we introduce the notion of pseudo-properness, which strengthens that of pseudo-completeness
due to Tits, and we classify pseudo-proper k-groups. In §3.2, we establish general extension results
for sections of torsors under pseudo-proper groups, and thus reduce our main result Theorem 1.1.1
to connected, smooth, affine groups. We use these extension results in §3.3 to show that G{P is
pseudo-proper for every pseudo-parabolic k-subgroup P ď G of a smooth, affine k-group G.

3.1. Pseudo-properness and pseudo-completeness

A k-variety X is proper if and only if XpRq
„
ÝÑ XpKq for every discrete valuation ring R that is

a k-algebra with fraction field K. By only requiring this valuative criterion to hold for certain
subclasses of R, we obtain the following variants of the notion of properness over imperfect k.

Definition 3.1.1. A k-algebraic space X is
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(i) pseudo-proper if it is separated, of finite type, and for every discrete valuation ring R that is
a geometrically regular k-algebra with fraction field K, we have

XpRq
„
ÝÑ XpKq; (3.1.1.1)

(ii) pseudo-complete if it is separated, of finite type, and (3.1.1.1) holds for every discrete valuation
ring R that is a k-algebra whose residue field is separable over k.

The notion of pseudo-completeness has already been introduced by Tits in [Tit13, cours 1992–1993,
section 2.3], see also [CGP15, Definition C.1.1].

By [Mat89, Section 28, Lemma 1 on p. 216, Theorem 28.7], a discrete valuation ring R that is a
k-algebra whose residue field is separable over k is geometrically regular over k, so

finite

"*

+3 proper +3 pseudo-proper +3 pseudo-complete

pseudo-finite

2:

(3.1.1.2)

where the implication pseudo-finite ùñ pseudo-proper follows by noting that pseudo-properness may
be tested on Xgred, see Remark 3.1.3 below (and compare also with the more general Theorem 1.1.1
below). If k is perfect, then these implications, except for the two that point top right, are all
equalities, see [SP, Lemma 0H1X] and Remark 2.2.5. Over an imperfect k, these implications are all
strict thanks to Example 2.2.6, the following example, and Example 3.1.6 below.

Example 3.1.2 (pseudo-proper œ proper). For a finite extension k1{k and a proper (or merely
pseudo-proper) k1-algebraic space X 1, the restriction of scalars X :“ Resk1{kX

1 (see §1.7) is pseudo-
proper (loc. cit.). In fact, pseudo-properness ascends along proper morphisms, so an algebraic
space that is proper over this X, for instance, a closed subspace of X, is also pseudo-proper. For
nonseparable k1{k, such X are often not proper; see [CGP15, Example A.5.6].

This example shows why it is natural to allow algebraic spaces in Definition 3.1.1: namely, X need
not be a scheme if X 1 is not quasi-projective. For instance, X is not a scheme if k1{k is separable
quadratic and X 1 has two k1-points that are not contained in any affine open subscheme of X 1

k
1 , and

Hironaka gave examples of proper such X 1 with k1 “ C that are not projective.

Remark 3.1.3. The map (3.1.1.1) is injective because X is separated (see [EGA I, corollaire 9.5.6]),
so we are only imposing its surjectivity. In particular, since the geometric regularity of R forces K
to be separable over k, by (2.2.1), a separated k-algebraic space X of finite type is pseudo-proper
(resp., pseudo-complete) if and only if so is Xgred. Moreover, since R is 1-dimensional, its geometric
regularity in (i) is equivalent to geometric normality: concretely, it means that Rbk k

1 is required to
be a semilocal Dedekind ring for every finite field extension k1{k. By [EGA IV2, proposition 5.13.7]
and the Popescu theorem (see §1.7), in (i) the strict Henselization of R is still geometrically regular
over k, so, by [SP, Lemma 0ARH], we may restrict to strictly Henselian R in (i) (and also in (ii)).

Lemma 3.1.4. Let X be a k-algebraic space and let k1{k be a field extension.

(a) If Xk1 is pseudo-proper (resp., pseudo-complete) over k1, then so is X over k.

(b) If k1{k is separable and X is pseudo-proper (resp., pseudo-complete) over k, then so is Xk1

over k1.

Proof. By fpqc descent [SP, Lemmas 0421 and 041U], being separated or of finite type may be
checked after base change to k1. Thus, for (b), it suffices to note that since k1{k is separable, a ring
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(resp., a field) that is geometrically regular (resp., separable) as a k1-algebra is also geometrically
regular (resp., separable) as a k-algebra.

In the remaining (a), we begin with the case when k1{k is separable. This assumption and [CGP15,
argument on top of page 583] ensure that for every discrete valuation ring R that is a geometrically
regular k-algebra, there is a local injection R Ñ R1 over k Ñ k1 such that R1 is a localization of Rbkk

1

at some prime ideal and also a discrete valuation ring that is geometrically regular as a k1-algebra. It
then remains to apply [SP, Lemma 0ARH] to get the separable case of (a). An analogous argument
works for an arbitrary k1{k granted that we focus on the pseudo-completeness variant (although
the latter also results by adapting the argument that follows). In general, due to the settled (b)
and the separable case of (a), it remains to settle the pseudo-proper variant of (a) in the case
when k1{k is purely inseparable. In this case, we fix a discrete valuation ring R that is a geometrically
regular k-algebra with fraction field K and a K-point of X that we wish to extend to an R-point. By
the pseudo-properness of Xk1 over k1 and a limit argument, there is a finite, purely inseparable field
extension ℓ{k such that the induced pK bk ℓq-point of Xℓ extends to an pRbk ℓq-point, equivalently,
such that the induced K-point of Resℓ{kpXℓq extends to an R-point. To get the desired R-point
of X, it remains to note that, since X is separated, the map X ãÑ Resℓ{kpXℓq of the adjunction is a
closed immersion, see [BLR90, bottom of p. 197] and [SP, Lemma 03KP]. □

Proposition 3.1.5. Let G be a k-group scheme of finite type.

(a) G is pseudo-finite if and only if pGgredq0 “ 1.

(b) G is pseudo-complete if and only if Gsm, lin is wound unipotent.

(c) G is pseudo-proper if and only if Gsm, lin is strongly wound unipotent, equivalently, if and only
if G has no nontrivial unirational k-subgroup (that is: Guni “ 1).

In particular, a pseudo-abelian variety is pseudo-proper, and it is proper if and only if it is an abelian
variety. In each of these statements, the corresponding pseudo-finiteness, pseudo-completeness,
pseudo-properness, or properness conclusion also holds for every étale locally trivial G-torsor over k.

Proof. By Lemma 3.1.4, Remark 2.2.3, §2.1.2, and Remark 3.1.3, the conditions in question are
insensitive to base change to ks and only depend on Ggred, so we may assume that k is separably
closed and G is smooth. Each G-torsor is then trivial and each connected component of G is
k-isomorphic to G0, so it is enough to treat G under the assumption that it is connected.

Since k is separably closed, G is pseudo-finite if and only if Gpkq is finite. This happens if and only
if the closure of Gpkq in G is 0-dimensional, that is, if and only if pGgredq0 “ 1.

For the rest, we first argue the claim about pseudo-abelian varieties. By §2.4.1, it suffices to show
that each pseudo-abelian variety G is pseudo-proper. There are many ways to see this: for instance,
by the Popescu theorem (see §1.7) and the Bosch–Lütkebohmert–Raynaud criterion recalled in
§2.1.2 (9), it suffices to check that there is no nontrivial, connected, unirational (and hence smooth)
k-subgroup U ď G. The abelian variety Gav has no such k-subgroup, so U lies in Glin, and so is
affine. The definition of a pseudo-abelian variety then implies that U is trivial. For another argument
for the pseudo-properness of G, see Theorem 3.2.2 (ii) below and its proof.

For the remaining (b) and (c), since pseudo-completeness or pseudo-properness may be tested after
restricting to strictly Henselian discrete valuation rings R (subject to the respective condition on
R, see Remark 3.1.3), and thanks to the already settled case of pseudo-abelian varieties, we may
replace G by Gsm, lin to assume that our connected, smooth G is affine. Since neither Ga nor Gm

are pseudo-complete, they cannot occur as k-subgroups of any pseudo-complete G. In particular,
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every pseudo-complete, connected, smooth, affine k-group G satisfies Gtor “ 1, and so is even wound
unipotent by §2.1.2 (9). Conversely, the pseudo-completeness of wound unipotent groups is a result
of Tits, see [CGP15, Lemma C.1.8], that follows by combining the cckp filtration with (2.7.1.1).
This settles (b).

Pseudo-properness of strongly wound unipotent groups in (c) follows from the cckp filtration,
Lemma 2.7.5, and the same Bosch–Lütkebohmert–Raynaud criterion from §2.1.2 (9). Conversely, if
a smooth, wound unipotent k-group G is pseudo-proper, then the same criterion implies that G has
no nontrivial, commutative, unirational k-subgroups, so that G is strongly wound by Definition 2.7.3.
Thanks to (b), this gives the first “if and only if” in (c). For the second “if and only if” in (c), it
then remains to review §2.1.2 (10). □

Example 3.1.6 (pseudo-complete œ pseudo-proper). For every finite, purely inseparable field
extension k1{k, by [Oes84, chapitre VI, section 5.1, lemme] (alternatively, see Lemma 2.7.2 above),

U :“ Resk1{kpGmq{Gm

is a wound unipotent, unirational (in particular, not strongly wound) k-group, so, by Proposi-
tion 3.1.5 (c), it is pseudo-complete but not pseudo-proper unless k1 “ k. In general, to appreciate
the difference between pseudo-properness and pseudo-completeness of a separated k-algebraic space
X of finite type, consider a smooth affine k-curve C and a closed point c P C. If X is pseudo-proper,
then every k-morphism C ´ c Ñ X extends uniquely to a k-morphism C Ñ X; in contrast, if X is
only pseudo-complete over k, then such an extension is guaranteed only when kpcq{k is separable.

Remark 3.1.7. Pseudo-properness is intriguing from the point of view of resolving singularities.
Namely, for a smooth, integral, pseudo-proper k-scheme X and any regular, proper, integral
compactification X Ă X with XzX a divisor, by (3.1.1.1), we have Xsm

“ X, that is, the k-smooth
locus of X is not larger than X. In other words, X is regular but not smooth anywhere along
the boundary XzX. Such an X ought to exist by the resolution of singularities conjecture but
remains elusive even in the cases of Proposition 3.1.5, for instance, for pseudo-abelian varieties
or for connected, smooth, strongly wound unipotent groups. The pseudo-properness of these two
types of groups and [BLR90, Section 10.3, Theorem 1] show that they never possess a smooth
compactification over k unless they are abelian varieties to begin with.

3.2. Extending generic sections and Grothendieck–Serre for pseudo-abelian varieties

An integral scheme S with fraction field K and any finite S-scheme X satisfy

XpSq
„
ÝÑ XpKq, (3.2.0.1)

see, for instance, [Čes17, Lemma 3.1.9]. This is useful in many contexts, for instance, in moduli
theory, where X may parametrize automorphisms of some object and we may wish to extend
automorphisms over K to those of an entire family over S. We extend this to pseudo-finite X (see
Definition 2.2.2) as follows.

Proposition 3.2.1. Let S be a normal integral k-scheme whose function field K is separable over k
(an automatic assumption if S is geometrically reduced). For a pseudo-(locally quasi-finite) k-algebraic
space X (resp., a k-group scheme G locally of finite type), we have

XpSq
„
ÝÑ XpKq (resp., pG{pGgredq0qpSq

„
ÝÑ pG{pGgredq0qpKqq.

Proof. By (2.2.1) and Remark 2.2.3, we may replace X by Xgred to reduce to the case when X is
a separated, étale k-scheme. The separatedness ensures that the map in question is injective, see
[EGA I, corollaire 9.5.6]. Thus, for its surjectivity, we may replace X by an affine open containing
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the K-point of interest to reduce to when X is finite étale. The finite case, however, is a special
instance of (3.2.0.1). The claim about G follows from that about X and Example 2.2.7. □

An integral, regular scheme S with fraction field K and a torsor E under an abelian S-scheme A
satisfy

EpSq
„
ÝÑ EpKq, so that, consequently, H1pS,Aq ãÑ H1pK,Aq, (3.2.1.1)

see, for instance, [BLR90, Section 8.4, Corollary 6] or [Čes22b, Remark 3.1.7] (essentially, it suffices
to view A as the dual of its dual A_ and use the regularity to extend line bundles), alternatively
[Bha12, Proposition 4.2 and Remark 4.5] (this last argument is based on finding projective lines
in positive-dimensional fibers of modifications of regular schemes, see also [KS15, Theorem B.0.1]).
This Grothendieck–Serre type conclusion for abelian schemes is useful in many contexts.

We extend this to pseudo-abelian varieties, in particular, we establish the pseudo-abelian variety
case of our main Grothendieck–Serre Theorem 1.1.1 in part (c) (ii) of the following Theorem 3.2.2.
Its part (b) (ii) also extends Proposition 3.2.1 to torsors over S under pseudo-finite k-groups. The
key statement is (3.2.2.2) in (b) and was announced by Gabber in [Gab12, bottom of p. 2371] under
an additional unipotence assumption.

Theorem 3.2.2. Let G be a k-group scheme locally of finite type, let S be an integral k-scheme, and
let E be a G-torsor over S.

(a) We have
pE{G0qpSq

„
ÝÑ pE{G0qpKq. (3.2.2.1)

(b) If S is geometrically normal over k and every k-torus of Gk lies in pGgredqk, then

pE{pGgredq0qpSq
„
ÝÑ pE{pGgredq0qpKq. (3.2.2.2)

(c) If S is geometrically normal over k and regular and every k-torus of Gk lies in pGgredqk, then

pE{Gsm, linqpSq
„
ÝÑ pE{Gsm, linqpKq. (3.2.2.3)

In particular, in the setting of (a) (resp., (b), resp., (c)),

(i) each generically trivial G-torsor over S reduces to a generically trivial G0-torsor (resp., pGgredq0-
torsor, resp., Gsm, lin-torsor) over S;

(ii) if G0 is trivial (resp., is pseudo-finite, resp., is pseudo-proper), then

EpSq
„
ÝÑ EpKq and KerpH1pS,Gq Ñ H1pK,Gqq “ t˚u. (3.2.2.4)

Proof. Preimages in E of scheme-valued points of E{G0 correspond to reductions of E to a G0-torsor,
and similarly for pGgredq0 and Gsm, lin, so (3.2.2.1), (3.2.2.2), and (3.2.2.3) imply (i). They also
imply (ii) in the cases (a), (b), and reduce it to connected, smooth, affine G in the case (c) because
if G0 is trivial (resp., pseudo-finite; resp., pseudo-proper), then G0 is trivial (resp., pGgredq0 is trivial;
resp., Gsm, lin is pseudo-proper). To conclude (ii) in the case (c), we may work étale locally on S, so,
by the smoothness of G, may assume that E is trivial. The pseudo-properness of G then extends
every K-point of G uniquely to a U -point for some open U Ă S with complement of codimension
ě 2 (depending on the K-point). The affineness of G, the codimension condition, and, for instance,
[ČS24, Lemma 7.2.7(b)] (recalled in (4.1.0.2) below), then extend a U -point uniquely to an S-point.
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(a) By working étale locally on S to trivialize the G{G0-torsor E{G0 (see §2.1.2 (1)), we find
from (3.2.0.1) that

pE{G0qpSq
„
ÝÑ pE{G0qpKq.

