UNRAMIFIED GROTHENDIECK-SERRE FOR ISOTROPIC GROUPS

KESTUTIS CESNAVICIUS AND ROMAN FEDOROV

ABSTRACT. The Grothendieck—Serre conjecture predicts that every generically trivial torsor under
a reductive group G over a regular semilocal ring R is trivial. We establish this for unramified R
granted that G is totally isotropic, that is, has a “maximally transversal” parabolic R-subgroup. We
also use purity for the Brauer group to reduce the conjecture for unramified R to simply connected
G—a much less direct such reduction of Panin had been a step in solving the equal characteristic case
of Grothendieck—Serre. We base the group-theoretic aspects of our arguments on the geometry of the
stack Bung, instead of the affine Grassmannian used previously, and we quickly reprove the crucial
weak P!-invariance input: for any reductive group H over a semilocal ring A, every H-torsor & on
P satisfies &|(t=0y = &|{t=0}. For the geometric aspects, we develop reembedding and excision
techniques for relative curves with finiteness weakened to quasi-finiteness, thus overcoming a known
obstacle in mixed characteristic, and show that every generically trivial torsor over R under a totally
isotropic G trivializes over every affine open of Spec(R)\Z for some closed Z of codimension > 2.
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1. THE UNRAMIFIED TOTALLY ISOTROPIC CASE OF THE GROTHENDIECK—SERRE CONJECTURE

In this article, we solve a case of the following conjecture of Grothendieck and Serre [Ser58, page 31,
remarque|, [Gro58, pages 26-27, remarques 3|, |Gro68, remarques 1.11 a)| about triviality of torsors.

Conjecture 1.1 (Grothendieck—Serre). For a reductive group scheme over a regular semilocal ring
R, no nontrivial G-torsor over R trivializes over the total ring of fractions K := Frac(R), that is,

Ker(HY(R,G) — HY(K,G)) = {*}.
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Torsors occur naturally in many contexts, for instance, in studying conjugacy of sections. For
conjugacy problems, Conjecture 1.1 predicts that conjugacy over K of sections over R implies
conjugacy over R, granted that the centralizer group schemes are reductive and fiberwise connected.

The Grothendieck—Serre conjecture is a nonabelian avatar of Gersten injectivity conjectures for
various abelian cohomology theories of motivic flavor. Indeed, one may hope that H'(R, G) could be
described in terms of abelian cohomological invariants in the style of [Ser95, sections 6-10], at which
point Conjecture 1.1 would follow from these abelian counterparts. Such an approach is firmly out
of reach of available technology, but it is plausible that it could eventually be reversed, namely, that
Conjecture 1.1 may eventually be used to describe H'(R,G) by abelian cohomological invariants.

We settle the Grothendieck—Serre conjecture in the case when the regular ring R is unramified and
the group G is totally isotropic in the sense that its adjoint quotient G®@ has no anisotropic factors.

Theorem 1.2 (Theorem 4.3). Let R be a Noetherian semilocal ring that is flat and geometrically reg-
ular' over a Dedekind ring O, let K = Frac(R) be its fraction ring, and let G be a reductive R-group
that is totally isotropic (see (1.3.1)). No nontrivial G-torsor over R trivializes over K, that is,

Ker(H'Y(R,G) — HY(K,G)) = {*}.

The following are the cases in which the Grothendieck—Serre conjecture has been established.

(i) In equal characteristic, that is, when O in Theorem 1.2 is a field, the Grothendieck—Serre
conjecture was settled by Fedorov—Panin [FP15] and Panin [Pan20a|, with simplifications in
[Fed22| and significant special cases obtained in prior works [Oja80], [CTO92], [Rag94], [PS97],
[Zai00], [OPO01], [OPZ04], [Pan05], [Zai05], [PPS09]|, [PS09], [Chel0], [PSV15], [Pan20b|; see
also [Pan22a] for a variant beyond connected reductive groups.

(ii) For regular semilocal R that are unramified, more precisely, that are as in Theorem 1.2, the
Grothendieck—Serre conjecture has been established for quasi-split G in [CchQa] (with a prior
more restrictive case in [Fed21]) and for G that descend to reductive O-groups in [GL23a| (with
subcases of this constant case already in [Pan19|, [GP23]). For further variants with, more
generally, O a semilocal Priifer ring of dimension < 1, see [GL23al, [GL23b, Theorem 9.1|,
and [Kun23, Theorem A on page 24| (the latter with O a valuation ring of dimension < 1).

(iii) The conjecture is known in the case when R is of dimension < 1 by [Guo22a] that built on
prior [Nis82] and |Nis84] (with special cases in [Har67|, [BB70]|, [BT87], [PS16], [BVG14],
[BEF17], [BEFFH19|, and valuation ring variants in [Guo22b| and |GL23a, Appendix A]). This
one-dimensional case implies the case when R is Henselian, see [CTS79, assertion 6.6.1].

(iv) The case when G is a torus was settled by Colliot-Théléne and Sansuc in [CTS78], [CTS87].

(v) Sporadic cases with either G or R of specific form were settled in [Gro68, remarques 1.11 a)],
[0ja82], [Nis89], [BFFP22], [Fir22], [Pan22b).

For arguing Theorem 1.2, we only use the 1-dimensional case (iii), but not any of the other cases.
Throughout the works above, there are broadly two approaches to the Grothendieck—Serre conjecture:

e the geometric approach, which was pioneered by Colliot-Théléne-Ojanguren [CTO92| and
then developed much further in the works that culminated in the results (i)—(ii); and

1We recall from [SP, Definition 0382] that the geometric regularity assumption means that R®y k' is a regular ring
for every finite extension k' of some residue field k of ©. By Popescu theorem [SP, Theorem 07GC], it is equivalent to
require that our regular semilocal R be a filtered direct limit of smooth O-algebras.
2


https://stacks.math.columbia.edu/tag/0382
https://stacks.math.columbia.edu/tag/07GC

the group-theoretic approach, prevalent in (iii)—(v) and based on analyzing the structure of G.

The group-theoretic approach appeared earlier, and its ideas and results later fed into the geometric
approach, which analyzes the interaction of the geometry of R with the properties of G. Given a
generically trivial G-torsor F over R, the gist of the geometric approach is to explicate the geometry
of R via presentation lemmas of Gabber—Quillen type and to combine them with patching arguments
to eventually produce a G-torsor & over P} such that &lp—0y = B and &[fy—q is trivial. On the
other hand, results rooted in the geometry of the algebraic stack Bung parametrizing G-torsors
over the relative projective line imply that every family of G-torsors over IP’}% is R-sectionwise
constant, in particular, that &|y_g, ~ &|—o), see Theorem 3.6 below or [PS23a, Corollary 1.8],
[PS23b, Corollary 1.8|. Taken together, this means that F is trivial.

In this article, we develop the geometric approach further, the following being our main novelties.

(1)

In comparison to equal characteristic, the main complication in the unramified mixed charac-
teristic case of the Grothendieck—Serre conjecture is that the base O of the projection that
we have no flexibility to “move” is now one-dimensional, which makes us lose one dimension
in geometric arguments. For instance, to start the geometric approach we now have to build
a closed Z < Spec R of codimension > 2 away from which our generically trivial G-torsor E
over R is “simpler,” whereas in equal characteristic (when O was a field) codimension > 1
sufficed and was straight-forward to arrange from generic triviality. In §2, we bypass this
problem: for any G and E, in Proposition 2.6, we build an open V < IP’}Lz containing both
Pépec( Rr)\z for some closed Z Spec(R) of codimension > 2 and the sections {t = 0} and

{t = 00}, as well as a G-torsor & over V such that &|;—gy ~ F and &|y_ is trivial.

Consequently, E' becomes “simpler” over Spec(R)\Z in the sense that it fits into a family of
G-torsors over Pépec( R)\Z with a trivial fiber at infinity. For totally isotropic G, this already

implies that E trivializes over every affine (Spec(R)\Z)-scheme, see Theorem 4.2.

To build V', we use a quasi-finite version of the presentation lemma and find a way to carry
out the subsequent reembedding techniques with finiteness weakened to quasi-finiteness. In
contrast, building the desired Z of codimension > 2 was simpler in [Ces22a]: it sufficed to
combine the quasi-splitness assumption made there with the valuative criterion of properness.

