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Abstract: In this paper we prove a multiplicity estimate, which is best possible up
to a multiplicative constant, in which the set of points is connected to an action of SL2(Z)
on the torus G2

m(C). This result is motivated by the construction, due to Roy, of a non-
trivial auxiliary function that could be used to study the points on the Grassmannian whose
coordinates are logarithms of algebraic numbers: to make use of this construction, only a
zero estimate connected to the action of GLm(Z) on ΛkCm is missing. The result we prove
is essentially analogous to it.

The proof is based on the fact that a zero (or multiplicity) estimate can be derived from a
lower bound for a Seshadri constant. Then a degeneration argument is used: inside a family
any such lower bound holds on an open subset, so proving it for sufficiently many special
cases yields it for almost all cases.

Introduction

The goal of this article is twofold. First we will use the technique of degeneration to obtain
lower bounds for the Seshadri constant associated to a set of points S and a line bundle
L on a complex projective variety X: this leads immediately to an associated multiplicity
estimate bounding the possible multiplicity of a non–zero section of L along S. Secondly we
would like to apply this method to study the action of a non–commutative group, SL2(Z),
on a projective variety. The larger goal of this work is to develop the techniques necessary
to prove multiplicity estimates on non–commutative algebraic groups and thereby open the
door to transcendence proofs in a broader setting.

Suppose X is a smooth projective variety defined over the complex numbers and S ⊂ X
a finite set of points. Suppose L is a line bundle on X and that 0 6= σ ∈ H0(X,L) satisfies
multx(σ) ≥M for all x ∈ S. If S ′ is a small “perturbation” of S one may ask whether or not
there exists a section σ′ ∈ H0(X,L) such that multx′(σ

′) ≥ M for all x′ ∈ S ′. The answer
can be no, as is seen in the following simple example. Suppose π : Y → P2 is the blow–up
of P2 at a point P with exceptional divisor E. Let L = π∗OP2(1)(E) and let S consist of a
single point {x}. If x ∈ E then there will be a section of multiplicity 2 at x while if x is not
contained in E then the maximum possible multiplicity is one. Thus at special points the
multiplicity can get larger.
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In the theory of multiplicity estimates, the goal is to provide an upper bound for the
multiplicity of any non–zero section of H0(X,L) along S. Recall that the multiplicity of a
section σ ∈ H0(X,L) along S is given by

multS(σ) = min
x∈S
{multx(σ)}.

Suppose that T is a “simpler” set of points for which one can readily show that multT (τ) ≤M
for all 0 6= τ ∈ H0(X,L). The conclusion will be that for any set of points T ′ “sufficiently
close” to T (indeed, we will see that in fact what is involved is a Zariski open subset)
multT ′(τ

′) ≤ M for all 0 6= τ ′ ∈ H0(X,L). Now it could of course happen that this
open set does not contain the original S in which one is interested: indeed this is the
inevitable downside of the degeneration technique. On the other hand, in the applications
to transcendence theory, the set of points S is rarely completely rigid as one can take,
for example, multiples or linear combinations of the points in S without changing their
transcendence properties. Thus our hope is that the degeneration technique, combined with
a judicious choice of set S, will allow for interesting applications in transcendence theory.

To apply this degeneration technique, the setting we consider is inspired by Roy’s ap-
proach [11] to the conjecture of algebraic independence of logarithms of algebraic numbers.
Letting L = {λ ∈ C : exp(λ) ∈ Q

?} denote the Q-vector space of logarithms of algebraic
numbers, this conjecture states that elements of L are algebraically independent if and only
if they are linearly independent over Q (see Chapter 3 of [4]). This is equivalent to the fol-
lowing conjecture: if X is a proper subvariety of affine space An

Q and x ∈ X ∩ Ln is a point
of X whose coordinates belong to L, then the coordinates of x are Q-linearly dependent.

If, in addition, X is required to have linear geometric components, then this conjecture
is equivalent to Baker’s theorem. There are a few other examples of varieties X for which
this conjecture is known (see for instance [2]), but for most varieties it is a very difficult
open problem. For most of the known cases, the strategy of proof relies on applying existing
transcendence results, such as the linear subgroup Theorem (Theorem 2.1 of [13]), which
is known not to be sufficient to prove the general conjecture (see Proposition 2 of [10]).
Therefore it would be very interesting to apply transcendence techniques directly on X.

