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Abstract. This article is devoted to simultaneous approximation to � and �2 by rational numbers
with the same denominator, where � is an irrational non-quadratic real number. We focus on an exponent
�0ð�Þ that measures the regularity of the sequence of all exceptionally precise such approximants. We
prove that �0ð�Þ takes the same set of values as a combinatorial quantity that measures the abundance
of palindromic prefixes in an infinite word w. This allows us to give a precise exposition of Roy’s
palindromic prefix method. The main tools we use are Davenport-Schmidt’s sequence of minimal points
and Roy’s bracket operation.
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1. Introduction

Throughout this text, we denote by � a real number, assumed to be irrational
and non-quadratic (that is, ½Qð�Þ : Q�5 3). We study the quality of simultaneous
rational approximants to � and �2, that is the possibility to find triples x ¼
ðx0; x1; x2Þ2Z3 with

LðxÞ ¼ maxðjx0� � x1j; jx0�
2 � x2jÞ

very small in comparison with jx0j. In more precise terms, for any 0<"4 1 we
consider the exponent �"ð�Þ defined as follows: �"ð�Þ is the infimum of the set of
all � such that for any sufficiently large B> 0 there exists x2Z3 such that

14 jx0j4B and LðxÞ4 minðB�1=�; jx0j"�1Þ: ð1Þ

If this set of � is empty, we let �"ð�Þ ¼ þ1. For " ¼ 0, we let

�0ð�Þ ¼ sup
0<"4 1

�"ð�Þ ¼ lim
"!0

�"ð�Þ

since for any fixed �, the map " 7!�"ð�Þ is non-increasing. We do not consider
�"ð�Þ for "< 0, since LðxÞ4 jx0j"�1

with "< 0 implies x2

x0
¼
�
x1

x0

�2
if jx0j is suffi-

ciently large (see [6]); therefore these exponents merely concern rational approxi-
mants to �.



The exponents �"ð�Þ, introduced in [8], generalize the classical exponent �1ð�Þ
(denoted by ŵw0

2ð�Þ or by 1=�̂�2ð�Þ in [3], [2] and [10]) for which the following
results are known:

� �1ð�Þ4 2 for any �, by applying Dirichlet’s pigeon-hole principle;

� �1ð�Þ5� ¼ 1þ
ffiffi
5

p

2
¼ 1:618 . . . for any �, proved by Davenport and Schmidt [6];

� There exists � such that �1ð�Þ ¼ �, proved by Roy [11];
� The set of values taken by �1ð�Þ is dense in ½�; 2�, proved by Roy [10].

The aim of this paper is to prove analogous results on �0ð�Þ. One can prove
easily (see [3]) that �0ð�Þ ¼ þ1 for almost all � with respect to Lebesgue mea-
sure, and Davenport-Schmidt’s lower bound on �1ð�Þ yields �0ð�Þ5 � for any �.
Moreover Roy’s palindromic prefix method ([11]; see also [8]) allows one to obtain
a � such that �0ð�Þ< 2, starting from any word w with ‘‘sufficiently many’’ palin-
dromic prefixes. In more precise terms, let w ¼ w1w2 . . . be an infinite word on a
finite alphabet. We denote by ðniÞi5 1 the increasing sequence of all lengths of
palindromic prefixes of w, in such a way that n is among the ni if, and only if, the
prefix w1w2 . . .wn of w is a palindrome (i.e., w1 ¼ wn, w2 ¼ wn�1; . . .). We let

�ðwÞ ¼ lim sup
i!þ1

niþ1

ni

if the sequence ðniÞ is infinite, and �ðwÞ ¼ þ1 otherwise. The words w such that
�ðwÞ< 2 are studied in [7]. Roy’s palindromic prefix method enables one to con-
struct, from any non ultimately periodic word w such that �ðwÞ< 2, a real number
� such that �0ð�Þ< 2. Moreover, the equality �0ð�Þ ¼ �ðwÞ holds if w is the
Fibonacci word (see [11]), and more generally for any characteristic Sturmian
word w (see [3]). In this paper, we prove this equality for any non ultimately peri-
odic word w such that �ðwÞ< 2. We also show a reciprocal statement:

Theorem 1.1. We have

f�0ð�Þ: �2R irrational; non-quadraticg \ ð1; 2Þ
¼ f�ðwÞ: w an infinite wordg \ ð1; 2Þ:

The set S ¼ f�ðwÞg \ ð1; 2Þ that appears in Theorem 1.1 is studied in [7]. The
least element of S is the golden ratio � (as implied by the previously mentioned
results). Apart from �, the least element is �2 ¼ 1 þ

ffiffi
2

p

2
¼ 1:707 . . ., then (apart

from �2) it is �3 ¼ 2þ
ffiffiffiffi
10

p

3
, and so on: there is an increasing sequence ð�nÞ of isolated

points in S, that converges to the least accumulation point �1 ¼ 1:721 . . . of S.
This follows from a result of Cassaigne [4] and the property ([7], Theorem 1.3)
that S \ ð1;

ffiffiffi
3

p
� coincides with the set of values of �ðwÞ coming from characteristic

Sturmian words w. Combining this property with Theorem 1.1 proves Th�eeor�eeme 2.1
announced in [8], namely: all values of �0ð�Þ less than

ffiffiffi
3

p
can be obtained from

characteristic Sturmian words as in [3]. In particular, the following corollary shows
that the situation is completely different from the case of the exponent �1ð�Þ, which
assumes [10] a set of values dense in ½�; 2�.

Corollary 1.2. There is no real number � such that � <�0ð�Þ<�2 ¼ 1:707 . . ..

12 S. Fischler



We shall deduce Theorem 1.1 from a ‘‘structure theorem’’ on numbers � such
that �0ð�Þ< 2, namely that the sequence of all ‘‘exceptionally precise’’ approx-
imants to � and �2 satisfies the ‘‘same’’ recurrence relation as the sequence of all
palindromic prefixes of some word w with �ðwÞ< 2. This enables us to associate
with each � such that �0ð�Þ< 2 a word w such that �ðwÞ< 2, in such a way that
�0ð�Þ ¼ �ðwÞ. This gives a kind of converse to Roy’s palindromic prefix method.
As byproduct of our approach, we also obtain the following result:

Theorem 1.3. Let � be such that �0ð�Þ< 2. Then there exists "1 > 0 (depending
only on �0ð�Þ) such that �"ð�Þ ¼ �0ð�Þ for any "< "1.

