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514 S. Fischler et al.

1 Introduction

Let n ≥ 1 and letψ1, . . . , ψn : R+ → R
+ be functions tending to zero.Wewill refer to

these functions as approximating functions or error functions. Let ψ = (ψ1, . . . , ψn).
An m × n-matrix X = (xi j ) 1≤i≤n

1≤ j≤m
∈ R

mn (or the corresponding system of linear

forms) is said to be ψ-approximable if

∣
∣
∣q · x(i)

∣
∣
∣ = |q1x1i + · · · + qmxmi | < ψi (|q|), 1 ≤ i ≤ n, (1)

for infinitely many integer vectors q = (q1, . . . , qm) ∈ Z
m\{0}. The norm |q| is the

supremum norm here and elsewhere. We will denote the set of ψ-approximable linear

forms inside the set Imn := [− 1
2 ,

1
2 ]mn by W0(m, n, ψ).

The similarity between theψ-approximable linear forms studied here and the simul-
taneouslyψ-approximable linear forms usually studied in Diophantine approximation
is clear. However, in the classical setup one studies the distance to the nearest integer
rather than the absolute value.

A major breakthrough in the classical theory was the Khintchine–Groshev theorem
[15,21], which establishes a zero-one law for the set of ψ-approximable matrices
depending on the convergence or divergence of a certain series. In the absolute value
setting, an analogue of this result was recently obtained by Hussain and Levesley
[18]. Their result covers only the case ψ1 = · · · = ψn with this approximating
function beingmonotonic. The condition ofmonotonicitywas removedbyHussain and
Kristensen [17] in the case of a single approximating function (i.e. ψ1 = · · · = ψn).

In the present paper, we extend the results of [18] and [17] to the weighted setup,
i.e. the case of more than one approximating function. This has applications to linear
independence criteria, as we shall see below. Our zero-one law states the following.

Theorem 1.1 Let m > n > 0 and let ψ1, . . . , ψn be approximating functions as
above. Then, if (m, n) �= (2, 1),

Lmn(W0(m, n, ψ)) =
{

0 if
∑∞

r=1 ψ1(r) · · ·ψn(r)rm−n−1 < ∞,

1 if
∑∞

r=1 ψ1(r) · · ·ψn(r)rm−n−1 = ∞,

where Lmn denotes the mn-dimensional Lebesgue measure. If (m, n) = (2, 1), the
same conclusion holds provided the error function is monotonic.

The case m ≤ n is of less interest, in general, and of no particular interest to us
for applications. Briefly, in this case the set W0(m, n, ψ) becomes a subset of a lower
dimensional set. An easy instance is that of m = n = 1, where it is straightforward to
prove that the set is in fact a singleton—see, e.g. Lemma 1 in [8] for details. For clarity
and further understanding about such cases, we refer to [16, Theorem 1]. This is in
contrast to the classical case, where approximation to the nearest integer is considered.
Here, the result is independent of the relative sizes of m and n.

This setting where linear forms are very small at some points appears in linear
independence criteria. To begin with, let us consider the case of one point. Siegel
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A converse to linear independence criteria 515

has proved, using essentially a determinant argument, that the existence of m linearly
independent linear forms, very small at a given point e1 = (ξ1, . . . , ξm) ∈ R

m , implies
a lower bound on the dimension of theQ-vector space spanned by ξ1, . . . , ξm . On the
other hand, still in the case of one point e1 = (ξ1, . . . , ξm), Nesterenko has derived
[22] a similar lower bound on dimQ SpanQ(ξ1, . . . , ξm) from the existence of just one
linear form (for each Q sufficiently large), small at e1 but not too small. The most
striking application of his result is the proof by Rivoal [23] and Ball-Rivoal [1] that
infinitely many values of Riemann ζ -function at odd integers s ≥ 3 are irrational.

Both Siegel’s and Nesterenko’s results have been generalized to several points
e1, …, en as follows (see [12], Proposition 1 and Theorem 3). We denote by · the
canonical scalar product onRm (which allows us to consider a linear form as the scalar
product with a given vector) and by o(1) any sequence that tends to 0 as Q → ∞.

Theorem 1.2 Let m > n > 0, and e1, . . . , en ∈ R
m. Let τ1, . . . , τn be positive real

numbers. Assume that one of the following holds:

(i) The vectors e1, . . . , en are linearly independent, and for infinitely many integers
Q there exist m linearly independent vectors q(1), . . . ,q(m) ∈ Z

m such that, for
any j ∈ {1, . . . ,m},

|q( j)| ≤ Q and |q( j) · ei | ≤ Q−τi+o(1) for any i ∈ {1, . . . , n}.

(ii) The numbers τ1, . . . , τn are pairwise distinct, and for any sufficiently large integer
Q there exists q ∈ Z

m such that

|q| ≤ Q and |q · ei | = Q−τi+o(1) for any i ∈ {1, . . . , n}.

Then we have

dim F ≥ n + τ1 + . . . + τn

for any subspace F of Rm which contains e1, . . . , en and is defined over the rationals.