(b) Since pGgredq0 is closed inG, the quotient E{pGgredq0 is a separated S-algebraic space (see §1.7),
so [EGA I, corollaire 9.5.6] and its proof ensure that (3.2.2.2) is injective. For its surjectivity,
by working locally, we may assume that S is affine. In addition, since the preimage in E of
any S-point of E{G0 is a G0-torsor, by (a), we may assume that G is connected, so of finite
type. If then G is already smooth, so that G “ Ggred, then E{pGgredq0 is S-finite and (3.2.2.2)
is a special case of (3.2.0.1). Thus, it suffices to reduce to smooth G, and for this it is enough
to argue that we lose no generality by replacing G by successively deeper subgroups Gpiq of
the filtration (2.2.8). Moreover, since pGpiqqgred “ Ggred, each Gpiq inherits our assumption
on the k-tori. Thus, for a finite, purely inseparable field extension k1{k and k1-group quotient
Q :“ Gk1{pGk1qred, it suffices to show how to replace G by the stabilizer Gq of the unique
q P pResk1{kpQqqpkq. For this, since Ggred ď Gq (see §2.2.8), our assumption on the k-tori
and Lemma 2.2.11 ensure the closedness of the orbit G{Gq – G ¨ q Ă Resk1{kpQq. Consider
the affine S-scheme defined by the contracted product E ˆG pResk1{kpQqqS . The adjunction
counit pResk1{kpQqqk1 Ñ Q is Gk1-equivariant (see §2.2.8), so it gives an S-morphism

E ˆG pResk1{kpQqqS
„
ÝÑ ResSk1 {SpESk1 ˆGk1 QSk1 q, (3.2.2.5)

which we check to be an isomorphism by working fppf locally on S to trivialize E. Since Q is
a finite k1-scheme, its Sk1-form ESk1 ˆGk1 QSk1 is a finite Sk1-scheme, and Sk1 is normal and
integral by the geometric normality of S. Thus, (3.2.2.5) and (3.2.0.1) give

pE ˆG pResk1{kpQqqSqpSq
„
ÝÑ pE ˆG pResk1{kpQqqSqpKq.

Since G ¨ q Ă Resk1{kpQq is closed, so is E ˆG pG ¨ qqS Ă E ˆG pResk1{kpQqqS . Moreover, fppf
locally on S, we have E{Gq

„
ÝÑ E ˆG pG ¨ qq. Thus, also

pE{GqqpSq
„
ÝÑ pE{GqqpKq.

Now, a K-point of E{pGgredq0 lifts to an S-point after replacing E by the corresponding
Gq-subtorsor, reducing the proof of (3.2.2.2) to the case of Gq, as desired.

(c) Similarly to the proof of (b), (3.2.2.2) reduces (3.2.2.3) to the case when G is connected
and smooth. Then G{Glin is an abelian variety (see §2.1.2 (3)), so (3.2.1.1) applies, and the
argument of (a) reduces to when G is connected and affine (but possibly not smooth). To
conclude (3.2.2.3), we review §2.1.2 (4) and apply (3.2.2.2) once again. □

Remark 3.2.3. In the case when G “ Resk1{kpG1q for a finite, purely inseparable extension k1{k and
an abelian variety G1 over k1, it is remarkable that Theorem 3.2.2 (c) (ii) holds without assuming
that S is geometrically regular. This is the advantage of approaching (c) (ii) indirectly, via (b).

Remark 3.2.4. The condition on the k-tori of Gk is needed in Theorem 3.2.2: without it (3.2.2.2)
fails already for some pseudo-finite G, see [FG21, Example 7.2 (b) and Remark 7.3 (b)].

3.3. Pseudo-properness of G{P

We wish to improve a result of Borel–Tits [BT78, Proposition 1] that reappeared in [Tit13, cours 1992–
1993, section 2.5] and [CGP15, Proposition C.1.6]: for a pseudo-parabolic subgroup P of a smooth,
affine, connected k-group G, the quotient G{P is not only pseudo-complete as these references
showed, but is even pseudo-proper as we now argue. The arguments there were built on the pseudo-
completeness of wound unipotent groups and do not generalize because the wound groups that are
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relevant there are not pseudo-proper (see Proposition 3.1.5 (c)). In contrast, we build our argument
on the extension result Theorem 3.2.2 and the comparison map iG of §2.5.2.

Theorem 3.3.1. For a connected, smooth, affine k-group G and a pseudo-parabolic k-subgroup
P Ă G, the quotient G{P is pseudo-proper and quasi-projective over k.

Example 3.3.2. If G “ Resk1{kpG1q for a finite field extension k1{k and a reductive k1-group
G1, then P “ Resk1{kpP 1q for some parabolic k1-subgroup P 1 ď G1 (see §2.6.2). In this case,
[CGP15, Corollary A.5.4 (3)] ensures that G{P – Resk1{kpG1{P 1q, which is pseudo-proper by
Example 3.1.2 and [SGA 3III new, exposé XXVI, proposition 1.2].

Proof of Theorem 3.3.1. The quasi-projectivity of G{P follows from the results reviewed in §2.1.1.
For its pseudo-properness, by §2.6.2, we may assume that G is pseudo-reductive, of minimal type.
We let iG be the comparison map as in §2.5.2, so that iGpGq{iGpP q is pseudo-proper by Lemma 2.6.4
and Example 3.3.2. As for G{P itself, we then consider a strictly Henselian discrete valuation ring R
that is a geometrically regular k-algebra with fraction field K and an x P pG{P qpKq to be extended
to an R-point. The target of the map

G{P Ñ iGpGq{iGpP q (3.3.2.1)

is pseudo-proper, so there is a unique y P piGpGq{iGpP qqpRq that extends the image of x. Since R
is strictly Henselian and iGpP q is smooth, y lifts to an R-point of iGpGq, so, by Lemma 2.6.3, the
y-fiber of the map (3.3.2.1) is a generically trivial torsor over R under a k-group that is a direct
factor of KerpiGq, with x as a generic trivialization. Since KerpiGq is pseudo-finite (see §2.5.2), so
are its direct factors over k. Thus, Theorem 3.2.2 (b) (ii) ensures that x extends to an R-point
of the torsor in question. In particular, x extends to an R-point of G{P , so that G{P is indeed
pseudo-proper by Remark 3.1.3. □

Example 3.3.3. To illustrate how the pseudo-properness of G{P is useful in practice, consider a
smooth, integral k-curve C with the function field K and a G-torsor E over C. Sections of E{P
correspond to reductions of E to a P -torsor, and the pseudo-properness of G{P , applied over an
étale cover of C trivializing E, implies that

pE{P qpCq
„
ÝÑ pE{P qpKq.

In other words, every generic P -reduction of E extends uniquely to a P -reduction of E over all of C.
If we only knew that G{P was pseudo-complete, then we would only know the same extendability
for those P -reductions of E that are defined over some dense open C 1 Ă C such that the residue
field of every point of CzC 1 is separable over k.

Proposition 3.1.5 (b) and Theorem 3.3.1 combine into the following single statement.

Corollary 3.3.4. For a k-group scheme G locally of finite type, an étale locally trivial G-torsor E
over k, and a pseudo-parabolic k-subgroup P ď Gsm, lin, the connected components of the quotient
E{P are pseudo-proper and quasi-projective.

Proof. By considering a finite field extension over which a given connected component of E acquires a
rational point, we see that the components of E{P are quasi-compact. Thus, by the results reviewed
in §2.1.1, they are also quasi-projective. For their remaining pseudo-properness, by Lemma 3.1.4 (a),
we may base change to ks to reduce to when k is separably closed, so that E is trivial and E{P » G{P .

Since P is smooth (see §2.6.2), so is the map G↠ G{P . Thus, by §2.2.1, the preimage of pG{P qgred

is precisely Ggred, that is, pG{P qgred – Ggred{P . By Remark 3.1.3, we may therefore replace G by
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Ggred to reduce to when G is smooth. Once G is smooth, since k is separably closed, the target of

G{P ↠ G{G0

is a disjoint union of copies of Specpkq and the preimage of each one of them is a copy of G0{P .
This reduces us to considering G0{P , that is, we may assume that G is smooth and connected. We
then consider the smooth map

G{P ↠ G{Gsm, lin

whose target, by §2.1.2 (4), is a pseudo-abelian variety. Since pseudo-properness may be tested using
strictly Henselian, geometrically regular discrete valuation rings R over k (see Remark 3.1.3) and, by
strict Henselianity, the R-fibers of this map are isomorphic to Gsm, lin{P , the sought pseudo-properness
of G{P follows by combining the pseudo-abelian variety case settled in Proposition 3.1.5 (b) and the
connected, smooth, affine case settled in Theorem 3.3.1. □

4. Purity and extension results for torsors

Our argument for Theorem 1.1.1 is built on purity results for G-torsors. The classical cases of these
results concern finite schemes, abelian varieties, and reductive groups, and we now generalize to
pseudo-finite schemes, pseudo-abelian varieties, and quasi-reductive groups. These generalizations
seem subtle, however: the statements require new, sometimes delicate hypotheses and the proofs
reach classical cases in somewhat intricate ways. To carry them out, we critically use the comparison
maps iG of §§2.3–2.5, in particular, we use the new affineness result Proposition 2.3.5.

4.1. Purity for torsors under pseudo-finite groups

A well-known purity result of Moret-Bailly says that for a regular scheme S, a closed subset Z Ă S
of codimension ě 2, and a finite, flat S-group G, we have an equivalence of categories

tG-torsors over Su
„
ÝÑ tG-torsors over SzZu, (4.1.0.1)

see [MB85, lemme 2] or [ČS24, Theorem 7.1.3]. We extend this to commutative pseudo-finite k-groups
G in Theorem 4.1.3 below. Since pseudo-finite groups appear as kernels of the comparison maps iG
presented in §2.4.2 and §2.5.2, this purity for pseudo-finite groups is a building block towards similar
results for pseudo-abelian varieties and pseudo-reductive groups. The full faithfulness in (4.1.0.1) is
a special case of the Hartogs extension principle for sections: for a scheme S that is of depth ě 2
along a closed subset Z Ă S, and for an affine S-scheme X, we have

XpSq
„
ÝÑ XpSzZq, (4.1.0.2)

see, for instance, [ČS24, Lemma 7.2.7 (b)], or perhaps also [Čes22b, Section 1.3.9] for further review.
We now upgrade this Hartogs principle to a similar extendability result for fppf local triviality of
torsors in Lemma 4.1.2.

Lemma 4.1.1. For a finite, locally free scheme map S1 Ñ S and a flat, locally finitely presented
S1-group algebraic space G, the counit map pResS1{SpGqqS1 Ñ G gives a monomorphism of stacks

BpResS1{SpGqq ãÑ ResS1{SpBGq (4.1.1.1)

whose essential image, for a variable S-scheme T , consists of those G-torsors over T 1 :“ S1 ˆS T
that trivialize fppf locally over T (and not merely over T 1). In particular, this monomorphism is an
equivalence whenever G is smooth.

Proof. Except for the last assertion, the claims are all special cases of [Gir71, chapitre V, proposi-
tion 3.1.3] (and of its proof). When G is smooth, to show that every G-torsor over T 1 trivializes
fppf locally on T , a limit argument allows us to assume that T is strictly Henselian local. Then our
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T -finite T 1 is a union of strictly Henselian local schemes, so that, since G-torsors inherit smoothness
(see §1.7), they are all trivial over T 1. □

To analyze (4.1.1.1) beyond smooth groups, we will use the following lemma.

Lemma 4.1.2. For a finite, purely inseparable field extension k1{k, a k1-group G that is either finite
or unipotent, and a k-scheme S that is of depth ě 2 along a closed subset Z Ă S, a G-torsor E over
S1 :“ Sk1 trivializes fppf locally on S if and only if its restriction to pSzZqk1 trivializes fppf locally on
SzZ, in other words, the following square is Cartesian:

`

BpResS1{SpGS1qq
˘

pSq
� � //

� _

��

`

ResS1{SpBGS1q
˘

pSq
� _

��
`

BpResS1{SpGS1qq
˘

pSzZq
� � //

`

ResS1{SpBGS1q
˘

pSzZq.

Proof. The equivalent reformulation in terms of the Cartesian square, as well as the full faithfulness
of the horizontal arrows of this square, follows from Lemma 4.1.1. The affineness of G, the depth
hypothesis, and (4.1.0.2) give the full faithfulness of the vertical arrows. Moreover, the “only if”
assertion is clear, so we focus on the “if,” for which we may work locally on S, and hence, by a limit
argument, assume that S is local.

We choose a k1-group embedding G ãÑ rG with rG “ GLn, k1 if G is finite (resp., with rG some k1-group
of upper unitriangular matrices when G is unipotent) and note that in both cases the homogeneous
space rG{G is affine, see [Čes22b, Section 1.3.8], §1.7, and Lemma 2.3.4. By Lemma 2.3.2, the kernels
of the counit maps

c : pResk1{kpGqqk1 ↠ G and rc : pResk1{kp rGqqk1 ↠ rG

are unipotent. Lemma 2.3.4 then shows that Kerprcq{Kerpcq is affine. However, then the quotient
Resk1{kp rGq{Resk1{kpGq is also affine: after base change to k1, it suffices to note that the map

´

Resk1{kp rGq{Resk1{kpGq

¯

k1
– pResk1{kp rGqqk1{pResk1{kpGqqk1 ↠ rG{G

is affine because fppf locally on the target its source is isomorphic to the base change of Kerprcq{Kerpcq.
We conclude that both the source and the target of the map

i : Resk1{kp rGq{Resk1{kpGq ãÑ Resk1{kp rG{Gq

are affine, in particular, by (4.1.0.2), an S-point of Resk1{kp rG{Gq lies in Resk1{kp rGq{Resk1{kpGq if and
only if so does the induced pSzZq-point.

With this in mind, we consider the commutative square
´

Resk1{kp rGq{Resk1{kpGq

¯

pSzZq //

� _

ipSzZq

��

H1pSzZ, Resk1{kpGqq
� _

��´

Resk1{kp rG{Gq

¯

pSzZq // H1ppSzZqk1 , Gq

whose horizontal arrows are the connecting maps of long exact cohomology sequences and vertical
maps are injective by the above and by Lemma 4.1.1. Since S is local, S1 is semilocal, so all rG-torsors
over S1 are trivial. In particular, E induces a trivial rG-torsor, so, since E|pSzZqk1

trivializes fppf
locally on SzZ, Lemma 4.1.1 and [Gir71, chapitre III, proposition 3.2.2] ensure that the class of
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E|pSzZqk1
comes from some α P

´

Resk1{kp rGq{Resk1{kpGq

¯

pSzZq that is unique up to the left action

of pResk1{kp rGqqpSzZq. Similarly, the analogous square over S shows that the class of E in H1pS1, Gq

comes from some β P

´

Resk1{kp rG{Gq

¯

pSq that is unique up to the left action of pResk1{kp rGqqpSq.

However, Resk1{kp rGq is affine, so pResk1{kp rGqqpSq “ pResk1{kp rGqqpSzZq by (4.1.0.2). In particular,
we may arrange that β|SzZ “ α. At this point, the conclusion of the previous paragraph implies that
β is actually an S-point of Resk1{kp rGq{Resk1{kpGq. Then, however, β lifts to an S-point of Resk1{kp rGq

fppf locally on S, to the effect that E trivializes fppf locally on S, as desired. □

We now extend the purity (4.1.0.1) to torsors under pseudo-finite groups.

Theorem 4.1.3. Let S be a geometrically regular k-scheme, let Z Ă S be a closed subset of
codimension ě 2, and let G be a k-group scheme locally of finite type with G0 pseudo-finite and
commutative. For every gerbe B over S isomorphic to BG étale locally on S, we have

BpSq
„
ÝÑ BpSzZq,

in particular, for every S-group G isomorphic to G étale locally on S, we have

H1pS,G q
„
ÝÑ H1pSzZ,G q and, if G is commutative, also H2pS,G q ãÑ H2pSzZ,G q.

Proof. It suffices to settle the claim about B: the conclusions about H1 (resp., H2) follow from the
rest by choosing B “ BG (resp., by letting B be a G -gerbe over S that trivializes over SzZ and
using [SP, Lemma 0DLS] to see that this B is isomorphic to BG étale locally on S). By descent,
the claim about B is étale local on S, so we may assume that B “ BG and, by also working étale
locally and combining Noetherian induction with spreading out, that S is strictly Henselian local and
Z is its closed point.4 By Lemma 2.2.9 (and [SP, Lemma 02L5]), the connected components of G
are affine, so, by (4.1.0.2) and fpqc descent, the map BGpSq Ñ BGpSzZq is fully faithful. Thus, we
only need to show that every G-torsor over SzZ extends to a G-torsor over S (necessarily uniquely
up to a unique isomorphism).

For this, we first treat the case when G0 “ 1, that is, when G is twisted constant (see §2.1.2 (1)).
Due to its strict Henselianity, S is automatically a ks-scheme, so this case follows from the purity
for the étale fundamental group [SGA 2new, exposé X, théorème 3.4] (with [SGA 3II, exposé X,
corollaire 5.14] to ensure that every connected component of every torsor under a constant group
over SzZ is finite étale).