Throughout the text, we shall use the following notation. We denote by N ¼
f0; 1; 2; . . .g the set of non-negative integers, and let N� ¼ Nnf0g. We write
ut � vt (and vt � ut) if vt is positive for t sufficiently large, and ut=vt is bounded
from above as t tends to infinity. When ut � vt and vt � ut, we write ut � vt. At
last, when a point of Z3 is referred to as an underlined letter (e.g. x), we denote by
the corresponding uppercase letter its norm, that is the largest absolute value of its
coordinates (e.g. X ¼ maxðjx0j; jx1j; jx2jÞ if x ¼ ðx0; x1; x2Þ).

The structure of this text is as follows. In Section 2 we recall the notation and
results of [7] about words with many palindromic prefixes, classical estimates
about approximants, and also the definition and properties of Roy’s bracket opera-
tion. Our main tool is the sequence of minimal points introduced by Davenport and
Schmidt. Section 3 is devoted to this sequence: we recall classical results and
prove new ones (which may be of independent interest). We state and prove in
Section 4 our main diophantine result, which is the crucial step in the proof (x5.3)
of the results stated in this introduction. This enables us in Section 5 to give a
precise account on Roy’s palindromic prefix method – which was the original
motivation of this paper. At last, Section 6 is devoted to some open questions.

2. Palindromes, Classical Estimates, and Roy’s Bracket

In this section, we recall the properties [7] of words with many palindromic
prefixes, and also the bracket operation introduced by Roy [12].

2.1. Words with Many Palindromic Prefixes. Let us recall the definitions and
results of [7] that will be useful here (with minor changes intended to fit into the
diophantine setting).

Let  : N� ! N be a function such that

 ðnÞ4 n� 1 for any n5 1: ð2Þ
Denote by ð#kÞk5 0 the sequence of all indices n5 1 (in increasing order) such
that  ðnÞ4 n� 2. This sequence may be either finite or infinite; it is infinite for
the functions  of interest here (see (3) below). We shall use the following variant
of Definition 4.9 of [7]:

Definition 2.1. A function  is said to be asymptotically reduced if (2) holds
and the associated sequence ð#kÞ is such that

 ð#kÞ<#k�1 and  ð#kÞ 6¼ ð#k�1Þ

Palindromic Prefixes and Diophantine Approximation 13



for any sufficiently large k. When the sequence ð#kÞ is finite, we agree that  is
asymptotically reduced.

Let us denote by F the set of all functions  : N� ! N such that

 is asymptotically reduced:
There exists c such that i� c4 ðiÞ4 i� 1 for any i5 1:
There are infinitely many i such that  ðiÞ4 i� 2:

9=; ð3Þ

For  2F, the sequence ð#kÞ is infinite, and we have #kþ1 4#k þ c� 1 for any k
sufficiently large (since #kþ1 � c4 ð#kþ1Þ<#k).

Given an infinite word w ¼ w1w2 . . . on an arbitrary (finite or infinite) alphabet
A, we denote by ð�iÞi5 1 the (finite or infinite) sequence of all palindromic pre-
fixes of w, and by ni the length of �i (in such a way that �i ¼ w1w2 . . .wni is
a palindrome for any i5 1). For i0 4 i, �i0 is a prefix of �i, so there is a word
b ¼ wni0þ1 . . .wni such that �i ¼ �i0b. We denote by ��1

i0 �i this word b.
We let W be the set of all non ultimately periodic words w such that the

increasing sequence ðniÞ is infinite and satisfies lim sup niþ1=ni< 2. Then the fol-
lowing result is proved in [7]:

Theorem 2.2. (i) For any w2W there exists  2F such that

�iþ1 ¼ �i�
�1
 ðiÞ�i for any i sufficiently large: ð4Þ

(ii) For any  2F there exists w2W such that (4) holds.

Theorem 2.2 implies that any w2W can be written on a finite alphabet. So we
may assume, throughout this text, that the alphabet A is finite.

The following relation follows from (4) and will be used repeatedly:

niþ1 ¼ 2ni � n ðiÞ for any i sufficiently large:

The three conditions that appear in (3) are of different nature. The last one corre-
sponds, in the definition of W, to the assumption that w is not ultimately periodic
(which is equivalent to w not being periodic: see Lemma 5.6 of [7]). The second one
enables us to get rid of the case �ð Þ ¼ 2; this is very useful since Theorem 2.2
generalizes only to a specific class of words w such that �ðwÞ ¼ 2. At last, the
assumption that is asymptotically reduced ensures that distinct functions (modulo
the equivalence relation R defined below) always correspond to distinct words w.

Example 2.3. The Fibonacci word abaaba . . . on the two-letter alphabet fa; bg
corresponds (in Theorem 2.2) to all functions  such that  ðnÞ ¼ n� 2 for any
sufficiently large n (see [7], Example 4.7). More generally, if w is the characteristic
Sturmian word with slope ½0; s1; s2; . . .� then �ðwÞ ¼ 2 if, and only if, the sequence
ðsnÞ is unbounded. In the opposite case, w belongs to W and corresponds to any
function  such that  ðnÞ ¼ n� sk � 1 if n can be written s1 þ � � � þ sk for some
k, and  ðnÞ ¼ n� 1 otherwise, for n sufficiently large (see [7], Example 4.6). We
recover the Fibonacci word by considering the special case s1 ¼ s2 ¼ � � � ¼ 1.

Example 2.4. Let w2W be written on a finite alphabet, say A ¼ fa1; . . . ; arg.
Let p1; . . . ; pr be arbitrary palindromes, written on another alphabet A0. Then
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replacing each ai with pi in the word w yields a word w0 written on A0. Denote by
ð�iÞi5 1 the sequence of all palindromic prefixes of w, and by �0i the finite word
obtained from �i by replacing each ai with pi. Since p1; . . . ; pr are palindromes,
all �0i are palindromic prefixes of w0. However, in general, the sequence ð�0iÞi5 1

does not contain all palindromic prefixes of w0. For instance, if all pi have length
greater than 2 then the first letter of w0 is a palindromic prefix of w0 but is not
among the �0i.

Throughout this text, we are interested only in asymptotic properties, so the
palindromic prefixes of w0 that are missing in Example 2.4 are not a problem (as
long as their number is finite). To take this observation into account, we define an
equivalence relation R on F as follows:

Definition 2.5. For  ; 0 2F, we set  R 0 if there exist � and i1 such that
 ðiÞ � i ¼  0ði� �Þ � ði� �Þ for any i5 i1.

We now define an analogous equivalence relation on W:

Definition 2.6. Let w;w0 2W, and ð�iÞi5 1 (resp. ð�0iÞi5 1) be the sequence of
all palindromic prefixes of w (resp. w0). We set wR0w0 if there exist  2F and �
such that

�iþ1 ¼ �i�
�1
 ðiÞ�i and �0iþ1 ¼ �0i�

0�1
 ði��Þþ��

0
i

for any i sufficiently large.