We take advantage of our & over V as in (1) in several different (and disjoint) ways.

Firstly, in §4, we use our & and V to carry out the geometric approach in full for totally
isotropic G: we settle the unramified case of the Grothendieck—Serre conjecture for such G in
Theorem 4.3. Roughly, & and V serve as witnesses of E being “simpler” over Spec(R)\Z, and
we carry them along the steps of the geometric approach to eventually build a G-torsor .#
over P}, (unrelated to &) such that Z|;_gy ~ E and .Z|;,_y is trivial. The R-sectionwise
constancy of families of G-torsors over IP)}% applied to % then implies the triviality of E.

A crucial novel aspect of our implementation of the geometric approach is to carry along not
only Z, but also a closed Y < Spec(R) of codimension 1 containing it such that Elgpec(ryy
is trivial: Y is important for mitigating the loss of applicability of the excision lemma
for unipotent torsors [CesQQa, Lemma 7.2 (b)] to pass to Pk in our setting. Relatedly, in
Lemma 2.1 we generalize the mixed characteristic presentation lemma to track both Y and Z.

Secondly, in §5, we combine the existence of & with the purity for the Brauer group (see

[Ces19]) and constancy for multiplicative group gerbes over PL (see Lemma 3.4) to quickly

reduce the unramified case of Grothendieck—Serre to simply connected groups. This method is

new even in equicharacteristic, where the corresponding result was the main goal of [Pan20b].
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(3) For studying G-torsors over a relative P!, we base our arguments on the geometry of the
algebraic moduli stack Bung parametrizing such torsors. This replaces affine Grassmannian
inputs used in previous works starting with [FP15] and leads to clean, simple, broadly useful
geometric statements about Bung recorded in §3, for instance, Proposition 3.1 or Theorem 3.6.

Even though we limit ourselves to the totally isotropic unramified case, our results may also reach
most types of anisotropic reductive G over an unramified regular semilocal R as follows. First of
all, by passing to the simply connected case via Proposition 5.1 and decomposing into factors, we
may harmlessly assume that G has simple fibers. The main idea then comes from observmg that if
G — G is an inclusion of a factor of a Levi subgroup of a larger reductive R-group G then

H'(R,G) — HY(R,G) and HY(K,G)— H'(K,G),

see, for instance [Ces22b, equation (1.3.5.2)]. This reduces the Grothendieck-Serre conjecture for
G to that for é; however, the latter is isotropic, so Theorem 1.2 applies to it. The focus then
shifts to realizing GG inside some G in this way. Overall, this type of approach to anisotropic groups
was explored in [PPS09] in equal characteristic, but one may amplify it further by first combining
techniques of §2 with ideas from [Pan20b| to obtain the flexibility of varying G in isogenies or even
passing to studying generically isomorphic adjoint R-groups instead of torsors. Nevertheless, even
though we could reach most types of anisotropic G in this way, types such as Fy or Eg never occur
as Levis of larger reductive groups and seem too large to treat directly, which signals the need of
other ideas for arguing the remaining anisotropic case for unramified R in a clean conceptual way.

1.3. Notation and conventions. For a field k, we let k denote its algebraic closure. For a point s
of a scheme S (resp., a prime ideal p of a ring R), we let ks (resp., kp) denote its residue field viewed
as an algebra over S (resp., over R). We let Frac(—) denote both the total ring of fractions of a ring
and the function field of an integral scheme, depending on the context.

When it comes to reductive groups, we follow SGA 3, in particular, a reductive group over a scheme
S is a smooth, affine S-group scheme whose geometric fibers are connected reductive groups, see
[SGA 3111 new, exposé XIX, définition 2.7|. See also [CCSQQb, Section 1.3] for a review of basic
reductive group notions and notations that we use freely. In particular, we write G for the
derived subgroup of a reductive group scheme G and we write H®¢ for the simply connected cover
of a semisimple group scheme H (see loc. cit. for a review). As in [Ces22a, Definition 8.1] (or
[écs22b, Section 1.3.6]), a reductive S-group G is totally isotropic if in the canonical decomposition

Gad ~ Hz‘e{An,Bn,~~~,G2} ReSSZ'/S(Gi) (1.3.1)

of [SGA 3111 pnew, exposé XXIV, proposition 5.10 (i)], in which ¢ ranges over the types of connected
Dynkin diagrams, S; is a finite étale S-scheme, and G; is an adjoint semisimple S;-group with simple
geometric fibers of type ¢, Zariski locally on S each G; has a parabolic S;-subgroup that contains
no S;-fiber of G;; intuitively, this amounts to requiring that Zariski locally on .S the group G itself
contain a proper (relative to each factor) parabolic subgroup.

We say that a reductive S-group G is simple if it is semisimple and the Dynkin diagrams of its
geometric S-fibers are all connected (some authors call such groups absolutely almost simple because
even in the case when S is a geometric point, G may still have nontrivial finite central subgroups).
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2. LIFTING TO A FAMILY OF TORSORS OVER ]P’IR AWAY FROM A CLOSED OF CODIMENSION > 2

Our first goal is Proposition 2.6 below that builds a closed Z < Spec R of codimension = 2, away
from which our generically trivial G-torsor E over R simplifies. The construction ultimately hinges on
the following quasi-finite version of the Gabber—Quillen presentation lemma in mixed characteristic.

Lemma 2.1. Let X be a smooth affine scheme of pure relative dimension d > 0 over a Dedekind
ring O, let x1,...,xp, € X, and let Z 'Y < X be closed not containing any irreducible component
of any O-fiber of X. If either Z is of codimension = 2 in X or if O is 0-dimensional, then there are
an affine open X' < X containing all the x;, an affine open S < A‘é_l, and a smooth O-morphism
m: X' — S such that Y n X' is S-quasi-finite and Z n X' is S-finite.

Proof. With Y = Z, the claim was settled in [CesQQa, Proposition 4.1, Remark 4.3], in fact, it was
one of the main technical results of op. cit. We will obtain the general case by similar arguments.

By localizing at the images of the x1,...,x, in Spec O and then spreading out, we may assume
without losing generality that O is semilocal and then, by passing to components, that O is a domain.
Moreover, by a limit and spreading out argument that is analogous to (but is simpler than) that
of [CesQQa, page 13, proof of Variant 3.7|, we may first arrange that the fraction field K of O be
finitely generated over its prime field and then enlarge Spec O by glueing in a new discrete valuation
ring to reduce to the case when each x; that lies in the generic O-fiber of X has a specialization
that lies in some closed O-fiber of X. By replacing such x; by these specializations, we are therefore
left with the case when each x; lies in some closed O-fiber of X and is a closed point of X.

At this point, we embed X into an affine space over O and form the closure in the corresponding
projective space to build an open immersion X < X into a projective O-scheme X, which is flat by
[SP, Lemma 0539], of relative dimension d by [SP, Lemma 0D4J], and even of pure relative dimension
d by [SP, Lemma 02FZ]. In particular, the local rings of X are all of dimension < d + 1, so for an
x € X of height h, every proper closed subset of the closure m c X is of dimension < d — h. Since
the closure Z c X of Z is the union of the closures of the generic points of Z, all of which are of
height > 2 in X, this means that Z\Z is O-fiberwise of codimension > 2 in X. The same holds for
W \Ym, where % is the closure of Yy, in Xy, and m < Spec O is the union of the closed points. We
replace the very ample line bundle O«(1) by its large power and apply [EGA I1I;, corollaire 2.2.4]
to force each global section of Ox_(n) to lift to a global section of Ox(n) for n > 0. By applying
[éesQQa, Proposition 3.6| (especially, its last aspect to handle disconnected m; the W there is our X)
to the closed O-fibers of X and lifting the sections obtained to X, we may even choose this large
power so that there exist nonzero

hg € F(Y, ﬁy(l)), hi € F(Y, ﬁ’y(wl)), vee, hg_1 € F(Y, ﬁ’y(wd_l)) with wq,...,wg_1 >0
such that the hypersurfaces H; := V(h;) = X satisfy the following properties.
(i) Hp does not contain 1, ... xy,.

