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Abstract—In this paper, we give a new proof of the classical KAM theorem on the persistence
of an invariant quasi-periodic torus, whose frequency vector satisfies the Bruno –Rüssmann
condition, in real-analytic non-degenerate Hamiltonian systems close to integrable. The proof,
which uses rational approximations instead of small divisors estimates, is an adaptation to the
Hamiltonian setting of the method we introduced in [4] for perturbations of constant vector
fields on the torus.
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1. INTRODUCTION

In this paper, we consider small perturbations of integrable Hamiltonian systems, which are
defined by a Hamiltonian function of the form

H(p, q) = h(p) + εf(p, q), (p, q) ∈ Rn × Tn, 0 � ε < 1,

where n � 2 is an integer and Tn = Rn/Zn: the Hamiltonian system associated to this Hamiltonian
function is then given by {

ṗ = −∂qH(p, q) = −ε∂qf(p, q),
q̇ = ∂pH(p, q) = ∇h(p) + ε∂pf(p, q).

When ε = 0, the system associated to H = h is trivially integrable: all solutions are given by

(p(t), q(t)) = (p(0), q(0) + t∇h(p(0)) [Zn]),

and therefore the sets Tp0 = {p0} × Tn, p0 ∈ Rn, are invariant tori on which the dynamics is quasi-
periodic with frequency ω0 = ∇h(p0) ∈ Rn.

Now for ε > 0, the system is in general no longer integrable, and one is interested to know
whether such quasi-periodic solutions persist under an arbitrary small perturbation. It is not hard
to see that if the frequency ω0 ∈ Rn is resonant, that is if there exists a vector k ∈ Zn \ {0} such that
k · ω0 = 0, then the torus Tp0 is destroyed by a general perturbation. This goes back to Poincaré,
who initiated the study of small perturbations of integrable Hamiltonian systems in his seminal
work on Celestial Mechanics.
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252 BOUNEMOURA, FISCHLER

1.1. K for Kolmogorov

The fate of quasi-periodic solutions with non-resonant frequencies remained an open question
for more than half a century, until it was solved by Kolmogorov. In [14], he proved that if H is
real-analytic and if h is non-degenerate at some point p0 ∈ Rn in the sense that ∇h is a local
diffeomorphism at p0, then, provided ω0 = ∇h(p0) satisfies a classical Diophantine condition, the
torus Tp0 survives an arbitrary small perturbation. The condition on ω0 is a strengthening of the
non-resonance condition, namely one requires the existence of constants γ > 0 and τ � n − 1 such
that for all k ∈ Zn \ {0},

|k · ω0| � γ|k|−τ
1 ,

where |k|1 = |k1| + · · · + |kn| (this is a generalization of a condition used by Siegel in [25] for the
problem of linearization of a one-dimensional holomorphic map at an elliptic fixed point). Whereas
classical Hamiltonian perturbation theory, as pioneered by Poincaré, only yields formal quasi-
periodic solutions through an iterative procedure which may or may not converge, Kolmogorov’s
main idea was to focus on such a strongly non-resonant torus in order to use a modified and rapidly
converging inductive scheme, similar to a Newton method, leading to the persistence of this torus.

1.2. A and M for Arnold and Moser

Kolmogorov’s fundamental theorem was later revisited and improved by Arnold and Moser,
leading to what is known as KAM theory.

In [2], Arnold gave a more detailed and technically different proof, under a different non-
degeneracy assumption on the integrable Hamiltonian, and in [3], he further improved the non-
degeneracy assumption in order to apply the theorem to Celestial Mechanics.

In the meantime, in [16], Moser was able to replace the analyticity condition on the Hamiltonian
by a mere finite differentiability condition, in the related context of invariant curves of area-
preserving maps of the annulus. Moreover, in [17], he introduced a powerful formalism for the
perturbation theory (not necessarily Hamiltonian) of quasi-periodic solutions, which eventually led
to many applications (see [5] for instance).

1.3. R for Rüssmann

Further important contributions to KAM theory are due to Rüssmann. Indeed, following works
of Arnold and Pyartli, Rüssmann was able to find the most general non-degeneracy condition for
the integrable Hamiltonian h: in the analytic case, it is sufficient to require that locally, the image
of the gradient map ∇h is not contained in any hyperplane of Rn (it is also necessary as shown
by Sevryuk in [24]). This was announced in [20], and details are given in [22]. Also, he was able
to greatly relax the condition imposed on the frequency, going beyond the classical Diophantine
condition (see [21, 22]). This condition, which generalizes a condition introduced by Bruno in the
context of holomorphic linearization ([8, 9]), is now usually called Bruno – Rüssmann condition (see
Section 2.2 for a definition), and is known to be optimal in one-dimensional problems following
works of Yoccoz (see [27, 28]). This extension to more general frequency vectors also led to a
different method of proof, in which no rapid convergence is involved ([21, 22], see also [23] for
the latest improvement of this method). In another important work ([19]), Rüssmann was able to
obtain optimal estimates for the solution of the so-called cohomological equation (which is Eq. (1.1)
in Section 1.5 below), of fundamental importance in KAM theory.

1.4. Other approaches to the classical KAM theorem

Apart from Rüssmann’s modified iterative scheme, a number of other proofs have appeared in
the literature.

First, the classical iterative scheme of Kolmogorov has been replaced by the use of an adapted
implicit function theorem in a scale of Banach spaces (or in a Fréchet space), following works of
Zehnder ([29, 30]), Herman ([6]) and more recently Féjoz ([11]).
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Another proof, based on the Lagrangian formalism and that avoids the composition of infinitely
many coordinate transformations, was presented in [15] in the case of invariant curves for area-
preserving maps of the annulus, and in [26] for Hamiltonian systems in any number of degrees of
freedom.