This definition means that wR0w0 if, and only if, there exist  ;  0 2F with

 R 0 such that �iþ1 ¼ �i�
�1
 ðiÞ�i and �0iþ1 ¼ �0i�

0�1
 0ðiÞ�

0
i for any i sufficiently large.

Another way of stating this is the following: wR0w0 if, and only if, after omitting a
finite number of initial terms in the sequence ð�iÞi5 1 or in ð�0iÞi5 1, we have
�iþ1 ¼ �i�

�1
 ðiÞ�i and �0iþ1 ¼ �0i�

0�1
 ðiÞ�

0
i for some  2F and any i sufficiently large.

Thanks to Definitions 2.5 and 2.6, Theorem 2.2 yields a bijective map

W=R0 �!	 F=R: ð5Þ

We now define a quantity �ð Þ as follows:

Definition 2.7. For  2F, we let

�ð Þ ¼ lim sup
miþ1

mi

where ðmiÞi5 1 is any increasing sequence of non-negative integers such that
miþ1 ¼ 2mi � m ðiÞ for any i sufficiently large.

The value of �ð Þ does not depend on the choice of a peculiar sequence ðmiÞ,
thanks to Proposition 6.2 of [7]. In particular, if  corresponds to a word w as in
Theorem 2.2 then one can choose mi ¼ ni, hence �ð Þ ¼ �ðwÞ. It follows from this
remark and from Proposition 6.2 of [7] that:

� The map W ! ð1; 2Þ; w 7! �ðwÞ factors into a map W=R0 ! ð1; 2Þ.
� The map F ! ð1; 2Þ;  7! �ð Þ factors into a map F=R ! ð1; 2Þ.
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� These two maps, together with the bijection (5), make up a commutative
diagram:

W=R0 !	 F=R

# "

ð1; 2Þ
ð6Þ

We have constructed in [7] (Remark 7.6) two words w and w0 such that
�ðwÞ ¼ �ðw0Þ ¼

ffiffiffi
3

p
, but with w 6¼w0 mod R0 (actually w is not episturmian

whereas w0 is characteristic Sturmian). This proves that in the diagram (6), the
maps W=R0 ! ð1; 2Þ and F=R ! ð1; 2Þ induced by � are not injective.

2.2. Classical Estimates about Approximants. Throughout this text, we let for
any " such that 0<"< 1:

A" ¼ fx2Z3nf0g; LðxÞ4X�ð1�"Þg;
with X ¼ maxðjx0j; jx1j; jx2jÞ (as explained in the Introduction). By convention, for
"5 1, we let A" ¼ Z3nf0g. Moreover, we identify a point x ¼ ðx0; x1; x2Þ2Z3

with the symmetric matrix
h
x0 x1

x1 x2

i
.

In this section, we state classical estimates which are due (mainly) to Davenport
and Schmidt. For instance, the first inequality of the following lemma is proved in
Lemmas 2 and 3 of [6], the second one in Lemma 4.

Lemma 2.8. We have

j detðxÞj ¼ jx0x2 � x2
1j � XLðxÞ:

Moreover, if x; y; z are such that X5 maxðY ; ZÞ and LðxÞ4 minðLðyÞ; LðzÞÞ,
then we have

j detðx; y; zÞj � XLðyÞLðzÞ:
Let kxk denote the norm of a vector x2Z3 (that is, its greatest coordinate in

absolute value, usually denoted by X in this text). Let V be a sub-Z-module of Z3,
of rank 2. Then kx ^ yk, computed for a Z-basis ðx; yÞ of V, does not depend on
the chosen basis but only on V. This is the height of V, denoted by HðVÞ.

Let x and y be two linearly independent vectors in V. Then kx ^ yk ¼ N HðVÞ
where N is the index, in V, of the subgroup generated by x and y. Moreover,
Lemma 3 of [6] shows that

kx ^ yk � XLðyÞ þ YLðxÞ: ð7Þ

2.3. Roy’s Bracket Operation. The bracket operation ½:; :; :� introduced by Roy
[12] will be used in a crucial manner in the statement, and proof, of our results. If
x; y; z are three linearly dependent vectors in Z3, understood as symmetric matrices,

then the matrix �xJzJy
�

where J ¼
h

0 1

�1 0

i�
is also symmetric, and it is denoted

by ½x; y; z�. The importance of this operation in our context is easily seen, for
instance, by considering Lemma 5.5 below. The following relation holds:

detð½x; y; z�Þ ¼ detðxÞ detðyÞ detðzÞ:

16 S. Fischler



Moreover z can be obtained back from x, y and ½x; y; z � using the following formula:

detðxÞ detðyÞz ¼ ½x; y; ½x; y; z �� ð8Þ

which makes sense since x, y and ½x; y; z � are linearly dependent (see [12],

Lemma 2.1). At last, since ðJyÞ2 ¼ � detðyÞId we have:

½x; y; y � ¼ detðyÞx: ð9Þ

The main property of this bracket is the following slight generalization of [12],
Lemma 3.1 ðiiiÞ (with X ¼ maxðjx0j; jx1j; jx2jÞ and so on).

Proposition 2.9. Let x; y; z be linearly dependent vectors in Z3. Let

� ¼ ZLðxÞLðyÞ þ LðzÞmaxðYLðxÞ;XLðyÞÞ:

Then the bracket u ¼ ½x; y; z� is such that

U � XYLðzÞ þ � and LðuÞ � �:

Proposition 2.9 will also be used through the following Corollary:

Corollary 2.10. Let �; "; "0 2 ð0; 1Þ be such that " 1þ�
1�� < "

0< 1. Let x; y; z be
linearly dependent vectors inA", with X, Y , Z large enough in terms of �, ", "0 and
�. We assume

X;Y 4Z; Z4 ðXYÞ� and detðxÞ; detðyÞ; detðzÞ 6¼ 0:

Then the bracket u ¼ ½x; y; z� belongs to A"0 .

Proof. Let the notation be as in the Proposition 2.9. Then we have ��
ZðXYÞ"�1 � ðXYÞ�þ"�1< 1 since "þ �< 1, and XYLðzÞ � XYZ�15 ðXYÞ1�� > 1
since detðzÞ 6¼ 0 (using Lemma 2.8). Therefore U � XYLðzÞ and LðuÞ � �, hence

U1�"0LðuÞ � ðXYÞ"�"
0
Z"þ"

0�""0 4 ðXYÞð1þ�Þ"�ð1��Þ"0 :

Since x, y and z have non-zero determinants, u is not zero; this concludes the proof
of Corollary 2.10.