In general, by applying the settled twisted constant case to G{G0, and since S is strictly Henselian,
we find that every pG{G0q-torsor over SzZ is trivial. In particular, every G-torsor over SzZ reduces
to a G0-torsor over SzZ, so that we may assume that G is connected, and so also pseudo-finite
and commutative. With these assumptions, we will even prove that H2

ZpS,Gq – 0. For this, since
such vanishing is stable under extensions, §2.2.8 and the pseudo-finiteness of G allow us to assume
that G ď Resk1{kQ for a finite, purely inseparable field extension k1{k and a finite, commutative
k1-group Q. After base change to k1 and using Lemma 2.3.2, §1.7, and the finiteness of Q, the
k-group pResk1{kQq{G is affine. Thus, since S is of depth ě 2 along Z, the Hartogs extension for
sections (4.1.0.2) gives H1

ZpS, pResk1{kQq{Gq – 0. The exact sequence

H1
ZpS, pResk1{kQq{Gq Ñ H2

ZpS,Gq Ñ H2
ZpS,Resk1{kQq

4This specific assumption on Z will not be used in this proof, but it is convenient to do all the straightforward
preliminary reductions at once here and then simply also refer to them in the later proofs of Theorems 4.2.1 and 4.3.1.
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then reduces the desired vanishing of H2
ZpS,Gq to the case when G “ Resk1{kQ. Moreover, the

vanishing of this H2
Z follows from the equivalence of categories BpSq

„
ÝÑ BpSzZq for gerbes B over S

that become isomorphic to BG étale locally on S. Thus, by repeating the same reductions as at the
beginning of the proof, we are left with showing that every G-torsor over SzZ extends (necessarily
uniquely up to a unique isomorphism) to a G-torsor over S. Equivalently, by Lemma 4.1.1, since
G – Resk1{kpQq, we need to show that every Q-torsor over pSzZqk1 that trivializes fppf locally on
SzZ extends to a Q-torsor over Sk1 that trivializes fppf locally on S. Since Q is finite, Sk1 is regular,
and Zk1 Ă Sk1 is of codimension ě 2, the purity result (4.1.0.1) supplies the extension to a Q-torsor
over Sk1 . It then remains to note that, by Lemma 4.1.2, this torsor automatically trivializes fppf
locally on S because the same holds over SzZ. □

As we now show, purity for torsors under pseudo-finite groups of Theorem 4.1.3 implies that the map
on H2 in (4.1.3) need not be surjective even when G is finite. This also shows that the assumptions
of [ČS24, Theorem 1.1.1] are sharp.

Corollary 4.1.4. If k is imperfect of characteristic p, then for every 2-dimensional, geometrically
regular, local k-algebra pR,mq, its punctured spectrum UR :“ SpecpRqzm, and a k-group G that is
either αp or a nontrivial commutative extension of Z{pZ by µp, there is a G-gerbe over UR that does
not extend to a G-gerbe over R, in particular, H3

mpR,Gq fl 0.

Proof. By [SP, Lemma 0AVZ], since R is 2-dimensional, we have H2
mpRq fl 0, equivalently, there

is a nontrivial Ga-torsor E over UR. On the other hand, [Tot13, Lemmas 6.3 and 7.1] supply a
commutative, pseudo-finite extension rG of Ga by G over k. By Theorem 4.1.3, every rG-torsor over
UR extends to a rG-torsor over R. Thus, since E does not extend to a Ga-torsor over R (else it would
be trivial), it does not lift to a rG-torsor. In particular, via the long exact cohomology sequence
associated to the extension, E gives rise to a nontrivial G-gerbe over UR. By the cohomology
sequence and Theorem 4.1.3 again, this G-gerbe does not extend to a G-gerbe over R. □

4.2. Purity for torsors under pseudo-proper groups

Purity for torsors under abelian schemes says that for a regular scheme S, a closed subset Z Ă S of
codimension ě 2, and an abelian scheme G over S, we have an equivalence of categories

tG-torsors over Su
„
ÝÑ tG-torsors over SzZu. (4.2.0.1)

Indeed, (3.2.1.1) supplies the full faithfulness even with SzZ replaced by the union of the generic
points of S and so also shows that every G-torsor over SzZ has finite order, at which point the
extendability to S of a relevant Grns-torsor over SzZ for some n ą 0 follows from (4.1.0.1).

We now extend (4.2.0.1) to analogous purity for torsors under pseudo-abelian varieties, more generally,
for torsors under smooth, pseudo-proper k-groups.

Theorem 4.2.1. Let S be a geometrically regular k-scheme, let Z Ă S be a closed subset of
codimension ě 2, and let G be a k-group scheme locally of finite type with G0 pseudo-proper (see
Proposition 3.1.5 (c)) and either smooth or commutative. For every gerbe B over S isomorphic to
BG étale locally on S, we have

BpSq
„
ÝÑ BpSzZq,

in particular, for every S-group G isomorphic to G étale locally on S, we have

H1pS,G q
„
ÝÑ H1pSzZ,G q and, if G is commutative, also H2pS,G q ãÑ H2pSzZ,G q. (4.2.1.1)
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Proof. As in the proof of Theorem 4.1.3, we may assume that S is strictly Henselian local and that
Z is its closed point. As there, we need to show that every G-torsor (resp., every isomorphism of
G-torsors) over SzZ extends uniquely to a G-torsor (resp., an isomorphism of G-torsors) over S.
Since S is strictly Henselian, it is automatically a ks-scheme, so every pG{G0q-torsor over S is a
disjoint union of copies of S (see §2.1.2 (1)) and every G-torsor over S is then, as an S-scheme,
a disjoint union of G0-torsors. By applying Theorem 4.1.3 to the étale k-group G{G0, we may
therefore pass to G0 to assume that G is connected. (To extend G-torsor isomorphisms, we note
that, by schematic density of SzZ in S, it suffices to extend them as scheme isomorphisms.)

The case when our connected G is commutative reduces to when it is smooth: indeed, then torsor
isomorphisms extend by Theorem 3.2.2 (ii), the smooth k-subgroup Ggred inherits pseudo-properness,
and, by Example 2.2.7, the quotient G{Ggred is pseudo-finite, so Theorem 4.1.3 and (4.2.1.1) applied
to Ggred (including the aspect about H2) imply the claim for G. Once our connected G is smooth,
since S is strictly Henselian, every G-torsor over S is trivial. In particular, the desired conclusion is
stable under extensions and we may assume that G is either a pseudo-abelian variety or a connected,
smooth, strongly wound unipotent group (see §2.1.2 (4) and Proposition 3.1.5 (c)). Moreover, by
Theorem 3.2.2 (ii), it even suffices to show that every G-torsor over SzZ is generically trivial.

In the pseudo-abelian variety case, we consider the comparison map of §2.4.2:

iG : G Ñ Resk1{kpGq,

and we aim directly for the a priori stronger conclusion that H2
ZpS,Gq – 0. For this, since

KerpiGq is commutative and pseudo-finite, Theorem 4.1.3 allows us to replace G by iGpGq; in other
words, we may assume that iG is injective. At this point, since CokerpiGq is affine, (4.1.0.2) gives
H1

ZpS,CokerpiGqq – 0, to the effect that we may assume that G “ Resk1{kpGq. By the same reasoning
as in the proof of Theorem 4.1.3 and by Lemma 4.1.1, it now suffices to show that every G-torsor
over pSzZqk1 extends to a G-torsor over Sk1 . However, G is an abelian variety, Sk1 is regular, and
Zk1 Ă Sk1 is of codimension ě 2, so this extendability follows from (4.2.0.1).

In the remaining unipotent case, by Lemma 2.7.5, we may assume that our connected, smooth,
strongly wound, unipotent k-group G is commutative and p-torsion. Moreover, by the Popescu
theorem (see §1.7), we may assume that S is the strict Henselization of a smooth k-scheme at a
point. By excision [Čes22b, Proposition 4.2.1], the question of extending G-torsors over Z only
depends on the base change to the completion of S along Z. Thus, by passing to this completion,
we may assume that S is not only strictly Henselian but also complete. At this point, the desired
generic triviality of G-torsors over SzZ becomes a special case of Lemma 4.2.2 (b). □

Lemma 4.2.2. Let p be the characteristic exponent of k, let S be a locally Noetherian k-scheme, let
Z Ă S be a closed subset of codimension ě 2, and let G be a unipotent k-group scheme.

(a) If S is of depth ě 3 along Z (so that Z Ă S is of codimension ě 3), then every G-torsor over
SzZ extends uniquely to a G-torsor over S, in fact, for every S-gerbe B isomorphic to BG

étale locally on S, we have BpSq
„
ÝÑ BpSzZq.

(b) If S is geometrically regular, strictly Henselian, local, Z is its closed point, S is complete
along Z, and G is connected, smooth, commutative, and p-torsion, then every G-torsor over
SzZ is generically trivial.

(c) If k is separably closed, S – Specp pOA2
k, z

q for a closed point z “ Z of A2
k – Specpkrs, tsq cut out

set-theoretically by spn ´a and tpm ´b for some a, b P k, n,m ě 0, and G is connected, smooth,
commutative, and p-torsion, then every G-torsor over Szz trivializes both over Sr 1

spn´a
s and

over Sr 1
tpm´b

s.
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Proof. Both the assumptions and the conclusion of (c) are strictly stronger than those of (b).

(a) As in the proof of Theorem 4.1.3, it suffices to show that G-torsors extend, and we may
assume that S is local. Since G is unipotent, it is a k-subgroup of some upper unitriangular
matrix k-group U , and U{G is affine; its sections correspond to G-reductions of the trivial
U -torsor, see §1.7. This affineness and (4.1.0.2) give pU{GqpSq

„
ÝÑ pU{GqpSzZq. Thus, since

every U -torsor over our local S is trivial, we may assume that G “ U . We then need to
show that every G-torsor over SzZ is trivial and, by passing to subquotients of G, we reduce
to G “ Ga. It then suffices to note that H1pSzZ,OSzZq – H2

ZpS,OSq – 0 because S is
Noetherian local of depth ě 3.

(b) By the Popescu theorem (see §1.7) and a limit argument, we may assume that S is the
completion of the strict Henselization of a smooth, irreducible k-scheme X of dimension d ě 0
at the generic point y of some irreducible closed Y Ă X of codimension ě 2. Moreover, by (a),
we may assume that S is 2-dimensional, so that Y is of codimension 2. By the presentation
theorem [CTHK97, Theorem 3.1.1], at the cost of shrinking X around y, we may find a
smooth k-morphism ψ : X Ñ Ad´1

k of relative dimension 1 that makes Y finite over Ad´1
k .

Since Y Ă X is of codimension 2, its image ψpY q Ă Ad´1
k is a divisor with the generic point

ψpyq. By the presentation theorem again, now applied with ψpY q Ă Ad´1
k in place of Y Ă X,

after shrinking X around y we may find a smooth k-morphism ψ1 : X Ñ Ad´2
k of relative

dimension 2 that makes Y finite over Ad´2
k . Now ψ1pyq is the generic point of Ad´2

k , so we may
replace k by kpt1, . . . , td´2q (see also §2.1.2 (6)) to reduce to the case when X is of dimension
2 and Y is its closed point y. Moreover, since the strict Henselization of X at y does not
change if we consider Xks instead, we may also assume that k is separably closed.

We apply the presentation theorem [CTHK97, Theorem 3.1.1] one final time to find, after
shrinking X around y, an étale k-morphism φ : X Ñ A2

k with kφpyq
„
ÝÑ ky, so also with

pOA2
k, φpyq – pOX, y. By its universal property, the completion of the strict Henselization of a

Noetherian local ring is insensitive to first passing to an initial completion, so our S is also
the completion of the strict Henselization of A2

k at φpyq. Moreover, since k is separably closed,
the strict Henselization is superfluous. All in all, we may assume that S – Specp pOA2

k, z
q for

some closed point z P A2
k. The extension kz{k is purely inseparable, so, letting s and t be

the standard coordinates on A2
k, there are some a, b P k and n,m ě 0 for which the Artinian

local closed subscheme Specpkrs, ts{psp
n

´ a, tp
m

´ bqq Ă A2
k is an infinitesimal thickening of

z. We are now in the setting of (c), so it suffices to settle the latter.

(c) By §2.7.1, our k-group G is given by the vanishing locus of some p-polynomial

F “
řN

i“0

řni
j“0 fiju

pj

i P kru0, . . . , uN s

with fini ‰ 0 whenever ni ě 0. By symmetry, it suffices to argue that every G-torsor over
Szz trivializes over Sr 1

tpm´b
s.

We set B :“ pOA2
k, z

, so that concretely B is the psp
n

´ a, tp
m

´ bq-adic completion of krs, ts.
Moreover, let A be the psp

n
´ aq-adic completion of krss, so that B is the ptp

m
´ bq-adic

completion of Arts. Concretely, A is the ring of formal series

ř

iě0pai,0 ` ai,1s` ¨ ¨ ¨ ` ai,pn´1s
pn´1qpsp

n
´ aqi with ai,i1 P k, (4.2.2.1)
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where multiplication uses iterative division by spn ´ a until the residue polynomial has degree
ď pn ´ 1. Similarly, B is the ring of formal series

ř

jě0pbj,0 ` bj,1t` ¨ ¨ ¨ ` bj,pm´1t
pm´1qptp

m
´ bqj with bj,j1 P A.

We consider the fraction fields KA and KB of A and B, respectively, as well as the ptp
m

´ bq-
adic completion C of KArts. Similarly, C is the ring of formal power series

ř

jě0pcj,0 ` cj,1t` ¨ ¨ ¨ ` cj,pm´1t
pm´1qptp

m
´ bqj with cj,j1 P KA.

By excision [Čes22b, Proposition 4.2.1], a G-torsor over Szz amounts to a G-torsor over
Br 1

tpm´b
s whose restriction to Cr 1

tpm´b
s extends to a G-torsor over C. Via the explicit

description of G-torsors in terms of F (see (2.7.1.1)), this amounts to an α P Br 1
tp

m
´b

s and a
β P C for which we have α´β “ F pγq for some γ P pCr 1

tpm´b
sqN`1. The coordinates of γ are

formal series
ř

jPZpcj,0 ` cj,1t` ¨ ¨ ¨ ` cj,pm´1t
pm´1qptp

m
´ bqj with cj,j1 P KA and only finitely

many cj,j1 nonzero for j ă 0. Collecting the terms with j ě 0 gives an element γ1 P CN`1.
By replacing β with β ` F pγ1q (see (2.7.1.1)), we reduce to the case when cj,j1 “ 0 for all
j ě 0. In turn, each cj,j1 is a formal series

ř

iPZpai,0 ` ai,1s ` ¨ ¨ ¨ ` ai,pn´1s
pn´1qpsp

n
´ aqi

with ai,i1 P k and only finitely many ai,i1 nonzero for i ă 0. Collecting the terms with i ě 0

for all the nonzero cj,j1 with j ă 0 gives an element γ2 P pAr 1
tpm´b

sqN`1. Replacing α by
α ´ F pγ2q reduces us further to the case when cj,j1 “ 0 whenever j ě 0 and also ai,i1 “ 0 for
i ě 0. At this point, each coordinate of γ is a finite sum of terms ai,i1si

1

tj
1

psp
n

´ aqiptp
m

´ bqj

with i, j ă 0 and i1 ă pn, j1 ă pm. Consequently, F pγq is a finite sum of terms of this form
because F is a p-polynomial and, for any r ě 0, i1pr ă pnpr and j1pr ă pmpr, ensuring that
division by psp

n
´ aq and ptp

m
´ bq only involves powers with negative exponents. On the

other hand, β involves only nonnegative powers of ptp
m

´ bq, while α only involves coefficients
bi,i1 whose formal expansions only use nonnegative powers of psp

n
´ aq. Thus, α ´ β “ F pγq

is possible only if F pγq “ 0, that is, α “ β. Then α P B by (4.1.0.2). In other words, the
restriction of our G-torsor to Br 1

tpm´b
s extends to B itself. Since B is strictly Henselian and

G is smooth, it follows that every G-torsor over Szz trivializes over Sr 1
tpm´b

s, as desired. □

4.3. Purity for torsors under pseudo-complete groups

Purity for torsors under wound unipotent groups that we establish in Theorem 4.3.1 is a genuinely
new phenomenon that has no analogue over perfect fields. Indeed, for Ga we have

tGa-torsors over A2
ku

ȷ
ÝÑ tGa-torsors over A2

kztp0, 0quu (4.3.0.2)

because A2
kztp0, 0qu is not affine. In contrast, this equivalence holds with Ga replaced by any smooth,

wound, unipotent k-group, or even any smooth, pseudo-complete k-group, due to the following
extension of Theorem 4.2.1 to pseudo-complete groups.