In the case n = 1, under assertion (i) (resp. (i i)), this is Siegel’s (resp.Nesterenko’s)
above-mentioned criterion; notice that dimQ SpanQ(ξ1, . . . , ξm) is equal to the dimen-
sion of the smallest subspace F of Rm , defined over the rationals, which contains the
point e1 = (ξ1, . . . , ξm). The reader may refer to §8 of [3] for classical facts about
subspaces defined over the rationals, to Lemma 1 of [12] for a generalization of this
equality, and to [11] (especially pp. 81–82 and 215–216) for more details on Siegel’s
criterion, including applications.

Note that in Theorem 1.2, e1, . . . , en are always R-linearly independent: this is
assumed in (i), and it is an easy consequence of (i i) since τ1, . . . , τn are pairwise
distinct (see [12], §3.2). The point is that SpanR(e1, . . . , en) is not defined over the
rationals.

The conclusion of Theorem 1.2 is a lower bound for dim F (which can be stated as
a lower bound for the rank of a family of m vectors in R

n seen as a Q-vector space,
see [12], §3.1, Lemma 1). It is a natural question to ask whether this bound can be
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516 S. Fischler et al.

improved; we give a negative answer in Theorem 1.3. In the case of Nesterenko’s
linear independence criterion with only one point, Chantanasiri has given ([7], §3) a
very specific example of a point e1 = (ξ1, . . . , ξm) for which this bound is optimal
(namely when (ξ1, . . . , ξm) is a Q-basis of a real number field of degree m). On the
contrary, our result deals with generic tuples; it encompasses also Siegel’s criterion
and the case of several points.

Theorem 1.3 Let m > n > 0, and F be a subspace of Rm defined over the rationals.
Let τ1, . . . , τn, β1, . . . , βn, ε be real numbers such that τ1 > 0, . . . , τn > 0, ε > 0,

τ1 + · · · + τn ≤ dim F − n and β1 + · · · + βn = (1 + ε)(dim F − 1). (2)

Then for almost all n-tuples (e1, . . . , en) ∈ Fn (with respect to Lebesgue measure),
the following property holds. For any sufficiently large integer Q, there exist m linearly
independent vectors q(1), . . . ,q(m) ∈ Z

m such that, for any j ∈ {1, . . . ,m},

|q( j)| � Q (3)

and

Q−τi (log Q)βi−(1+ε) dim F � |q( j) · ei | � Q−τi (log Q)βi for any i ∈ {1, . . . , n},
(4)

where the constants implied in the symbols � depend on m, n, F, τ1, . . . , τn,
β1, . . . , βn, ε, e1, . . . , en but not on Q.

This result will be proved in §2.2, using Theorem 1.1 and Minkowski’s theorem on
successive minima of a convex body. We also provide some remarks on Theorem 1.3
in §2.1.

Throughout we will use the Vinogradov’s notation, i.e. for two real quantities x and
y, we will write x � y if there is a constant C > 0 such that x ≤ Cy. In Landau’s
O-notation, this would amount to writing x = O(y). If x � y and y � x , we will
write x 	 y.

2 A converse to linear independence criteria

2.1 Remarks on Theorem 1.3

We gather in this section several remarks on Theorem 1.3.

Remark 1 In general, Nesterenko’s criterion is stated under an assumption slightly
different from (i i) in Theorem 1.2: it is assumed that there exist an increasing sequence
(Qk)k≥1 of positive integers such that Qk+1 = Q1+o(1)

k as k → ∞ (where the
sequence denoted by o(1) tends to 0 as k → ∞) and a sequence (qk)k≥1 of vectors in
Z
m , such that, for any k,

|qk | ≤ Qk and |qk · ei | = Q−τi+o(1)
k for any i ∈ {1, . . . , n}.
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A converse to linear independence criteria 517

Requesting also τ1, . . . , τn to be pairwise distinct, this is actually equivalent to assump-
tion (i i) of Theorem 1.2. In precise terms, if there is such a sequence (Qk), then for
any Q sufficiently large one may choose the integer k such that Qk ≤ Q < Qk+1,
and let q = qk . The converse is easy too: if assumption (i i) of Theorem 1.2 holds,
then one can choose any increasing sequence (Qk)k≥1 of positive integers such that
Qk+1 = Q1+o(1)

k (for instance, Qk = βk with an arbitrary β > 1), and let qk be the
vector corresponding to Q = Qk .

This remark shows that τr (ξ) = τ ′
r (ξ) = τ ′′

r (ξ) for any ξ in the notation of §4.3
of [13]. With the same notation, Theorem 1.3 (with F = R

m and n = 1) implies that
this Diophantine exponent is equal to m − 1 for almost all ξ = e1 ∈ R

m (with respect
to Lebesgue measure); this answers partly a question asked at the end of [13].

Remark 2 In the setting of Theorem 1.3, if e1, . . . , en areQ-linearly independent and
belong to F ∩ Q

m
, then applying Schmidt’s Subspace Theorem instead of Theorem

1.1 in the proof yields the same conclusion as that of Theorem 1.3, except that Eq. (4)
is weakened to |q( j) · ei | = Q−τi+o(1).

In the rest of this section, we shall focus on the special casem = 2, n = 1, F = R
2.