An important step in this direction is due to Roy. Let k, m be integers with m ≥
k + 2 ≥ 4 and let X be the affine cone over the grassmannian variety G(k,Cm), so that X

is embedded into An
Q, with n =

(
m
k

)
, via a choice of basis for ΛkQm. Assume there exists

x = v1∧. . .∧vk ∈ X∩Ln with coordinates linearly independent over Q. Let N be a very large
integer, and denote by SN ⊂ X ∩ Ln the finite set of all points (ΛkA)(x) = Av1 ∧ . . . ∧ Avk
with A ∈ GLm(Z) having entries in {0, 1, . . . , N}. In Section 4 of [11], Roy makes (if
m ≥ k(k + 2)) a non-trivial construction of a polynomial PN ∈ Z[Y1, . . . , Yn], of degree
less than some explicit power of N , such that PN(exp(x1), . . . , exp(xn)) = 0 for any point
(x1, . . . , xn) ∈ SN . To conclude the transcendence proof, it would suffice to have a zero
estimate. However, zero estimates are known only when commutative linear algebraic groups
are involved (see for instance [9], [1], [8], [6]); they generalize to non-commutative groups [7],
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but with a huge loss in the accuracy of the estimate, so that in the non-commutative setting
it seems very difficult to make use of them.

In the present paper, we prove a sharp zero estimate analogous to the one needed to
derive a contradiction from Roy’s construction. Apart from the set of exceptions coming
from the degeneration technique, the main difference is that instead of the action of GLm(Z)
on ΛkCm used to define the set of points SN , we consider the natural action of SL2(Z) on
C2.

In order to state this application of the degeneration technique, we require several pre-
liminary definitions. Let Gm = C∗ be the multiplicative group. We will work on Gm ×Gm

which we will compactify as P1 × P1. We will consider the following action of SL2(Z) on
Gm ×Gm. Let

M =

[
a b
c d

]
∈ SL2(Z)

and let P = (x, y) ∈ Gm ×Gm. Then we define

M · P = (xayb, xcyd).

It is easy to check that this defines an action of SL2(Z) on Gm × Gm. Moreover in this
text we will consider only matrices M such that a, b, c, d ≥ 0. Then the action extends to
A1 ×A1, and in fact to P1 ×P1 except for the two points (1, 0)× (0, 1) and (0, 1)× (1, 0).

Let Γ[N ] = {M ∈ SL2(Z) : 0 ≤ a, b, c, d ≤ N} and let T [N ] denote the set of all

M =
[

a b
c d

]
∈ Γ[N ] such that a, b, c, d > 0 and the pair b, d is maximal among those such

that b, d ≤ N and ad− bc = 1.

Theorem 1 For any N ≥ 1 there exists a finite set ΣN ⊂ P1 ×P1\{(1, 0)× (0, 1), (0, 1)×
(1, 0)} with the following property. Suppose C ⊂ P1 ×P1 is a curve of bi–degree d1, d2, not
necessarily irreducible, such that T [N ] ·x ⊂ C for some x in P1×P1\{(1, 0)× (0, 1), (0, 1)×
(1, 0)} with x 6∈ ΣN . Then

d1 + d2 ≥
|T [N ] · x|
N + 1

. (1)

Moreover, if multy(C) ≥M for all y ∈ T [N ] · x then d1 + d2 ≥ M |T [N ]·x|
N+1

.

As noted above, the possible finite number of exceptional cases in Theorem 1 comes from
the degeneration argument used in the proof. It is not clear, however, that the inequality
ever fails.

Even though Roy’s construction suggests to study Γ[N ] · x, to make the degeneration
technique work we have to restrict ourselves to T [N ] · x (see the remark before Lemma 17).
However this is not an important loss, since T [N ] ⊂ Γ[N ] and both have the same cardinality
up to a factor 2 as N →∞ (see §2).

Theorem 1 shows that the points of T [N ]·x are well distributed for most x, relative to bi–
homogeneous forms of bi–degree (d, d). Indeed, since dim (H0(P1 ×P1,O(d, d))) = (d+ 1)2
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it follows that there exists a non-zero homogeneous polynomial of bi–degree (d, d) vanishing
along T [N ] · x as long as

d >
√
|T [N ] · x| − 1. (2)

If the points of T [N ] · x were in general position this would be the smallest degree possible.
According to Theorem 1, if such a polynomial exists then we have

d ≥ |T [N ] · x|
2(N + 1)

. (3)

We shall prove in §2 that |T [N ]| grows like 6
π2N

2. Since for general x we have |T [N ] ·
x| = |T [N ]|, plugging this into (2) and (3) shows that the points of T [N ] · x are very well
distributed, at least for most values of x. In the case where |T [N ] ·x| is (much) smaller than
|T [N ]|, Theorem 1 holds but it is (much) further from being optimal.