Theorem 4.3.1. Let S be a geometrically regular k-scheme, let Z Ă S be a closed subset of
codimension ě 2, and let G be a k-group scheme locally of finite type with G0 pseudo-complete (for
instance, wound unipotent, see Proposition 3.1.5 (b)) and either smooth or commutative. If either

(i) every z P Z of codimension 2 in S lies in a geometrically regular k-subscheme Sz Ă S of
codimension ą 0 (when kz{k is separable, we may take Sz to be a small open of tzu); or

(ii) G0 » Resℓ{kpC{T q for a finite field extension ℓ{k, a commutative pseudo-reductive ℓ-group C,
and a maximal ℓ-torus T Ă C (all such G0 are wound unipotent); or

(iii) G0 is wound unipotent and rk : kps “ p, where p is the characteristic exponent of k; or
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(iv) G0
ks is unirational and contains no nonzero proper unirational ks-subgroups;

then, for every gerbe B over S isomorphic to BG étale locally on S, we have

BpSq
„
ÝÑ BpSzZq,

in particular, for every S-group G isomorphic to G étale locally on S, we have

H1pS,G q
„
ÝÑ H1pSzZ,G q and, if G is commutative, also H2pS,G q ãÑ H2pSzZ,G q.

The cases (ii)–(iv) show that the purity conclusion of Theorem 4.2.1 may continue to hold for some
k-groups G that are not pseudo-proper.

Proof. As in the proof of Theorem 4.1.3, we may assume that S is strictly Henselian local and Z is
its closed point z. As there, we need to show that every G-torsor over Szz extends uniquely (up
to a unique isomorphism) to a G-torsor over S, and likewise for torsor isomorphisms. As in the
proof of Theorem 4.2.1, we may assume that G is connected. Moreover, as there, the case when our
connected G is commutative reduces to the smooth case. In the latter, we combine the stability of
the desired conclusion under extensions with Theorems 4.2.1 and 4.1.3 (and Proposition 3.1.5) to
replace G by Gsm, lin and reduce to when G is connected, wound, and unipotent. At this point G is
affine, so the uniqueness aspect follows from (4.1.0.2). Since G is even unipotent, for the remaining
triviality of G-torsors over Szz, Lemma 4.2.2 (a) allows us to assume that S is 2-dimensional.

(i) The triviality of G-torsors over Szz is stable under extensions, so we may pass to the
subquotients of the filtration of G by its iterated cckp kernels (see §2.1.2 (7)) to reduce to
when G is commutative and p-torsion.

We let R be the coordinate ring of S and fix a geometrically regular, closed S1 Ă S of
codimension ą 0 that is the Sz in the assumption (i). The Popescu theorem (see §1.7) ensures
that R is a filtered direct limit of local rings Ri of smooth k-schemes with local transition
maps. Since the transition maps are local, for large i, a regular sequence that cuts out S1 Ă S
descends to a regular sequence in Ri. This descended sequence cuts out a closed subscheme
S1
i Ă SpecpRiq of codimension ą 0 that is geometrically regular (see [SP, Lemma 0381]):

indeed, S1
k1 Ă SpecpRbk k

1q is regular for every finite, purely inseparable field extension k1{k,
which only happens if pS1

iqk1 Ă SpecpRi bk k
1q is regular. Thus, a limit argument allows us to

replace R by some Ri to reduce to the case when R is a local ring of a smooth k-scheme, at
the cost of no longer assuming that R is strictly local and instead needing to show that every
G-torsor over Szz extends to a G-torsor over S.

To simplify R further, we now use our assumption on S1. By spreading out, S1 Ă S is
a localization of a closed immersion S 1 Ă S of irreducible smooth k-schemes, and we let
s : OS, z ↠ OS1, z be the resulting surjection of local rings (with R “ OS, z). By [EGA IV4,
corollaire 17.11.3] and the Jacobi criterion [BLR90, Section 2.2, Proposition 7], there is a local
ring A of some maximal ideal of some krT1, . . . , Tds for which OS, z is a localization of a smooth
A-algebra in such a way that OS1, z is an étale A-algebra. By base change, the OS1, z-algebra
rR :“ OS1, z bA OS, z is then a localization of a smooth OS1, z-algebra and comes equipped with
a “diagonal” section rs : rR↠ OS1, z. Since rs factors through the quotient rR↠ OS1, z bA OS1, z,
whose target is étale over OS1, z, and so has the target of rs as a direct factor, we conclude
from [EGA IV4, corollaire 17.9.5] that the étale map OS, z Ñ rR induces an isomorphism
between the completion of OS, z along the kernel of s and that of rR along the kernel of rs. By
[BLR90, Section 3.1, Proposition 2], the latter completion is isomorphic to OS1, zJt1, . . . , tnK.
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Thus, the completion of R along the ideal of S1 is a formal power series ring RJt1, . . . , tnK,
where R is a local ring of a smooth k-scheme and n ď 2 (because R is 2-dimensional).

The completion map R Ñ RJt1, . . . , tnK is faithfully flat and an isomorphism on residue fields
at maximal ideals, so, for extending our G-torsor over Szz to a G-torsor over S, excision
[Čes22b, Proposition 4.2.1] reduces us to when R is RJt1, . . . , tnK, at the cost of losing the
assumption that R is a localization of a smooth k-algebra. We then apply the Popescu theorem
RJt1, . . . , tn´1K and use a limit and algebraization argument based on [BČ22, Theorem 2.3.3
(c) (or Corollary 2.3.5 (a))] to reduce further to the case when n “ 1, in other words, to when
R is RJtK for an essentially smooth k-algebra R of dimension 1 (because R is of dimension 2).

By spreading out, R is the local ring at a generic point of an irreducible divisor in a smooth,
affine k-scheme S of dimension d ą 0. Moreover, we may assume that k is imperfect (so
infinite): otherwise, our smooth, wound, unipotent k-group G is trivial, and so are its torsors.
By the presentation lemma [CTHK97, Theorem 3.1.1], after shrinking around R, our S admits
a smooth map of relative dimension 1 to Ad´1

k that makes the divisor in question finite over
Ad´1
k . We may then replace k by the function field kpt1, . . . , td´1q of Ad´1

k to reduce to when
R is a local ring at a closed point of a smooth, affine k-curve (the assumptions on G are
preserved because kpt1, . . . , td´1q is separable over k, see §2.1.2). By the uniqueness of the
sought G-torsor extension and by Galois descent, we have the liberty of base changing to any
finite Galois extension of k, so by a limit argument and further passage to t-adic completion,
we may also assume that k is separably closed.

By [Čes22a, Lemma 6.3], the completion of R is isomorphic to that of A1
k at some closed point.

Thus, by excision [Čes22b, Proposition 4.2.1] again, we are reduced to when R “ RJtK, where
R is the completion of krss at some maximal ideal, explicitly, since k is separably closed, at
the ideal psp

n
´aq Ă krss for some a P k. At this point, we are in the setting Lemma 4.2.2 (c),

so we apply it to get that every G-torsor E over Szz trivializes both over Rpptqq and over
KJtK where K is the fraction field of R. It remains to note that, since K is separable over
k and G is pseudo-complete (see Proposition 3.1.5 (c)), any trivialization of E over Rpptqq
extends uniquely to a trivialization of E over KJtK, that is, to a trivialization over all of Szz.

(ii) The woundness of G0 follows from [CGP15, Example B.2.8]. By Lemma 4.1.1, we may assume
that ℓ “ k, so that G » C{T . By the purity for the Brauer group [Čes19, Theorem 5.3] (in
fact, already by [Gro68, théorème 6.1 b)]), we have H2pSzz, T q – 0, to the effect that every
G-torsor over Szz lifts to a C-torsor over Szz. To conclude, we will show that every C-torsor
over Szz extends to a C-torsor over S (equivalently, is trivial).

We consider the map iC : C Ñ Resk1{kpCq of §2.5.2, where C is a k1-torus because it is both
commutative and reductive. Since KerpiCq is commutative and pseudo-finite, Theorem 4.1.3
applies to it, and so allows us to replace C by iCpCq to assume that C is ultraminimal.
Moreover, since Resk1{kpCq{C is affine (see §2.5.2), as in the proof of Lemma 4.2.2 (a), we
may replace C by Resk1{kpCq. Then, however, Lemma 4.1.1 reduces us to the case when
k1 “ k, so to when C is a torus. The torus case holds, for instance, by [Čes19, Theorem 6.1].

(iii) As in the proof of (i), we reduce to when our connected, smooth, wound, unipotent k-group
G is commutative and p-torsion. By [Ros25, Theorem 1.8], the assumption rk : kps “ p then
ensures that G » C{T for some commutative pseudo-reductive k-group C and a maximal
k-torus T Ă C. Thus, (ii) gives the claim.
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(iv) As in the proof of (i), we may base change to any finite Galois subextension of ks{k. By our
assumption on Gks and Lemma 2.7.2, after some such base change G becomes a Resℓ{kpC{T q

as in (ii). Thus, (ii) gives the claim. □

Remark 4.3.2. Theorem 4.3.1 (i) and (iii) continue to hold if instead of assuming that G is smooth,
we assume that G0 is wound unipotent and commutative. Indeed, we may first use Theorem 4.1.3
to replace G by G0 as in the proof above and then use Lemma 2.7.6 to embed our commutative,
connected, wound, unipotent G as a k-subgroup of a commutative, connected, smooth, wound,
unipotent k-group rG. Since rG{G is affine (see §1.7), as in the proof of Lemma 4.2.2 (a), we replace
G by rG to reduce to when G is, in addition, smooth, a case settled in Theorem 4.3.1 (i) and (iii).

Remark 4.3.3. The proof of Theorem 4.3.1 (i) simplifies significantly if every z P Z of codimension
2 in S has kz{k separable: by the Cohen structure theorem [Mat89, Theorems 28.3 and 30.6 (i)],
then the completion of OS, z is k-isomorphic to kzJs, tK, so passage to power series rings becomes
much more direct than in the proof above.

Remark 4.3.4. Theorem 4.3.1 (ii) fails if we assume instead that G0 » A{Aab is the largest
unipotent quotient of a pseudo-abelian variety A over k as in (2.4.1.1): by [Tot13, Corollary 7.3],
even Ga, k is of this form for suitable k, and the conclusion of Theorem 4.3.1 fails for it, see (4.3.0.2).

4.4. Auslander–Buchsbaum extension for torsors under quasi-reductive groups

A well-known extension result for torsors under reductive groups that is ultimately based on the
Auslander–Buchsbaum formula to treat the key case of vector bundles says that for a regular scheme
S of dimension 2, a closed subset Z Ă S of codimension 2 (so that Z consists of isolated points of
height 2), and a reductive S-group G, pullback gives an equivalence of categories

tG-torsors over Su
„
ÝÑ tG-torsors over SzZu, (4.4.0.1)

see [CTS79, Corollary 6.14]. We generalize this to quasi-reductive groups as follows and simultaneously
extend Theorems 4.2.1 and 4.3.1 beyond pseudo-proper or pseudo-complete smooth k-groups G.

Theorem 4.4.1. Let S be a geometrically regular k-scheme of dimension ď 2, let Z Ă S be a closed
subset of codimension ě 2 (so that Z consists of isolated points of height 2), and let G be a smooth
k-group scheme with Gsm, lin quasi-reductive. Suppose that either

(i) Gsm, lin is pseudo-reductive; or

(ii) every z P Z lies in a geometrically regular k-subscheme Sz Ă S of codimension ą 0 (when
kz{k is separable, we may take Sz “ z).

For every gerbe B over S isomorphic to BG étale locally on S, we have

BpSq
„
ÝÑ BpSzZq,

in particular, for every S-group G isomorphic to G étale locally on S, we have

H1pS,G q
„
ÝÑ H1pSzZ,G q and, if G is commutative, also H2pS,G q ãÑ H2pSzZ,G q.

Proof. By descent, we may work étale locally on S, so a spreading out argument allows us to assume
that S is strictly Henselian, local, of dimension 2, and that Z is its closed point. Then, since G is
k-smooth, every G-torsor over S is trivial and we need to show that

(1) GpSq
„
ÝÑ GpSzZq; and

(2) every G-torsor over SzZ is trivial.
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The separatedness of G gives the injectivity in (1), see [ČS24, Lemma 7.2.7 (a)], while the surjectivity
is stable under extensions of smooth groups because each such group has no nontrivial torsors over
S. To get the surjectivity for G it then suffices to note that it holds for G{Gsm, lin by Theorem 4.2.1
and for Gsm, lin by (4.1.0.2).

The remaining (2) is likewise stable under extensions of smooth groups and holds for G{Gsm, lin

by Theorem 4.2.1, so we may replace G by Gsm, lin to assume that G is quasi-reductive. Moreover,
Theorem 4.3.1 (i) supplies (2) for the smooth, wound unipotent k-group Ru, kpGq, so we may replace
G by G{Ru, kpGq to assume that G is pseudo-reductive. For pseudo-reductive G, we first consider
its central, pseudo-finite k-subgroup CG discussed in §2.5.3. By Theorem 4.1.3, every CG-torsor over
SzZ extends to a CG-torsor over S. This lets us replace G by G{CG, in other words, we may assume
that our pseudo-reductive G is of minimal type. We then consider the comparison map of §2.5.2:

iG : G Ñ Resk1{kpGq.

Since G is of minimal type, its pseudo-finite k-subgroup KerpiGq is commutative (see §2.5.3), so
we may use Theorem 4.1.3 again to replace G by iGpGq, and hence reduce to when our pseudo-
reductive G is ultraminimal. As in the proof of Lemma 4.2.2 (a), the affineness of Resk1{kpGq{G (see
§2.5.2) and §4.1.0.2 then allow us to replace G by Resk1{kpGq. Finally, Lemma 4.1.1 allows us to
replace Resk1{kpGq by G to reduce to when G is reductive. In the reductive case, (2) follows from
(4.4.0.1). □

Remark 4.4.2. To show that the quasi-reductivity assumption is optimal in Theorem 4.4.1, we
suppose that Rus, kpGq ‰ 1 (with G still smooth), we let S be the strict Henselization of the origin of
A2
k with Z Ă S the closed point, and we will show that G has a nontrivial torsor over SzZ, contrary

to what the conclusion of Theorem 4.4.1 would predict. By the proof of Theorem 4.4.1, nontrivial
Ga-torsors over A2

kzZ restrict to nontrivial Ga-torsors over SzZ. Such restrictions induce nontrivial
Rus, kpGq-torsors E over SzZ (see the next sentence or the proof of Lemma 4.2.2 (a)). If such an E
induced the trivial G-torsor, then E would be the preimage of an pSzZq-point of G{Rus, kpGq. By
Theorem 4.4.1, this pSzZq-point extends to an S-point, so E would extend to an Rus, kpGq-torsor
over S, a contradiction. The importance of quasi-reductivity, relatedly, the failure of Theorem 4.4.1
for Ga invalidates several more direct ways to attack Theorem 4.4.1.

Remark 4.4.3. Although there are other ways to see this, Remark 4.4.2 gives a playful proof of the
fact that the quotient G{Z of a quasi-reductive k-group G by a central k-subtorus Z is still quasi-
reductive. Indeed, with Z Ă S as in Remark 4.4.2, it suffices to note that, by [Čes19, Theorem 1.3]
(in fact, already by [Gro68, théorème 6.1 b)]), every G{Z -torsor over SzZ lifts to a G-torsor over
SzZ, and so, by Theorem 4.4.1, it extends to a G{Z -torsor over S, and hence is trivial.

5. Classification of G-torsors over P1
k

The endpoint of the geometric approach to the Grothendieck–Serre conjecture is the study of torsors
over the relative P1. As we explain in §5.2, the extension results of Chapter 4 lead to a quick
classification of G-torsors over P1

k for quasi-reductive G. For this, we begin in §5.1 with the auxiliary
and more direct unipotent case.

5.1. Torsors over Pn
S under unipotent groups

Torsors over a relative Pn
S under unipotent S-groups descend to S as in Proposition 5.1.2 below,

whose proof uses the following auxiliary lemma.