But perhaps the most striking proof is due to Eliasson. The classical theorem of Kolmogorov
shows, a posteriori and in an indirect way, that some formal solutions of classical perturbation
theory do converge. In [10], Eliasson managed to prove directly the convergence of these formal
solutions, by adding suitable terms in the formal series in order to exhibit subtle cancellations
yielding the absolute convergence.

At last, we should also point out that using a multi-dimensional continued fraction algorithm
due to Lagarias, Khanin, Lopes Dias and Marklof gave a proof of the KAM theorem with techniques
closer to renormalization theory (see [13] for the case of constant vector fields on the torus, and [12]
for the case of Hamiltonian systems).

1.5. Approach via Rational Approximations

The purpose of this article, which can be considered as a continuation of our previous work [4],
is to present yet another proof of the classical KAM theorem for Hamiltonian systems, which differs
qualitatively from all other existing proofs as it does not involve any small divisors estimates and
Fourier series expansions.

First we should recall that in the classical approach to the KAM theorem, as well as the other
methods of proof we just mentioned, a central role is played by the following equation:

Lω0g = f − [f ], [f ] =
∫

Tn

f(θ)dθ, (1.1)

where g (respectively f) is the unknown (respectively known) smooth function on Tn, ω0 is
non-resonant and Lω0 is the derivative in the direction of ω0. It is precisely in trying to solve
Eq. (1.1) that small divisors arise: geometrically, one needs to integrate along the integral curves
t �→ θ + tω0 [Zn], and these curves are not closed (they densely fill the torus). Analytically, one
needs to invert the operator Lω0 acting on the space of smooth functions, and this operator is
unbounded. Indeed, this operator can be diagonalized in a Fourier basis: letting ek(θ) = e2πik·θ for
k ∈ Zn and expanding in Fourier series g =

∑
k∈Zn gkek and f =

∑
k∈Zn fkek, the solution is given

by

g0 = 0, gk = (2πik · ω0)−1fk, k ∈ Zn \ {0}.
The quantities k · ω0, which enter in the denominators, can be arbitrarily small if the norm |k|1 is
arbitrarily large: these are called the small divisors, and are the main source of complications.

In this article, we will show how one can, using rational approximations, avoid solving
Eq. (1.1) and therefore avoid facing small divisors. Assume, without loss of generality, that the
first component of ω0 has been normalized to one. Using a Diophantine result deduced in [4]
from classical properties of geometry of numbers, we will approximate ω0 by n rational vectors
v1, . . . , vn ∈ Qn, with a control on their denominators q1, . . . , qn in terms of the quality of the
approximation, and such that the integer vectors q1v1, . . . , qnvn form a Z-basis of Zn. This result
will enable us to replace the study of Eq. (1.1) with the study of the equations

Lvjgj = fj − [fj]vj , [fj]vj (θ) =
∫ 1

0
f(θ + tqjvj)dt, 1 � j � n, (1.2)

where the fj are defined inductively by f1 = f and fj+1 = [fj ]vj for 1 � j � n − 1, and the gj are
the unknown. Equations (1.2) are much simpler than Eq. (1.1), they can be solved without Fourier
expansions by the following simple integral formula

gj(θ) = qj

∫ 1

0
(fj − [fj ]vj )(θ + tqjvj)tdt
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and there are no small divisors: geometrically, the integral curves t �→ θ + tvj [Zn] are qj-periodic
hence closed, and analytically, the inverse operator of Lvj is bounded (by qj, with respect to any
translation-invariant norm on the space of functions on the torus).

In [4], this approach was already used in the model problem of perturbations of constant vector
fields on the torus; the aim of this article is therefore to explain how to adapt the arguments of [4]
to the context of real-analytic non-degenerate Hamiltonian systems close to integrable.

2. STATEMENTS

As explained in the Introduction, the result that we will prove here is not new, only the method
of proof is. For convenience, we will follow the very nice survey [18] for the exposition of the
statements. Compared to [18], we decided for simplicity to focus on the persistence of a single
invariant torus instead of a Cantor family of invariant tori; on the other hand, our frequency will
be assumed to satisfy the Bruno – Rüssmann condition, which is more general than the classical
Diophantine condition.

2.1. Setting

Recall that n � 2 is an integer, Tn = Rn/Zn and let D ⊆ Rn be an open domain containing the
origin. For a small parameter ε � 0, we consider a Hamiltonian function H : D × Tn → R of the
form {

H(p, q) = h(p) + εf(p, q),
∇h(0) = ω0 = (1, ω̄0) ∈ Rn, ω̄0 ∈ [−1, 1]n−1.

(∗)

Assuming that the vector ∇h(0) = ω0 is non-zero, it can always be written as above, re-ordering
its components and re-scaling the Hamiltonian if necessary. The integrable Hamiltonian h is said
to be non-degenerate at the origin if the map ∇h : D → Rn is a local diffeomorphism at the origin.
Upon restricting D if necessary, we may assume that ∇h is actually a global diffeomorphism. The
Hamiltonian H is said to be real-analytic on D̄ × Tn, where D̄ denotes the closure of D in Rn, if it
is analytic on a fixed (that is, independent of ε) neighborhood of D̄ × Tn in Rn × Tn. This implies
that H can be extended as a holomorphic function on a fixed complex neighborhood of D̄ × Tn in
Cn × Tn

C
, where Tn

C
= Cn/Zn, which is real-valued for real arguments.