By homogeneity we may restrict to vectors e1 = (ξ,−1) with ξ ∈ R. Since non-zero
linear forms in ξ and −1 with integer coefficients are bounded from below in absolute
value if ξ is a rational number, we assume ξ to be irrational. Recall that the irrationality
exponent of ξ , denoted by μ(ξ), is the supremum (possibly +∞) of the set of μ > 0
such that there exist infinitely many p, q ∈ Z with q > 0 such that |ξ − p

q | ≤ q−μ.
Then the first question related to Theorem 1.3 is to know for which τ > 0 the following
holds:

For any Q there exists q = (q1, q2) ∈ Z
2\{(0, 0)} such that

|q| ≤ Q and |q1ξ − q2| = Q−τ+o(1).
(5)

Lemma 1 and Theorem 2 of [13] imply (using Remark 1 above) that (5) holds if, and
only if, τ < 1

μ(ξ)−1 (except maybe for τ = 1
μ(ξ)−1 : this case is not settled in [13]). This

result can be thought of as a transference principle, in the style of Jarník’s [20] (see
also [4]), but different from it because |q1ξ − q2| is required to be equal to Q−τ+o(1),
but not less than that. It would be interesting to generalize this property to arbitrary
values of m and n: questions in this respect are asked (in the case n = 1) in §4 of
[13]. This result shows also that the conclusion of Theorem 1.3 does not hold for any
e1, . . . , en : property (5) fails to hold for τ = 1 if μ(ξ) > 2.

If ξ is generic (with respect to Lebesgue measure), then μ(ξ) = 2 and the question
left open in [13] is whether property (5) holds for τ = 1. Theorem 1.3 answers this
question: it does, and the error term Qo(1) can be bounded between powers of log Q.
Moreover, Theorem 1.3 provides, for any Q, two linearly independent vectors q as
in (5): as far as we know, no result in the style of [13] provides this conclusion for a
non-generic ξ .

In the same situation (namely with m = 2, n = 1, F = R
2, and a generic ξ ),

Theorem 1.3 with τ1 = 1 and β1 > 1 provides (for any Q) two linearly independent
vectors q = (q1, q2) ∈ Z

2 such that |q| � Q and
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518 S. Fischler et al.

Q−1(log Q)−β1 � |q1ξ − q2| � Q−1(log Q)β1 . (6)

The lower bound on |q1ξ − q2| is natural since for infinitely many Q there exists q
such that |q| ≤ Q and Q−1(log Q)−β1 � |q1ξ − q2| � Q−1(log Q)−1. The upper
bound in Eq. (6) could seem too large, since Dirichlet’s pigeonhole principle yields
(for any Q) a non-zero q such that |q| ≤ Q and |q1ξ − q2| � Q−1. However, it
is possible (by adapting the proof of Theorem 1.3) to prove that, for infinitely many
Q, all vectors q ∈ Z

2 such that |q| � Q and |q1ξ − q2| � Q−1 are collinear. To
obtain two linearly independent such vectors, one needs (for infinitely many Q) to let
|q1ξ −q2| increase a little more, at least up to Q−1 log Q: the upper bound in Eq. (6) is
optimal (except that the case β1 = 1 could probably be considered, upon multiplying
by a power of log log Q).

2.2 Proof of Theorem 1.3

Before proving Theorem 1.3, let us outline the strategy in the case where F = R
m

and τ1 + · · · + τn = dim F − n (from which we shall deduce the general case). We
fix a small positive real number α, and let Q be sufficiently large. The convex body
C ⊂ R

m defined by

|q| ≤ Q(log Q)α and |q · ei | ≤ Q−τi (log Q)βi+α for any i ∈ {1, . . . , n}

has Lebesguemeasure essentially equal to a power of log Q. There are non-zero integer
points q inside C, but not “too far away inside”: if q is such a point and μ > 0 is such
that μq ∈ C, then μ is less than some power of log Q (otherwise the scalar products
|q · ei | would be too small, in contradiction with the convergent case of Theorem 1.1).
This gives a lower bound on the first successive minimum λ1 of C. UsingMinkowski’s
convex body theorem, we deduce an upper bound on the last successive minimum λm .
This concludes the proof, except for the lower bound in Eq. (4) for which the argument
is similar: if |q( j) · ei | is too small for some i, j , then (e1, . . . , en) is not generic (using
again the convergent case of Theorem 1.1).

Let us now come to a detailed proof of Theorem 1.3, starting with the following
remark:

Remark 3 The general case of Theorem 1.3 follows from the special case where the
inequality in Eq. (2) is an equality, that is τ1+· · ·+τn = dim F−n. Indeed in general,
we have τ1 + · · ·+ τn = η(dim F − n) with 0 < η ≤ 1, and applying the special case
with τ1/η, …, τn/η and Qη yields the desired conclusion.

As a first step, let us assume that Theorem 1.3 holds if F = R
m and deduce

the general case. Since F is defined over Q, there exists a basis (u1, . . . ,ud) of F
consisting of vectors of Zm (where d = dim F ; notice that Eq. (2) implies d > n). Let
� : Rd → R

m be the linearmapwhich sends the canonical basis ofRd to (u1, . . . ,ud).
The special case of Theorem 1.3 applies toRd (with the same parameters); it provides
a subset Ã ⊂ (Rd)n of full Lebesgue measure, and for any (ẽ1, . . . , ẽn) ∈ Ã and
any Q sufficiently large, d linearly independent vectors q̃(1), . . . , q̃(d) ∈ Z

d . Then
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A converse to linear independence criteria 519

we let A ⊂ Fn denote the set of all n-tuples (e1, . . . , en) given by e1 = �(ẽ1),
…, en = �(ẽn) with (ẽ1, . . . , ẽn) ∈ Ã; this subset A has full Lebesgue measure in
Fn = (Im�)n .