Lemma 5.1.1. For every n ě 0, base change induces an equivalence of categories

tfinite k-schemesu
„
ÝÑ tfinite, flat Pn

k -schemes F such that OF » O‘d
Pn
k

as OPn
k
-modulesu,
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with an inverse functor given by F ÞÑ s˚pF q for any fixed s P Pn
kpkq.

Proof. Since HomOPn
k

pOPn
k
,OPn

k
q – k, the triviality of OF as a vector bundle implies that commutative

OPn
k
-algebra structures on OF correspond to commutative k-algebra structures on s˚pOF q. □

Proposition 5.1.2. Let S be an algebraic space and let G be a flat, locally finitely presented, quasi-
separated S-group algebraic space each of whose geometric S-fibers GK has a unipotent linear part
pGKqlin (see §2.1.1 and §2.1.2 (3)), and suppose that G is an extension of an fpqc locally constant
S-group C by a finitely presented S-group algebraic space. For every S-gerbe B for the fppf topology
isomorphic to BG fppf locally on S, we have BpSq

„
ÝÑ BpPn

Sq for every n ě 1, in particular,

G pSq
„
ÝÑ G pPn

Sq and H1pS,G q
„
ÝÑ H1pPn

S ,G q.

Proof. By working fppf locally on S, we may assume that B “ BG . We then first claim that

G pSq
„
ÝÑ G pPn

Sq. (5.1.2.1)

For this, since Pn
S has an S-point, we may focus on the surjectivity and, by a descent and limit

argument, may assume that S is affine and even local. The rigidity lemma [MFK94, Proposition 6.1]
then reduces us to S being the spectrum of a field K, and fpqc descent allows us to assume that K is
algebraically closed. To then check that every Pn

K-point of G comes from a K-point, by (2.2.1) and
translation, we may assume that G is smooth and connected. However, every Pn

K-point of a smooth,
connected K-group comes from a K-point: for abelian varieties this is [Mil86, Corollary 3.8], for
affine groups this results from ΓpPn

K ,Oq – K, and the general case follows from §2.1.2 (3).

By applying (5.1.2.1) fpqc locally on S, we find that

IsomG pE,E1qpSq
„
ÝÑ IsomG pE,E1qpPn

Sq

for all G -torsors E and E1 over S, in other words, the functor BpSq ãÑ BpPn
Sq is fully faithful. To

argue that it is also essentially surjective, by fpqc descent again, it then suffices to show that every
G -torsor E over Pn

S trivializes fpqc locally on S. For this, letting s be an S-point of Pn
S and working

fpqc locally again, we may assume that s˚pEq is trivial and C is constant.

Every C -torsor over Pn
S trivializes even étale locally on S: for this, by a limit argument and the

proper base change theorem [SGA 4III, exposé XII, corollaire 5.5 (ii)], we may assume that S is the
spectrum of a separably closed field k, then note that, by [SGA 3II, exposé X, corollaire 5.14], every
connected component of a C -torsor over Pn

k is finite étale over Pn
k , and, finally, recall that this étale

cover splits by [SGA 1new, exposé XI, proposition 1.1] (with [SP, Theorem 0BTY] to pass to k).
By applying this to the C -torsor induced by E, we reduce the sought fpqc local triviality of E to
the case when C is trivial, so that G is finitely presented over S, with the triviality of s˚pEq again
arranged by a preliminary fpqc base change on S.

Once G is finitely presented over S, we may first do a descent and limit argument to reduce to
Noetherian S and then, by a further limit argument and fpqc base change that uses [EGA III1, chapitre
0, proposition 10.3.1], even to S being the spectrum of a complete Noetherian local ring with an
algebraically closed residue field. We seek a trivialization of E over Pn

S whose restriction to s recovers
a fixed trivialization of s˚pEq, and, by (5.1.2.1), there is at most one such. This way of choosing
a preferred trivialization uniquely and compatibly with base change in S allows us to apply the
continuity formula [BHL17, Corollary 1.6] (with [Čes22b, Section 1.2.3] to ensure that E is an
algebraic space) to reduce to when S is Artinian local with an algebraically closed residue field K.

At this point the vanishing of the cohomology H1pPn
k ,Oq – H2pPn

k ,Oq – 0 and the deformation
theory of G -torsors, more precisely, [Ill72, théorème 2.4.4, page 209], imply that E is the unique
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deformation of E|Pn
k

to a G -torsor over Pn
S (see the second half of the proof of [ČF23, Proposi-

tion 3.1 (b)] for more details). In particular, to prove that E is trivial, we may base change to the
special fiber and reduce to the case when S “ SpecpKq.

Recalling that C is trivial and G is of finite type, consider the finite K-group F :“ G {pG 0qred and
the F -torsor E over Pn

K induced by E. Since F {F 0 is étale (see §2.1.2 (1)), the F {F 0-torsor E{F 0

is a finite étale cover of Pn
K . Thus, E{F 0 is trivial by [SGA 1new, exposé XI, proposition 1.1], so

we may assume that F “ F 0, so that F is infinitesimal. To show that E descends to an F -torsor
over K, and hence is trivial, by Lemma 5.1.1, it suffices to show that OE is a trivial vector bundle
over Pn

K . For this, by [OSS80, Theorem 3.2.1] (which is stated over the complex numbers but whose
proof works over any base field), it suffices to show the same after restricting to any line L Ă Pn

K ,
so we may assume that n “ 1. However, the vector bundle OE trivializes over the finite, flat cover
E Ñ P1

K , and hence also over pEqred. Since F is infinitesimal, the function field of the integral
K-curve pEqred is purely inseparable over Kptq, so it is contained in some Kpt1{pℓq with ℓ ě 0. By
passing to normalizations, we conclude that OE trivializes over some finite, flat cover P1

K Ñ P1
K . By

then decomposing OE into a sum of line bundles Opnq, we get that OE is trivial, as desired.

Since E is trivial, E reduces to a pG 0qred-torsor over Pn
K and we may assume that G is smooth and

connected. Our assumptions and §2.1.2 (3) now imply that G is an extension of an abelian variety
A by a unipotent group. By (3.2.1.1),

H1pPn
K , Aq ãÑ H1pkpPn

Kq, Aq,

so every A-torsor over Pn
K has finite order, in other words, reduces to an Arms-torsor for some m ě 0.

Since the K-group Arms is finite, by the argument above about F , it has no nontrivial torsors over
Pn
K , and hence neither does A. Consequently, we may assume that G is unipotent, and, by passing

to subquotients, that it is either finite or Ga,K (see §1.7). In the finite case, the argument above
about F suffices, while Ga,K has no nontrivial torsors over Pn

K because H1pPn
K ,Oq – 0. All in all,

our G -torsor E over Pn
K is trivial, so it descends to K. □

Remark 5.1.3. As for higher cohomology, for every commutative, unipotent k-group U and every
k-algebraic space S, we have H ipS,Uq

„
ÝÑ H ipPn

S , Uq for all i. Indeed, to see that U „
ÝÑ Rπ˚pUPn

S
q

where π : Pn
S Ñ S is the structure map, we may assume that k is algebraically closed, handle U “ Ga, k

by [EGA III1, proposition 2.1.15], and then handle a general U by dévissage, Proposition 5.1.2, and
[SGA 3II, exposé XVII, corollaire 1.7].

Beyond unipotent groups, Proposition 5.1.2 helps reduce the structure group of G-torsors over Pn
S to

the (unirational) k-subgroup Gtor ď G generated by the k-tori of G (see §2.1.2 (10)) as follows.

Corollary 5.1.4. Let G be a smooth k-group scheme, let S be a k-scheme, and let E be a G-torsor
over Pn

S with n ě 1. Pullback along an s P Pn
SpSq gives an equivalence

treductions of E to a Gtor-torsoru
„
ÝÑ treductions of s˚pEq to a Gtor-torsoru.

In particular, if s˚pEq is trivial, then E reduces to a Gtor-torsor over Pn
S whose s-pullback is trivial

(resp., then E is even trivial if Gtor “ 1, that is, if Gsm, lin is unipotent).

Proof. The category of reductions of E (resp., of s˚pEq) to a Gtor-torsor is equivalent to the
set pE{GtorqpPn

Sq (resp., ps˚pE{GtorqqpSq). Moreover, E{Gtor is a pG{Gtorq-torsor over Pn
S , so

Proposition 5.1.2 gives the claim once we argue that pG{Gtorqlin is unipotent. The latter follows
from §2.1.2 (3), (4), and (10). □
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The following consequence of Corollary 5.1.4 extends [ČF23, Theorem 4.2] beyond reductive groups.

Corollary 5.1.5. For a smooth k-group scheme G with Gsm, lin unipotent and a k-algebra A, no
nontrivial G-torsor E over A1

A trivializes over the punctured formal neighborhood Appt´1qq of infinity.

Proof. For convenience, we set s :“ t´1. Since G is smooth, by [BČ22, Corollary 2.1.22 (b) (with
Example 2.1.18)], our E trivializes already over the punctured Henselization Atsur1s s at infinity. In
particular, by patching [MB96, Theorem 5.5], it extends to a G-torsor over P1

A that is trivial at
infinity. Corollary 5.1.4 then implies that E is trivial. □

5.2. Torsors over P1
k under quasi-reductive groups

We apply the Auslander–Buchsbaum extension Theorem 4.4.1 for torsors under quasi-reductive
groups to obtain a classification of torsors over P1

k in Theorem 5.2.4. For this, we view the projective
space as an open of rAn

k{Gms as follows and then classify torsors over this stack in Lemma 5.2.2.

Example 5.2.1. Letting Gm,Z act on An`1
Z by scaling the coordinates, the open complement of

BGm,Z – rt0u{Gm,Zs in the quotient rAn`1
Z {Gms is the projective space Pn

Z – rpAn`1
Z zt0uq{Gms.

The structure map Pn
Z Ñ BGm,Z classifies the line bundle Op´1q: as we now argue, the square

An`1
Z zt0u //

��

SpecpZq

��

Pn
Z

φrOp´1qs
// BGm,Z

is a Gm,Z-equivariant and Cartesian. To see this, first recall from [SP, Lemma 01NE] (or [EGA II,
théorème 4.2.4]) that the fiber product of the outer bottom part of the square represents the functor
that sends a scheme S to the set of isomorphism classes of line bundles L on S equipped both with
s0, . . . , sn P H0pS,L q that have no common zeros and with a σ : OS

„
ÝÑ L _: explicitly, L is the

pullback of Op1q along the map S Ñ Pn
Z given by x ÞÑ rs0pxq : ¨ ¨ ¨ : snpxqs. On the other hand,

An`1
Z zt0u represents the functor that sends S to the set of pn ` 1q-tuples t0, . . . , tn P H0pS,OSq

with no common zeros. The two functors are identified via ti “ σ_ ˝ si, and this is Gm-equivariant
because Gm acts on both sides by scaling via a character of weight ´1 (so ti ÞÑ λ´1ti, etc.).

Torsors over rAn{Gms under smooth groups may be classified as follows.

Lemma 5.2.2. For a ring A and a smooth, quasi-separated A-group algebraic space G, we have

H1pBGm,A, Gq
„
ÝÑ H1prAn

A{Gm,As, Gq (5.2.2.1)

via pullback along the structure map rAn
A{Gm,As Ñ BGm,A, and if G is also quasi-affine, then

restricting along the origin BGm,A ãÑ rAn
A{Gm,As gives a full, essentially surjective functor

tG-torsors over rAn
A{Gm,Asu Ñ tG-torsors over BGm,Au. (5.2.2.2)

Proof. The composition BGm,A ãÑ rAn
A{Gm,As Ñ BGm,A is the identity, so (5.2.2.1) is injective,

and (5.2.2.2) is essentially surjective. To show that (5.2.2.1) is also surjective, we need to argue that
nonisomorphic G-torsors over rAn

A{Gm,As cannot become isomorphic over BGm,A. This follows from
[AHR25, Proposition 7.9 (case 7.6 (c) (N)) and Remark 2.5] applied to the functor that parametrizes
isomorphisms between two G-torsors (by [SP, Lemma 04SK] this functor is a quasi-separated,
smooth relative algebraic space). In the case when G is quasi-affine, by [SGA 3I new, exposé VIB,
proposition 11.11], its A-fibers are affine, so the stabilizers of the A-stack BG are also affine. Thus,
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[AHR25, Proposition 7.9 (case 7.6 (c) (N)) and Remark 2.5] applied to the base change of BG to
rAn

A{Gm,As also give the remaining fullness of (5.2.2.2). □

The following final input to Theorem 5.2.4 is widely known for reductive k-groups.

Lemma 5.2.3. For a k-group scheme G locally of finite type, the maximal split k-tori S ď G are
pairwise Gpkq-conjugate and, for any such S, we have

Homk-gppGm, Sq{NGpSqpkq
„
ÝÑ Homk-gppGm, Gq{Gpkq

Proof. The Gpkq-conjugacy of maximal split k-tori is [CGP15, Proposition C.4.5 (1)]. Thus, since
every k-homomorphism λ : Gm Ñ G factors through some maximal split k-torus of G, the displayed
map is surjective. For its injectivity, fix a maximal split k-torus S ď G and consider k-homomorphisms
λ, λ1 : Gm Ñ S with λp´q “ gλ1p´qg´1 for some g P Gpkq. Both S and gSg´1 are maximal k-split
tori of G through which λ factors, so both lie in the largest connected, smooth, affine k-subgroup
Gsm, lin ď G, and then even in the centralizer ZGsm, linpλq of λ. However, [SGA 3II, exposé XI,
corollaire 5.3] ensures that ZGsm, linpλq is a closed k-subgroup of G. The conjugacy of maximal split
k-tori applies to it and gives an h P pZGsm, linpλqqpkq with S “ hgSg´1h´1. Now hg P NGpSqpkq and
hgλ1p´qphgq´1 “ hλp´qh´1 “ λp´q, so that λ and λ1 are NGpSqpkq-conjugate. □

Theorem 5.2.4. Let G be a k-group scheme locally of finite type such that every k-torus of Gk

lies in pGgredqk (see Remark 2.2.13) and let E be a G-torsor over P1
k. No nontrivial G-torsor over

krts (resp., over krts1`tkrts; resp., over kttu; resp., over kJtK) trivializes after inverting t, and the
following conditions are equivalent:

(i) E|A1
k

is trivial;

(ii) E is Zariski locally trivial;

(iii) E is generically trivial;

and if G is smooth, then they are also equivalent to

(iv) s˚pEq is trivial for some s P P1
kpkq;

(v) s˚pEq is trivial for every s P P1
kpkq;

(vi) E|kpptqq is trivial, where t is the standard coordinate of A1
k.

If G is smooth, then, for every s P P1
kpkq, the sequence of pointed sets

t˚u Ñ H1
ZarpP1

k, Gq Ñ H1pP1
k, Gq

s˚

ÝÑ H1pk,Gq Ñ t˚u (5.2.4.1)

is exact. If G is smooth with Gsm, lin quasi-reductive (see §2.1.2 (4)), then

H1pP1
k, Gq – H1pBGm, Gq, (5.2.4.2)

letting S ď G be a maximal k-split torus, also

H1
ZarpP1

k, Gq – Homk-gppGm, Gq{Gpkq
5.2.3
– Homk-gppGm, Sq{NGpSqpkq, (5.2.4.3)

and, in addition, the conditions (i)–(vi) are also equivalent to

(vii) E is the inflation of the Gm-torsor Op1q along some λ : Gm, k Ñ G.
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Proof. By patching [MB96, Theorem 5.5], a G-torsor E over krts (resp., over krts1`tkrts; resp., over
kttu; resp., over kJtK) that trivializes after inverting t extends to a G-torsor over P1

k that trivializes
over P1

kztt “ 0u (loc. cit. applies since kJtK is a filtered direct limit of flat, finitely presented krts-
algebras). Thus, the equivalence of (i)–(iii) implies that E is trivial. If at least one of (i)–(iii) holds,
then, by Theorem 3.2.2 (i), our E reduces to a generically trivial Gsm, lin-torsor. In particular, we
may assume throughout that G is smooth.

The patching argument also shows that (vi) implies (iv), so since (vi) follows from (i), we may
discard (vi) altogether. Similarly, we may discard (v) because it implies (iv) and follows from (ii).
Moreover, the equivalence of (ii) and (v) gives (5.2.4.1).