3. Davenport-Schmidt’s Minimal Points

In this section, we recall in paragraph 3.1 the definition and classical properties
of the sequence of minimal points, introduced by Davenport and Schmidt ([5] and
[6]). Then we move to new results on this sequence (Sections 3.2 to 3.4), that are
of independent interest and may be used to study numbers � such that �1ð�Þ< 2 but
not necessarily �0ð�Þ< 2. The most important results are Proposition 3.6 (which
states that any sufficiently precise approximation is collinear to a minimal point)
and Proposition 3.7 (which deals with linear independence of approximants).

We shall make a frequent use of the notation and results of Section 2.2. Recall
that for any " such that 0<"< 1, we let

A" ¼ fx2Z3nf0g; LðxÞ4X�ð1�"Þg;
with X ¼ maxðjx0j; jx1j; jx2jÞ, and A" ¼ Z3nf0g for "5 1. Moreover, we identify

a point x ¼ ðx0; x1; x2Þ2Z3 with the symmetric matrix
h
x0 x1

x1 x2

i
.
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Throughout this Section, we let � denote an irrational non-quadratic real num-
ber such that �1ð�Þ< 2. We do not assume anything about �0ð�Þ.

3.1. Definition and Notation. Let � be an irrational non-quadratic real number.
For any real X5 1, the set of all a ¼ ða0; a1; a2Þ2Z3 such that 14 a0 4X and
LðaÞ4 1 is finite, and contains exactly one element for which L is minimal.
Following [5] and [6], we call this element minimal point corresponding to X.
We denote by ðaiÞi5 1 the sequence of all minimal points, in such a way that ai be a
minimal point corresponding to all X such that ai;0 4X< aiþ1;0. By definition, any
ai is a primitive point of Z3 (that is, ai;0, ai;1 and ai;2 are globally coprime), and any
two distinct minimal points are always linearly independent over Z. As usual, we let
Ai ¼ maxðjai;0j; jai;1j; jai;2jÞ5 1. For any i sufficiently large, we have LðaiÞ< 1=2
so that ai;1 (resp. ai;2) is the closest integer to ai;0� (resp. ai;0�

2), and Ai<Aiþ1.
From now on, we assume �1ð�Þ< 2. Then Lemma 2 of [6] implies detðaiÞ 6¼ 0

for i sufficiently large, hence

1 � AiLðaiÞ ð10Þ
using Lemma 2.8.

Let I0 denote the set of all indices i such that ai�1, ai and aiþ1 are linearly
independent. This set is infinite (see [6]); we denote by ðikÞ the sequence of all
elements of I0, in increasing order. We let

dk ¼ aik :

We denote by Vk the intersection with Z3 of the sub-Q-vector space of Q3

spanned by dk et dkþ1, and by HðVkÞ its height (defined in Section 2.2). It follows
from [6] that HðVkÞ tends to infinity as k tends to infinity. Moreover, Lemma 4.1
of [12] (see also Lemma 2 of [5]) is the following result:

Lemma 3.1. For any k and i sufficiently large such that ik 4 i< ikþ1, the points
ai and aiþ1 make up a basis of the Z-moduleVk and we have Aiþ1LðaiÞ � HðVkÞ.

Let "2ð0; 1�, and ðuiÞi5 1 be the sequence of all minimal points in A", ordered
according to their norms Ui. Then, we have

�"ð�Þ ¼ lim sup
i!1

logUiþ1

� log LðuiÞ
: ð11Þ

This fact immediately follows from the definition of �"ð�Þ (see [6]); the point is
that in Eq. (1) we may assume that x is a minimal point.

3.2. Estimates for the Height of Vk. In the following estimates, we assume
�1ð�Þ< 2 and use repeatedly the following consequence of Eq. (11): for any
	>�1ð�Þ we have

Aiþ1 � LðaiÞ�	 and LðaiÞ � A
�1=	
iþ1 : ð12Þ

Lemma 3.2. Let "2ð0; 1� and i be such that ai2A". Then we have

Aiþ1 � HðVkÞA1�"
i

where k is the only integer such that ik 4 i< ikþ1.
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Proof. We have HðVkÞ � Aiþ1LðaiÞ4Aiþ1A
�1þ"
i , thanks to Lemma 3.1 and

by definition of A".

Lemma 3.3. For any 	>�1ð�Þ we have

HðVkÞ � D2�	
kþ1 :

Proof. Let i ¼ ikþ1; then the following inequalities hold thanks to Lemmas 2.8
and 3.1:

1 � j detðai�1; ai; aiþ1Þj
� Aiþ1LðaiÞLðai�1Þ
� LðaiÞ1�	

A�1
i HðVkÞ

� A	�2
i HðVkÞ:

This proves the Lemma.

Lemma 3.4. For any 	>�1ð�Þ we have

HðVkÞ � D
1=	
k :

Proof. Let i ¼ ik. The following inequalities hold:

1 � j detðai�1; ai; aiþ1Þj
� Aiþ1LðaiÞLðai�1Þ
� HðVkÞLðai�1Þ
� HðVkÞA�1=	

i

and prove the Lemma.

Remark 3.5. Lemmas 3.3 and 3.4 are optimal when � is the number constructed
by Roy [11] from the Fibonacci word. Actually, for this number we have
HðVkÞ � D

2��
kþ1 � D

1=�
k . Now, let us assume that � is, more generally, constructed

(as in [1] and [3]) from a characteristic Sturmian word w. Then Lemma 3.3 is still
optimal for some values of k; actually, if k is such that Aikþ1þ1 ¼ Lðdkþ1Þ

�	
then

the estimates proved by Bugeaud and Laurent imply HðVkÞ � D2�	
kþ1 . However,

Lemma 3.4 is not optimal, as can already be seen from the proof: the upper bound
Lðaik�1Þ � D

�1=	
k can be sharp only if aik�1 ¼ dk�1, and there are words w for

which this never happens.

3.3. Importance of Minimal Points. By definition of �1ð�Þ, for any "> 1�
1=�1ð�Þ all minimal points belong to A" (except for a finite number of exceptions,
depending on "). This means that any minimal point is a rather good simultaneous
approximant to � and �2. The following Proposition is a converse statement, and
proves that the approximations provided by the palindromic prefix method (see
Section 5.2) are minimal points (up to proportionality).

Proposition 3.6. Let "> 0 be such that "< 2 � �1ð�Þ. Let x2A" with X suffi-
ciently large (in terms of " and �). Then x is collinear to some minimal point ai.
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Question: Is it possible, in Proposition 3.6, to weaken the assumption on " to
"< 1 � 1=�1ð�Þ?

A positive answer to this question would be very satisfactory, since the assumption
on " would be optimal. Indeed, let � be any real number such that �1ð�Þ< 2, and let "
be such that 1 � 1=�1ð�Þ<"< 1=2. Let 	 satisfy "> 1 � 1=	, with �1ð�Þ<	< 2.
Then we have LðaiÞ4Lðai�1Þ � A

�1=	
i hence j detðai�1; ai; aiþ1Þj � Aiþ1A

�2=	
i .