(i) The map 7: X\Hoy — Ag/;l determined by the hy/hy", ..., ha—1/hy*" is smooth at each ;.
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(iii) (ZuZ)nHon...n Hy 1 =, in other words, Z U % does not meet the exceptional locus
of the weighted blowing up in the following diagram determined by the hq, ..., hg_1:

Y\HOC—> Bly(ho, ey hd—l)

A%ﬁl(—> P@(l, Wiy .- ,wd_l)

(see [Ces22a, Section 3.5] for a review of the weighted blowup Blx(ho,- .., h4—1); its formation
may not commute with base change to m, but the formation of 7 does).

(iv) Each (Z u %) n7 Y(7(x;)) lies in X\ Ho.
(v) In fact, each (Z U &) n 7 !(n(x;)) also lies both in X and in the smoothness locus of 7.

By (iii), each (Z U %) n71(n(x;)) is a projective subscheme of X, in fact, by (iv), it is even a finite
collection of possibly nonreduced points: indeed, any component of dimension > 0 would still be
projective, and so could not lie in X\ Hy because the latter is affine. Thus, since 7 is projective, by
spreading out and the openness of the quasi-finite locus of a morphism [SP, Lemma 01TI| applied to
the projective morphism 7| _,, , there is an affine open S < Aﬁl;l containing all the m(z;) such that
(Zu#) N7 1(S) is S-quasi-finite, and hence, being projective, is even S-finite. By (iv), at the cost of
shrinking S around the 7(z;), we may then also ensure that (Zu% N7 1(S) = (Zu#)nr=(S). At
the cost of further shrinking S around the 7(z;), we may then choose an affine open X’ = X n7=1(S)
in the smoothness locus of 7 containing all the x; and all the (Z U %) "7 (7 (z;)) to make sure that
even (Z U %) n X' is S-finite (it suffices to first choose any affine open X’ containing the indicated
points and then base change to an affine open of S containing all the 7(z;) and not meeting the
image of ((Z u %) n 7~ 1(S))\X’, noting that this image is automatically closed due to finiteness).

Since (Zu# )N X' = (ZUYn)n X', we get that Z n X’ is also S-finite. Thanks to [SP, Lemma 01T1]|
again, we may then shrink S around the 7(x;) and replace X’ by a suitable affine open containing all
the z; and all the (Z U Yyp) n7(7(x;)) to also make Y n X’ be S-quasi-finite (in addition to Z n X’
being S-finite, as ensured by repeating the parenthetical argument at the end of previous paragraph).
It remains to note that our smooth map X’ — S is of relative dimension 1 by a dimension count. [J

The following reembedding lemmas will help us to pass from the relative curve X’ — S of Lemma 2.1
to a relative affine line. They are more subtle than the versions given in [Ces22a, Lemma 6.3] or
in prior references that developed the geometric approach to the Grothendieck—Serre conjecture
because now Y is merely quasi-finite. Relatedly, we do not know how to arrange that V = A}L‘.

Lemma 2.2. Let Y be a quasi-finite, separated scheme over a semilocal ring A and, for each maximal
ideal m < A, let ty: Yy, — A}Cm be a closed kn-immersion. There are principal affine opens Y' <Y

and V < A, both containing all the Yy, and a closed immersion 12 Y' < V extending all the iy,

Proof. Zariski Main Theorem [EGA IV, Corollaire 18.12.13] gives an open immersion Y «— Y into
an A-finite scheme ¥ = Spec(ﬁ). The union of the Y}, is a closed subscheme of Y disjoint from
}N/\Y. Thus, some a, € A vanishes on }N/\Y and is a unit on every Y , and some a € A is a unit on
}N/\Y and is such that a/aq on each Yy, is the ty-pullback of the standard coordinate of A,lgm. Jointly,
a, as do not vanish at any point of Y, so they determine a map 7: Y — PL such that {ay, = 0}

set-theoretically is the Z-pullback of infinity. By construction, 7 extends the uy and 7-1(A}) < Y.
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The schematic image of 7'is an A-finite closed subscheme Y < IP’}4: this is simpler when A is Noetherian,
but in general and more concretely, 7 factors through the affine complement of any hypersurface in
P, disjoint from 2(Y) (such a hypersurface exists by the avoidance lemma [GLL15, Theorem 5.1])
and the coordinate ring A of Y is the image in A of the coordinate ring of the complement of this
hypersurface. Thanks to this description, the image of the finite map Y — Y contains every minimal
prime of A, so this map is surjective. In particular, for every maximal ideal m — A, the intersection
Y n A,lgm set-theoretically is the (n-image of Yy and the finite map

TTHAL) > Y A AL (2.2.1)

is a closed immersion on kpy-fibers. By the Nakayama lemma [SP, Lemma 00DV (6)], this finite
surjection that is injective on coordinate rings becomes also surjective on coordinate rings after
semilocalizing Y N AL along the union of its ky-fibers. Thus, (2.2.1) becomes an isomorphism after
this semilocalization, so, by a limit argument, there is a principal affine open of Y n A}L‘ containing
its km-fibers over which the map (2.2.1) is an isomorphism. This means that, as claimed, there are a
principal affine open Y’/ T_I(Ah) c Y containing all the Y}, a principal affine open V < A}L‘, and
a closed immersion ¢ :=7]ys: Y/ < V extending the ip,. d

To use Lemma 2.2 in practice, we need a criterion for the existence of the closed immersions ty,.
Lemma 2.4 below gives such a criterion in terms of the following set-theoretic obstruction.

Definition 2.3. Let A be a ring, let Y be a quasi-finite A-scheme, and let X be an A-scheme. There
is no finite field obstruction to embedding Y into X if for every maximal ideal m ¢ A with ky, finite
and every finite field extension k’/ky, the number of k’-points of Yy, does not exceed that of Xy, .

The condition is fibral, but it is convenient to allow an arbitrary A to simply be able to say that
there is no finite field obstruction to embedding Y into X over A.

Lemma 2.4. For a finite scheme Y over a field k and a nonempty open V Ai, there is a closed k-
immersion t: Y — V iff there is no finite field obstruction to it and'Y is a closed subscheme of some
smooth k-curve C, in which case we may choose v to extend any ty: Yo — V for a closed Yo C Y.

Proof. The ‘only if’ is clear, so we fix closed immersions Y < C and (¢ as in the statement and
assume that there is no finite field obstruction. We may build ¢ one connected component of Y at a
time and shrink V' at each step, so we may assume that Y is connected with unique closed point y.
If k is finite, then the absence of the finite field obstruction allows us to choose a closed immersion
ty:y = V. If k is infinite, then [CesQQa, Lemma 6.2| supplies a closed immersion ¢,: y < Ai and
the possibility to change coordinates via t + ¢ 4 « for a € k allows us to assume that ¢, factors
through V. In other words, for all £ we have reduced to the case when Yy # (7.

In the case when the extension k,/k is separable, [EGA IV, proposition 17.5.3] ensures that the
n-th infinitesimal neighborhood of y in C'is k-isomorphic to Y;, := Spec(ky[z]/(z"*1)) over k (the
separability ensures that ky ® ky has k, as a direct factor, so, by the invariance of the étale site
under nilpotents, it suffices to identify the n-th infinitesimal neighborhood after base changing C
along k — k,, that is, after reducing to the case k = k,, in which loc. cit. applies). This does not
depend on C, and Y ~ Y}, for some n > 0. Thus, to extend our fixed ¢y, to a desired ¢y, by induction
on n = 0, we only need to argue that every k-automorphism of Y,, lifts to a k-automorphism of Y, ;1.
For this, by base change along the inverse of the induced k-automorphism of k,, we may reduce
to the case when this induced automorphism is the identity of k,. This makes the automorphism
ky-linear, so we may replace k by k, and further reduce to the case when k, = k. In this case,
7
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however, k-automorphisms of Y;, correspond to elements a1z + ... + apa™ € k[z]/(z™1) with
a; € k and a; # 0, and such elements lift.