Let us denote by � ∈ Md(R) the matrix in the basis (u1, . . . ,ud) of the scalar
product ofRm restricted to F . Thismeans that, for anyx, y ∈ R

d wehave�(x)·�(y) =
tx�y, where x and y are seen as column vectors (indeed, they are the vectors of
coordinates in the basis (u1, . . . ,ud) of �(x) and �(y), respectively). This matrix �

has integer coefficients (given by uk ·u for 1 ≤ k,  ≤ d) and a non-zero determinant,
so that (det�)�−1 is a matrix with integer coefficients.

Let (e1, . . . , en) ∈ A, and Q be sufficiently large. We let

q( j) = �
(

(det�)�−1q̃( j)
)

for any j ∈ {1, . . . , d},

so that

q( j) · ei = t
(

(det�)�−1q̃( j)
)

�ẽi = (det�)q̃( j) · ẽi for any i ∈ {1, . . . , n}

because � is symmetric. Therefore, Eqs. (3) and (4) hold for j ≤ d; moreover
q(1), …, q(d) are linearly independent vectors in Zu1 +· · ·+Zud ⊂ F ∩Z

m (because
the coefficients of (det�)�−1 are integers).

Since F⊥ is a subspace ofRm defined over the rationals (because F is), there exists
a basis (vd+1, . . . , vm) of F⊥ consisting of vectors of Zm . Then we let

q(d+1) = vd+1 + q(1), . . . ,q(m) = vm + q(1).

Then q(1), . . . ,q(m) are linearly independent vectors in Z
m , and for any j ∈ {d +

1, . . . ,m} and any i ∈ {1, . . . , n}, we haveq( j)·ei = q(1)·ei so that Eq. (4) holds. Since
vd+1, . . . , vm can be chosen independently of Q, we have also |q( j)| � |q(1)| � Q so
that Eq. (3) holds too. This concludes the proof that the full generality of Theorem 1.3
follows from the special case where F = R

m .
From now on, we assume that F = R

m and prove Theorem 1.3 in this case. We fix
a real number α such that 0 < α < ε/(n − 1).

Let A0 denote the set of all (e1, . . . , en) ∈ (Rm)n such that the systemof inequalities

|q · ei | ≤ |q|−τi (log |q|)βi−(1+ε)(1+τi ) for any i ∈ {1, . . . , n} (7)

holds for only finitely many q ∈ Z
m ; here and below, log |q| should be understood as

1 if |q| ≤ 1, which is a completely harmless convention.
For any i0 ∈ {1, . . . , n}, let Ai0 denote the set of all (e1, . . . , en) ∈ (Rm)n such that

the system of inequalities

{ |q · ei | ≤ |q|−τi (log |q|)βi+α for any i ∈ {1, . . . , n}, i �= i0,
|q · ei0 | ≤ |q|−τi0 (log |q|)βi0−m(1+ε) (8)

holds for only finitely many q ∈ Z
m .
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520 S. Fischler et al.

Using Eq. (2), Remark 3, and the assumption (n − 1)α < ε, the convergent case
of Theorem 1.1 (with (x1i , . . . , xmi ) = ei ) implies that Ai ∩ I

nm has full Lebesgue
measure for any i ∈ {0, . . . , n}. Moreover k Ai ⊂ Ai for any k ≥ 1, so that Ai =
∪k∈Nk(Ai ∩ I

nm) has full Lebesgue measure. At last, let A∞ denote the set of all
(e1, . . . , en) ∈ (Rm)n such that q · ei �= 0 for any q ∈ Z

m\{0} and any i ∈ {1, . . . , n}.
Then we let A = A0 ∩ A1 ∩ · · · ∩ An ∩ A∞, and A has full Lebesgue measure in
(Rm)n .

Let (e1, . . . , en) ∈ A, and Q be sufficiently large. Let C denote the set of all q ∈ R
m

such that

|q| ≤ Q(log Q)α and |q · ei | ≤ Q−τi (log Q)βi+α for any i ∈ {1, . . . , n}. (9)

Then C is convex, compact, and symmetric with respect to the origin. Its Lebesgue
measure satisfies Lm(C) 	 (log Q)(1+ε)(m−1)+mα , using both equalities of Eq. (2)
(thanks to Remark 3) with dim F = m.