If either (i)–(iii) holds for our smooth G, then we saw that, by Theorem 3.2.2 (c) (i), we may assume
that G is connected, smooth, and affine. If (iv) holds, then Corollary 5.1.4 allows us to reduce E to
a Gtor-torsor Etor with s˚pEtorq trivial, so we may again assume that G is connected, smooth, and
affine. Moreover, since Ga has no nontrivial torsors over affine schemes, (i)–(iv) are all insensitive
to replacing G by G{Rus, kpGq. All in all, to argue that each of (i)–(iv) implies the others, we may
assume that G is quasi-reductive.

In the remaining case when G is smooth with Gsm, lin quasi-reductive, we view P1
k – rpA2

kzt0uq{Gms

as the open complement of BGm – rt0u{Gms in rA2
k{Gms, see Example 5.2.1. By the Auslander–

Buchsbaum extension Theorem 4.4.1 (ii) for G-torsors (applied after pullback along A2
k Ñ rA2

k{Gms)
and (5.2.2.1), we have

H1pP1
k, Gq – H1prA2

k{Gms, Gq – H1pBGm, Gq.

Here the Zariski locally trivial G-torsors on P1
k correspond to those G-torsors over BGm that trivialize

over the cover Specpkq Ñ BGm: indeed, Zariski local triviality implies triviality at every k-point of
P1
k, whereas the G-torsors over BGm that trivialize over Specpkq are the inflations of the tautological

Gm-torsor along some k-homomorphism λ : Gm Ñ G, where G is the automorphism group of a
trivial G-torsor E0 over Specpkq and λ is unique up to changing a trivialization of E0, concretely,
up to Gpkq-conjugation. The claimed (5.2.4.3) follows, and we also get that either of (i), (ii), (iv),
or (vii) implies all of (i)–(vii). By spreading out, so does (iii) if k is infinite. In the remaining case
when k is finite and (iii) holds, we already saw that to argue (i)–(vii), we may assume that G is
quasi-reductive. Then Lang’s theorem gives (iv) (see [Ser02, Chapter III, Section 2.3, Theorem 11]),
and hence, by what we have already argued, (i)–(vii) all hold. □

Remark 5.2.5. We now show that (5.2.4.3) fails without the quasi-reductivity assumption. Torsors
under G :“ Ga ¸Gm, where Gm acts on Ga via a character of weight 1, are all Zariski locally trivial.
By [Gir71, chapitre III, remarque 2.6.3, proposition 3.3.1 (i)], the set of isomorphism classes of those
G-torsors over P1

k whose induced Gm-torsor corresponds to Opnq is identified with H1pP1
k,Opnqq. For

n ď 2, the latter is a nonzero k-vector space (see [EGA III1, proposition 2.1.15]), so not a singleton.

6. The Birkhoff and Cartan decompositions for quasi-reductive groups

The classification Theorem 5.2.4 for torsors over P1
k under a quasi-reductive k-group and its proof

yield the Birkhoff and the Cartan decompositions in Theorems 6.1.1 and 6.2.2. For the Iwasawa
decomposition, whose proof relies on a case of Theorem 1.1.1, see Theorem 8.3.1.

6.1. The Birkhoff decomposition

The final part of the following decomposition result is similar to [Čes24b, Theorem 3.6].
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Theorem 6.1.1 (Birkhoff Decomposition). For a k-group scheme G locally of finite type with Gsm, lin

quasi-reductive and a maximal split k-torus S ď G, we have

Gpkrt˘1sq “
š

λPHomk-gppGm, Sq{NGpSqpkq Gpkrt´1sqtλGpkrtsq,

Gpkptqq “
š

λPHomk-gppGm, Sq{NGpSqpkq Gpkrt´1sqtλGpkrtsptqq,

Gpkttur1t sq “
š

λPHomk-gppGm, Sq{NGpSqpkq Gpkrt´1sqtλGpkttuq,

Gpkpptqqq “
š

λPHomk-gppGm, Sq{NGpSqpkq Gpkrt´1sqtλGpkJtKq,

(6.1.1.1)

where tλ :“ λptq P Gpkrt˘1sq, and

Gpkrt˘1sq{Gpkrtsq
„
ÝÑ Gpkptqq{Gpkrtsptqq

„
ÝÑ Gpkttur1t sq{Gpkttuq

„
ÝÑ Gpkpptqqq{GpkJtKq. (6.1.1.2)

Proof. By (2.2.1), the decompositions in question are insensitive to replacing G by Ggred, so we
may assume that G is smooth. Let A denote either krts, or krtsptq, or kttu, or kJtK, depending on
the respective decomposition in question, so that in all cases A is a filtered direct limit of flat,
finitely presented krts-algebras (by the Popescu theorem [SP, Theorem 07GC] when A “ kJtK). By
patching [MB96, Theorem 5.5], the double coset space Gpkrt´1sqzGpAr1t sq{GpAq is identified with
the set of isomorphism classes of those G-torsors over P1

k that trivialize both over P1
kztt “ 0u and

over SpecpAq. By Theorem 5.2.4, such G-torsors are all induced from the Gm-torsor Op1q via some
k-homomorphism λ : Gm Ñ S, with two G-torsors being isomorphic if and only if the corresponding
cocharacters are NGpSqpkq-conjugate. Moreover, when G “ Gm, the class in the double coset space
AˆzAr1t sˆ{krt´1sˆ that corresponds to Op1q is given by the element t. Thus, the functoriality gives
the desired decompositions (6.1.1.1).

The maps in (6.1.1.2) are all surjective by (6.1.1.1). Their injectivity follows from [MB96, Theo-
rem 5.5], which implies, for instance, that a krt˘1s-point of G that extends to a kJtK-point when
restricted to kpptqq already extends to a krts-point. □

Remark 6.1.2. When one approaches the decompositions (6.1.1.1) purely group-theoretically, the
critical part to argue is that the union of double cosets on the right side of a desired equality form a
subgroup of the left side. This is a rather concrete statement but it tends to be quite delicate even
in the reductive case, compare with [Rag94, proof of Theorem 3.4].

6.2. The Cartan decomposition

To argue the Cartan decomposition in Theorem 6.2.2, we adapt ideas from §5.2 that gave the Birkhoff
decomposition. More precisely, we combine the Auslander–Buchsbaum extension Theorem 4.4.1 for
torsors under quasi-reductive groups with the approach to the Cartan decomposition introduced in
[AHHL21] in the reductive case. The relevant analogue of Lemma 5.2.2 is the following lemma.

Lemma 6.2.1. Let G be a smooth k-group scheme, let O be a Henselian discrete valuation ring
that is a k-algebra whose residue field κ is separable over k, let π P O be a uniformizer, and set
S :“ rSpecpOrs, s1s{pss1 ´ πqq{Gms where Gm acts over O by scaling s (resp., s1) via the character
of weight 1 (resp., ´1). Restriction to s “ s1 “ 0 gives

H1pS,Gq – H1pBGm,κ, Gq. (6.2.1.1)

Moreover, for a G-torsor E over S, the following are equivalent:

(i) E trivializes over the source of the map Specpκq Ñ BGm,κ Ă S;

(ii) E trivializes over Sr1s s;

(iii) E trivializes over Sr 1
s1 s.
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Proof. Our O is Henselian and κ is separable over k, so O is an algebra over κ. Thus, we may replace
k by κ to reduce to when κ “ k. Then (6.2.1.1) amounts to saying that G-torsors over S descend
uniquely to G-torsors over BGm, k. Thus, since both Sr1s s and Sr 1

s1 s are isomorphic to SpecpOq, by
restricting to the residue field of the latter and using the smoothness of G and the Henselianity of O
(see [BČ22, Theorem 2.1.6 (a)]), we find that (6.2.1.1) gives the equivalence of (i)–(iii).

Overall, it remains to descend every G-torsor E over S to BGm, k. For this, by twisting [Gir71,
chapitre III, remarque 2.6.3], we may replace G by an inner form (see §2.1.1) to force E|s“s1“0 to
trivialize over the source of the map Specpkq Ñ BGm, k. Since the closed ts1 “ 0u Ă S is rA1

k{Gms,
we then conclude from (5.2.2.1) that E|s1“0 is generically trivial. The closed point of Sr1s s – SpecpOq

is the generic point of ts1 “ 0u Ă S, so, since O is Henselian and G is smooth, we conclude that
E|Sr 1

s
s is trivial (see [BČ22, Theorem 2.1.6 (a)]), in particular, that E is generically trivial. At

this point, since S is geometrically regular over k, Theorem 3.2.2 (i) ensures that E reduces to a
generically trivial Gsm, lin-torsor over S. Thus, we may assume that G is affine, in which case, since O
is Henselian, (6.2.1.1) is a special case of [Wed24, Corollary 2.9] (or of [AHR25, Proposition 7.9]). □

Theorem 6.2.2 (Cartan Decomposition). For a k-group scheme G locally of finite type with Gsm, lin

quasi-reductive, a k-algebra O that is a Henselian discrete valuation ring whose residue field is
separable over k, a uniformizer π P O, and K :“ FracpOq,

GpKq “
š

λPHomO-gppGm,O, Gq{GpOq GpOqπλGpOq, (6.2.2.1)

where πλ :“ λpπq P GpKq; moreover, for a maximal split k-torus S ď G,

Gpkttur1t sq “
š

λPHomk-gppGm, Sq{NGpSqpkq GpkttuqtλGpkttuq,

Gpkpptqqq “
š

λPHomk-gppGm, Sq{NGpSqpkq GpkJtKqtλGpkJtKq.

Proof. By (2.2.1) and the separability of K over k, which results from that of the residue field of
O (see the sentence containing (3.1.1.2)), the desired decompositions are insensitive to replacing G
by Ggred, so we may assume that G is smooth. Moreover, O is Henselian and its residue field κ is
separable over k, so O is an algebra over κ. Thus, we may replace k by κ to reduce to when κ “ k
(see also §2.1.2). By functoriality, this implies, in particular, that the pullback map

HomO-gppGm,O, Gq{GpOq Ñ Homk-gppGm, k, Gq{Gpkq

is surjective. It is also injective: for this, since GpOq ↠ Gpkq by smoothness (see [EGA IV4,
théorème 18.5.17]), it suffices to note that, for any two O-homomorphisms λ, λ1 : Gm,O Ñ G that
agree over the residue field k and, as one checks over K, that must factor through Gsm, lin, by [SGA 3II,
exposé XI, corollaires 5.2, 5.4], the subfunctor TranspGsm, linpλ, λ1q Ă Gsm, lin parametrizing sections
that conjugate λ to λ1 is a residually trivial ZGsm, linpλq-torsor over O, which must then be trivial
because ZGsm, linpλq is smooth (see loc. cit. or §2.6.1). The bijectivity we just argued and Lemma 5.2.3
imply that it suffices to settle (6.2.2.1) and with the index set replaced by Homk-gppGm, k, Gq{Gpkq.

To argue (6.2.2.1), we imitate the method of Alper–Heinloth–Halpern-Leistner from the reductive
case [AHHL21]. We consider the stack S :“ rSpecpOrs, s1s{pss1 ´ πqq{Gms of Lemma 6.2.1. Its open
Szts “ s1 “ 0u is the glueing of two copies of SpecpOq along SpecpKq. Thus, GpOqzGpKq{GpOq

is identified with the set of isomorphism classes of those G-torsors over Szts “ s1 “ 0u that are
trivial on both copies of SpecpOq. Since S is geometrically regular over k and Ors, s1s{pss1 ´ πq

is 2-dimensional, the quasi-reductivity assumption and Theorem 4.4.1 ensure that G-torsors over
Szts “ s1 “ 0u extend uniquely to those over S. Thus, by Lemma 6.2.1, pullback of G-torsors along
the structure map S Ñ BGm, k identifies the set GpOqzGpKq{GpOq with the set of isomorphism
classes of those G-torsors over BGm, k that trivialize over Specpkq. By the proof of Theorem 5.2.4,
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this latter set is identified with Homk-gppGm, k, Gq{Gpkq. Since over K both s and s1 are invertible
with ss1 “ π, overall a λ P Homk-gppGm, k, Gq{Gpkq corresponds to the double coset of πλ. □

The Cartan decomposition gives the following integrality property of rational points of anisotropic
quasi-reductive groups that generalizes pseudo-completeness of wound unipotent groups (see Propo-
sition 3.1.5 (b)). In the reductive case, this is a theorem of Bruhat and Tits usually proved
group-theoretically, for instance, by using buildings, see [Pra82], [Guo22, Proposition 6 (2)], and
[FG21, Corollary 3.8], while our argument is algebro-geometric and in essence originates in [AHHL21].

Corollary 6.2.3. For a k-group scheme G locally of finite type with Gsm,lin quasi-reductive, a
k-algebra O that is a discrete valuation ring whose residue field κ is separable over k and such that
Gκ contains no nontrivial split κ-torus, and K :“ FracpOq, we have

GpOq “ GpKq.

Proof. Certainly, GpOq Ă GpKq. Conversely, for checking that every K-point of G extends to an
O-point, by considering generators and relations for coordinate algebras of elements of an affine open
cover of G, we may replace O by its completion. Once O is complete, the Cartan decomposition
(6.2.2.1) (and the first part of the proof of Theorem 6.2.2) implies that GpOq “ GpKq. □

We now use Theorem 6.2.2 to quickly reprove some of the main results of [CGP15, Appendix C.3].

Corollary 6.2.4. If a k-group scheme G locally of finite type with Gsm, lin quasi-reductive has Ga, k

as a k-subgroup, then it also has Gm, k as a k-subgroup.

Proof. If Ga, k ď G, then GpkJtKq Ĺ Gpkpptqqq. By Corollary 6.2.3 (applied with O “ kJtK), this
means that G has Gm, k as a k-subgroup. □

The following consequence of the Cartan decomposition generalizes [BT71, corollaire 3.7].

Corollary 6.2.5. Every split unipotent k-subgroup U of a k-group scheme G locally of finite type
lies in Rus, kpP q for some pseudo-parabolic k-subgroup P ď Gsm, lin. The maximal split unipotent
k-subgroups of G are precisely the unipotent radicals of the minimal pseudo-parabolic k-subgroups of
Gsm, lin, and the latter are pairwise Gsm, linpkq-conjugate.

Proof. The pairwise Gsm, linpkq-conjugacy of the minimal pseudo-parabolic k-subgroups, and so also
of their (split) unipotent radicals, mentioned in the statement for convenience of later reference,
is a result of Borel–Tits [CGP15, Theorem C.2.5]. Moreover, by [CGP15, Proposition 3.5.14], an
inclusion of pseudo-parabolic k-subgroups induces the opposite inclusion on their split unipotent
radicals, so it suffices to settle the claim about U .

For the latter, since U ď Gsm, lin, we lose no generality by assuming that G is connected, smooth,
and affine. Since U is split, by [CGP15, Lemma C.2.2], it lies in some Gpkq-conjugate of each pseudo-
parabolic k-subgroup P ď G. Thus, by §2.6.2, we may iteratively replace G by such conjugates of P
to reduce to when G has no proper pseudo-parabolic k-subgroups. Moreover, since U is split, it is
enough to show that U ď Ru, kpP q, so we may replace G by its largest pseudo-reductive quotient
Gpred to also assume that G is pseudo-reductive (see §2.1.2 (6) and §2.6.2). In this pseudo-reductive
case with no proper pseudo-parabolic k-subgroups, we claim that U is trivial (so that P “ G suffices).
Indeed, otherwise Corollary 6.2.4 would supply some Gm, k ď G, which, since G has no nontrivial
pseudo-parabolic k-subgroups, would be central. By [CGP15, Proposition 2.2.12 (3)], we could then
replace G by its quotient G by this central Gm, k: by [CGP15, Proposition 1.2.4, Lemma 9.4.1], this
G is still pseudo-reductive because Ext1kpGa, k,Gm, kq “ 0 thanks to [DG70, chapitre III, section 6,
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no. 5, corollaire 5.2]. By iterating this reduction finitely many times, we would arrive at the case
when G has no Gm, k as a k-subgroup, so that U “ 1 by Corollary 6.2.4, as desired. □

7. Torsors over a relative Pn
A under constant groups

In §7.2, we upgrade the analysis of torsors over P1
k carried out in §5.2 to the analysis of torsors

over P1
A for any semilocal k-algebra A. This is a critical step of the geometric approach to the

Grothendieck–Serre question and it rests on structural results about the Whitehead group of a
quasi-reductive group that we establish in §7.1.