2.2. Bruno –Rüssmann Condition

For Q � 1, let us define the function Ψ = Ψω0 by

Ψ(Q) = sup{|k · ω0|−1 | k ∈ Zn, 0 < |k|1 � Q} ∈ [1,+∞]. (2.1)

Recall that the vector ω0 is said to be non-resonant if k · ω0 = 0 implies k = 0 ∈ Zn, which is
equivalent to Ψ(Q) being finite for all Q � 1. We say that ω0 satisfies the Bruno –Rüssmann
condition if it is non-resonant and ∫ +∞

1
Q−2 ln(Ψ(Q))dQ < ∞. (BR)

Now let us define two other functions Δ = Δω0 and Δ∗ = Δ∗
ω0

by Δ(Q) = QΨ(Q) for Q � 1, and
Δ∗(x) = sup{Q � 1 | Δ(Q) � x} for x � Δ(1). We obviously have Δ∗(Δ(Q)) = Q and Δ(Δ∗(x)) �
x. Moreover, it is not hard to check (see [4], Appendix A) that Ψ satisfies (BR) if and only if Δ∗

satisfies ∫ +∞

Δ(1)
(xΔ∗(x))−1dx < ∞. (2.2)
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2.3. Classical KAM Theorem

Consider the map Θ0 : Tn → D × Tn given by Θ0(q) = (0, q): this is a real-analytic torus
embedding such that Θ0(Tn) is invariant by the Hamiltonian flow of H0 and quasi-periodic
with frequency ω0. The classical KAM theorem states that this invariant quasi-periodic torus is
preserved, being only slightly deformed, by an arbitrary small perturbation, provided h is non-
degenerate, H analytic and ω0 satisfies the Bruno –Rüssmann condition.

Theorem 1. Let H be as in (∗), with h non-degenerate and H real-analytic, and assume that
Ψ = Ψω0 satisfies (BR). For ε small enough, there exists a real-analytic torus embedding Θω0 :
Tn → D × Tn such that Θω0(T

n) is invariant by the Hamiltonian flow of H and quasi-periodic with
frequency ω0.

Moreover, Θω0 converges uniformly to Θ0 as ε goes to zero.

As in [18], Theorem 1 will be deduced from a KAM theorem for a Hamiltonian “with
parameters”, for which a quantitative statement is given below.

2.4. KAM Theorem with Parameters

Let us now consider a different setting. Given r, s, h real numbers such that 0 � r � 1, 0 � s � 1,
0 � h � 1, we let

Dr,s = {I ∈ Cn | |I| < r} × {θ ∈ Tn
C = Cn/Zn | |Im(θ)| < s}

and

Oh = {ω ∈ Cn | |ω − ω0| < h}
be complex neighborhoods of respectively {0} × Tn and ω0, where | . | stands for the supremum
norm of vectors.

For a small parameter ε � 0, consider a function H, which is bounded and real-analytic on
Dr,s × Oh, and of the form {

H(I, θ, ω) = N(I, ω) + P (I, θ, ω),
N(I, ω) = e(ω) + ω · I, |P |r,s,h � ε,

(∗∗)

where

|P |r,s,h = sup
(I,θ,ω)∈Dr,s×Oh

|P (I, θ, ω)|.

The function H should be considered as a real-analytic Hamiltonian on Dr,s, depending analytically
on a parameter ω ∈ Oh; for a fixed parameter ω ∈ Oh, when convenient, we will write

Hω(I, θ) = H(I, θ, ω), Nω(I) = N(I, ω), Pω(I, θ) = P (I, θ, ω).

Let B = {I ∈ Rn | |I| < r} so that B × Tn is the real part of the domain Dr,s, and Φ0 : Tn →
B × Tn be the map given by Φ0(θ) = (0, θ). Then Φ0(Tn) is an embedded real-analytic torus in
B × Tn, invariant by the Hamiltonian flow of Nω0 and quasi-periodic with frequency ω0. The
next theorem states that this quasi-periodic torus will persist, being only slightly deformed, as an
invariant torus not for the Hamiltonian flow of Hω0 but for the Hamiltonian flow of Hω̃, where ω̃
is a parameter close to ω0, provided ε is sufficiently small and ω0 satisfies the Bruno –Rüssmann
condition. Here is a more precise statement.

Theorem 2. Let H be as in (∗∗), with Δ∗ = Δ∗
ω0

satisfying (2.2). Then there exist positive
constants c1 � 1, c2 � 1, c3 � 1, c4 � 1 and c5 � 1 depending only on n such that if

εr−1 � c1h � c2(Q0Ψ(Q0))−1, (2.3)

where Q0 � 1 is sufficiently large so that

Q−1
0 + (ln 2)−1

∫ +∞

Δ(Q0)

dx

xΔ∗(x)
� c3s, (2.4)
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there exist a real-analytic torus embedding Φω0 : Tn → B × Tn and a vector ω̃ ∈ Rn such that
Φω0(T

n) is invariant by the Hamiltonian flow of Hω̃ and quasi-periodic with frequency ω0. Moreover,
Φω0 is real-analytic on Tn

s/2 = {θ ∈ Tn
C
| |Im(θ)| < s/2} and we have the estimates

|W (Φω0 − Φ0)|s/2 � c4ε(rh)−1, |ω̃ − ω0| � c5εr
−1, (2.5)

where W = diag(r−1Id, Q−1
0 Id).

Theorem 1 follows directly from Theorem 2, introducing the frequencies ω = ∇h(p) as inde-
pendent parameters and compensating the shift of frequency ω̃ − ω0 using the non-degeneracy
assumption on h. This deduction is classical but for completeness we will repeat the details below,
following [18].

3. PROOF OF THEOREM 1 ASSUMING THEOREM 2
In this section, we assume Theorem 2 and we show how it implies Theorem 1.

Proof of Theorem 1. For p0 ∈ D, we expand h in a small neighborhood of p0: writing p = p0 + I for
I close to zero, we get

h(p) = h(p0) + ∇h(p0) · I +
∫ 1

0
(1 − t)∇2h(p0 + tI)I · Idt.