Suppose that φ : P1×P1 → P3 is the natural embedding using the complete linear series
|OP1×P1(1, 1)|. Applying Theorem 1 to P1 ×P1 within this embedding gives the following:
if D ⊂ P3 is a divisor of degree d and D∩φ(P1×P1) is a proper intersection which contains
φ(T [N ] · x) then

2d ≥ |T [N ] · x|
N + 1

. (4)

Now we have |T [N ]| ∼ 6
π2N

2 as N → ∞ (see §2). Thus, assuming |T [N ] · x| = |T [N ]|, the
right hand side of (4) is equivalent to 6

π2N . Hence the minimal degree of a polynomial on
φ(P1×P1) vanishing on T [N ] · x is at least equivalent to 3

π2N : this is only a small constant
away from saying that the points of T [N ] · x are in general position in φ(P1 × P1). The
methods used to prove Theorem 1 also allow for a generalization to other embeddings of
P1 × P1 in projective space but the language of Seshadri constants is no longer sufficiently
general to describe the situation and a more appropriate method of attack is the intersection
theoretic approach of [8].

Finally, Theorem 1 is not stated as a multiplicity estimate but rearranging the terms
gives the desired formulation: if 0 6= σ ∈ H0 (P1 ×P1,O(d1, d2)) vanishes along T [N ] · x to
multiplicity M then, for all but finitely many values of x’s we have

M ≤ (d1 + d2)(N + 1)

|T [N ] · x|
.

The organization of the paper is as follows. In §1 we review the basic definitions and
behavior of positivity of line bundle in families, including the notion of Seshadri constants.
The main result, that Seshadri constants can only decrease under specialization, is stated
precisely and we explain how to apply it to deduce results like Theorem 1. In §2 we study a
few special properties of SL2(Z) which will be used in §3 where we prove Theorem 1.
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1 Positivity in families

Here we recall the basic definitions concerning positivity of line bundles on algebraic varieties
as well as their behavior when considered variationally in families. Suppose X is a smooth
projective variety and L a line bundle on X. Recall that L is called ample if there is a positive
integer n and an embedding φ : X → PN in projective space so that φ∗OPN (1) = L⊗n. A
line bundle M is called nef if M ·C ≥ 0 for all curves C ⊂ X. Suppose π : F → B is a family
of varieties, that is π is a surjective proper morphism and we will assume, for simplicity, that
B is an integral scheme. For each b ∈ B let Fb = π−1(b). Suppose L is a line bundle on F
and for b ∈ B let Lb = L|Fb. The first result we will need is [5] Theorem 1.2.17:

Theorem 2 The set of points b ∈ B such that Lb is ample on Fb is open.

The open set in Theorem 2 can of course be empty.
Unlike ampleness, the behavior of nefness in families is a little bit more complicated. This

can be viewed as a result of the fact that a nef line bundle is a limit of ample line bundles
and consequently the set of exceptional points for nefness in a family can be a countable
union of proper subvarieties associated to the limiting sequence of ample bundles (see [5]
Proposition 1.4.14):

Theorem 3 The set of points b ∈ B such that Lb is nef on Fb is the complement of a
countable union of closed subvarieties.

Theorem 3 will be applied to the variational study of Seshadri constants which we define
now; strictly speaking, this is not necessary for the proof of our main theorem but it is
precisely this behavior of Seshadri constants in families, namely their ability to become
smaller at special points, which motivates the proof of Theorem 1 and so we have included
this discussion. Let X be a smooth projective variety and S a finite set of points on X. Let
π : Y → X be the blow–up of X along S with exceptional divisor E. Note that E will be
reducible in general with one irreducible component for each point in S. Let L be an ample
line bundle on X.

Definition 4 The Seshadri constant of L relative to S is defined by

ε(S, L) = sup
α∈Q+

{π∗(L)(−αE) is ample}.
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Note that the same definition, [5] Definition 5.4.1, applies to a possibly non–reduced sub-
scheme S ⊂ X. This will be critical in what follows at the end of this section. The bundle
π∗(L)(−ε(S, L)E) is never ample, but it is nef since it is a limit of ample line bundles: this
is a corollary of Kleiman’s theorem, [5] Theorem 1.4.23. Hence, for α ∈ Q+ the line bundle
π∗(L)(−αE) is ample if and only if 0 < α < ε(S, L).

Combining Theorem 3 and Definition 4 we can see that if the set S is allowed to vary in
an algebraic family then the Seshadri constant ε(S, L) can get smaller at special points and
the collection of special points in general can be a countable union of proper subvarieties.
We shall make this remark more precise in Corollaries 11 and 12 below.