For any j ∈ {1, . . . ,m}, let λ j denote the infimum of the set of all positive real
numbers λ such that Zm ∩ λC contains j linearly independent vectors, where λC =
{λq, q ∈ C}. These λ j are the successive minima of the convex body C with respect
to the lattice Z

m ; Minkowski’s theorem (see for instance [6], Chapter VIII) yields
2m
m! ≤ λ1 . . . λm Lm(C) ≤ 2m , so that

λ1 . . . λm 	 (log Q)−(1+ε)(m−1)−mα. (10)

Since (e1, . . . , en) ∈ A0, for any q ∈ Z
m\{0} there exists i ∈ {1, . . . , n} (which

depends on e1, . . . , en and q) such that

|q · ei | � |q|−τi (log |q|)βi−(1+ε)(1+τi ), (11)

where the constant implied in the symbol � is small enough to take into account the
finitely many q ∈ Z

m\{0} that satisfy Eq. (7); we have used here that q · ei �= 0 for
any q ∈ Z

m\{0} and any i , because (e1, . . . , en) ∈ A∞.
Let us deduce from this property that λ1 � (log Q)−(1+ε+α). With this aim in view,

we let λ > 0 be such that Q−1/2 ≤ λ ≤ 1 and λC ∩ Z
m �= {0}; we are going to prove

that λ � (log Q)−(1+ε+α). There exists q′ ∈ C such that q = λq′ ∈ Z
m and q �= 0.

Then Eq. (11) provides an integer i ∈ {1, . . . , n} such that, using Eq. (9),

|q|−τi (log |q|)βi−(1+ε)(1+τi ) � |q · ei | = λ|q′ · ei | ≤ λQ−τi (log Q)βi+α.

Sincewe have also |q| = λ|q′| ≤ λQ(log Q)α and Q−1/2 ≤ λ ≤ 1 (so that log(λQ) 	
log Q), this yields

λ−τi Q−τi (log Q)βi−(1+ε)(1+τi )−ατi 	 (λQ)−τi (log(λQ))βi−(1+ε)(1+τi )−ατi

� λQ−τi (log Q)βi+α,

thereby proving that λ � (log Q)−(1+ε+α). This concludes the proof that λ1 �
(log Q)−(1+ε+α); since λ1 ≤ . . . ≤ λm by definition of the successive minima, this
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A converse to linear independence criteria 521

implies λ j � (log Q)−(1+ε+α) for any j ∈ {1, . . . ,m}. Plugging this lower bound
for j ≤ m − 1 into Eq. (10) yields λm � (log Q)−α: there exist linearly independent
vectors q(1), . . . ,q(m) ∈ Z

m such that

|q( j)| � Q and |q( j) · ei | � Q−τi (log Q)βi for any i ∈ {1, . . . , n}. (12)

Therefore, these vectors satisfy Eq. (3) and the upper bound in Eq. (4). To prove the
lower bound in Eq. (4), we start by noticing that Eq. (12) yields

|q( j) · ei | ≤ |q( j)|−τi (log |q( j)|)βi+α for any i ∈ {1, . . . , n} and any j ∈ {1, . . . ,m}
(13)

provided Q is large enough. Now let i0 ∈ {1, . . . , n}. Since (e1, . . . , en) ∈ Ai0 and
q · ei0 �= 0 for any q ∈ Z

m\{0}, the second inequality in (12) shows that no q( j)

belongs to the finite subset of Zm defined by (8), provided Q is sufficiently large.
Therefore, Eq. (13) yields

|q( j) · ei0 | > |q( j)|−τi0 (log |q( j)|)βi0−m(1+ε) � Q−τi0 (log Q)βi0−m(1+ε)

since |q( j)| � Q. This concludes the proof of Theorem 1.3.

3 Proof of Theorem 1.1

3.1 Convergence case for any choice of m and n

In order to prove the convergence case, we will exhibit a family of covers of
W0(m, n, ψ). The covers will be the natural ones, i.e. the cover ofW0(m, n, ψ) by the
sets of solutions to (1) for each individual non-zero q. To demonstrate this, consider
the (m − 1)n-dimensional plane defined for q ∈ Z

m\{0} by

H(q) :=
{

X = (x(1), · · · , x(n)) ∈ I
mn : qX = 0

}

=
n

∏

i=1

(

I
mn ∩ R(i)

q

)

,

where each R(i)
q is the (m − 1)-dimensional hyperplane {x(i) ∈ R

m : q · x(i) = 0}.
Given the approximating functions ψ and the sets H(q), define the ψi (|q|)/|q|2-
neighbourhood of R(i)

q in Imn as

�q,i =
{

x(i) ∈ I
m : dist

(

x(i), R(i)
q

)

<
ψi (|q|)

|q|2
}

,

where dist
(

x(i), R(i)
q

)

:= inf{|x(i)−y|2 : y ∈ R(i)
q } and |q|2 = √

q · q is the L2-norm.

Define�q = ∏n
i=1 �q,i , and then it is straightforward to verify that X ∈ W0(m, n, ψ)

if and only if X ∈ �q for infinitely many q ∈ Z
m\{0}. Clearly

Lmn(�q) � 2nψ1(|q|) · · · ψn(|q|) |q|−n
2 	 ψ1(|q|) · · · ψn(|q|) |q|−n , (14)
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where the implied constants depend on m and n, as m−n/2 |q|−n ≤ |q|−n
2 ≤ |q|−n .

Next, we will need to estimate the number of q ∈ Z
m\{0} of a given norm, r say. This

is however easily seen to be at most 2m(2r + 1)m−1, and so comparable with rm−1.
We now estimate the Lebesgue measure of W0(m, n, ψ) under the assumption of

convergence. For each N ≥ 1,

Lmn

(

W0(m, n, ψ)
)

≤ Lmn

( ⋃

r≥N

⋃

|q|=r

�q

)

≤
∑

r≥N

∑

|q|=r

Lmn
(

�q
)

�
∑

r≥N

∑

|q|=r

ψ1(r) · · ·ψn(r)r
−n

�
∑

r≥N

ψ1(r) · · · ψn(r)r
m−n−1.