Since ∇h : D → Ω is a diffeomorphism, instead of p0 we can use ω = ∇h(p0) as a new variable, and
we write

h(p) = e(ω) + ω · I + Ph(I, ω)

with e(ω) = h(∇−1(ω)) and Ph(I, ω) =
∫ 1
0 (1 − t)∇2h(∇−1(ω) + tI)I · Idt. Letting θ = q and

Pε(I, θ, ω) = εf(p, q) = εf(p0 + I, θ) = εf(∇−1(ω) + I, θ),

we can eventually define

H(I, θ, ω) = H(p, q) = e(ω) + ω · I + Ph(I, ω) + Pε(I, θ, ω) = e(ω) + ω · I + P (I, θ, ω).

This Hamiltonian is obviously real-analytic in (I, θ, ω), hence we can fix some small 0 < s < 1 and
0 < h < 1 so that P is real-analytic on the complex domain Dr,s × Oh for all sufficiently small
0 < r < 1. Moreover, as Ψ = Ψω0 satisfies (BR), Δ∗ = Δ∗

ω0
satisfies (2.2), and choosing Q0 = Q0(s)

sufficiently large so that (2.4) is satisfied, we may assume, restricting h if necessary, that the second
inequality of (2.3) holds true, namely c1h � c2(Q0Ψ(Q0))−1. In the same way, we may also assume
that the real part of Oh is contained in Ω.

Now since P (I, θ, ω) = Ph(I, ω) + Pε(I, θ, ω), we have

|P |r,s,h � ε = Mr2 + Fε,

where

M = sup
p∈D

|∇2h(p)|, F = sup
(p,q)∈D×Tn

|f(p, q)|.

Therefore we choose r = (M−1Fε)1/2 to have ε = 2Fε, and assuming ε � (4MF )−1c2
1h

2, we have

εr−1 = 2Fε(MF−1ε−1)1/2 = 2(MFε)1/2 � c1h,

hence the first inequality of (2.3) is satisfied. So Theorem 2 can be applied: there exist a real-
analytic torus embedding Φω0 : Tn → B × Tn and a vector ω̃ ∈ Rn such that Φω0(T

n) is invariant
by the Hamiltonian flow of Hω̃ and quasi-periodic with frequency ω0. Moreover, Φω0 is real-analytic
on Tn

s/2 = {θ ∈ Tn
C
| |Im(θ)| < s/2} and we have the estimates

|W (Φω0 − Φ0)|s/2 � c4ε(rh)−1, |ω̃ − ω0| � c5εr
−1, (3.1)

where W = diag(r−1Id, Q−1
0 Id).
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Since ω̃ is real and the real part of Oh is contained in Ω, there exists Ĩ close to zero such that
∇h(Ĩ) = ω̃. Now observe that an orbit (I(t), θ(t)) for the Hamiltonian Hω̃ corresponds to an orbit
(p(t), q(t)) = (Ĩ + I(t), θ(t)) for our original Hamiltonian. Hence, if we define T : B × Tn → D ×Tn

by T (I, θ) = (Ĩ + I, θ) and

Θω0 = T ◦ Φω0 : Tn → D × Tn,

then Θω0 is a real-analytic torus embedding such that Θω0(T
n) is invariant by the Hamiltonian flow

of H and quasi-periodic with frequency ω0.
Moreover, as ε goes to zero, it follows from (3.1) that Φω0 converges uniformly to Φ0 and ω̃

converges to ω0, hence T converges uniformly to the identity which eventually implies that Θω0

converges uniformly to Θ0.

4. PROOF OF THEOREM 2
This section is devoted to the proof of Theorem 2, in which we will construct, by an iterative

procedure, a vector ω̃ close to ω0 and a real-analytic torus embedding Φω0 whose image is invariant
by the Hamiltonian flow of Hω̃. We start, in Section 4.1, by recalling the Diophantine result of [4]
which will be crucial in our approach. Then, in Section 4.2, we describe an elementary step of our
iterative procedure, and finally, in Section 4.3, we will show one can perform infinitely many steps
to obtain a convergent scheme.

In this section, for simplicity, we shall write u<· v (respectively u ·< v), if, for some constant
C � 1 which depends only on n and could be made explicit, we have u � Cv (respectively Cu � v).

4.1. Approximation by Rational Vectors

Recall that we have written ω0 = (1, ω̄0) ∈ Rn with ω̄0 ∈ [−1, 1]n−1. For a given Q � 1, it is
always possible to find a rational vector v = (1, p/q) ∈ Qn, with p ∈ Zn−1 and q ∈ N, which is a
Q-approximation in the sense that |qω0 − qv| � Q−1, and for which the denominator q satisfies
the upper bound q � Qn−1: this is essentially the content of Dirichlet’s theorem on simultaneous
rational approximations, and it holds true without any assumption on ω0. In our situation, since
we have assumed that ω0 is non-resonant, it is not hard to see that there exist not only one, but n
linearly independent rational vectors in Qn which are Q-approximations. Moreover, one can obtain
not only linearly independent vectors, but rational vectors v1, . . . , vn of denominators q1, . . . , qn
such that the associated integer vectors q1v1, . . . , qnvn form a Z-basis of Zn. However, the upper
bound on the corresponding denominators q1, . . . , qn is necessarily larger than Qn−1, and is given
by a function of Q that we can call here Ψ′ = Ψ′

ω0
(see [4] for more precise and general information,

but note that in this reference, Ψ′ was denoted by Ψ and Ψ, which we defined in (2.1), was denoted
by Ψ′). A consequence of the main Diophantine result of [4] is that this function Ψ′ is in fact
essentially equivalent to the function Ψ.

Proposition 1. Let ω0 = (1, ω̄0) ∈ Rn be a non-resonant vector, with ω̄0 ∈ [−1, 1]n−1. For any
1 ·< Q, there exist n rational vectors v1, . . . , vn, of denominators q1, . . . , qn, such that q1v1, . . . , qnvn

form a Z-basis of Zn and for j ∈ {1, . . . , n},
|ω0 − vj |<· (qjQ)−1, 1 � qj <·Ψ(Q).