A subvariety V ⊂ X is called Seshadri exceptional relative to L if

degπ∗L(−ε(S,L))(Ṽ ) = 0,

where Ṽ is the strict transform of V in Y , and if V is not properly contained in any other
subvariety having this property. To build an intuition for the behavior of these Seshadri
constants and their associated exceptional subvarieties when the set S is allowed to vary we
consider a few simple examples.

Example 5 Suppose π : X → P2 is the blow up of P2 at a point P with exceptional divisor
E. Let L = π∗O(1)(−αE) where 0 < α < 1. Let S = {x}. Then

ε(S, L) =

{
1− α if x 6∈ E
min{α, 1− α} if x ∈ E.

The Seshadri exceptional subvarietes are either the strict transform of the line joining x and
P , in the first case, or the exceptional divisor E in the second case.

Example 6 Suppose S = {x, y, z} ⊂ X = P2 where we will assume, for simplicity, that
x, y, z are distinct. Here we find

ε(S,OP2(1)) =

{
1/3 if x, y, z are collinear
1/2 if x, y, z are not collinear.

In the first case, the Seshadri exceptional subvariety is the line containing x, y and z. In
the second case, the Seshadri exceptional subvarieties are the three lines joining pairs of the
points {x, y, z}.

Example 7 Suppose X = P2, L = OP2(1), and S = {x1, . . . , xn} where n ≥ 10. Except
when n is a perfect square or when the points {xi} are in special position, the exact value
of ε(S, L) is unknown. The famous conjecture of Nagata predicts that the value should be
maximal for very general points x1, . . . , xn:

ε(S, L) =
1√
n
.

If true, this would mean that the variety X itself is Seshadri exceptional.
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Example 8 Continuing Example 7, if n = a2 is a perfect square, then it is known that

ε(S, L) =
1

a
.

This can be seen by choosing the points x1, . . . , xa2 to be the points of intersection of two
general hypersurfaces of degree a. Because ε(S, L) can only become smaller at special points
and because 1

a
is the maximum possible value for ε(S, L), it follows that ε(S, L) = 1

a
for any

sufficiently general collection of points S. The Seshadri constant formulation of Nagata’s
Conjecture, in this setting, is a little weaker than another version of Nagata’s conjecture
which states that for sufficiently general points x1, . . . , xa2 there is no hypersurface of degree
less than or equal to ma with multiplicity at least m at these points.

The logic of Example 8 is precisely that which guides our proof of Theorem 1. We would
now like to state the general result of which Theorem 1 is a corollary. Suppose Y is a smooth
projective variety. The easiest way to parametrize finite collections of points in Y is via a
subvariety V ⊂ Y × B where B is an algebraic variety and, if p2 : Y × B → B is the
projection to the second factor, then p2 : V → B is finite. Thus B can be viewed as a
parameter space where to each point b ∈ B corresponds the preimage V ∩ p−12 (b) which will
be a scheme supported on a finite set of points in Y . We do not ask that V be irreducible as
we are interested in parametrizing finite subsets of points in Y . Let π : Z → Y × B be the
blow–up of Y ×B along V with exceptional divisor E. We would like to apply Theorems 2
and 3 to the study of the Seshadri constants associated to the subschemes V ∩ p−12 (b) as a
function of b. Let p1 : Y ×B → Y be the projection to the first factor. For b ∈ B, we denote
by Yb the fibre p−12 (b) and by Ỹb its strict transform in Z, which in this case is simply the
set theoretic inverse image π−1(Yb).

Proposition 9 For any Q–divisor D on Z, the set of points UD ⊂ B defined by

UD = {b ∈ B : D|Ỹb is ample}

is an open, possibly empty, subset of B.

Proof of Proposition 9. We may assume without loss of generality that D is a divisor as
ampleness of D|Ỹb is unchanged when replacing D with any positive multiple. Let f = p2π :
Z → B, making Z a family of varieties parametrized by B. Then we can apply Theorem 2
to the divisor D on Z to conclude that the set UD of b ∈ B such that Db, the restriction of
D to Ỹb, is ample is an open subset of B.

Proposition 10 For any Q–divisor D on Z, the set of points U ′D ⊂ B defined by

U ′D = {b ∈ B : D|Ỹb is nef}

is the complement, in B, of countably many proper subvarieties.
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Proof of Proposition 10. As in the previous proof we may assume that D is a divisor.
Let f = p2π : Z → B, making Z a family of varieties parametrized by B. Then we can
apply Corollary 3 to the divisor D on Z to conclude that the set U ′D of b ∈ B such that Db,
the restriction of D to Ỹb, is nef is the complement of a countable union of closed subsets of
B.