In the remaining case when k, (equivalently, k) is infinite and Yy # ¢, it suffices to show that a
given closed immersion ty: Yy < V extends to a closed immersion of the square-zero infinitesimal
neighborhood €y, of Yy in C: by iterating this with Yj replaced by ey, and eventually restricting to
Y, we will obtain the desired ¢. By deformation theory, more precisely, by [I1105, Theorem 8.5.9 (a)],
the k-morphisms €y, — V that restrict to ¢y, are parametrized by some affine space AkN . Since ey
is k-finite, the Nakayama lemma [SP, Lemma 00DV] ensures that the locus parametrizing those
€y, — V that are closed immersions is an open ¥ < A,ICV . Moreover, ¥ # (: indeed, we may check
this after base change to any field extension of k, and a suitable such base change reduces us to the
already settled case when k,/k is separable. Since k is infinite and ¥ < AL is nonempty, ¥ (k) # &.
Any k-point of ¥ corresponds to a sought closed immersion ey, < V that restricts to ¢. ([l

The embedding lemmas above help us build the following excision squares that allow us to pass to A}L‘.

Lemma 2.5. Let C' be a smooth, affine scheme of pure relative dimension 1 over a semilocal ring A,
let Y < C be an A-quasi-finite closed subscheme, and let ty: Yy, — A}Cm for maximal ideals m < A
be closed immersions. There are an affine open C' = C' containing the Yy,,, an affine open V. Al
and an étale A-morphism f: C' — V that embeds Y n C" as a closed Y' < V in such a way that

YnC'——=(C
]
Y ————V

is a Cartesian square in which the left vertical arrow is an isomorphism, as indicated.

Proof. By the final aspect of Lemma 2.4, any fixed ¢, may be extended to any infinitesimal thickening
of Yy, in Ck, . In particular, we lose no generality by replacing Y by any of its infinitesimal
neighborhoods in C, so we may and do assume that each clopen of every Y},  is nonreduced. By
Lemma 2.2, there are principal affine opens Y’ < Y and V < AL, both containing all the Y}, , and a
closed immersion ¢: Y/ < V extending the t,. Since Y’ < Y is a principal affine open, we may replace
C' by a principal affine open containing all the Yy, to reduce to Y/ =Y. By lifting the ¢t-pullback of
the standard coordinate of A}L‘, we then extend ¢: Y — V to an A-morphism f: C — A}L‘.

By [SP, Lemma 01TI|, the quasi-finite locus of f is open, and the A-smoothness of C' together with
the nonreducedness of each clopen of every Y}, force this locus to contain all the Y : indeed, if
(" is an irreducible component of C,, containing a point of Yy, , then f|c is quasi-finite because
f cannot collapse C’ to a point of A}Cm since f ’ykm is a closed immersion and the components of
Y}, are nonreduced. Moreover, since C' and A}4 are A-smooth, we may apply the flatness criterion
[EGA TV,, proposition 6.1.5] to see that f is A-fiberwise flat at the points of each Yy . Thus,
[EGA IV3, corollaire 11.3.11] implies that f itself is flat at the points of each Yy, . Since étaleness of a
flat morphism may be checked fiberwise and all the components of all the Y}, are nonreduced, f \ykm
being closed immersions then implies that all the Yj_ even lie in the étale locus of f. Consequently,
we may replace Y and V, and then also C, by principal affine opens containing all the Yj_ to reduce
to the case when f is étale.

Finally, we replace C' by the f-preimage of V to make f factor through V. Since a section of
separated étale morphism is a clopen immersion, f~1(f(Y)) =Y uY for some closed Y = C. By

inverting a function on C' that vanishes on Y but is a unit on Y, we get a desired affine open C’. [
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We are ready to build the promised closed Z < Spec R of codimension > 2 away from which our
G-torsor is simpler: any V as in the following proposition contains ]P’épec( R\Z for some such Z.

Proposition 2.6. Let G be a reductive group over a Noetherian semilocal ring R that is flat and
geometrically reqular over some Dedekind ring. For a generically trivial G-torsor E over R, there are

(i) an open V < Pk containing all the height < 2 points and the sections {t = 0} and {t = w0};
(ii) a G-torsor & over V' that trivializes away from some R-quasi-finite closed of V' and is such that

Elip=0y ~ B, E|p=oy is trivial, and £|P%rac<m is trivial.
Proof. We first dispose of the condition that V' cover the height < 2 points, so we suppose that
V c IP’}% is an open satisfying the other conditions, in particular, such that & trivializes away from
an R-quasi-finite closed %" < V' and also on Vgac(r). By spreading out, & is trivial over Vg for some
dense open S < Spec(R). By patching with the trivial torsor over IP’}SY, we may assume that V' contains

PL, so also contains ]P’%ra o(R) and is trivial thereon. The closure % < }P’}% of # is R-finite because

V < Pk is R-fiberwise dense. By patching, & over V extends to a G-torsor over V u (PL\%) that
trivializes away from the R-quasi-finite closed %/. Thus, we replace V by V u (PL\%) = PL\(Z\%)
to force V' to cover the height < 1 points of PL. At this point, by [CTS79, théoréme 6.13] (see also
[CCS22b, Section 1.3.9] for a recap) applied to the local rings of the generic points of P}%\V and then
spreading out and patching, & over V extends to a G-torsor over some open of IP’}% covering the
height < 2 points. Consequently, we may enlarge V' again to cover the height < 2 points.

Having disposed of the codimension requirement, we let O be a Dedekind ring over which R is flat
and geometrically regular and decompose O and R into factors to force both of them to be domains.
We then combine Popescu’s [SP, Theorem 07GC| with a limit argument to reduce to the case when
R is the semilocal ring of a smooth, affine, integral O-scheme X. We spread out to assume that G
and E begin life over X. We may assume that X is of relative dimension d > 0 over O because else
E is trivial by [Guo22a, Theorem 1], a case in which we may choose V = Pk with & trivial.

More generally, we apply [Guo22a, Theorem 1] to the semilocalization of X at the union of the generic
points of the closed O-fibers of X and use a limit argument to find a closed Y < X that contains no
irreducible component of any O-fiber of X and is such that E trivializes over X\Y. By Lemma 2.1,
at the cost of shrinking X around Spec R we may find a smooth morphism X — A?{l of relative
dimension 1 with respect to which Y is quasi-finite. Base change along Spec R — A%_l then gives

e a smooth, affine R-scheme C' of pure relative dimension 1 equipped with an s € C(R);
e a reductive C-group scheme ¢ with s*(¢) = G and a ¥-torsor & over C with s*(&) ~ E;
e an R-quasi-finite closed subscheme %" = C' containing s such that &[c\g is trivial.

We will gradually simplify the data of these C, s, ¢, &, and % over R to arrive at our V < P}%.

By [Li23, Proposition 7.4| and spreading out, there are a finite étale cover C — C’ of some affine
open neighborhood C" < C of s, a lift §€ C (R) of s, and a reductive group isomorphism ¥ = G
whose $-pullback agrees with the identification s*(¢) =~ G. By replacing (C, s) by (C~', S)and ¥4, &,
% by their pullbacks to C , we therefore reduce to the case when & =~ G .

Since ¢ is merely required to be R-quasi-finite (and not R-finite), we may replace C' by some

affine open containing s to arrange that set-theoretically %4, = sy, for every maximal ideal m < R.

This ensures that there is no finite field obstruction to embedding ¢ 11 Spec R into A}%. Therefore,
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Lemmas 2.4 and 2.5 give us an affine open C' = C' 1 AL, containing s 1 {t = 0}, an affine open
V < AL, and an étale R-morphism f: C’ — V that fits into a Cartesian square

(W A C) Lt =0}— "

L

for some closed subscheme %’ < V. By patching the disjoint union of & over C/ n C and the trivial G-
torsor over C’ A}, with the trivial G-torsor over V\#” (see, for instance, [Ces22b, Proposition 4.2.1]),
we therefore obtain a G-torsor &’ over V such that &’ lv\@- is trivial and disjoint s, s € V() such
that s*(&’) =~ F and s{(&”) is trivial. By [Gil02, corollaire 3.10 (a)], the triviality away from #”
implies that &’ is also trivial over VEirac(R)-

At this point, we have basically already constructed all the required data. To finish, we note that
since R is semilocal, the automorphism group of ]P)}% acts transitively on IP’}%(R). Thus, we may
assume that sg is the R-point {t = c0}. Since sq is disjoint from s, we then shift the coordinate of
Al to arrange that, in addition, s is the R-point {¢ = 0}. O

3. TORSORS OVER P4 VIA THE GEOMETRY OF Bung

To proceed further, we need to analyze the G-torsor & over V c IP’}% obtained in Proposition 2.6.
An initial step to this and a general bedrock of the geometric approach to the Grothendieck—Serre
conjecture is the fact that a G-torsor on P} over a semilocal ring is A-sectionwise constant. This
constancy was recently established by Panin-Stavrova in [PS23a], [PS23b], and we reprove and mildly
generalize their result in Theorem 3.6 below. The constancy comes from the following geometric
property of the algebraic stack Bung parametrizing G-bundles on IP’}4, in addition, Proposition 3.1
simultaneously reproves, strengthens, and explains its numerous special cases in [PSV15, Proposi-
tion 9.6], [Tsy19], [Fed21, Proposition 2.2], [Ces22a, Lemma 8.3], and elsewhere. For a basic review
of some properties of algebraic stacks that are useful for studying torsors, see [Cesl.S, Appendix A].