We have used (14) and the counting estimates. The final sum is the tail of a convergent
series, which tends to zero as N tends to infinity.

3.2 Divergence case

We give a general approach to the problem in question which has been adapted from
the one used in [17]. In the case (m, n) �= (2, 1), we will not need the assump-
tion of monotonicity of the approximating functions. However, under the divergence
assumption, we assume without loss of generality that ψi (r) < 1/2 for all r ∈ N

and all i = 1, · · · , n. Specifically, we need this assumption when the approximating
functions are non-monotonic, see [2, §2]. This will be clear from the proof below.

Initially, we will remove a null-set from the set of matrices Mm×n(I), namely the
set consisting of the matrices for which the n × n-matrix X formed by the first n rows
is singular. Evidently, the condition that the determinant of thematrix X is zero defines
a hyper-surface in the space Mm×n(I), which is of measure zero. Denote the subset of
Mm×n(I) with this hyper-surface removed by M ′

m×n(I) and the corresponding set of
ψ-approximable linear forms inside the set M ′

m×n(I) by Ŵ0(m, n, ψ). Evidently,

Ŵ0(m, n, ψ) ⊆ W0(m, n, ψ) (15)

and clearly, under the divergence sum condition
∑∞

r=1 ψ1(r) · · · ψn(r)rm−n−1 = ∞,

Lmn

(

W0(m, n, ψ)
)

= 1 if Lmn

(

Ŵ0(m, n, ψ)
)

= 1.

For each q ∈ Z
m−n , let

Bq =
⋃

p∈Zn

|p|≤|q|

{

A ∈ M ′
m×n(I) : |(p,q)A|i < ψi (|q|) for any i = 1, . . . , n

}

.

Writing each A ∈ M ′
m×n(I) as

(In
Ã

)

X , where X is the invertible n × n matrix formed
by the first n rows of A and In is the n × n identity matrix, we find the related set
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B ′
q(X) =

⋃

p∈Zn

|p|≤|q|

{

Ã ∈ M(m−n)×n(I) :
∣
∣
∣pX + q ÃX

∣
∣
∣
i
<ψi (|q|) for any i = 1, . . . , n

}

.

Finally, set B ′
q = B ′

q(In).
Let ε > 0 be fixed and sufficiently small. We will be more explicit later. From

now on, we restrict ourselves to considering matrices A ∈ M ′
m×n(I) for which the

determinant of the matrix X consisting of the first n rows of A has absolute value ≥ ε.
Evidently, this determinant is also ≤ n!. This immediately implies that X is invertible
with (n!)−1 ≤ ∣

∣det(X−1)
∣
∣ ≤ ε−1.

Lemma 3.1 For each X ∈ Mn(I) with |det(X)| ≥ ε, and each q,q1,q2 ∈ Z
m−n,

L(m−n)n(B
′
q(X)) 	ε L(m−n)n(B

′
q) (16)

and
L(m−n)n(B

′
q1(X) ∩ B ′

q2(X)) 	ε L(m−n)n(B
′
q1 ∩ B ′

q2); (17)

here the implied constants may depend on m, n, ε, ψ1, …, ψn, but not on q, q1, q2.

Proof Let us prove Eq. (17), assuming that q1 and q2 are not collinear (otherwise it
reduces to Eq. (16), which can be proved along the same lines). Let p1,p2 ∈ Z

n be
such that |p1| ≤ |q1| and |p2| ≤ |q2|. The affine map

f : M(m−n)×n(R) → R
n × R

n, Ã �→ (p1 + q1 Ã,p2 + q2 Ã)

is surjective because q1 and q2 are not collinear. Let Rq denote the set of all x =
(x1, . . . , xn) ∈ R

n such that |xi | < ψi (|q|) for any i = 1, . . . , n. Then for any
invertible X ∈ Mn(I), the Lebesgue measure of M(m−n)×n(I) ∩ f −1(Rq1X

−1 ×
Rq2X

−1) is proportional (up to a positive constant depending only on m and n)
to L2n((Rq1X

−1 ∩ |q1|In) × (Rq2X
−1 ∩ |q2|In)); the coefficient of proportionality

depends on q1, q2, p1, p2, m, n, but not on X . Assuming | det(X)| ≥ ε, the latter
measure is 	ε L2n(Rq1 × Rq2). Denoting by B ′′

q1,q2,p1,p2(X) the set of all Ã ∈
M(m−n)×n(I) such that |p1X + q1 ÃX |i < ψi (|q1|) and |p2X + q2 ÃX |i < ψi (|q2|)
for any i , we deduce that

L(m−n)n(B
′′
q1,q2,p1,p2(X)) 	ε L(m−n)n(B

′′
q1,q2,p1,p2(In)), (18)

where the implied constant may depend on m, n, ε, but not on q1, q2, p1, p2 since the
above-mentioned coefficient of proportionality cancels out.