Returning to the notation introduced before the statement of Proposition 9, we will be
specifically interested in the case where D = (p1π)∗(A)(−αE) where A is an ample line
bundle on Y and α is a rational number. In this case, the set UD is the collection of points
b ∈ B for which the Seshadri constant of A along the subscheme p−12 (b) is larger than α, as
we shall prove now.

Let i : Yb → Y × B be the natural inclusion and g : Ỹb → Yb be the blow–up of Yb along
the subscheme V ∩ Yb. We obtain a commutative diagram

Ỹb

?

g

Z

?

π

-j

Yb Y ×B-i

By [3] Corollary 7.15, j(Ỹb) = π−1(Yb). In particular, (p2π) : Z → B is a family of blow–
ups whose fiber over b is the blow–up of Yb along the scheme Yb ∩ V . Thus we may apply
Propositions 9 and 10 respectively to deduce the following corollaries, in which the Seshadri
constants are considered on Yb.

Corollary 11 Let A be an ample line bundle on Y . For any δ > 0 the set of all b ∈ B such
that

ε(V ∩ p−12 (b), A) > δ

is the complement in B of a Zariski closed subset Zδ.

Corollary 12 Let A be an ample line bundle on Y . For any δ > 0 the set of all b ∈ B such
that

ε(V ∩ p−12 (b), A) ≥ δ

is the complement in B of the union of a countable list of subvarieties Zi,δ.

The strength of these results comes from the fact that one can choose for b a point, or
a collection of points, for which the set V ∩ p−12 (b) is as simple as possible allowing an easy
estimate or calculation of ε(V ∩ p−12 (b), A). The weakness comes from the subvarieties Zδ or
Zi,δ over which there is very little control. In the application to SL2(Z) below we will be able
to obtain some detailed knowledge about Zδ by choosing an entire collection of b’s for which
we can estimate the Seshadri constant. What should be clear from this method is that it
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can be very powerful in situations where one can allow S to vary while it will provide little
insight if S is rigid.

We close this section with a brief discussion of relative amplitude and other notions of
positivity which will be critical in Section 3. Suppose f : V → W is a surjective map of
varieties and L a line bundle on V . Then L is called relatively ample for f , or f–ample, if
L|f−1(w) is ample for all w ∈ W . Note that this is not the standard definition of relative
amplitude, given for example in [5] §1.7, although it is equivalent by [5] Theorem 1.7.8. The
standard and most important example is the following: suppose π : Y → X is the blow up
of an ideal sheaf I ⊂ OX with exceptional divisor E. Then OY (−E) is π–ample (see [3]
Chapter II, Proposition 7.13). We will also require, in the proof of Lemma 17, the Nakai-
Moishezon for ampleness which states that a line bundle L on a variety V is ample if and
only if degL(W ) > 0 for every subvariety W ⊂ V . In addition, Lemma 16 uses the fact that
if f : Y → X is a morphism of varieties and L a line bundle on Y then we can conclude that
L is nef provided it is f -ample and each irreducible component of its base locus is contained
in a fibre of f .

2 Points in SL2(Z)

In this section we gather together the results about the sets Γ[N ] and T [N ] defined in the
introduction. Strictly speaking, we do not need to study Γ[N ] as it is T [N ] which is relevant
for Theorem 1. But we have included results about Γ[N ] (provided to us by Michel Laurent)
because it is in some sense a more “natural” subset of SL2(Z).

Lemma 13 As N →∞, we have

|T [N ]| =
(

6

π2
+ o(1)

)
N2 and |Γ[N ]| =

(
12

π2
+ o(1)

)
N2.

Proof of Lemma 13. Let AN denote the set of all pairs (x, y) such that 1 ≤ x, y ≤ N
and gcd(x, y) = 1. Then it is well known (see for instance Theorem 4 of [12], p. 45) that

|AN | =
(

6
π2 + o(1)

)
N2 as N → ∞. Moreover, if (x, y) ∈ AN and y ≥ 2 then there is a

unique pair (u, v) such that 0 ≤ u < y, 0 ≤ v < x, and ux− vy = 1. It is straightforward to

check that T [N ]→ AN ,
[

a b
c d

]
7→ (a, c) is a bijective map; this proves the result for T [N ].

Now let Γ1[N ] (resp. Γ2[N ]) be the set of all matrices
[

a b
c d

]
∈ Γ[N ] such that max(a, c)

is greater than (resp. less than) max(b, d). For any
[

a b
c d

]
∈ Γ1[N ] with c ≥ 2, let (u, v) be

the pair such that 0 ≤ u < c, 0 ≤ v < a, and ua− vc = 1. Then there exists a non-negative
integer k such that d = u + kc and b = v + ka; since max(a, c) > max(b, d) this implies

k = 0 and (b, d) = (v, u). Now if
[

a b
c d

]
∈ Γ1[N ] is such that c = 1, then ad = b+ 1 ≤ a so

that d = 1: there are N − 1 such matrices. Therefore we have |Γ1[N ]| =
(

6
π2 + o(1)

)
N2 as
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N →∞; the same result can be proved for Γ2[N ] in a similar way. Since Γ[N ] = Γ1[N ]∪Γ2[N ]
this concludes the proof of Lemma 13.