For a proof, we refer to [4], Theorem 2.1 and Proposition 2.3.
Now given a q-rational vector v and a function P defined on Dr,s × Oh, we define

[P ]v(I, θ, ω) =
∫ 1

0
P (I, θ + tqv, ω)dt.

Given n rational vectors v1, . . . , vn, we let [P ]v1,...,vd
= [· · · [P ]v1 · · · ]vd

. Finally we define

[P ](I, ω) =
∫

Tn

P (I, θ, ω)dθ.

A consequence of the fact that the vectors q1v1, . . . , qnvn form a Z-basis of Zn is contained in the
following proposition.
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Proposition 2. Let v1, . . . , vn be rational vectors, of denominators q1, . . . , qn, such that
q1v1, . . . , qnvn form a Z-basis of Zn, and P a function defined on Dr,s × Oh. Then

[P ]v1,...,vn = [P ].

A proof of this proposition can be found in [7], Corollary 6.

4.2. KAM Step

Now we describe an elementary step of our iterative procedure. To our Hamiltonian H, we will
apply transformations of the form

F = (Φ, ϕ) : (I, θ, ω) �→ (Φ(I, θ, ω), ϕ(ω))

which consist of a parameter-depending change of coordinates Φ and a change of parameters ϕ.
Moreover, our change of coordinates will be of the form Φ = (U, V ), where U is affine in I and V is
independent of I , and will be symplectic for each fixed parameter ω. It is easy to check that such
transformations F = (Φ, ϕ) form a group under composition.

From now on, we fix a positive constant η sufficiently small (one could take, for instance,
η = 1/66).

Proposition 3. Let H be as in (∗∗), with ω0 = (1, ω̄0) ∈ Rn non-resonant, consider 0 < σ < s and
1 ·< Q, and assume that

εr−1 ·< h ·< (QΨ(Q))−1, 1 ·< Qσ. (4.1)

Then there exists a real-analytic transformation

F = (Φ, ϕ) : Dηr,s−σ × Oh/4 → Dr,s × Oh,

such that H ◦ F = N+ + P+ with N+(I, ω) = e+(ω) + ω · I and |P+|ηr,s−σ,h/4 � ηε/8. Moreover,
we have the estimates

|W (Φ − Id)|ηr,s−σ,h <· (rσ)−1Ψ(Q)ε, |W (DΦ − Id)W−1|ηr,s−σ,h <· (rσ)−1Ψ(Q)ε,

|ϕ − Id|h/4 <· εr−1, h|Dϕ − Id|h/4 <· εr−1,

where W = diag(r−1Id, σ−1Id).

Proof. We divide the proof of the KAM step in six small steps. Except for the last one, everything
will be uniform in ω ∈ Oh, so for simplicity, in the first five steps we will drop the dependence on
the parameter ω ∈ Oh. Let us first notice that (4.1) implies the following five inequalities:

h ·< (QΨ(Q))−1, ε ·< σrΨ(Q)−1, ε ·< r(QΨ(Q))−1, 1 ·< Qσ, εr−1 ·< h. (4.2)

1. Affine approximation of P .

Let P̄ be the linearization of P in I at I = 0; that is,

P̄ (I, θ) = P (0, θ) + ∂IP (0, θ) · I.

Using Cauchy’s estimate, it is easy to see that |P̄ |r,s <· ε. Moreover, using Lemma 1, we have

|P − P̄ |2ηr,s � (2η)2(1 − 2η)−1ε � ηε/16 (4.3)

where we used in the second inequality that η is small enough.

2. Rational approximations of ω0.

Since ω0 is non-resonant, given 1 ·< Q, we can apply Proposition (1): there exist n rational
vectors v1, . . . , vn, of denominators q1, . . . , qn, such that q1v1, . . . , qnvn form a Z-basis of Zn and for
j ∈ {1, . . . , n},

|ω0 − vj |<· (qjQ)−1, 1 � qj <·Ψ(Q).
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3. Rational approximations of ω ∈ Oh.

For any ω ∈ Oh, using the first inequality in (4.2) and qj <·Ψ(Q), we have

|ω − vj| � |ω − ω0| + |ω0 − vj|<· h + (qjQ)−1 <· (QΨ(Q))−1 + (qjQ)−1 <· (qjQ)−1. (4.4)

4. Successive rational averagings.

Let P1 = P̄ , and define inductively Pj+1 = [Pj ]vj for 1 � j � n. Let us also define Fj , for
1 � j � n, by

Fj(I, θ) = qj

∫ 1

0
(Pj − Pj+1)(I, θ + tqjvj)tdt

and Nj by Nj(I) = e(ω) + vj · I. It is then easy to check, by a simple integration by parts, that the
equations

{Fj , Nj} = Pj − Pj+1, 1 � j � n (4.5)

are satisfied, where { . , . } denotes the usual Poisson bracket. Moreover, we obviously have the
estimates

|Pj |r,s � |P̄ |r,s <· ε (4.6)

and

|Fj |r,s � qj|Pj |r,s <·Ψ(Q)ε. (4.7)

Next, for any 0 � j � n, define rj = r − (2n)−1jr and sj = s− n−1jσ. Obviously rj > 0 whereas
sj > 0 follows from σ < s. Using (4.7) and Cauchy’s estimate, we have

|∂θFj |rj ,sj � n(jσ)−1|Fj |r,s <·σ−1Ψ(Q)ε, |∂IFj |rj ,sj � 2n(jr)−1|Fj |r,s <· r−1Ψ(Q)ε,

and together with the second inequality of (4.1) with a suitable implicit constant, we can ensure
that

|∂θFj |rj ,sj � (2n)−1r, |∂IFj |rj ,sj � n−1σ.

This implies that for 1 � j � n, the time-one map X1
Fj

of the Hamiltonian flow of Fj defines a
symplectic real-analytic embedding

X1
Fj

= (Uj , Vj) : Drj ,sj → Drj−1,sj−1.