For i2 I0, this implies Aiþ1 � A
2=	
i hence aiþ1;0 > 2ai;0 for i sufficiently large. Let

xi ¼ ai þ ai�1, for i2 I0. Then xi is primitive (otherwise SpanQðai; ai�1Þ \ Z3 would
strictly contain the subgroup generated by ai and ai�1), and ai;0 < xi;0 < 2ai;0 < aiþ1;0.
Therefore xi is not collinear to any minimal point; however it satisfies LðxiÞ4
2Lðai�1Þ � A

�1=	
i � X

�1=	
i hence xi2A" if i2 I0 is sufficiently large.

Proof of Proposition 3.6. We may assume x0 > 0. Let us denote by ai the
minimal point corresponding to x0; we have ai;0 4 x0 < aiþ1;0 and LðaiÞ4LðxÞ.
Let 	>�1ð�Þ be such that 	þ "< 2. Using Eq. (12) we see that

XLðaiÞLðaiþ1Þ � Aiþ1LðaiÞ2 � LðaiÞ2�	

and

Aiþ1LðaiÞLðxÞ � LðaiÞ1�	
A"�1
i � A	þ"�2

i :

Therefore Lemma 2.8 proves that the integer detðx; ai; aiþ1Þ is zero for i suffi-
ciently large in terms of " and �. This implies x2Vk, where k is the index such
that ik 4 i< ikþ1.

Let us assume that x is not collinear to ai. Then we have

HðVkÞ4 kx ^ aik � XLðxÞ � A"iþ1 � HðVkÞ"=ð2�	Þ

using Eq. (7) and Lemma 3.3. As 	þ "< 2, this is impossible for k sufficiently
large (in terms of " and �). We obtain in this way x ¼ �ai for some non-zero
integer �, which concludes the proof.

3.4. Linear Independence Properties. The following proposition is very useful
as soon as �"ð�Þ< 2 for some " (see Eq. (11) above):

Proposition 3.7. Let ðuiÞ be a sequence of minimal points, ordered according
to their norms Ui, such that

lim sup
i!1

logUiþ1

� log LðuiÞ
< 2:

Then:

1. Up to a finite number of terms, ðdkÞ is a subsequence of ðuiÞ.
2. For any i sufficiently large, ui is among the dk if, and only if, ui�1, ui and

uiþ1 are linearly independent.

To prove this proposition, we shall use the following lemma:

Lemma 3.8. Let ðuiÞ be as in Proposition 3.7, and i be sufficiently large.
Denote by n and m the integers such that ui ¼ an and uiþ1 ¼ am. Then the vectors
an, anþ1; . . . ; am�1, am belong to a common plane.
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Proof of Lemma 3.8. Let � be such that lim sup logUiþ1

�log LðuiÞ
<�< 2, and t be such

that n< t<m. Then we have

j detðat�1; at; atþ1Þj � Atþ1Lðat�1Þ2 4Uiþ1LðuiÞ2 � LðuiÞ2��

so the integer detðat�1; at; atþ1Þ is zero if i is sufficiently large. This concludes the
proof of Lemma 3.8.

Proof of Proposition 3.7. Let k be sufficiently large, with dk ¼ ap. If dk were
not among the ui, Lemma 3.8 would apply with n< p<m: ap�1, ap and apþ1

would be linearly dependent. This is impossible, so the first part of Proposition 3.7
is proved.

Let us prove the second part. If ui ¼ ap is not among the dk, with i sufficiently
large, then ap�1, ap and apþ1 belong to a common plane. Lemma 3.8 (applied twice)
proves that this plane contains also ui�1 and uiþ1. To prove the converse statement,
assume there is a plane that contains ui�1, ui and uiþ1, with ui ¼ ap and i sufficiently
large. Then this plane contains also ap�1 and apþ1, by applying Lemma 3.8 twice; so
ui is not among the dk. This concludes the proof of Proposition 3.7.

4. The Main Diophantine Result

This section is devoted to the statement (Section 4.1) and proof (Section 4.2) of
our main diophantine result. This theorem will be the key point in the proofs of
Section 5.

4.1. Statement of the Results. Throughout this Section, we define "1 by

"1 ¼ ð2 � �1ð�ÞÞð2 � �1ð�Þ þ ð2 � �0ð�ÞÞ�1ð�ÞÞ: ð13Þ

Since �1ð�Þ4�0ð�Þ, we have "1 5 ð2 � �0ð�ÞÞ2ð1 þ �0ð�ÞÞ. For instance, if

�0ð�Þ ¼ 1 þ
ffiffi
2

p

2
(denoted by �2 in the Introduction) then "1 5 0:232.

This is the number "1 referred to in Theorem 1.3 stated in the Introduction,
which is contained in the following result (recall that F and R were defined in
Section 2.1, and A" in Section 2.2):

Theorem 4.1. Let � be an irrational non-quadratic real number.

(a) Suppose first �0ð�Þ< 2. Choose a real number " such that 0<"<"1, and
let ðuiÞi5 1 be the sequence of minimal points in A", ordered according to their
norms Ui. Then, we have

LðuiÞ ¼ U
�1þoð1Þ
i ; lim inf

i!1

logUiþ1

logUi

> 1 and �0ð�Þ ¼ �"ð�Þ ¼ lim sup
i!1

logUiþ1

logUi

:

Moreover, there exists a function  2F such that ½ui; ui; uiþ1� is collinear to u ðiÞ
for any i sufficiently large. At last, ðuiÞ (modulo a finite number of terms) and  
(modulo R) are independent from the choice of ".

(b) Conversely, let ðviÞi5 1 be any sequence of primitive points in Z
3 such that:

� The sequence of first coordinates ðvi;0Þi5 1 is positive and increasing,
� As i ! 1, LðviÞ ¼ V

�1þoð1Þ
i ,
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� The real number � ¼ lim supi!1ð logViþ1Þ=ð logViÞ satisfies �< 2,
� For any i sufficiently large, if vi�1, vi and viþ1 are linearly dependent then

½vi; vi; vi�1� is collinear to viþ1.

Then �0ð�Þ ¼ �< 2, and ðviÞ is exactly (up to a finite number of terms) the
sequence ðuiÞ of Part (a).