In the proof of Theorem 1 we shall also make use of the following result.

Lemma 14 For any pair (b, d) with 1 ≤ b, d ≤ N , there is at most one pair (a, c) such that[
a b
c d

]
∈ T [N ].

Proof of Lemma 14. Assume that
[

a1 b
c1 d

]
and

[
a2 b
c2 d

]
belong to T [N ], with 1 ≤ a1 <

a2 ≤ N , 1 ≤ c1 < c2 ≤ N and 1 ≤ b, d ≤ N . Then we have a1b − c1d = 1, a2b − c2d = 1,
and there exists a positive integer r such that a2 = a1 + rd and c2 = c1 + rb. But then
1 ≤ d + a1, b + c1 ≤ N and, contrary to hypothesis, (b, d) was not the largest solution to
a1d− bc1 = 1. This concludes the proof.

3 Application to SL2(Z)

In this section we address the problem of finding a lower bound for ε(S,A) in the special
case where S = Sx = T [N ] · x for a point x ∈ P1 × P1\ {(1, 0)× (0, 1), (0, 1)× (1, 0)} and
where A = O(1, 1). As discussed in the introduction, our goal is to view this problem
variationally with respect to x. Since ε(Sx, A) can get smaller at special points, it would be
helpful to have a lower bound on ε(Sx, A) for as large a set of points x as possible. We will
focus on those x’s of the form x = (1, 1) × (z, 1) and x = (z, 1) × (1, 1) because T [N ] · x,
in these cases, resembles a two dimensional lattice for which one can easily compute the
Seshadri constant. Corollary 11 then allows us to extend this bound to an open set of
x ∈ P1 ×P1\ {(1, 0)× (0, 1), (0, 1)× (1, 0)}.

For the remainder of this paper we will use the following notation. We let X = P1×P1,
T = X\{(1, 0)× (0, 1), (0, 1)× (1, 0)}, and we denote by A the ample line bundle O(1, 1) on
X. For each M ∈ SL2(Z) with non–negative entries, we let

ΓM =
{

(xa0y
b
0, x

a
1y

b
1)× (xc0y

d
0 , x

c
1y
d
1)× (x0, x1)× (y0, y1) : (x0, x1)× (y0, y1) ∈ T

}
.

We write
V = ∪M∈T [N ]ΓM .

Denote by p1 : X×T → X and p2 : X×T → T the projections to the corresponding factors.
We will let Xt denote the fibre p−12 (t) of the second projection. Let π : Z → X × T be the
blow–up of X × T along V with exceptional divisor E.

We will deduce Theorem 1 from Corollary 11 using the following result.

Proposition 15 For any t ∈ (1, 1)×P1 ∪P1 × (1, 1) the line bundle

π∗(O(N + 1, N + 1, 0, 0))(−E)|(p2π)−1(t)

is ample.
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Proof that Proposition 15 implies Theorem 1. Recall that A = O(1, 1). Grant-
ing Proposition 15 we know that for any t ∈ (1, 1) × P1 ∪ P1 × (1, 1) the line bundle
(p1π)∗(A)(− 1

N+1
E)|(p2π)−1(t) is ample. Using the commutative diagram given before the

statement of Corollary 11, with Xt in place of Yb and (p2π)−1(t) in place of Ỹb we see, using
the remark following Definition 4, that

ε(V ∩ p−12 (t), A) >
1

N + 1
(5)

for all t ∈ (1, 1) × P1 ∪ P1 × (1, 1): note that the Seshadri constant is computed on the
variety Xt. By Corollary 11 applied with Y = X and B = T , there is a Zariski closed
subset ΣN ⊂ T which does not meet (1, 1) × P1 ∪ P1 × (1, 1) and such that (5) holds for
all t ∈ T\ΣN . Since (1, 1)×P1 ∪P1 × (1, 1) is an ample divisor on P1 ×P1 it follows that
ΣN is a finite set. Suppose, then, that t ∈ T\ΣN and let X̃t = (p2π)−1(t) denote the strict

transform of Xt in Z. By (5), (p1π)∗(A)
(
− 1
N+1

E
)

is ample on X̃t and in particular if D is

any effective divisor on X̃t then

(p1π)∗(A)
(
− 1

N + 1
E
)
·D > 0. (6)