Proposition 3.1. Let w: C' — S be a proper, flat, finitely presented scheme morphism and let G be
a flat, finitely presented, affine S-group. The restriction of scalars Bung 1= m.((BG)¢) is a locally
finitely presented algebraic S-stack with affine diagonal. The adjunction morphism

BG — Bung
(a) is a monomorphism of algebraic S-stacks if H*(Cs, Oc,) = ks for s € S;
(b) is an open immersion if H°(Cs, Oc,) = ks and H*(Cy, O¢,) = H*(Cs, 0c,) =0 for s€ S.
When (b) holds with S quasi-compact, a G-torsor over C' descends to S iff it does so on the closed
S-fibers of C.

The main case of interest for us is C' = IP’}9 but the proof is no more difficult in general.

Proof. Since BG is finitely presented and has an affine diagonal (see [Ces15, Lemma A.2 (b)]), the
geometric properties of Bung follow from [HR19, Theorem 1.3]. Moreover, the last aspect follows
from (b) because any open containing all the closed points of a quasi-compact scheme is the entire
scheme (equivalently, every quasi-compact scheme has a closed point).
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In (a), by base change and [SP, Lemma 04Z7], it suffices to check the full faithfulness of BG — Bung
on S-points. For this, for any G-torsors E and E’ over S, we need to check that

By working fpqc locally on S to trivialize E and E’, it is enough to argue that G(S) — G(C) and, by
also using [EGA 1V, corollaire 17.16.2], we may assume that C(S) # &, so that G(S) — G(C). For
the surjectivity, we may again work locally and now combine Noetherian approximation (with [I1105,
Corollary 8.3.11 (a)] to keep the assumption on H") with the rigidity lemma [MFK94, Proposition 6.1]
to reduce to the case when S is the spectrum of a field k. In the field case, however, since morphisms
to an affine scheme correspond to ring homomorphisms induced on global sections, the assumption
H°(C, 0¢) = k and the affineness of G imply that every C-point of G' descends to a k-point.

In (b), we already know from (a) that the map is a monomorphism, and hence is representable
by algebraic spaces by [SP, Lemmas 04Y5 and 04ZZ]. Thus, it suffices to check that it is formally
smooth: indeed, it will then be smooth by [SP, Lemmas 06Q6 and 0DPO0|, hence representable
by schemes by Rydh’s [SP, Lemmas 0B8A|, and so an open immersion by [SP, Theorem 025G]|.
Concretely, for the formal smoothness, given a square-zero thickening T' < T” of affine S-schemes, we
need to argue that a G-torsor & over Cpv descends to T” granted that its restriction to C descends
to a G-torsor E over T. Let J < Op be the ideal sheaf of T, so that J? = 0 and we may view J as
a quasi-coherent Op-module. By (a), we already know that, if a sought descent exists, it is unique
up to a unique isomorphism, so we may work fpqc locally on 7" to assume that

Hl(CT, ﬁCT) ot H2(CT, ﬁC’T) ~0

(see [I1105, Corollary 8.3.11]), that the co-Lie complex {g/p, controlling the deformations of E,
consists of free vector bundles placed in degrees —1 and 0 (see [Il172, équation (2.4.2.9), page 208]),
and, as in (a), that C(T") # &. By [11105, équation (8.3.2.2) and Corollary 8.3.6.5 (a)| (we apply the
corollary to X :=T and E := RI'(Cr, O¢,.), with M :=J), the displayed vanishing ensures that

HY(Cr,J|cy) = HY(Cr, Ocy) ®p, J =0 and H*(COr,J|c,) = H*(Cr, Oc,) ®py. J = 0.

Consequently, the structure of {7 forces the vanishing

EthﬁCT (EE/T‘CT’ J‘CT) =0.

Thus, [I1172, théoréme 2.4.4, page 209] implies that & is the unique deformation of E|c;, to a G-torsor
over Crr. Since the pullback of & along any T"-point of C' is another such deformation, & must
agree with this base change, so & is constant. ([l

Remark 3.2. The proof continues to work with the affineness of G weakened to quasi-affineness,
granted that one argues the algebraicity of Bung ([HR19, Theorem 1.3] no longer applies). It seems
possible that this algebraicity could follow from [HLP23, Theorem 5.1.1| but we did not verify this.

Even when C = P}, the open immersion of Proposition 3.1 (b) is typically not closed, for instance,
this would contradict [Fed16, Theorems 3 (ii) and 5|. Nevertheless, it is closed when G is of
multiplicative type, as follows from the following broadly useful and widely known lemma that
generalizes [GR18, Proposition 11.4.2|, [Fed22, Lemma 2.14|, and other results in the literature.

Lemma 3.3. For a group M of multiplicative type over a scheme S, its cocharacter S-scheme
X«(M) := Hom,, (G, M), and the S-stack Bunyy parametrizing M -torsors over IP’flg with d > 0,
Buny = BM xg X, (M), in particular, H'(P%, M) =~ HY(S,M)® H°(S, X.(M));

if M is, in addition, finite, then Buny =~ BM and, in particular, BM(S) — (BM)(PL).
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Proof. For finite M, we have X, (M) = 0, so the claims about finite M follow from the rest.

The map BM xg X, (M) — Buny, is given on S-points as follows: a pair of an M-torsor E over S
and an S-morphism a: G,, 5§ — Mg is sent to the contracted product” of F ‘Pg and the extension
along ahp% of the G,,-torsor corresponding to ¢(1), and similarly for points valued in a variable
S-scheme S’. By the flexibility of base change to S, it suffices to show that every M-torsor & over
IP’% arises from F and « as above that are uniquely determined up to a unique isomorphism.

Certainly, F is uniquely determined by E ~ p*(&’) for a fixed p € ]P’dS(S), so, by twisting and using
the bijection M(S) —> M(P%) that results as in (3.1.1), all we need to show is that & comes
from a unique a when p*(&) is trivialized. Due to this rigidification along p and the fact that, by
M (S) — M (P%), isomorphisms of rigidified M-torsors over P4 are unique if they exist, the claim is
fpqc local over S. Thus, we assume that S = Spec A is affine, then, by a limit argument, that A is
local, and, by decomposing M, that M is either G, s or u,, 5. For G,,, the desired Hl(IP’fi, Gn) =7
holds when A is a field, so, by Proposition 3.1, also when A is local. The u,, case follows from this
by the sequence 0 — p, — G, = Gy, — 0 and the isomorphism G,,(A) — (Gm(IP’dA). O

For finite groups M of multiplicative type, we may slightly extend Lemma 3.3 to gerbes as follows.
We recall that an M-gerbe is a stack that fppf locally on the base is isomorphic to the stack BM of
M-torsors and that up to equivalence M-gerbes are classified by prpf with coefficients in M, see
[Gir71, chapitre III, définition 2.1.1, section 2.1.1.2, corollaire 2.2.6; chapitre IV, théoréme 3.4.2 (i)].

Lemma 3.4. Let M be a finite group of multiplicative type over a scheme S and fix a d > 0.
(a) For an M-gerbe M over Pflg, the s € S such that A trivializes over IP’%S form a clopen S 4 < S.

(b) Base change is an equivalence between the (2, 1)-category of M -gerbes over S and that of those
M -gerbes M over Pds with S, = S; in particular, each A trivializes fppf locally on S 4.

Proof. By descent, for both claims we may work fppf locally on S, so we may assume that M is a
product of various i, g, in particular, that there are split S-tori 7" and 7" and an exact sequence

0>M->T->T —>0.