7.1. Unramifiedness of the Whitehead group in the quasi-reductive setting

In Proposition 7.1.6, we prove an unramifiedness property of the subgroup Gpkq` generated, roughly
speaking, by the “elementary matrices” of a quasi-semisimple k-group G. In the classical case of
semisimple groups, the corresponding results about Gpkq` are primarily due to Borel and Tits
[BT73], with an excellent overview by Gille [Gil09].
7.1.1. Notation. Throughout this section, we fix a connected, smooth, affine k-group G.
7.1.2. The subgroup Gpkq` ď Gpkq. As in [BT73, section 6.1], we let Gpkq` denote the (normal)
subgroup of Gpkq generated by the Upkq for split unipotent k-subgroups U ď G. By §2.1.2 (6), this
Gpkq` is functorial in G and k.

By Corollary 6.2.5, our Gpkq` is generated by the Gpkq-conjugates of Rus, kpP qpkq for any single
minimal pseudo-parabolic k-subgroup P ď G. If k is infinite, then we even have

Gpkq` “ xRus, kpPλqpkq,Rus, kpP´λqpkqy

for any minimal pseudo-parabolic k-subgroup Pλ ď G (with notation as in §2.6.2): for this, it is
enough to show that Gpkq normalizes the right hand side, or that

Gpkq
?
“ UGpλqpkqUGp´λqpkqUGpλqpkqZGpλqpkq.

For the latter, since PGpλq – UGpλq ¸ ZGpλq and UGp´λq ˆ PGpλq is open in G (see §2.6.1), it
suffices to cover G by the UGpλqpkq-translates of UGp´λqPGpλq. By multiplying the inverse of the
open with the open itself, we get UGpλqUGp´λqPGpλq “ G. Since k is infinite, the split unipotent
UGpλq has a dense set of k-points (see §2.6.1), so, for each g P Gpkq, [CGP15, top of p. 587] gives an
u P UGpλqpkq whose inverse lies in the open UGp´λqPGpλqg´1 ď Gk. Thus, g P upUGp´λqPGpλqq.
7.1.3. The Whitehead group W pk,Gq. The Whitehead group of G is the quotient

W pk,Gq :“ Gpkq{Gpkq`,

compare with [Gil09, Section 1] in the reductive case. It is functorial in G and in k (see §7.1.2) and
only depends on the largest quasi-reductive quotient Gqred:

W pk,Gq
„
ÝÑ W pk,Gqredq,

indeed, split unipotent groups have no nontrivial torsors over k, so Gpkq ↠ Gqredpkq and, by §7.1.2
and §2.6.2, the preimage of Gqredpkq` is precisely Gpkq`. Moreover, as we now argue, for every
maximal k-split torus S ď G, we have

Gpkq “ Gpkq`ZGpSqpkq, equivalently, ZGpSqpkq ↠W pk,Gq. (7.1.3.1)

Indeed, [CGP15, Remark C.2.33] (applied with G “ Gqredpkq`) gives this with G replaced by Gqred,
so to deduce it for G it suffices to recall from [CGP15, Lemma C.2.31] that S maps onto a maximal
k-split torus of Gqred and to apply the following sharpening of [CGP15, Proposition A.2.8].
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Lemma 7.1.4. For a surjection π : G↠ G1 of connected, smooth, affine k-groups with Kerpπq split
unipotent, and a k-torus T ď G with image T 1 ď G1, the kernel of the surjection

ZGpT q ↠ ZG1pT 1q

is also split unipotent. In particular,

ZGpT qpkq ↠ ZG1pT 1qpkq.

Proof. By [CGP15, Propositions A.2.5 and A.2.8], the map ZGpT q ↠ ZG1pT 1q is indeed a surjection
of connected, smooth, affine k-groups. For the claim about the kernel, we may replace G by the
preimage of ZG1pT 1q and then base change to ks to assume that T 1 is central in G1 and k is separably
closed (see §2.1.2 (6)). Then, for any cocharacter λ : Gm, k Ñ T ď G, by §2.6.1, we have

Kerpπq “ UKerpπqp´λq ˆ ZKerpπqpλq ˆ UKerpπqpλq

as k-schemes. In particular, ZKerpπqpλq inherits split unipotence from Kerpπq, see §2.1.2 (6). Thus,
thanks to the exact sequence

1 Ñ ZKerpπqpλq Ñ ZGpλq Ñ G1 Ñ 1

(see §2.6.1) and the evident containment ZGpT q ď ZGpλq, we may replace G by ZGpλq. Since k is
separably closed, if we iterate this for a well-chosen finite set of λ’s, we reduce to when ZGpT q “ G.
Then the kernel in question is Kerpπq, so is split unipotent. □

The final input needed for the promised unramifiedness property of the Whitehead group is the
following extension of the existence of Levi subgroups [CGP15, Theorem 3.4.6] to the quasi-reductive
case. For the sake of focus on intended use and since our proof essentially combines heavy inputs
from [CGP15], we do not aim for a finer statement that would discuss uniqueness of Levi subgroups.

Lemma 7.1.5. For a quasi-reductive k-group G that has a split maximal k-torus S ď G, there exists
a split reductive k-subgroup G ď G containing S such that Gk

„
ÝÑ pGkqpred.

Proof. If k is finite, then we may choose G :“ G, so we assume that k is infinite. Then [CGP15,
Theorem C.2.30] supplies a split reductive k-subgroup G containing S: the assumptions of loc. cit. are
met because G is quasi-reductive, see [CGP15, Proposition B.4.4, Theorem C.2.15, and bottom
of p. 630]. It remains to show that the map ι : G Ñ Gpred is injective: then, by the characterization
of our G given in [CGP15, Theorem C.2.30] (in particular, by its uniqueness aspect applied to
ιpG q ď Gpred) and by [CGP15, Theorem 3.4.6], we will get that G – ιpG q satisfies Gk

„
ÝÑ pGkqpred.

The injectivity of ι is not completely general because in characteristic 2 some reductive groups do
have nontrivial normal unipotent subgroups, see [Vas05, Theorem 1.2]. Nevertheless, by [CGP15,
Proposition B.4.4], our S commutes with the wound unipotent Ru, kpGq, so also with Kerpιq.
The S-weight decomposition of LiepG q supplied by [CGP15, Theorem C.2.30] then shows that
LiepKerpιqq Ă LiepSq. However, Kerpιq is unipotent, so Kerpιq X S “ 0, and hence LiepKerpιqq “ 0.
We get that Kerpιq is étale, so, as a normal subgroup of a connected G , it must be central. Since G
is reductive, its center is of multiplicative type, so our unipotent Kerpιq is trivial, as desired. □

Proposition 7.1.6. Suppose that G is quasi-semisimple, simply connected (see §2.5.2), and has a
split maximal k-torus S, let O be a discrete valuation ring whose residue field is separable over k,
and set K :“ FracpOq. The Whitehead group W pK,GKq is O-unramified in the sense that it is a
quotient of GpOq, in fact, even of ZGpSqpOq:

GpKq “ GpKq`ZGpSqpOq, equivalently, ZGpSqpOq ↠W pK,GKq.
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Proof. Granted the inputs established above, the argument is similar to the one given for semisimple
groups in [Gil09, lemme 4.5 (1)]. Namely, let S ď G be a split maximal k-torus, so that, by (7.1.3.1),

GpKq “ GpKq`ZGpSqpKq.

By [CGP15, Remark C.2.12 (1)], the k-group ZGpSq is quasi-reductive and, by Remark 4.4.3, so is
its central quotient ZGpSq{S. The latter contains no k-torus, so it must even be wound unipotent,
see §2.1.2 (10). In particular, Proposition 3.1.5 (b) ensures that pZGpSq{SqpOq “ pZGpSq{SqpKq, so

ZGpSqpKq Ă SpKqZGpSqpOq.

It remains to show that SpKq Ă GpKq`, and for this we will use Lemma 7.1.5, according to
which our split maximal k-torus S is a maximal torus of a split reductive k-subgroup G ď G such
that Gk

„
ÝÑ pGkqpred. This isomorphism and our assumptions imply that G is semisimple, simply

connected. Then SpKq Ă G pKq` by [BT73, corollaire 6.8], so that G pKq` Ă GpKq` by §7.1.2. □

Remark 7.1.7. For Henselian O, analogously to semisimple groups treated in [Gil09, lemme 4.5 (1)],
there ought to be a more general version of Proposition 7.1.6 in which instead of having a split maximal
k-torus, our quasi-semisimple, simply connected G merely has a sufficiently small pseudo-parabolic
K-subgroup. As for our argument, a thorny aspect of such a generalization, is that, in general, it
seems delicate to check that the split reductive subgroup supplied by [CGP15, Theorem C.2.30]
inherits the simple connectedness from G (compare with [BT72, corollaire 4.6] in the reductive case).

7.2. Sectionwise triviality of torsors over Pn
A

The following Theorem 7.2.1 about A-sectionwise triviality ofG-torsors over Pn
A for smooth k-groupsG

and semilocal k-algebras A is a critical final input for our Theorem 1.1.1. It both uses and generalizes
Theorem 5.2.4, which treated the case when A is a field, and it extends [ČF23, Theorem 3.5] (so
also the main result of [PS25]), which established a similar conclusion for torsors under reductive
groups and used it as an input to establish cases of the Grothendieck–Serre conjecture.

Theorem 7.2.1. For a smooth k-group G, a semilocal k-algebra A, and a G-torsor E over Pn
A, if

s˚pEq is trivial for a single s P Pn
ApAq, then it is trivial for every such s.

Proof. By decomposing into components, we may assume that SpecpAq is connected and, by using
the smoothness of G and replacing A by Ared, also reduced (see [BČ22, Theorem 2.1.6 (a)] and
[SP, Lemma 0ALI]). We may also assume that n ą 0, so that Pn

A has at least three rational points
over every residue field of A. For two A-points of Pn

A, then there is a third one disjoint from both.
Since two disjoint A-points lie on a unique P1

A Ă Pn
A, we lose no generality by assuming that n “ 1.

Since A is semilocal, the A-automorphisms of P1
A act transitively on P1

ApAq: every s P P1
ApAq is

disjoint from some s1 P A1
ApAq, so we may change coordinates to make s1 be tt “ 0u and then make

s be tt “ 8u. Thus, assuming that E|tt“8u is trivial, we need to argue that E|tt“0u is also trivial.

Corollary 5.1.4 allows us to replace G by Gtor to reduce to when G is connected smooth, affine, and
generated by tori. In addition, since split unipotent groups have no nontrivial torsors over affine
schemes, we may further replace G by G{Rus, kpGq to reduce to when G is also quasi-reductive. At
this point, §2.1.4 ensures that G{DpGq is a torus, a quotient of any maximal k-torus T ď G. By
[ČF23, Lemma 3.2], the pG{DpGqq-torsor E over P1

A induced by E is the inflation of the Gm-torsor
Op1q along some A-homomorphism Gm,A Ñ G{DpGq. Thus, for a trivialization ι of E|Appt´1qq,
some g P pG{DpGqqpAppt´1qqq is such that the glueing of E|A1

A
and the trivial pG{DpGqq-torsor

over AJt´1K along the g-translate of the trivialization ι of E|Appt´1qq induced by ι gives the trivial
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pG{DpGqq-torsor over P1
A (for the relevant glueing technique that includes non-Noetherian A, see

[BČ22, Lemma 2.2.11 (b)]). By [BČ22, Lemma 3.1.6], we have

pG{DpGqqpAppt´1qqq – X˚pG{DpGqqpAq ˆ pG{DpGqqpAJt´1Kq

where a cocharacter α : Gm,A Ñ G{DpGq maps to αpt´1q P pG{DpGqqpAppt´1qqq. Elements of
pG{DpGqqpAJt´1Kq do not affect the isomorphism class of the glued pG{DpGqq-torsor over P1

A, so we
may assume that g “ αpt´1q for some such α. Pulling E back along the d-th power map fd : P1

A Ñ P1
A

given by rx : ys ÞÑ rxd : yds for d ą 0 preserves both our assumption (the triviality of E|tt“8u) and
the desired conclusion (the triviality of E|tt“0u), and it replaces αpt´1q by αpt´dq “ αdpt´1q, so we
have the liberty of replacing E by its pullback along any fd. For a sufficiently divisible d ą 0, however,
αd lifts to a cocharacter rα : Gm,A Ñ T . Thus, we may first replace E by its pullback along fd and
then by the glueing of E|A1

A
and the trivial G-torsor over AJt´1K along the rαpt´1q-translate of ι to

reduce to when E is a trivial pG{DpGqq-torsor. By the rigidity lemma [MFK94, Proposition 6.1], the
trivializations of E over P1

A are pulled back bijectively to those of E|tt“8u. In particular, E reduces
to a DpGq-torsor over P1

A whose restriction to tt “ 8u is trivial, so we may replace G by DpGq.

We iterate these reductions—we replace G by DpGq, then DpGq by DpGqtor, then DpGqtor by
DpDpGqtorq, and so on—until we are left with the case when G is quasi-semisimple (see §2.1.4). By
[CP16, Theorem 5.1.3], there then exist a commutative, affine k-group Z that has no nontrivial
unipotent k-subgroups, a quasi-semisimple, simply connected k-group rG, and a central extension

1 Ñ Z Ñ rG Ñ G Ñ 1

over k. The structure theorem [DG70, chapitre IV, section 3, théorème 1.1] for commutative, affine
k-groups ensures that Z is an extension of a unipotent k-group U by a k-group M of multiplicative
type. In addition, since rGk{Ru, kp rGkq is semisimple, M has no nontrivial k-subtori, so it is finite
(see [SGA 3II, exposé XII, proposition 1.12]).

Liftings of E to a rG-torsor form a Z-gerbe Z over P1
A whose restriction to tt “ 8u is trivial.

Moreover, Remark 5.1.3 ensures that Z reduces to an M -gerbe M over P1
A. By [ČF23, Lemma 3.3]

(with [CTS21, Theorem 6.1.3]), pulling back along the d-th power map fd makes M descend to an
M -gerbe over A whenever d kills M . In effect, we may once more replace E by its pullback along fd
to make Z descend to A. By the triviality at tt “ 8u, this makes Z (noncanonically) the trivial
Z-gerbe BZ, so that the map Z pP1

Aq Ñ Z pAq given by restricting to t “ 8 is essentially surjective.
This implies that there is a lifting of E to a rG-torsor rE over P1

A such that rE|tt“8u is trivial. This
allows us to replace G by rG to reduce to the case when G is quasi-semisimple, simply connected.

Once G is quasi-semisimple, simply connected, we let ℓ{k be a finite, separable field extension such
that Gℓ has a split maximal ℓ-torus T ď Gℓ, we set d :“ rℓ : ks, and we choose an ℓ-cocharacter
λ : Gm, ℓ Ñ T ď Gℓ such that Pλ ď Gℓ is a pseudo-Borel ℓ-subgroup (see §2.6.2). Similarly to above,
we now replace E by its pullback along fd!: the point of this maneuver is that, by Theorem 5.2.4, then
for every residue field κ of A, the pGκqqred-torsor over P1

κ induced by E reduces to the Gm-torsor Opd!q
along some κ-cocharacter Gm,κ Ñ pGκqqred, so this pGκqqred-torsor is trivial away from every divisor
of P1

κ of degree ď d. To construct a relevant such divisor, we choose a nonzero primitive element that
generates ℓ{k, consider the resulting embedding Specpℓq Ă Gm, k, and let Y – SpecpA1q Ă Gm,A be
its A-(finite étale) base change, so that A1 – ℓ bk A. The formal completion of P1

A along Y has
a formal power series ring A1JτK as its coordinate ring. Moreover, since ℓ{k is separable, we have
Ykm – SpecpA1 bA kmq – Specpℓbk kmq for every maximal ideal m Ă A, with ℓbk km a finite product
of finite, separable field extensions of km. Therefore, Proposition 7.1.6 (with §§2.6.1–2.6.2 and §7.1.2)
ensures that each coset in pGkmqqredppA1 bA kmqppτqqq{pGkmqqredppA1 bA kmqJτKq is represented by a
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product of elements of pUpGkm qqredp˘λqqppA1 bA kmqppτqqq. By §2.6.1,

1 Ñ URus, km pGkm qp˘λq Ñ UGkm
p˘λq Ñ UpGkm qqredp˘λq Ñ 1

are short exact sequences of split unipotent km-groups for every maximal m Ă A. The maps

pUGp˘λqqppA1 bA kmqppτqqq ↠ pUpGkm qqredp˘λqqppA1 bA kmqppτqqq

are therefore surjective. In addition, the map A1ppτqq ↠
ś

mpA1 bA kmqppτqq is surjective and this
surjectivity persists upon applying pUGp˘λqqp´q because the ℓ-schemes UGp˘λq are both isomorphic
to some An

ℓ (see §2.1.2 (6)). Thus, overall, the following map is surjective:

GpA1ppτqqq ↠
ś

mpGkmqqredppA1 bA kmqppτqqq{pGkmqqredppA1 bA kmqJτKq. (7.2.1.1)

By construction, for every maximal ideal m Ă A, the pGkmqqred-torsor over P1
km

induced by E trivializes
over P1

km
zYkm . Thus, by patching with the trivial torsor over A1JτK (see [BČ22, Lemma 2.2.11 (b)]),

the surjectivity (7.2.1.1) allows us to modify E along Y without changing E|P1
AzY , thereby reducing us

to the case when E induces a trivial pGkmqqred-torsor over P1
km

for every maximal ideal m Ă A. Since
split unipotent groups have no nontrivial torsors over P1

km
, this means that E induces a trivial Gkm-

torsor over P1
km

for each m. Then, however, the deformation-theoretic [ČF23, Proposition 3.1] implies
that E is constant, so that E|tt“0u is isomorphic to E|tt“8u, and hence is trivial, as desired. □

The following consequence of Theorem 7.2.1 is inspired by [Čes24b, Corollary 2.3 and Remark 2.4].