To conclude we have to deal with the possible existence of p,p′,q ∈ Z
n such that

p �= p′ and 1
2 (p−p′)X ∈ Rq. This implies that some non-trivialZ-linear combination

of the rows of X is very close to 0, so that

| det(X)| ≤ 2(n − 1)!
n

∑

i=1

ψi (|q|). (19)
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Now let ε > 0 be fixed, and assume that | det(X)| ≥ ε. Equation (19) provides a real
number Cε > 0 such that elements p,p′,q ∈ Z

n with p �= p′ and 1
2 (p − p′)X ∈ Rq

may exist only if |q| < Cε. If both q1 and q2 are less than Cε, then Eq. (17) holds
trivially: q1 and q2 may take only a finite number of values (depending on ε), and
the left-hand side of Eq. (17) is a positive and continuous function of the variable X
ranging through the compact subset of Mn(I) defined by | det(X)| ≥ ε.

Let us consider the case where |q1| ≥ Cε > |q2| (the other cases are similar). Then
all implied constants may depend on q2 and not only on ε. Moreover, by construction
of Cε, if p′

1 �= p1 then B ′′
q1,q2,p1,p2(X) ∩ B ′′

q1,q2,p′
1,p

′
2
(X) = ∅ so that

L(m−n)n(B
′
q1(X) ∩ B ′

q2(X)) = L(m−n)n

⎛

⎜
⎜
⎝

⋃

p1,p2∈Zn

|p1|≤|q1|, |p2|≤|q2|

B ′′
q1,q2,p1,p2(X)

⎞

⎟
⎟
⎠

	ε,q2 max
p2∈Zn

|p2|≤|q2|

∑

p1∈Zn

|p1|≤|q1|

L(m−n)n(B
′′
q1,q2,p1,p2(X)).

Using Eq. (18) this concludes the proof of Lemma 3.1. ��
Lemma 3.2 For each pair q,q′,

Lmn(Bq) 	ε L(m−n)n(B
′
q) (20)

and
Lmn(Bq ∩ Bq′) 	ε L(m−n)n(B

′
q ∩ B ′

q′), (21)

where the implied constants may depend on m, n, ε, ψ1, …, ψn, but not on q, q′.

Proof This follows on integrating out the X and applying Lemma 3.1. Indeed,

Lmn(Bq) = lim
ε→0

∫

X∈Mn(I)
ε≤|det(X)|

∫

Ã∈M(m−n)×n(I)X−1
1Bq

((
In
Ã

)

X

)

d ÃdX,

where 1Bq denotes the characteristic function of Bq. Let us prove that the inner integral
is 	ε L(m−n)n(B ′

q(X)).
First, we deal with the case when m − n > 1. For simplicity, we consider first

the case m = 3, n = 1 and extend subsequently. We are integrating over the set
M2×1(I)X−1, which is a square of area between 1 and ε−2, since X in this case is just
a number between ε and 1. Consider the intersection with each fundamental domain
for the standard lattice Z

2. Except for lower order terms arising at the boundary of
M2×1(I)X−1, each such intersection will have measureL(m−n)n(B ′

q(X)). The number
of such contributing fundamental domains is bounded from below by 1 and from above
by ε−2. Hence, the result follows in this case.

To get the full result for m − n > 1, the set M(m−n)×n(I)X−1 still covers at least
1
n M(m−n)×n(I), as the entries of X are between −1/2 and 1/2. For |q| large enough,
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the measure of the intersection of B ′
q(X) with this set is 	 1

n(m−n)nL(m−n)n(B ′
q(X)),

and the result follows. The upper bound again follows as the determinant of X is
bounded from below.

When m − n = 1, the set consists of neighbourhoods of single points, and we
simply count the contributions as usual. We have now shown that the inner integral is
	ε L(m−n)n(B ′

q(X)).
Equation (20) follows at once, since using Eq. (16) we have

∫

X∈Mn(I)
ε≤|det(X)|

L(m−n)n(B
′
q(X))dX 	ε

∫

X∈Mn(I)
ε≤|det(X)|

L(m−n)n(B
′
q)dX 	ε L(m−n)n(B

′
q).

The case of intersections follows similarly, this time using (17) instead of (16). ��
At this point, proving the divergence case of the theorem is a relatively straight-

forward matter. Indeed, a form of the divergence case of the Borel–Cantelli lemma
[25, Lemma 5] states that if (An) is a sequence of sets in a probability space with
probability measure μ such that

∑
μ(An) = ∞, then

μ

( ∞
⋂

k=1

∞
⋃

n=k

An

)

≥ lim sup
N→∞

(
∑N

n=1 μ(An)
)2

∑N
m,n=1 μ(Am ∩ An)

. (22)

If one can prove that for a sufficiently large set of pairs (An, Am), the denominator
on the right-hand side is � μ(Am)μ(An) whenever m �= n, it follows from Eq. (22)
that the measure of the set on the left-hand side is strictly positive. Even if this does
not hold, one could hope for it to be true on average, so that the resulting right-hand
side would be positive. This is a standard technique in metric Diophantine approxi-
mation, with the property on the sets An being called quasi-independence or in the
latter case quasi-independence on average. It follows from Lemma 3.2, that if a clas-
sical Khintchine–Groshev theorem can be established using quasi-independence on
average, then the measure of the absolute value set is positive under the appropriate
divergence assumption.