By [Gab81, Chapter II, Part 2, Theorem 2 on page 193], each element of HQ(}P’Cé,T)torS descends
to H%(S,T). Thus, by Lemma 3.3, in (a) we may fppf localize S further to reduce to the case
when the class of .# in H?(P%, M) comes from an S-point of the constant S-scheme X, (T")/X.(T).
By Lemma 3.3 again, the locus of S over which this S-point is the zero section is the sought S 4.
Moreover, we have simultaneously showed the last aspect of (b): . trivializes fppf locally on S .

For (b), we first note that for any S-scheme S’, the S’-endomorphisms of the trivial M-gerbe BM are
given by the contracted products with M-torsors over S’ to the effect that all such endomorphisms
are automorphisms and their groupoid is identified with (BM)(S’). Thus, the full faithfulness in (b)

follows from fppf descent and the equivalence (BM)(S’) — (BM)(P,) supplied by Lemma 3.3.
The essential surjectivity then follows from descent and the already established last aspect of (b). O

The following lemma is useful for lifting the structure group of a torsor over Pklg along an isogeny

GG It is, of course, possible to analyze the geometry of the map Buny — Bung more thoroughly
but we do not pursue this here in order to keep our focus on what is needed for Theorem 3.6.

2Since M is commutative, the contracted product of two M-torsors F1 and E2 may be defined simply as the
inflation of the (M x M)-torsor E1 x E3 to an M-torsor along the multiplication map M x M — M.
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Lemma 3.5. For an isogeny G—G of reductive S-groups, the image of the map Bunx — Bung
between algebraic S-stacks parametrizing torsors over Pfé with d > 0 is clopen. For any p € P‘é(S),
the following square is Cartesian:

Bunj

& — Im(Bung

G
éN”Hp”‘(éwb)l lﬁHp*(é”)

BG——— BG,

— Bung)

i particular, a G-torsor & over IP’d lifts to a G-torsor & iff it does so both on geometmc S-fibers
and after pullback by the S-point p, in which case giving & amounts to giving p (é”)

Proof. Set M := Ker(G G). For a G-torsor & over an S-scheme S’, the category that parametrizes
its liftings to a G-torsor over variable §'-schemes is an M-gerbe over S (see [Ces15, Proposition A.4 (d)
and its proof]), in particular, & lifts to a G-torsor iff this M- gerbe is trivial. Consequently,
Lemma 3.4 (a) implies that that image of the map Buny — Bung is clopen, whereas Lemma 3.4 (b)
implies that the depicted square is indeed Cartesian. ]

We turn to the promised A-sectionwise constancy of G-torsors over IP’}4 for semilocal A. Our argument
for it is similar to that of the case treated by Panin-Stavrova in [PS23a|, [PS23b], even if perhaps
slicker thanks to the geometric machinery above. In turn, their argument is slicker but somewhat
similar to Fedorov’s [Fed22, Theorem 6] that was mildly generalized in [Ces22b, Proposition 5.3.6].
The general idea goes back at least to [PSV15], [FP15], and [Fed16].

Theorem 3.6. For a reductive group G over a semilocal ring A, every G-torsor & over PY is A-
sectionwise constant: up to isomorphism, the G-torsor s*(&) over A does not depend on s € P4 (A).

Proof. Since A is semilocal, the automorphism group of Ph acts transitively on }P’h(A). In addition,
for any s € AL (A), there is an s’ € A} (A) disjoint from s (even A]%‘g has two distinct rational points!).
Therefore, by first bringing one given A-point to infinity and then choosing a suitable s’ € Al (A), we
see that it suffices to argue that the pullbacks of & along two disjoint A-points agree. By a change
of coordinates on Al{, we even reduce to showing that & lft=0} = &40} By then replacing G by
an inner twist, it even suffices to show that &|(,_gy is trivial granted that so is &[{;—c)-

Let . be the Corad(G)-torsor over P} obtained by inflating &. Lemma 3.3 ensures that .Z|g_)
is trivial and that .# comes from an element of X, (Corad(G))(A). Thus, since €/(1) pulls back to
0 (d) under the map @g4: IP’}4 — IP’}4 that raises the homogeneous coordinates to their d-th powers, by
choosing d to be the degree of the isogeny Rad(G) — Corad(G) and replacing & by ¢} (&) we reduce
to the case when . lifts to a Rad(G)-torsor over P} that comes from an element of X, (Rad(G))(A),
in particular, that is A-sectionwise trivial. By twisting & by this Rad(G)-torsor, we therefore reduce
to the case when .Z is trivial. This means that & lifts to a GI®*-torsor over ]P’}4, to the effect that we
have reduced to the case when G is semisimple. This reduction might force us to revert to showing
that &|(—} =~ &|(4=0}, but we may afterwards twist G again to still arrange that &|—q be trivial.

Once G is semisimple, we pullback by ¢4 again, with d now being the degree of the isogeny G*¢ — G:

by [Gil02, théoréme 3.8|, this has the advantage of ensuring that each &|p1 for s € S now lifts to
ks

a G®°-torsor over Pl By Lemma 3.5, then & itself lifts to a G*-torsor over P! whose restriction

to infinity is tr1v1al “to the effect that we have reduced to the case when G is semisimple, simply
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connected. Due to [SGA 3111 yew, exposé XXIV, section 5.3, propositions 5.10 (i), 8.4| (that is, the
analogue of (1.3.1)), we may then even assume that G is simple.

At this point, we begin the remaining argument by settling the isotropic case in the following claim.

Claim 3.6.1. Let A be a semilocal ring, let G be a simple, simply connected A-group that is isotropic
in the sense that it has an A-fiberwise proper parabolic A-subgroup, and let & be a G-torsor over
PL. If & lft=c0} 1s trivial, then £|A% is also trivial, so that &|g—q, is trivial, too.

Proof. The assumptions on G ensure that the following map is surjective:

GAE)/GALRE]) = [ Glhm(t71)/G(knlt]), (3.6.2)
where m ranges over the maximal ideals of A, see [Ces22a, (2) in the proof of Proposition 8.4] (the
essential input here is the Borel-Tits theorem [Gil09, fait 4.3, lemme 4.5|; the displayed surjectivity
is also very close to [Fed16, Proposition 7.1] and, implicitly, it is an important part of [FP15]).
Thanks to our assumption that &|_q is trivial, Henselian invariance [BC22, Theorem 2.1.6]
ensures that & is also trivial over A((t~)). Now by patching for G-torsors [BC22, Lemma 2.2.11 (b)]
or [Fed16, Proposition 4.4], the surjectivity (3.6.2) means that every G-torsor over | | Pim that
is obtained by patching & ||_| Al with the trivial G-torsor at infinity lifts to a G-torsor over IP’}4
obtained by patching &| AL with the trivial G-torsor at infinity. However, & ‘I_I Al is trivial by
[Gil02, lemme 3.12], so we get that £|Ah extends to a G-torsor &” over P4 such that &N prand

é‘”|{t=00} are both trivial. By Proposition 3.1, then & itself is trivial, so that éa|A}4 is trivial, too. [

In the remaining case when our simple, simply connected A-group G is not isotropic, let us consider
any A-(finite étale) subscheme Y = Spec A" < Gy, 4 such that Gy is isotropic and for each maximal
ideal m < A with Gy, isotropic, Y}, has two disjoint nonempty clopens of coprime degrees over
km (we will later build such a Y'). We may apply the settled isotropic case after base change along
Y — Spec A, so, since Y < Al gives rise to a Y-point of Al,, we see that &y is trivial. On the
other hand, (3.6.2) applied after such a base change gives

G(A()/GA'TY]) — [T GI(A @ k) ()/G((A” ® k) [W]), (3.6.3)

where m still ranges over the maximal ideals of A. Since our choice of Y and [Gil02, théoréme 3.8] still
ensure that & ||_| (L \Yi) is trivial, analogously to the previous paragraph, this surjectivity implies

that é"hph\y extends to a G-torsor &” over P4 such that £’|I_|m Pl is trivial. By Proposition 3.1 and

our triviality assumption on &|(_), this means that & |P34 \v is trivial, so that & |{t=0y is trivial, too.