Suppose now that C ⊂ P1 × P1 is a curve containing T [N ] · t where t ∈ T\ΣN . Viewing
P1 ×P1 as the fibre Xt with strict transform X̃t in Z, we let C̃ denote the strict transform
of C in X̃t. Then we find

(p1π)∗(A)
(
− 1

N + 1
E
)
· C̃ = (p1π)∗(A) · C̃ +OZ

(
− 1

N + 1
E
)
· C̃

≤ degA(C)− 1

N + 1

∑
y∈T [N ]·t

multy(C)

≤ d1 + d2 −
|T [N ] · t|
N + 1

where the first inequality uses [3] Chapter V Propositions 3.1 and 3.6 and the second in-
equality uses the hypothesis that T [N ] · t ⊂ C. Applying (6) to C̃ yields Theorem 1. Note
that the reason why the first inequality above is not necessarily an equality is that if t ∈ T
is a point for which (p2π)−1(t)∩V has cardinality strictly less than |T [N ]| then E|(p2π)−1(t)
will no longer be the exceptional divisor for the blow–up of Xt along the point set (p2π)−1(t)
but rather along a “thicker” subscheme with the same support. The impact of blowing up
along a thicker subcheme will be that E · C̃ will be potentially larger than multy(C).

To illustrate the ideas of the proof of Proposition 15, we begin by showing that Proposition
15 holds for most points t ∈ (1, 1)×P1∪P1× (1, 1). In particular, we consider points t such
that |T [N ] · t| = |T [N ]|.
Lemma 16 Suppose z is non–zero and not a root of unity and let x = (1, 1)× (z, 1). Then

ε(Sx, A) ≥ 1

N
.
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Proof of Lemma 16. Note that

Sx = T [N ] · x ⊂ {(zb, 1)× (zd, 1)| there exists 0 < a, b, c, d ≤ N with ad− bc = 1}.

In particular let
Rx = {(zi, 1)× (zj, 1)| 0 < i, j ≤ N}.

Then Sx ⊂ Rx. Consider the following sections:

σ1 =
N∏
i=1

(X0 − ziX1) ∈ H0
(
P1 ×P1,O(N, 0)

)
,

σ2 =
N∏
j=1

(Y0 − zjY1) ∈ H0
(
P1 ×P1,O(0, N)

)
,

where X0, X1 are projective coordinates on the first copy of P1 and Y0, Y1 are projective
coordinates on the second copy. Both σ1 and σ2 vanish to order 1 along Rx, have distinct
tangent directions at each point of Rx, and have no common non–isolated zeroes outside of
Rx. The same is true of the sections

σ1 ⊗ Y N
0 , σ1 ⊗ Y N

1 , XN
0 ⊗ σ2, XN

1 ⊗ σ2 ∈ H0
(
P1 ×P1,O(N,N)

)
.

Let ψ : W → P1 ×P1 be the blow–up of Sx with exceptional divisor Ex. Then

ψ∗(σ1 ⊗ Y N
0 )(−Ex), ψ∗(σ1 ⊗ Y N

1 )(−Ex), ψ∗(XN
0 ⊗ σ2)(−Ex), ψ∗(XN

1 ⊗ σ2)(−Ex)

are sections in H0 (W,ψ∗O(N,N)(−Ex)) whose only positive dimensional common zeroes
lie on fibres of ψ. Since ψ∗(O(N,N))(−Ex) is ψ–ample it follows that ψ∗(O(N,N))(−Ex)
is nef and hence, using Definition 4,

ε(Rx,O(N,N)) ≥ 1.

Thus ε(Rx,O(1, 1)) ≥ 1
N

and, since Sx ⊂ Rx, this shows that ε(Sx,O(1, 1)) ≥ 1
N

, concluding
the proof of Lemma 16.

Note that Lemma 16 is definitely true for any x ∈ (1, 1)×P1 or x ∈ P1 × (1, 1) but this
is of no help in establishing Proposition 15 because if t = (1, 1) × (z, 1) where z is a root
of unity then (p2π)−1(t) is the blow–up of Xt along V ∩Xt but this scheme is reduced only
when the cardinality of V ∩Xt is |T [N ]|. This non–reduced information can be encoded by
blowing up Xt along V ∩ Xt within the entire family of t ∈ (1, 1) × P1 or t ∈ P1 × (1, 1).
Note that the reason why one can not simply work on the entire base T is that the explicit
sections used in Lemma 16 do not extend well to sections over the whole base.