Moreover, as P̄ is affine in I then so are the Fj , for 1 � j � n, and therefore Uj is affine in I and
Vj is independent of I, and we also have the estimates

|Uj − Id|rj ,sj � |∂θFj |rj ,sj <·σ−1Ψ(Q)ε, |Vj − Id|rj ,sj � |∂IFj |rj ,sj <· r−1Ψ(Q)ε. (4.8)

The Jacobian of X1
Fj

is given by the matrix

DX1
Fj

=

⎛
⎝∂IUj ∂θUj

0 ∂θVj

⎞
⎠ .

If we define r+
j = r − (4n)−1jr and sj = s− (2n)−1jσ, then (4.7) and Cauchy’s estimate also implies

that

|∂θFj |r+
j ,s+

j
<·σ−1Ψ(Q)ε, |∂IFj |r+

j ,s+
j

<· r−1Ψ(Q)ε,

and, as r+
j − rj = (4n)−1jr and s+

j − sj = (2n)−1jσ, a further Cauchy’s estimate proves that

|∂IUj − Id|rj ,sj <· (rσ)−1Ψ(Q)ε, |∂θVj − Id|rj ,sj <· (rσ)−1Ψ(Q)ε, |∂θUj |rj ,sj <·σ−2Ψ(Q)ε.
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The estimates (4.8) and the above estimates can be conveniently written as

|W (X1
Fj

− Id)|rj ,sj <· (rσ)−1Ψ(Q)ε, |W (DX1
Fj

− Id)W−1|rj ,sj <· (rσ)−1Ψ(Q)ε, (4.9)

where W = diag(r−1Id, σ−1Id).
Let Sj = ω · I − vj · I so that N = Nj + Sj, and let Hj = N + Pj . Writing Hj = N + Pj =

Nj + Sj + Pj and using the equality (4.5), a standard computation based on Taylor’s formula
with integral remainder gives

Hj ◦ X1
Fj

= N + [Pj ]vj + P̃j = N + Pj+1 + P̃j

with

P̃j =
∫ 1

0
{(1 − t)Pj+1 + tPj + Sj, Fj} ◦ Xt

Fj
dt

and where Xt
Fj

is the time-t map of the Hamiltonian flow of Fj . Using (4.4), (4.6), (4.7), the
definition of the Poisson bracket and Cauchy’s estimate, on easily obtains

|P̃j |rj ,sj <· (σr)−1Ψ(Q)ε2 + (Qσ)−1ε<· (Qσ)−1ε (4.10)

where the last inequality follows from the third inequality of (4.2).

5. Change of coordinates

For 1 � j � n, let Φj = X1
F1

◦ · · · ◦X1
Fj

: Drj ,sj → Dr,s. Since H1 = N + P , by a straightforward
induction we have

H1 ◦ Φj = (N + P ) ◦ Φj = N + Pj+1 + P+
j ,

where P+
j is defined inductively by P+

1 = P̃1 and P+
j+1 = P̃j+1 + P+

j ◦ X1
Fj+1

for 1 � j � n − 1. Let
Φ = Φn, and first note that Φ = (U, V ) where U is affine in I and V is independent of I, since each
X1

Fj
is of this form. Moreover, Φ : Dr/4,s−σ → Dr,s, so in particular Φ : Dηr,s−σ → Dr,s as η is small

enough, and using (4.9) and a classical telescopic argument, we have the estimates

|W (Φ − Id)|ηr,s−σ <· (rσ)−1Ψ(Q)ε, |W (DΦ − Id)W−1|ηr,s−σ <· (rσ)−1Ψ(Q)ε.

Concerning P+
n , using (4.10) and the fourth equality of (4.2) with a suitable implicit constant, we

can ensure that

|P+
n |ηr,s−σ <· (Qσ)−1ε � ηε/16.

Now as H = N + P = N + P + P − P = H1 + P − P , this gives

H ◦ Φ = H1 ◦ Φ + (P − P̄ ) ◦ Φ = N + Pn+1 + P+
n + (P − P̄ ) ◦ Φ.

We finally set P+ = P+
n + (P − P̄ ) ◦Φ, and as Pn+1 = [· · · [P̄ ]v1 · · · ]vn = [P̄ ]v1,...,vn , by Proposition 2,

Pn+1 = [P̄ ], we arrive at

H ◦ Φ = N + [P̄ ] + P+.

Using the second inequality of (4.2) with an appropriate implicit constant, we may assume that
the image of Φ actually sends Dηr,s−σ into D2ηr,s, and together with (4.3), we obtain the estimate

|P+|ηr,s−σ � |P+
n |ηr,s−σ + |(P − P̄ ) ◦Φ|ηr,s−σ � |P+

n |ηr,s−σ + |P − P̄ |2ηr,s−σ � ηε/16+ ηε/16 = ηε/8.

6. Change of frequencies

As P̄ is affine in I, [P̄ ] is independent of θ and of the form [P̄ ](I, ω) = c(ω) + ν(ω) · I, with
c(ω) ∈ C and ν(ω) ∈ Cn, and therefore

(N + [P̄ ])(I, ω) = e(ω) + c(ω) + (ω + ν(ω)) · I = e+(ω) + (ω + ν(ω)) · I.

REGULAR AND CHAOTIC DYNAMICS Vol. 19 No. 2 2014



THE CLASSICAL KAM THEOREM FOR HAMILTONIAN SYSTEMS 261

Since ν = ∂I [P̄ ], Cauchy’s estimate together with the fifth inequality of (4.2) implies that the map
ν satisfy the estimate

|ν|h <· εr−1 � h/4.

Setting f(ω) = ω + ν(ω), we can apply Lemma 2 to find a real-analytic inverse ϕ : Oh/4 → Oh to
f satisfying the estimates

|ϕ − Id|h/4 <· εr−1, h|Dϕ − Id|h/4 <· εr−1.