To conclude the proof, we now argue that Y as above exists. In fact, it suffices to find an A-(finite
étale) Y as above with the condition Y < Gy, 4 weakened to the condition that there be no finite
field obstruction to embedding Y into G, 4: the primitive element theorem for finite separable field
extensions will then imply that the embeddings Yj,, — G, , exist for all maximal ideals m < A
and the Nakayama lemma will allow us to lift them to an embedding ¥ — G,, 4 < Ah. To find
such a Y, we begin by applying the Bertini-based [Ces22b, Lemma 6.2.2] to the projective, smooth
A-scheme X parametrizing parabolic subgroups of G (see [SGA 3111 pew, exposé XX VI, corollaire 3.5])
to obtain an A-(finite étale) Yy = Spec(A4g) < X such that Yy(kn) # & for every maximal ideal
m < A with Gy, isotropic. For each N > 1, consider a finite étale cover Yy — Yj defined by a
monic polynomial fx(t) € Ag[t] of degree N whose reduction modulo each maximal ideal n Ay is
a product of N distinct monic linear factors if k, is infinite (resp., is irreducible of degree N if k, is
finite). The advantage of Yy is that there is no finite field obstruction to embedding it into G, 4
14



granted that NV is large, in fact, the same even holds for Y := Yy 1 Yy1. By construction, this Y
is as required: Gy is isotropic (even Gy is) and, for each maximal ideal m < A with Gy, isotropic,
Y., has two disjoint clopens of degrees N and N + 1 over ky,. ([l

Remarks.

3.7. Theorem 3.6 fails beyond semilocal A. Indeed, among the rings of integers Ok of number
fields K for which the class number is not 1, one finds plenty of examples of nonprincipal
ideals I < OF. Since I is generated by two elements, there exists an s € P%,)K(O k) such that
s*(0(1)) is isomorphic to I and so is nontrivial.

3.8. Even though we do not explicate this, the proof of Theorem 3.6 clearly also generalizes and
simplifies the aforementioned |Ces22b, Proposition 5.3.6] (so also |Fed22, Theorem 6]).

4. UNRAMIFIED GROTHENDIECK—SERRE FOR TOTALLY ISOTROPIC G

We are ready to settle the unramified case of the Grothendieck—Serre conjecture for totally isotropic
reductive groups in Theorem 4.3 below (see §1.3 for a review of total isotropicity). The final input
to this is a study of torsors over Ah built on the corresponding study of torsors over IP’}L‘ carried out
in §3. For us, a key advantage of A}‘l is that we no longer need to restrict to semilocal A thanks to
the following general form of Quillen patching due to Gabber (prior versions [Mos08, Satz 3.5.1] or
[AHW18, Theorem 3.2.5] would also suffice for our purposes).

Lemma 4.1 ([COSQQID7 Corollary 5.1.5|). For a locally finitely presented group algebraic space G over
a ring A, a G-torsor (for fppf topology) on Ah descends to A iff it does so Zariski locally on Spec A.

The following theorem is our key conclusion about torsors over Al; and is a positive answer to a
generalization of [Ces22b, Conjecture 3.5.1] of Horrocks type. In its statement, even when A is local,
we cannot drop total isotropicity, see [Fed16, Theorem 3 and what follows.

Theorem 4.2. For a totally isotropic reductive group G over a ring A, no nontrivial G-torsor over
AL trivializes over the punctured formal neighborhood A((t™1)) of the section at infinity; equivalently,
every G-torsor & over PY such that & li=c0} 18 trivial restricts to the trivial torsor over Al

Proof. The two formulations are equivalent due to Henselian invariance and patching for G-torsors,
see |BC22, Theorem 2.1.6 and Lemma 2.2.11 (b)|. Moreover, by base change along the map
Al ~ Spec(A[u]) — Spec A, we obtain a G-torsor &, over Pi‘[u] with &,y trivial such that the
restriction of &, to the “diagonal” section ¢ = u of A,lq[u] is &. Thus, by changing the coordinates of
Ph[u] via [z : y] — [x —uy : y] and replacing A and & by A[u] and &,, respectively, we are left with
showing that our G-torsor & over IP’}4 with &|(—oy trivial is such that &[y_gy is also trivial.

This last claim is insensitive to replacing & by its pullback along the map ¢g: Ph — ]P’}4 given by
[z :y] — [2¢: y9] for a d > 0. We replace & by such a pullback with d being the degree of the
isogeny (G9°T)%¢ x rad(G) — G. Since the resulting pullback of €'(1) is &(d), by [(il02, théoréme 3.8],
this ensures that each é"hp% for s € S now lifts to a ((G9)*¢ x rad(G))-torsor over IP%S.
The obtained fibral liftability and Lemma 3.5 imply that & itself lifts to a ((G9)* x rad(G))-torsor
over IP’}4 whose restriction to the section at infinity is trivial, to the effect that we have reduced to G
being either a torus or semisimple, simply connected. Moreover, in the toral case, &| AL is trivial
by Lemma 3.3, so for the rest of proof we assume that G is semisimple, simply connected. Due to
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[SGA 3111 new, exposé XXIV, section 5.3, propositions 5.10 (i), 8.4] (compare with (1.3.1) above), we
may then even also assume that G is simple. Granted these reductions, we revert to arguing the
triviality of &| a1, - For this, we first use Lemma 4.1 coupled with a limit argument to reduce to the

case when A is local. For local A, however, £|Ah is trivial by Claim 3.6.1. O

We turn to the promised totally isotropic, unramified case of the Grothendieck—Serre conjecture.

Theorem 4.3. Let R be a Noetherian semilocal ring that is flat and geometrically reqular over some
Dedekind ring, let K := Frac(R) be its ring of fractions. The Grothendieck—Serre conjecture holds
for every totally isotropic reductive R-group G, more precisely, for every such G, we have

Ker(HY(R,G) — HY(K,G)) = {*}.

Proof. We let O be a Dedekind ring over which R is flat and geometrically regular, assume without
losing generality that O is semilocal, and decompose O and R into factors to make them domains.
We then combine Popescu’s [SP, Theorem 07GC]| with a limit argument to reduce to when R is the
semilocal ring of a smooth, affine, integral O-scheme X. We spread out to make our totally isotropic
reductive group G and its generically trivial torsor F that we wish to trivialize begin life over X.

By Proposition 2.6 and spreading out, we may replace X by an affine open containing Spec R to
arrange that there be a closed Z ¢ X of codimension > 2 (without loss of generality, cut out by a
regular sequence of length 2—this simplifies the spreading out), an open V < IP’}( containing both

IP%(\Z and the X-points {t = 0} and {t = o0}, and a G-torsor E over V such that E’{t:o} ~ F and
E |(t=o0} 18 trivial. Since X is affine, there is a principal Cartier divisor Y = X containing Z and not
containing any generic point of any O-fiber of X. Since X\Y is affine, Theorem 4.2 ensures that
E‘Ak\y is trivial, so, by Theorem 4.2 again, so is E|P§<\Y\{t=1}. By patching, then there is a G-torsor
E' over IP%(\Y u (V\{t = 1}) that is trivial on IP%(\Y and agrees with E on V\{t = 1}. As in the proof
of Proposition 2.6, using [CTS79, théoréme 6.13] and spreading out, this E’ extends to a G-torsor
over IP%(\Z, u (V\{t = 1}) for some closed Z’ Y of codimension > 2 in X containing Z. We replace

E by this extension of E' and Z by Z’ to assume that our E as above trivializes over IP%(\Y,

If X is of dimension < 1, then FE is trivial by [Guo22a, Theorem 1], so we assume that X is of
relative dimension d > 0 over 0. By Lemma 2.1, we may replace X by an affine open containing
Spec R to find an affine open S < A%‘l and a smooth map X — S of pure relative dimension 1 such
that Y n X is S-quasi-finite and Z n X is S-finite. The base change along Spec R — S then gives

e a smooth, affine R-scheme C' of pure relative dimension 1 equipped with an s € C(R);
e a reductive C-group scheme ¢ with s*(¢) = G and a ¥-torsor & over C with s*(&) ~ E;
e an R-quasi-finite closed % < C and an R-finite closed 2 < %; and

e a @-torsor & over IP’lo\ff such that é"~|{t:0} ~ &|c\# and both é”~|{t=00} and é"~|P1C\@ are trivial.