In Part ðaÞ, the assertion on Roy’s bracket is equivalent to uiþ1 collinear to
½ui; ui; u ðiÞ� thanks to (8). Therefore knowing  enables one to construct the
sequence ðuiÞ by induction. On the other hand, it follows from Proposition 5.1
(proved in Section 5.1 below) that we have

�0ð�Þ ¼ �ð Þ;

where �ð Þ was defined in Section 2.1. However, knowing �0ð�Þ does not deter-
mine  (modulo R). Indeed, there are functions  and  0, distinct modulo R,
such that �ð Þ ¼ �ð 0Þ (see the end of Section 2.1). The numbers �, �0 con-
structed from them using the palindromic prefix method are such that �0ð�Þ ¼
�0ð�0Þ (thanks to Theorem 5.4), but their approximants satisfy completely dif-
ferent recurrence relations.

In Part ðbÞ, the last assumption on ðviÞ is necessary. Indeed, let us consider the
real number � constructed using the palindromic prefix method (as in [1] and [3])
from the characteristic Sturmian word with slope ½0; 3; 3; 3; . . .�. Then �0ð�Þ ¼
1:767 . . . < 2, but the sequence ðviÞ consisting in all points denoted by dk and ek
in Section 4.2 below satisfies the first three assumptions with � ¼ 1:868 . . ..

Theorem 4.1 can be generalized to the case where we assume �"ð�Þ< 2 for
some very small ". This leads to Th�eeor�eeme 2.2 announced in [8]; the proof follows
the same lines as the one given here.

4.2. Proof of Theorem 4.1. The proof falls into eight steps. We let � be a real
number such that ½Qð�Þ : Q�5 3 and �0ð�Þ< 2. These are the only assumptions
throughout the first seven steps. The notation of Theorem 4.1 comes into the play
only in Step 8.

Recall that ðaiÞ denotes Davenport-Schmidt’s sequence of minimal points con-
structed from �, and ðdkÞ is the subsequence consisting in all ai such that ai�1,
ai and aiþ1 are linearly independent (see Section 3.1). As in Section 2.2, for
"2ð0; 1� we let A" be the set of all x2Z3nf0g such that LðxÞ4X"�1, where
X ¼ maxðjx0j; jx1j; jx2jÞ.

The sketch of the proof is as follows. We first construct a sequence ðekÞ of
minimal points, such that (essentially) ek is the first very precise minimal point
after dk. We have Dk<Ek 4Dkþ1, and we show how dk, ek and HðVkÞ are in-
terrelated. Then we construct a sequence ðwtÞ of minimal points, which turns out
to be the sequence of ‘‘all’’ very precise approximants; ðdkÞ and ðekÞ are subse-
quences of this sequence, and other points between ek and dkþ1 are constructed
thanks to an interpolation procedure using Roy’s bracket. The key point of the
proof is the definition and properties of this sequence ðwtÞ, and of the function  
associated with it. Then Theorem 4.1 follows easily: the sequences ðuiÞ and ðviÞ in
Theorem 4.1 are proved to coincide (up to a finite number of terms) with ðwtÞ.
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Step 1. Construction of the sequence (ek). Let us fix a real number "2 such that
0<"2 <"1, where "1 is defined by Eq. (13). Let ðbtÞt5 1 be the sequence of all
minimal points in A"2

, ordered according to their norms Bt. Since �"2
ð�Þ4

�0ð�Þ< 2, Proposition 3.7 applies (thanks to (11)) and shows that for any k suffi-
ciently large dk is equal to some bt; then we let ek ¼ btþ1.

The sequence ðekÞk5 1 defined in this way (by choosing ek arbitrarily for small
values of k) seems to depend on the choice of "2, but actually this dependence
concerns only finitely many terms, as the following lemma shows.

Lemma 4.2. Let " be such that 0<"4 "2. Then for any k sufficiently large (in
terms of "), dk and ek are consecutive elements of the sequence of minimal points
in A".

It is possible to state more precise versions of this lemma (see Lemma 4.5
below). We shall prove the following one now:

Lemma 4.3. Let �V 2ð1; 2Þ, and ðviÞi5 1 be any sequence of minimal points in
A"2

, ordered according to their norms Vi, such that

lim sup
i!1

logViþ1

� log LðviÞ
4�V :

Assume that for some "0> 0 with

"0< ð2 � �1ð�ÞÞð2 � �1ð�Þ þ ð2 � �VÞ�1ð�ÞÞ;

we have ek 2A"0 when k is sufficiently large. Then, for any k sufficiently large, dk
and ek are consecutive elements of the sequence ðviÞi5 1.

To deduce Lemma 4.2, it suffices to apply Lemma 4.3 to the sequence ðviÞ
of all minimal points in A", with "0 ¼ "2 <"1 and �V ¼ �"ð�Þ4�0ð�Þ thanks
to Eq. (11). The full generality of Lemma 4.3 will be useful in Step 8, since it
turns out that ek 2A"0 for any "0> 0 (as soon as k is sufficiently large in terms
of "0).

Proof of Lemma 4.3. Let k be sufficiently large. Proposition 3.7 provides an
integer i such that dk ¼ vi. Since ðviÞ is a subsequence of ðbtÞ, we have Viþ1 5Ek.
Let us assume that Viþ1 >Ek. Since dkþ1 is among the vi, we have
Dk<Ek<Viþ1 4Dkþ1. Choosing �2ð�V ; 2Þ, we have Viþ1 � LðviÞ�� hence,
by Lemma 3.1:

HðVkÞ � EkLðdkÞ and HðVkÞ � Viþ1LðekÞ � LðdkÞ
��

LðekÞ:
The product of these relations yields, by choosing 	2ð�1ð�Þ; 2Þ and using
Lemmas 3.3 and 3.4:

HðVkÞ2 � LðdkÞ
1��

E"
0

k

� D
��1
k D"0

kþ1 � HðVkÞ	ð��1Þþ "0
2�	

hence "05 ð2 � 	Þð2 � 	ð� � 1ÞÞ. This contradicts the assumption on "0 if 	 and
� are close enough to �1ð�Þ and �V .
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Step 2. Relations between dk and ek. The following properties will be used
many times in the proof of Theorem 4.1, sometimes without reference:

LðdkÞ ¼ D
�1þoð1Þ
k ; LðekÞ ¼ E

�1þoð1Þ
k ð14Þ

Dk<Ek 4Dkþ1; Ek 4D
�
k ð15Þ

HðVkÞD1þoð1Þ
k 4Ek ð16Þ

D
1=	
k 4HðVkÞ; D2�	

kþ1 4HðVkÞ: ð17Þ
In these formulas, 	 and � are chosen such that �1ð�Þ<	< 2 and �0ð�Þ<�< 2;
in the applications, they are assumed to be sufficiently close to �1ð�Þ and �0ð�Þ.
The inequalities hold for k large enough (in terms of 	 and �). The symbol oð1Þ
denotes a sequence (possibly depending on 	 and �) that tends to zero as k tends to
infinity.