Corollary 7.2.2. For a smooth k-group G and a semilocal k-algebra A, no nontrivial G-torsor over
A trivializes over Apptqq, in other words,

KerpH1pA,Gq Ñ H1pApptqq, Gqq “ t˚u.

Proof. Let E be a G-torsor over A that trivializes over Apptqq. By [BČ22, Corollary 2.1.22 (b) (with
Example 2.1.18)], this E trivializes already over Attur1t s. Patching [MB96, Theorem 5.5] then gives
a G-torsor E over P1

A that trivializes over P1
Aztt “ 0u and satisfies E |tt“0u » E. At this point,

Theorem 7.2.1 implies that E is trivial. □

When A “ k, we recover the following result of Gille [Gil24, Theorem 7.1], which generalized the
earlier [FG21, Theorem 5.4].

Corollary 7.2.3. For a k-group scheme G locally of finite type, we have

H1pk,Gq ãÑ H1pkpptqq, Gq.

Proof. By twisting [Gir71, chapitre III, remarque 2.6.3] (with [SP, Lemmas 04SK and 0421] and
§2.1.1 for the representability of the resulting inner form of G), we only need to show that every
G-torsor E that trivializes over kpptqq is trivial. However, if Epkpptqqq ‰ H, then, by §2.2.1, our E
reduces to a Ggred-torsor over k that trivializes over kpptqq. Since Ggred is k-smooth, Corollary 7.2.2
then implies that E is trivial, as desired. □

8. Generically trivial torsors under constant groups are Zariski locally trivial

In §8.1, we settle the Grothendieck–Serre question over an arbitrary base field, and then in §8.2 we
give various examples showing that our hypotheses are sharp. We conclude in §8.3 by using our main
result to establish the Iwasawa decomposition for arbitrary k-group schemes locally of finite type.
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8.1. Grothendieck–Serre for torsors under constant groups

With the inputs of the previous chapters, we are ready to establish our main result in Theorem 8.1.2.
The final stepping stone is the following standard lemma, which encapsulates the geometric arguments
that transform the Grothendieck–Serre problem to the study of torsors over the relative P1.

Lemma 8.1.1. For a k-group scheme G locally of finite type, a geometrically regular, semilocal
k-algebra R, and a generically trivial G-torsor E over R, there is a G-torsor E over P1

R with
E |tt“0u » E such that E |P1

RzZ is trivial for some R-finite closed Z Ă A1
R.

Proof. The argument is standard but appears in the literature only for reductive G (see [FP15],
[Pan20a], [Čes22a], [ČF23], among others), so we give it in full. Theorem 3.2.2 (i) reduces E to
a generically trivial G0-torsor over R, so we lose no generality by assuming that G is connected,
so of finite type. A limit argument based on the Popescu theorem (see §1.7) then lets us assume
that R is the semilocal ring of a smooth, affine k-scheme X and that E spreads out to a G-torsor rE
over X that trivializes away from some closed Y Ă X of codimension ą 0. By decomposing X into
connected components, we may assume that X is integral of dimension d ą 0. By the presentation
lemma [CTHK97, Theorem 3.1.1] (see also [Čes24a, Lemma 8.1]), at the cost of shrinking X around
SpecpRq, there are an affine open S Ă Ad´1

k and a smooth morphism π : X Ñ S of relative dimension
1 for which Y is S-finite. By base changing along the map SpecpRq Ñ S, we therefore obtain

(i) a smooth, affine R-scheme C of pure relative dimension 1 (the base change of X);

(ii) a section s P CpRq (obtained from the “diagonal” section SpecpRq Ñ X);

(iii) an R-finite closed subscheme Z Ă C (the base change of Y );

(iv) a G-torsor E over C such that s˚E – E and E trivializes over CzZ (the base change of rE).

By [Čes22a, Lemmas 6.1 and 6.3], we then reduce further to when there is a quasi-finite, flat
R-map C Ñ A1

R that maps Z isomorphically onto an R-finite closed subscheme Z 1 Ă A1
R for which

Z – Z 1 ˆA1
R
C. By patching [Čes22a, Lemma 7.1], then E descends to a G-torsor over A1

R that is
trivial away from Z 1 and whose s-pullback is E, so we may assume that C “ A1

R. We then change
coordinates to make s be tt “ 0u and patch E with the trivial torsor over P1

RzZ to conclude. □

Theorem 8.1.2. Let G be a k-group scheme locally of finite type, let R be a geometrically regular,
semilocal k-algebra, and let E be a generically trivial G-torsor over R. If either

(i) every k-torus of Gk lies in pGgredqk (see Remark 2.2.13); or

(ii) E is étale locally trivial;

then E is trivial.

Proof. Set K :“ FracpRq and let E Ď E be the scheme-theoretic image of pEKqgred Ď EK . Since K{k
is separable, §2.2.1 ensures that the K-subgroup pGgredqK ď GK agrees with pGKqgred ď GK , so that
its action on E preserves pEKqgred. The formation of the scheme-theoretic image of a quasi-compact
morphism commutes with flat base change (see [SP, Lemma 089E]), so pEKqgred ˆK pGgredqK is
scheme-theoretically dense in E ˆR pGgredqR. In particular, the action of pGgredqR on E preserves E.
If E trivializes étale locally on R, then this commutation with flat base change also allows us to
check étale locally on R that E is even a Ggred-torsor over R. Therefore, since every K-point of E
lies in pEKqgred, we have reduced (ii) to (i).
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As for the remaining case (i), Theorem 3.2.2 (i) reduces us to when G “ Gsm, lin, that is, when
G is connected, smooth, and affine. Moreover, Lemma 8.1.1 supplies a G-torsor E over P1

R with
E |tt“0u » E such that E |P1

RzZ is trivial for some R-finite closed Z Ă A1
R. Since E |tt“8u is trivial,

Theorem 7.2.1 then implies that E is also trivial, as desired. □

8.2. Counterexamples to more general versions of the Grothendieck–Serre question

We illustrate the sharpness of the assumptions of Theorem 8.1.2: we give counterexamples to some
overly optimistic generalizations of the Grothendieck–Serre question. In Examples 8.2.1 and 8.2.2,
we show that, unlike in the reductive case, we cannot allow G to be defined merely over R even if we
assume that the group is smooth, affine, with connected fibers, in Example 8.2.3 we argue that a
straightforward reduction to the local case is unlikely to exist, and in Example 8.2.4 we recall that
we cannot drop the condition on the k-tori of Gk lying in pGgredqk. The connectedness of R-fibers is
important in these examples because it shows that the failure is not merely bootstrapped in some way
from the failure of (3.2.0.1) to hold for quasi-finite S-schemes that are not finite. It seems that prior
to these examples it was not known whether the Grothendieck–Serre type triviality of generically
trivial torsors holds for general smooth, affine groups with connected fibers over regular local rings,
although Colliot-Thélène–Sansuc [CTS87, Example 5.9] gave a smooth, affine counterexample over
Rrxspxq whose generic fiber is a torus and special fiber is Ga,R ˆR µ2,R.

Example 8.2.1. Suppose that k is an imperfect, finitely generated field of characteristic p ą 0 and
let c P kJtKˆ be such that its class modulo t is not a p-th power in k. As Gabber pointed out to
us, tx “ xp ` cyp ` tzu ď G3

a, kJtK is an example of a smooth, affine kJtK-group G with generic fiber
isomorphic to G2

a, kpptqq
(solve for z) and special fiber isomorphic to the product of Ga, k and the

1-dimensional connected, smooth, wound unipotent k-group tx “ xp ` cypu ď G2
a, k. Consequently,

every G-torsor over kpptqq is trivial, yet [Ros24, Theorem 1.6] (with [BČ22, Theorem 2.1.6 (b)])
ensures that G has infinitely many nontrivial torsors over kJtK, so the triviality of generically trivial
torsors fails for G over kJtK. The kJtK-group G has a fiberwise constant reductive rank (equal to 0),
but its split unipotent rank is not fiberwise constant. However, by instead considering the product
of G and a smooth, affine kJtK-group G1 whose generic fiber is connected, 1-dimensional, wound
unipotent and special fiber is Ga, k (for instance, G1 could be tx “ xp ` p1 ` tqypu ď G2

a, kJtK), we
obtain the same failure of triviality of generically trivial torsors under a smooth, affine kJtK-group
whose fibers are connected, unipotent, and now have constant split unipotent ranks.

Example 8.2.2. Gabber suggested the following further counterexample for nonconstant groups in
characteristic 0 that is based on dilatations and congruence subgroups.

Let T be a torus over Q that is not retract rational in the sense that no nonempty open U Ă T
admits a factorization of idU as U Ñ AN

Q Ñ U , such a T exists by [Sca20, Theorems 1.1 and 1.3].
Concretely, by a result of Voskresenskii–Saltman, we may let T be the kernel of the norm map
ResK{QpGmq Ñ Gm for a pZ{2Zq2-extension K{Q (compare with [Sal84, Theorem 3.14]). By
[Gil09, Proposition 5.1, proof of 2)ñ1)], the failure of retract rationality of T supplies an essentially
smooth, local Q-algebra R and an f P R for which the map T pRq Ñ T pR{fRq is not surjective. Let
G be the R-group that is the dilatation (also called a Néron blowup) of TR in the zero section of
TR{fR (see [MRR23, Definition 3.1]): concretely, by [MRR23, Lemma 3.1, Theorem 3.2], the R-group
G is smooth, affine, with connected R-fibers and on the category of those R-algebras S in which f is
a nonzerodivisor, we have

GpSq – KerpT pSq Ñ T pS{fSqq.

For an α P T pR{fRq, the dilatation Eα of T in the image of the pR{fRq-point α is a G-torsor for the
étale topology that is trivial if and only if α lifts to T pRq, in particular, Eα is not trivial for some α.
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However, Eα is generically trivial, in fact, already Eα|Rr 1
f

s is trivial (note that f ‰ 0 by our choice
of R and f). Thus, G has nontrivial but generically trivial torsors over R. Moreover, all of these
torsors are trivial over R{fR because [MRR23, Theorem 3.5 (1)] ensures that GR{fR » GdimpT q

a,R{fR, in
particular, this example is a Zariski rather than a Henselian phenomenon.

Example 8.2.3. The method of dilatations suggests the following example of a nontrivial but Zariski
locally trivial G-torsor over a semilocal, essentially smooth ring R. This rules out reductions from
semilocal to local regular rings in the Grothendieck–Serre problem. Many further similar examples
may be constructed by using [Sca23, théorème 1.3].

Let t be the standard coordinate of P1
F2

, let R be the semilocal ring of Gm,F2 at two distinct maximal
ideals m,m1 Ă F2rt, t´1s, and let H ď G2

a,R be a smooth, affine R-subgroup cut out by the equation
x ` x4 “ ty4. By [Ros21a, proof of Lemma 4.2], this H has precisely two F2ptq-points: p0, 0q and
p1, 0q, which both extend to R-points. In particular, its km-point p0, 0q lifts to an Rm-point, its
km1-point p1, 0q lifts to an Rm1-point, and together they assemble to a pkm ˆ km1q-point α that does
not lift to any R-point of H. Let G be the smooth, affine R-group with connected R-fibers that is
the dilatation of H in the identity of Hkmˆkm1 . The dilatation of H in the pkm ˆ km1q-point α is a
nontrivial G-torsor over R that trivializes over both Rm and Rm1 .

Example 8.2.4. In [FG21, Section 7.2], Florence and Gille gave examples of affine k-groups G of
finite type with nontrivial but generically trivial G-torsors over kJtK, which shows that the condition
on k-tori in Theorem 1.1.1 cannot be dropped. We now present a further such example related to
forms of pseudo-reductive groups.

By [CP16, Proposition 6.2.2 and Example 6.2.3], for any pseudo-semisimple k-group H , the k-group
G :“ AutgppH q is affine, of finite type, and if H – Resk1{kpHk1q for a purely inseparable field
extension k1{k of degree p :“ charpkq and a nontrivial, semisimple k-group H, then G is also
not smooth. We now show that, for any pseudo-semisimple H of this form, G is not even a
normal subgroup of a smooth k-group, in fact, some k-torus of Gk does not lie in pGgredqk (see
Remark 2.2.13). For this, by Theorem 1.1.1, it suffices to exhibit a kJtK-group form H 1of HkJtK for
which H 1

kpptqq » Hkpptqq but H 1 fi HkJtK. Our candidate is

H 1 :“ RespkJtKrxs{pxp´atpqq{kJtKpHkJtKrxs{pxp´atpqq, where k1 – krys{pyp ´ aq

for some a P kzkp. Since k1JtKrxs{pxp ´ atpq » k1JtK bk k
1 , we have H 1

k1JtK » Hk1JtK, so H 1 is a kJtK-
form of HkJtK. Similarly, kpptqqrxs{pxp ´ atpq » kpptqq bk k

1, so H 1
kpptqq » Hkpptqq. Finally, H 1 fi HkJtK

since the k-group H 1|t“0 – Respkrxs{pxpqq{kpHkrxs{pxpqq is not pseudo-reductive (see Lemma 2.3.2).

8.3. The Iwasawa decomposition

We conclude by using the Grothendieck–Serre conclusion of Theorem 8.1.2 to prove the following
Iwasawa decomposition theorem for arbitrary k-group schemes locally of finite type.

Theorem 8.3.1 (Iwasawa Decomposition). For a discrete valuation ring O that is a geometrically
regular k-algebra, K :“ FracpOq, a k-group scheme G locally of finite type, and a pseudo-parabolic
k-subgroup P ď Gsm, lin of the smooth linear part of G, we have

GpKq “ P pKqGpOq, in particular, GpKq “ Gsm, linpKqGpOq.

Proof. The pseudo-properness of the connected components of G{P supplied by Corollary 3.3.4 gives
pG{P qpOq – pG{P qpKq. Since, by Theorem 8.1.2 (and §2.6.2), generically trivial P -torsors over O
are trivial, we get the sought GpKq “ P pKqGpOq. □
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Example 8.3.2. In the setting of Theorem 8.3.1, suppose that G is pseudo-reductive with a split
maximal k-torus S ď G and that the residue field of O is separable over k. Let B ď G be a
pseudo-Borel k-subgroup containing S and let U ď B be its (split) unipotent k-radical (see §2.6.2).
By [CGP15, beginning of the proof of Theorem C.1.9] and §2.6.1, we have B – U ¸ ZGpSq with
ZGpSq{S wound unipotent. Thus, Proposition 3.1.5 (b) ensures that ZGpSqpKq “ X˚pSqZGpSqpOq

where a cocharacter λ : Gm, k Ñ S in X˚pSq is interpreted to give the K-point λpπq for a fixed
uniformizer π P O. Thus, overall, in this case the Iwasawa decomposition takes the form

GpKq “ UpKqX˚pSqGpOq.
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