With this in mind, we let Y = P1 × P1 × (1, 1) × P1 and denote by πY : ZY → Y the
blow–up of Y along V ∩Y , with exceptional divisor EY . For any pair (b, d) with 1 ≤ b, d ≤ N ,

there is at most one pair (a, c) such that

[
a b
c d

]
∈ T [N ] (see Lemma 14), so that V ∩ Y
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is a reduced scheme. This would be false with Γ[N ] instead of T [N ] in the definition of V ;
this is the reason why we are not able to prove Theorem 1 with Γ[N ].

For x ∈ P1 let Px = P1 × P1 × (1, 1) × {x} ⊂ Y . Let P̃x be the strict transform of Px

in ZY and px : P̃x → Px the induced map.
We will deduce Proposition 15 from the following lemma.

Lemma 17 For any x ∈ P1, π∗YO(1, 1, 0)(− 1
N+1

EY )|P̃x is ample.

Proof of Lemma 17. We will first show that the restriction of the line bundle L =
π∗YO(1, 1, 0)(− 1

N
EY ) to P̃x is nef, or equivalently, that π∗YO(N,N, 0)(−EY )|P̃x is nef. We

will parametrize the sections σ1 and σ2 used in the proof of Lemma 16, allowing the point
(z, 1) to vary. More specifically, on Y = P1 ×P1 × (1, 1)×P1 let X0, X1 be coordinates on
the first factor, Y0, Y1 coordinates on the second factor, and Z0, Z1 coordinates on the final
factor. In place of σ1 and σ2 from Lemma 16, we consider

τ1 =
N∏
i=1

(Zi
1X0 − Zi

0X1) ∈ H0 (Y,O(N, 0,m)) ,

τ2 =
N∏
j=1

(Zj
1Y0 − Z

j
0Y1) ∈ H0 (Y,O(0, N,m)) ,

where m = N(N + 1)/2. Note that τ1|P1×P1× (1, 1)× (z, 1) = σ1 and similarly for τ2 and
σ2.

Let τ̃1,1, τ̃1,2 be the sections of π∗YO(N,N,m)(−EY ) determined by the section τ1 as in
Lemma 16 and let τ̃2,1 and τ̃2,2 be the sections of π∗YO(N,N,m)(−EY ) determined by τ2. For
any x ∈ (1, 1) × P1, τ̃1,1, τ̃1,2, τ̃2,1, and τ̃2,2, restricted to P̃x, have no non–isolated common
zeroes away from the exceptional divisor of px : P̃x → Px. Thus π∗YOY (N,N,m)(−EY )|P̃x

is nef away from the exceptional divisor. We also know that π∗YOY (N,N,m)(−EY ) is πY –
ample. Since π∗YOY (0, 0, 1)|P̃x is trivial, it follows that π∗YOY (N,N, 0)(−EY ) is nef on P̃x

for all x ∈ P1.
Since OPx(1, 1) is ample it follows that OP̃x

(N + 1, N + 1, 0)(−EY ) is big (see [5] §2.2)
and nef. Moreover, if C ⊂ EY then π∗YOY (N + 1, N + 1, 0)(−EY ) ·C > 0 since OY (−EY ) is
πY –ample. Also if C ⊂ P̃x is not contained in EY then

π∗YOY (1, 1, 0) · C = degOY (1,1,0)(πY (C)) > 0

and thus again π∗YOY (N + 1, N + 1, 0)(−EY ) ·C > 0. By the Nakai–Moishezon criterion for
ampleness, [3] Theorem 1.10, OP̃x

(N + 1, N + 1, 0)(−EY ) is ample and this concludes the
proof of Lemma 17.

Proof of Proposition 15. Recall that π : Z → X × T is the blow–up of X × T along
V = ∪M∈T [N ]ΓM with exceptional divisor E. Let L = π∗(O(N + 1, N + 1, 0, 0))(−E) and

consider the following commutative diagram where px : P̃x → Px is the blow–up of Px
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considered in Lemma 17:

P̃x

?

px

Z

?

π

-j

Px X × T-i

By Lemma 17 L|P̃x is ample. Since i and j are both inclusions it follows that L|(p2π)−1(t)
is ample thereby concluding the proof of Proposition 15 when t = (1, 1) × x. To deal with
the case t = x× (1, 1), it is enough to observe that Lemma 17 is also true if Y is replaced by
Y ′ = P1×P1×P1× (1, 1) and if Px is replaced by P′x = P1×P1×{x}× (1, 1). Indeed, the
proof of Lemma 17 can be repeated verbatim in this situation, the only change being that
the coordinates z0, z1 used to produce the section τ1 and τ2 need to be taken on the third
factor of P1 instead of the fourth factor.

References
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