In the classical setup, one usually proves Khintchine–Groshev type results using a
variant of this lemma. Here, one applies the lemma with some subset of the family
B ′
q in place of An . In the simplest case, when n = 1 and m = 3, the family can be

chosen to be those q = (p, q̃) ∈ Z × Z
2 with the entries of q̃ co-prime and the last

entry positive. This will ensure that the corresponding sets∪p B ′
(p,q̃)

are stochastically
independent and hence quasi-independent. The fact that we take a union over p’s is
critical. This gives a pleasing description of the sets involved as neighbourhoods of
geodesics winding around a torus and provides a simple argument for the stochastic
independence of the sets. For details on this case, see [9]. In that paper, the case
m − n > 1 is fully described. For the case when m − n = 1, more delicate arguments
are required. Below,we give references towork,where the refining procedure is carried
out in each individual case.

For our purposes, in order to prove Theorem 1.1, using Lemma 3.2 we will translate
the right-hand side of inequality (22) to a statement on the ‘classical’ sets B ′

q with the
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corresponding limsup set. In the case m − n > 2, the required upper bound on the
intersections on average was established in [24] without the monotonicity assumption.
Form −n = 2, the bound is found in [19] and form −n = 1, this is the result of [14].
In the last case, the monotonicity is critical in the case m = 2, n = 1, as otherwise we
could exploit the Duffin–Schaeffer counterexample [10] to arrive at a counterexample
to the present statement.

Having established that the measure is positive, it remains to prove that the measure
is full. To accomplish this, we apply an inflation argument due to Cassels [5], but
tweaked to the absolute value setup. We pick a slowly decreasing function τ(r) which
tends to 0, such that the functionsψ ′

i (r) = τ(r)ψi (r) satisfy the divergence assumption
of the theorem.

One can show that the origin 0 ∈ Matmn(R) is a point of metric density for the
set W0(m, n;ψ ′). This uses two properties. One is the fact that 0 is an inner point of
each set of matrices satisfying (1) for a fixed q. The other is the fact that the error
function depends only on |q|, so the parallelepiped of matrices satisfying Eq. (1)
does not change shape but only orientation as q varies over integer vectors with the
same height |q|. Since the distribution of angles of integer vectors of the same height
becomes uniform as the height increases, this implies that the origin must be a point
of metric density.

We will apply the Lebesgue Density Theorem to prove that W0(m, n;ψ) is full.
Suppose to the contrary that this is not the case, and let A0 be a point of metric density
for the complement of W0(m, n;ψ), so that

Lmn

(

W0(m, n;ψ) ∩ B(A0, δ)
)

Lmn (B(A0, δ))
→ 0, (23)

as δ → 0. We will derive a contradiction to this statement.
Let r0 = |A0| + δ. We will later fix a number r > 0, depending only on m, n, A0,

and δ. Suppose that Ã ∈ W0(m, n;ψ ′) and let t > 0. Then the matrix A = t Ã satisfies

|qA|i = t |q Ã|i < t ψ ′
i (|q|),

for infinitely many q. This implies that A ∈ W0(m, n;ψ), since t is fixed and τ tends
to 0. Now let

Sr,δ,A0 = {

A ∈ I
mn : |A|2 < r and there is a t > 0 such that t A ∈ B(A0, δ)

}

where |A|2 denotes the Euclidean norm of A. Using the scaling properties of the
Lebesgue measure, it is not difficult to deduce that

Lmn

(

W0(m, n;ψ) ∩ B(A0, δ)
)

≥ Cr−mnδLmn

(

W0(m, n;ψ ′) ∩ Sr,δ,A0

)

, (24)

where C > 0 depends only on m, n, and A0.

We proceed with estimating r−mnLmn

(

W0(m, n;ψ ′) ∩ Sr,δ,A0

)

. Recall that 0 is a

point of metric density for W0(m, n;ψ ′), so
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Lmn

(

W0(m, n;ψ ′) ∩ B(0, r)
)

Lmn (B(0, r))
→ 1,

as r tends to zero. Hence, for ε > 0, we may pick r so small that

Lmn

(

W0(m, n;ψ ′)c ∩ B(0, r)
)

< εLmn (B(0, r)) ≤ εC ′rmn,

where C ′ > 0 depends only on m and n. On the other hand,

Lmn

(

W0(m, n;ψ ′)c ∩ Sr,δ,A0

)

≤ Lmn

(

W0(m, n;ψ ′)c ∩ B(0, r)
)

,

by simple inclusion, so that

Lmn

(

W0(m, n;ψ ′) ∩ Sr,δ,A0

)

≥ Lmn
(

Sr,δ,A0

) − εC ′rmn ≥ C ′′rmnδmn−1 − εC ′rmn,

where again C ′′ > 0 is some constant depending only on m, n, and A0. Fixing
ε = C ′′

2C ′ δmn−1, we find that

r−mnLmn

(

W0(m, n;ψ ′) ∩ Sr,δ,A0

)

≥ 1
2C

′′δmn−1.

Inserting this estimate into Eq. (24), we see that

Lmn

(

W0(m, n;ψ) ∩ B(A0, δ)
)

Lmn (B(A0, δ))
≥

1
2CC

′′δmn

Lmn (B(A0, δ))
> C0 > 0,

where the final constant once again depends only on m, n, and A0. This contradicts
Eq. (23) and completes the proof.
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