Eventually, we set N+ = (N + [P̄ ]) ◦ ϕ and F = (Φ, ϕ) : Dηr,s−σ × Oh/4 → Dr,s × Oh, and we
obtain

H ◦ F = N+ + P+

as wanted, with the desired estimates on F and on P+.

4.3. Iterations and Convergence

Recall that η has been fixed before Proposition 3, and now we define, for i ∈ N, the following
decreasing geometric sequences:

εi = (η/8)iε, ri = ηir, hi = (1/4)ih.

Next, for a constant Q0 to be chosen below, we define Δi and Qi, i ∈ N, by

Δi = 2iΔ(Q0), Qi = Δ∗(Δi) = sup{Q � 1 | Δ(Q) � Δi},
and then we define σi, i ∈ N, by

σi = CQ−1
i ,

where C � 1 is a constant, depending only n, sufficiently large so that the last part of (4.1) is
satisfied for σ = σi and Q = Qi. Finally, we define si, i ∈ N, by s0 = s and si+1 = si − σi for i ∈ N.

We claim that, assuming Δ∗ satisfies (2.2), we can choose Q0 sufficiently large so that

lim
i→+∞

si � s/2 ⇐⇒
∑
i∈N

σi � s/2.

Indeed, since Qi = Δ∗(Δi) = Δ∗ (
2iΔ(Q0)

)
, we have

∑
i�1

Q−1
i =

∑
i�1

1
Δ∗ (2iΔ(Q0))

�
∫ +∞

0

dy

Δ∗ (2yΔ(Q0))
= (ln 2)−1

∫ +∞

Δ(Q0)

dx

xΔ∗(x)
< +∞,

where the last integral converges since Δ∗ satisfies (2.2). Now as σi = CQ−1
i , we have

∑
i∈N

σi = C
∑
i∈N

Q−1
i = CQ−1

0 + C
∑
i�1

Q−1
i � CQ−1

0 + C(ln 2)−1

∫ +∞

Δ(Q0)

dx

xΔ∗(x)
� s/2

provided we choose Q0 sufficiently large in order to have

Q−1
0 + (ln 2)−1

∫ +∞

Δ(Q0)

dx

xΔ∗(x)
� (2C)−1s. (4.11)

Proposition 4. Let H be as in (∗∗), with Δ∗ = Δ∗
ω0

satisfying (2.2), and fix Q0 sufficiently large
so that (4.11) is satisfied. Assume that

εr−1 ·< h ·< Δ(Q0)−1. (4.12)

Then, for each i ∈ N, there exists a real-analytic transformation

F i : Dri,si × Ohi
→ Dr,s × Oh,
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such that H ◦ F i = N i + P i with N i(I, ω) = ei(ω) + ω · I and |P i|ri,si,hi
� εi. Moreover, we have

the estimates

|W̄0(F i+1 −F i)|ri+1,si+1,hi+1
<· εi(rihi)−1

where W̄0 = diag(r−1
0 Id, σ−1

0 Id, h−1
0 Id).

Proof. For i = 0, we let F0 be the identity and there is nothing to prove. The general case
follows by an easy induction. Indeed, assume that the statement holds true for some i ∈ N, and
let Hi = H ◦ F i = N i + P i, defined on Dri,si × Ohi

. We want to apply Proposition (3) to this
Hamiltonian, with ε = εi, r = ri, s = si, h = hi, σ = σi and Q = Qi. First, we need to check
that 0 < σi < si and 1 ·< Qi. The first condition is equivalent to

∑i
l=0 σl < s, whereas the second

condition is implied by 1 ·< Q0, and it is easy to see that both conditions are satisfied by the choice
of Q0 in (4.11), as s < 1. Then we need to check that the conditions

εir
−1
i ·< hi ·< Δ(Qi)−1, 1 ·< Qiσi

are satisfied. Since
Δ(Qi) = Δ(Δ∗(Δi)) � Δi, (4.13)

it is sufficient to check the conditions
εir

−1
i ·< hi ·< Δ−1

i , 1 ·< Qiσi. (4.14)

The second condition of (4.14) is satisfied, for all i ∈ N, simply by the choice of the constant in
the definition of σi. As for the first condition of (4.14), it is satisfied for i = 0 by (4.12), and since
the sequences εir

−1
i , hi and Δ−1

i decrease at a geometric rate with respective ratio 1/8, 1/4 and
1/2, the first condition of (4.14) is therefore satisfied for any i ∈ N. Hence Proposition (3) can be
applied: there exists a real-analytic transformation

Fi = (Φi, ϕi) : Dri+1,si+1 × Ohi+1
→ Dri,si × Ohi

,

such that Hi ◦ Fi = N i,+ + P i,+ with N i,+(I, ω) = ei,+(ω) + ω · I and |P i,+|ri+1,si+1,hi+1
� εi+1.

Moreover, we have the estimates

|Wi(Φi − Id)|ri+1,si+1,hi+1
<· (riσi)−1Ψ(Qi)εi, |Wi(DΦ − Id)W−1

i |ri+1,si+1,hi+1
<· (riσi)−1Ψ(Qi)εi,

|ϕi − Id|hi+1
<· εir

−1
i , hi|Dϕi − Id|hi+1

<· εir
−1
i ,

where Wi = diag(r−1
i Id, σ−1

i Id).
We just need to set F i+1 = F i ◦ Fi, N i+1 = N i,+ and P i+1 = P i,+ to have

H ◦ F i+1 = Hi ◦ Fi = N i+1 + P i+1

with N i+1(I, ω) = ei+1(ω) + ω · I and |P i+1|ri+1,si+1,hi+1
� εi+1.