As in the proof of Proposition 2.6, we will gradually simplify this data to show that E is trivial. The

R-finiteness ofNE»’f , as opposed to R-quasi-finiteness as there, makes some of these simplifications easier,

but dragging & along complicates some others. To begin with, as there, we use [Li23, Proposition 7.4]

to replace C by a finite étale cover of some affine open neighborhood of 2 U s to reduce to when

¥ ~ (G¢, compatibly with the identification after s-pullback. Similarly, by [Ccs??a, Lemma 6.1], we

may replace C' by a finite étale cover of some affine open neighborhood of Z U s to reduce further
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to when there is no finite field obstruction to embedding Z U s into A}%. We then shrink C' around
% U s to ensure that there is no finite field obstruction to embedding % U s into A}% either.

Lemmas 2.4 and 2.5 now ensure that at the cost of replacing C' by an affine open containing the
closed R-fibers of % U s (so also containing 2 U s), there are an affine open W < A}Q and an étale
R-morphism f: C — W that embeds % U s excisively into W, so that we have a Cartesian square

s C

I

YW

in which the horizontal maps are closed immersions. We wish to replace C' by W, and for this
we will now use excision (see [Ces22b, Proposition 4.2.1]) to descend & to Pll/v\ - First of all, by
Proposition 3.1 (a) (by the full faithfulness conclusion applied to the automorphisms of the trivial
G-torsor), we have G(C\%) — G(Plc\g,), so the set of trivializations of & ’Iplc o maps bijectively

onto its counterpart for (& l¢t=a0}) |\~ Thus, & |Plc - has a trivialization « whose restriction to the

infinity section extends to a trivialization of & (=} Over all of C\Z". We use this a to descend

& \Ipﬂc - to a trivial G-torsor over IP’%V\?},. By excision, the latter then extends uniquely to a G-torsor
&' over IP’Il/V\ 4 descending &. By excision and the choice of «, our trivialization of &” \]p%/v - restricts

to a trivialization of ((og/’{t:m})‘w\@ that extends to a trivialization of g’\{t:o@} over all of W\ 2.

At this point we have constructed a G-torsor &’ := &' |(t=0} over W\Z whose base change to C\Z
is £’~|{t:0} ~ @‘"\C\g. However, our étale map f: C — W is excisive with respect to Z as well, so, by
excision again, &’ extends to a G-torsor over all of W that descends &. We may therefore replace C
by W and & (resp., &) by this extension (resp., by &”) to reduce to C being an affine open of Al

Once C' is an open of A}%, however, the existence of an R-point s of C forces IP’}%\C to be R-finite.
The avoidance lemma [GLL15, Theorem 5.1] (recalled in [Ces22a, Lemma 3.1]) then supplies an
R-finite hypersurface H ¢ C' < ]P’}% containing Z. The complement C\H is affine, so the triviality of

& \{t:w} and Theorem 4.2 ensure that & ] ALy and thus also & ]C\ g are trivial. In particular, since H

is closed in IP’}%, by patching, & extends to a G-torsor over IP’}% that is trivial at infinity. Theorem 3.6
then ensures that the pullback under s, that is, F, is trivial as well, as desired. O

Remark 4.4. The proof of Theorem 4.3 uses the G-torsor E over IP%(\Z as a “witness” of E being

simpler over X\Z. At the cost of first passing to simply connected groups via Proposition 5.1, one
can also carry out the proof with a “unipotent chain of torsors” as a witness. Namely, at the cost of
shrinking X around Spec R, one may fix sufficiently general opposite proper parabolic subgroups
P*, P~ < G and use the Borel-Tits theorem [Gil09, fait 4.3, lemme 4.5] (which needs both the total
isotropicity and the simply connectedness assumptions) to build a principal Cartier divisor Y < X, a
closed Z ¢ Y of codimension > 2 in X, and a sequence Ey, ..., E, of G-torsors over X\Z such that

e cach Fj is trivialized over X\Y, the (X\Z)-group Autq(FE;) has opposite parabolic subgroups
Piir that under the trivialization over X\Y correspond to P¥| x\v, and the Autg(E;)-torsor
Isomg (E;, Eit1) for i < n reduces either to a %, (P;")-torsor or to a %, (P;")-torsor over X\Z;

e [ is trivial and E), is the restriction of our generically trivial G-torsor E over X to X\Z.
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Since torsors under unipotent radicals of parabolic subgroups trivialize over affine schemes (see
[SGA 3111 new, exposé XXVI, corollaire 2.5]), the existence of the “unipotent chain” FEy,..., E,
implies that F trivializes over every affine (X\Z)-scheme, and it is possible to carry out the proof of
Theorem 4.3 by dragging the chain Fy, ..., F, along in place of E in the intermediate steps.

For a systematic development of the notion of a unipotent chain of torsors, see [Fed23].

5. REDUCING TO SEMISIMPLE, SIMPLY CONNECTED GROUPS

We combine the work of §§2-3 with purity theorems for H<? with multiplicative group coefficients
(essentially, purity for the Brauer group [C‘eslf)]) to reduce the unramified case of the Grothendieck—
Serre conjecture to simply connected GG. The method is new even in equal characteristic, although
the corresponding reduction in equal characteristic was the main goal of the article [Pan20b].

Proposition 5.1. Let G be a reductive group over a Noetherian semilocal ring R that is flat and
geometrically reqular over some Dedekind ring. Every generically trivial G-torsor over R lifts to a
generically trivial (G)5-torsor over R (with notation as in §1.3), so, setting K := Frac(R), we have

Ker(HY(R, (G¥)*°) - HY(K, (G¥)*)) = {x} — Ker(H'(R,G)— H'(K,G)) = {x}.

Proof. For a generically trivial G-torsor E over R to be lifted to a generically trivial (G9")*-torsor,
Proposition 2.6 gives us an open V < P}, containing {t = 0} and {t = o0} with complement PL\V of
codimension > 3 in P}, and a G-torsor & over V such that Ely—oy = E and &|_y) is trivial. It
suffices to lift some twist of & by an R-sectionwise trivial Rad(G)-torsor over V to a (G9°%)*°-torsor

& over V with éa~|{t=w} trivial: then éa~|{t=0} will lift £ and be generically trivial by Theorem 3.6
applied with A = K.

Set Z := Ker((G9")** — ). By the codimension condition and purity [CS23, Theorem 7.2.9],
H'(PL, Corad(G)) — H'(V,Corad(G)) and H*(PL,2) > H*(V,Z). (5.1.1)

In particular, the Corad(G)-torsor induced by & extends to a Corad(G)-torsor over Pk that is trivial
at infinity and hence, by Lemma 3.3, comes from &'(1) via a cocharacter G, p — Corad(G). Thus,
since Rad(G) — Corad(G) is an isogeny, as in the proof of Theorem 3.6, by pulling back along the
base change to V' of the map ¢g: IP’}% - ]P)}% for some d > 0 such that 4 sends the homogeneous
coordinates of Pk to their d-th powers, we reduce to the case when the Corad(G)-torsor induced
by & lifts to an R-sectionwise trivial Rad(G)-torsor. By twisting & by such a lift, we may assume
that & induces a trivial Corad(G)-torsor, so lifts to G4°"-torsor over V. By [Gir71, chapitre III,
proposition 3.3.3 (iv)], the group Corad(G)(V') acts transitively on the set of isomorphism classes of
such lifts over V', and likewise after restricting to the infinity section. Thus, since this restriction
induces a surjection Corad(G)(V) — Corad(G)(R), we may lift & to a G4"-torsor whose restriction
to infinity is trivial. In effect, we may replace G by G to reduce to the case when G is semisimple.

Once G is semisimple, the obstruction to lifting & to a G*-torsor lies in H?(V, Z) =~ H*(PL, Z).
By replacing V' by its pullback by ¢4 for some d > 0 and applying [Gil02, théoréme 3.8] as in the
proof of Theorem 3.6, we may arrange that the restriction & |JP>1? to the geometric generic fiber lifts
to a G®°-torsor over IP’%, in other words, that the obstruction in question vanishes after pullback to
]P’lf. By the triviality at infinity and Lemma 3.4, however, it then vanishes already over V', to the
effect that & lifts to a G*-torsor over V. By |[Gir71, chapitre III, proposition 3.4.5 (iv)], the group
H(V, Z) acts transitively on the set of isomorphism classes of such lifts. Thus, since restriction to

infinity induces a surjection H*(V, Z) - H'(R, Z), a desired lift & indeed exists. O
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