Equations (14) and (15) follow immediately from Lemma 4.2. Thanks to
Lemma 3.1, they imply (16). At last, Eq. (17) follows from Lemmas 3.3 and 3.4.

We will use repeatedly the following consequence of these relations:

D
oð1Þ
k ¼ E

oð1Þ
k ¼ D

oð1Þ
kþ1 ¼ HðVkÞoð1Þ:

Step 3. Construction of a sequence (wt) of primitive points. Let k be a suffi-
ciently large integer, say k5 k0. We define now an integer sk 5 1, and points

n
ðkÞ
0 ; . . . ; nðkÞsk

2Z3, as follows. To begin with, let n
ðkÞ
0 ¼ dkþ1. For any �5 0

such that nðkÞ� is defined and NðkÞ
� 5Ek, we let n

ðkÞ
�þ1 be the primitive element of

Z3, with non-negative first coordinate, collinear to ½nðkÞ� ; dk; ek�. At last, we let sk be
the greatest integer � for which nðkÞ� is defined (and sk ¼ þ1 if nðkÞ� is defined for
any �).

We let ðwtÞt5 1 be the sequence of all points nðkÞ� , with k5 k0 and 04�4 sk,
ordered according to their norms Wt. Since detðdkÞ and detðekÞ are non-zero for k
sufficiently large, we have detðwtÞ 6¼ 0 for t sufficiently large.

Step 4. First properties of the sequence (wt). In this step, we prove the follow-
ing lemma:

Lemma 4.4. We have

sk 4
1 þ oð1Þ
2 � �1ð�Þ

as k ! 1; ð18Þ

LðnðkÞ� Þ ¼ NðkÞ
�

�1þoð1Þ
; ð19Þ

and

all nðkÞ� are minimal points; with Dkþ1 ¼ N
ðkÞ
0 > � � � >NðkÞ

sk
¼ Dk;

in particular nðkÞsk
¼ dk and n

ðkÞ
sk�1 ¼ ek:

)
ð20Þ

Accordingly, sk is finite.
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Proof. Thanks to Eq. (14), Proposition 2.9 yields, for k5 k0 and �2f1; . . . ; skg:

NðkÞ
� 4N

ðkÞ
��1DkE

�1þoð1Þ
k and LðnðkÞ� Þ4LðnðkÞ��1ÞD

�1þoð1Þ
k Ek: ð21Þ

By induction on �, this implies

NðkÞ
� 4Dkþ1

�
DkE

�1þoð1Þ
k

�� ð22Þ
and

LðnðkÞ� Þ4D
�1þoð1Þ
kþ1

�
D

�1þoð1Þ
k Ek

�� ð23Þ
for �2f0; . . . ; skg, where the sequences involved in the notation oð1Þ tend to 0 as
k tends to infinity, uniformly with respect to �. Since LðnðkÞ� ÞNðkÞ

� � 1, it turns out
that (22) and (23) are actually equalities.

Moreover, (16), (17) and (21) imply

NðkÞ
� <N

ðkÞ
��1 ð24Þ

if k is large enough and 14�4 sk.
Let us prove (18) now. Let k5 k0 and �2f0; . . . ; sk � 1g. Using Eqs. (17) and

(22), and the fact that NðkÞ
� 5Ek, we obtain:

HðVkÞ1=ð2�	Þ � Dkþ1 5D��
k E

ð�þ1Þð1þoð1ÞÞ
k :

Now Eq. (16) yields

HðVkÞ1=ð2�	Þ 5HðVkÞð�þ1Þð1þoð1ÞÞ
D

1þ�oð1Þ
k : ð25Þ

If (18) fails to hold then for infinitely many such � then we have ð�þ 1Þð1þ
oð1ÞÞ> 1=ð2 � 	Þ (if 	 is chosen small enough), hence (25) yields 1 þ �oð1Þ< 0
and (using Eq. (17))

1

2 � 	
5 ð�þ 1Þð1 þ oð1ÞÞ þ 	ð1 þ �oð1ÞÞ;

which implies

ð�þ 1Þð1 þ oð1ÞÞ4 1

2 � 	
� 	:

This contradiction concludes the proof of (18). In particular, � is bounded uni-
formly with respect to k, hence �oð1Þ ¼ oð1Þ. Therefore the following inequality
follows from (17), (22), and (23):

NðkÞ
� LðnðkÞ� Þ4HðVkÞoð1Þ for any �2f0; . . . ; skg: ð26Þ

NowHðVkÞ4EkD
�1þoð1Þ
k 4Ek 4NðkÞ

� if �2f0; . . . ; sk � 1g. In this case, Eq. (26)
and Proposition 3.6 imply that nðkÞ� is a minimal point. Let us conclude the proof of
(20) now.

We know that n
ðkÞ
sk�1 is a minimal point, with N

ðkÞ
sk�1 5Ek hence LðnðkÞsk�1Þ4

LðekÞ. Eqs. (14), (15) and (21) yield

LðnðkÞsk
Þ4D

�1þoð1Þ
k : ð27Þ
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If NðkÞ
sk
<Dk then (27) gives nðkÞsk

2Aoð1Þ; otherwise we have NðkÞ
sk

5Dk �
E

1=2
k 5HðVkÞ1=2

and (26) implies nðkÞsk
2Aoð1Þ. Therefore Eq. (19) holds in both

cases. Then Proposition 3.6 proves that nðkÞsk
is a minimal point, say ai. If i4 ik � 1

(that is, NðkÞ
sk
<Dk) then Eqs. (27) and (17) yield

D2�	
k � HðVk�1Þ � DkLðaik�1Þ4DkLðnðkÞsk

Þ4D
oð1Þ
k

which is impossible. Therefore NðkÞ
sk

5Dk; but we have also NðkÞ
sk
<Ek by definition

of sk. So nðkÞsk
is a minimal point in Aoð1Þ between dk and ek, distinct from ek.

Lemma 4.2 proves that nðkÞsk
¼ dk.

By definition of nðkÞsk
, this proves that dk is collinear to

�
n
ðkÞ
sk�1; dk; ek

�
. Eq. (8)

implies that ek is collinear to
�
n
ðkÞ
sk�1; dk; dk

�
, hence to n

ðkÞ
sk�1 thanks to (9). This

concludes the proof of Lemma 4.4.

Step 5. Connection between (wt) and A". The following result is a stronger
version of Lemma 4.2:

Lemma 4.5. Let "2ð0; "1Þ, and ðuiÞ be the sequence of all minimal points in
A", ordered according to their norms Ui. Then the sequences ðuiÞ and ðwtÞ coin-
cide up to a finite number of terms.