It remains to estimate F i+1 −F i. Setting W̄i = diag(r−1
i Id, σ−1

i Id, h−1
i Id), the estimates above

implies

|W̄i(Fi − Id)|ri+1,si+1,hi+1
<· max{(riσi)−1Ψ(Qi)εi, εi(rihi)−1}<· εi(rihi)−1 (4.15)

since σ−1
i Ψ(Qi) = QiΨ(Qi) ·< h−1

i , and similarly

|W̄i(DFi − Id)W̄−1
i |ri+1,si+1,hi+1

<· εi(rihi)−1. (4.16)

Using a classical telescoping argument, the fact that |W̄i−1W̄i| � 1 and the estimate (4.16), we get

|W̄0DF iW̄−1
i |ri+1,si+1,hi+1

<·
i∏

l=0

(
1 + εl(rlhl)−1

)
<· 1 (4.17)

as εl(rlhl)−1 decreases geometrically. Then, from the mean value theorem, we have

|W̄0(F i+1 −F i)|ri+1,si+1,hi+1
= |W̄0(F i ◦ Fi −F i)|ri+1,si+1,hi+1
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� |W̄0DF iW̄−1
i |ri+1,si+1,hi+1

|W̄i(Fi − Id)|ri+1,si+1,hi+1
,

and this estimate, together with (4.15) and (4.17), implies

|W̄0(F i+1 −F i)|ri+1,si+1,hi+1
<· εi(rihi)−1

which is the required estimate.
We can finally conclude the proof of Theorem 2.

Proof of Theorem 2. Recall that we are given ε, r, s, h and that we fixed η small enough to define
the sequences εi, ri, hi, and then we chose Q0 � 1 satisfying (4.11) to define the sequences Δi, Qi, σi

and si. Moreover, we have
lim

i→+∞
εi = lim

i→+∞
ri = lim

i→+∞
hi = 0, lim

i→+∞
si � s/2. (4.18)

Now the condition (2.3) implies the condition (4.12) and Proposition 4 can be applied: for each
i ∈ N, there exists a real-analytic transformation

F i : Dri,si × Ohi
→ Dr,s × Oh,

such that H ◦ F i = N i + P i with N i(I, ω) = ei(ω) + ω · I and |Pi|ri,si,hi
� εi. Moreover, we have

the estimates
|W̄0(F i+1 −F i)|ri+1,si+1,hi+1

<· εi(rihi)−1. (4.19)

As εi(rihi)−1 decreases geometrically, these estimates and (4.18) show that the transformations
F i = (Φi, ϕi) converge uniformly, as i goes to infinity, to a map

F = (Φω0 , ϕ) : {0} × Tn
s/2 × {ω0} = D0,s/2 × O0 → Dr,s × Oh

which consists of a real map ϕ : {ω0} = O0 → Oh and a real-analytic embedding
Φω0 : Tn

s/2 → Dr,s,

where, for simplicity, we identified D0,s/2 = {0} × Tn
s/2 with Tn

s/2. Note that by reality, ϕ(ω0) = ω̃ ∈
Rn and Φω0(T

n) ⊆ B × Tn. Moreover, from the estimate (4.19) and a usual telescopic argument,

|W̄0(F − Id)|s/2 <· ε(rh)−1

from which one deduces that
|W (Φω0 − Φ0)|s/2 <· ε(rh)−1, |ϕ(ω0) − ω0|<· εr−1,

where W = diag(r−1Id, Q−1
0 Id), since r0 = r and σ0 = CQ−1

0 .
To conclude, fix i ∈ N and ω ∈ Ohi

. Then, denoting XHω , XN i
ω

and XP i
ω

the Hamiltonian vector
fields associated to Hω, N i

ω and P i
ω, we have

XHϕi(ω)
◦ Φi

ω − DΦi
ωXN i

ω
= DΦi

ω

(
(Φi

ω)∗XHϕi(ω)
− XN i

ω

)
= DΦi

ω

(
XHϕi(ω)◦Φi

ω
− XN i

ω

)
= DΦi

ωXP i
ω
,

(4.20)

where we used the fact that Φi
ω is symplectic in the second equality, and the relation

Hϕi(ω) ◦ Φi
ω − N i

ω = P i
ω

in the last equality. Using the inequality |Pi|ri,si,hi
� εi together with Cauchy’s estimate, one obtains

that, as i goes to infinity, XP i
ω

converges to zero uniformly on D0,s/2, whereas DΦi
ω is uniformly

bounded by the estimate (4.17). Hence the right-hand side of (4.20) converges uniformly to zero,
and so does the left-hand side: at the limit we obtain the equality

XHω̃
◦ Φω0 = DΦω0.Xω0

since XN i
ω

converges to the constant vector field Xω0 = ω0 on Tn. From this equality it follows that
the embedded torus Φω0(T

n) is invariant by the Hamiltonian flow of Hω̃ and quasi-periodic with
frequency ω0, and this ends the proof.
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APPENDIX. TECHNICAL LEMMAS

In this appendix, we state two technical lemmas that were used in the proof of Propostion 3.
The first one deals with the estimate of the remainder of the Taylor’s expansion at order one of an
analytic function.

Lemma 1. Let P be an analytic function defined on Dr,s and

P̄ (I, θ) = P (0, θ) + ∂IP (0, θ) · I.

Then, for any 0 < c < 1, we have the estimate

|P − P̄ |cr,s � c2(1 − c)−1|P |r,s.

For a proof (of a more general statement), we refer to [1], Lemma A.5.
Then we need a quantitative version of the implicit function theorem for a real-analytic map.

Lemma 2. Let f : Oh → Cn be a real-analytic map satisfying |f − Id|h � δ � h/4. Then f has a
real-analytic inverse ϕ : Oh/4 → Oh which satisfies

|ϕ − Id|h/4 � δ, h/4|Dϕ − Id|h/4 � δ.

For a proof, we refer to [18], Lemma A.3.
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