Proof. Eq. (19) means LðwtÞ ¼ W
�1þoð1Þ
t , and shows that wt belongs to A" for

t sufficiently large in terms of ". Assume there is a minimal point aj in A", with j

arbitrarily large, such that Wt <Aj<Wtþ1. Then we can write wt ¼ n
ðkÞ
�þ1 and

wtþ1 ¼ nðkÞ� for some k and some �2f0; . . . ; sk � 1g. Lemma 3.1 yields

HðVkÞ � AjL
�
n
ðkÞ
�þ1

�
and HðVkÞ � NðkÞ

� LðajÞ

hence, by choosing 	2ð�1ð�Þ; 2Þ and �2ð�0ð�Þ; 2Þ and using (22), (23), (15), and
(17):

HðVkÞ2 � A"j EkD
�1þoð1Þ
k � D"

kþ1D
��1þoð1Þ
k � HðVkÞ

"
2�	þ	ð��1Þþoð1Þ:

Since "< "1, this gives a contradiction when 	 and � and sufficiently small, and k
is sufficiently large. This concludes the proof of Lemma 4.5.

Corollary 4.6. We have

LðwtÞ ¼ W
�1þoð1Þ
t

and

�0ð�Þ ¼ �"ð�Þ ¼ lim sup
t!1

logWtþ1

logWt

for any "2ð0; "1Þ.
Proof. The first equality is nothing but Eq. (19). The second one follows from

it, thanks to Eq. (11) and Lemma 4.5.

Step 6. Linear dependence between consecutive terms of the sequence (wt).
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Lemma 4.7. Let t be a sufficiently large integer such that wt�1, wt and wtþ1 are
linearly dependent. Then the bracket ½wt;wt;wtþ1� is collinear to wt�1, so that
½wt;wt;wt�1� is collinear to wtþ1.

Proof. Thanks to Corollary 4.6, Proposition 3.7 applies (since �0ð�Þ< 2) and
provides an integer k such that Dk 4Wt�1 <Wt<Wtþ1 4Dkþ1. By construction,
there exist non-zero integers �, �0 such that

�wt ¼ ½wtþ1; dk; ek� ¼ �wtþ1JekJdk

and

�0wt�1 ¼ ½wt; dk; ek� ¼ �wtJekJdk:

This implies

½wt;wt;wtþ1� ¼ �wtJwtþ1Jwt

¼ ��1wtðJwtþ1Þ
2
JekJd k

¼ detðwtþ1Þ��1�0wt�1

since ðJxÞ2 ¼ � detðxÞId for any x2Z3 identified with a symmetric matrix. This
concludes the proof of the first statement of Lemma 4.7; the second one immedi-
ately follows from Eq. (8).

Step 7. Construction and properties of  . Let � be such that �0ð�Þ<�< 2, and
� ¼ �=2. Corollary 2.10 proves, thanks to Corollary 4.6, that ½wt;wt;wtþ1� 2Aoð1Þ.
By Proposition 3.6, this bracket is collinear to a minimal point for t sufficiently
large; and by Lemma 4.5 this minimal point belongs to the sequence ðwtÞ.

Therefore for any sufficiently large integer t, there exists a unique integer,
denoted by  ðtÞ, such that ½wt;wt;wtþ1� is collinear to w ðtÞ. If t is not sufficiently
large, we let  ðtÞ ¼ t � 1.

In this definition,  depends on the choice of a threshold for determining when
t is ‘‘sufficiently large’’, on the integer k0 chosen at the beginning of Step 3 (in the
sequence ðwtÞ, the index t is shifted if the choice of k0 is modified), and on finitely
many arbitrary choices of initial values (see Step 1). Actually this dependence is
very mild, as shows the following lemma.

Lemma 4.8.

� The function  belongs to the set F defined in Section 2.1, and up to R it
depends only upon �.

� For any t sufficiently large, the following assertions are equivalent:

(i)  ðtÞ ¼ t � 1.
(ii) wt�1, wt and wtþ1 are linearly dependent.

(iii) wt is not among the d k.

Proof. Let us start with the second statement. Thanks to Corollary 4.6,
Proposition 3.7 applies and proves that ðiiÞ , ðiiiÞ. Since wt, wtþ1 and
½wt;wt;wtþ1� are always linearly dependent, the implication ðiÞ ) ðiiÞ is obvious.
At last, the implication ðiiÞ ) ðiÞ follows from Lemma 4.7.
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Let us prove the first statement now. Let t and k be sufficiently large integers
such that wt ¼ d k. Proposition 2.9, Corollary 4.6, and Eqs. (16) and (17) yield,
since wtþ1 ¼ ek:

W ðtÞ � W2
t W

�1þoð1Þ
tþ1 � W

1þoð1Þ
t HðVkÞ�1 � W

1�1=	þoð1Þ
t

hence  ðtÞ4 t � 1. As  is defined by  ðtÞ ¼ t � 1 for small values of t, this
proves that  ðtÞ4 t � 1 for any t.

Let ð#kÞk5 0 be the sequence associated with  , as in Section 2.1; namely, ð#kÞ
is the increasing sequence of all indices t such that  ðtÞ4 t � 2. Since ðdkÞ is a
subsequence of ðwtÞ, the second part of Lemma 4.8 shows that

w#k
¼ d k for any k

up to shifting the index k; in particular, the sequence ð#kÞ is infinite.
Let us prove that  is asymptotically reduced (as defined in Section 2.1, that is

 ð#kÞ<#k�1 and  ð#kÞ 6¼ ð#k�1Þ for any k sufficiently large).
First, assume that  ð#kÞ5#k�1 with k sufficiently large, hence W ðtÞ 5Dk�1

with t ¼ #k (i.e.,wt ¼ d k). Thenw ðtÞ is a minimal point between d k�1 and d k ¼ wt,
so thatw ðtÞ 2Vk�1 ¼ SpanQðd k�1; d kÞ \Z3. Butw ðtÞ is collinear to ½wt;wt;wtþ1�,
so that w ðtÞ 2Vk ¼ SpanQðwt;wtþ1Þ \ Z3. Now Vk \Vk�1 ¼ Zd k by definition
of the sequence ðdkÞ, therefore w ðtÞ is collinear to dk ¼ wt: this is impossible. So
we have  ð#kÞ<#k�1 for any k sufficiently large.

Let us assume now that  ð#kÞ ¼  ð#k�1Þ with k sufficiently large. Then
w ð#kÞ ¼ w ð#k�1Þ is proportional to both ½dk; dk; ek� and ½dk�1; dk�1; ek�1� so it
belongs to Vk�1 \Vk ¼ Zdk. This is impossible since  ð#kÞ4#k � 1, so that
 ð#kÞ 6¼ ð#k�1Þ for k sufficiently large.

This concludes the proof that  is asymptotically reduced. Using Corollary 4.6
(see also Lemma A.2 of [7]), it is not difficult to deduce from the property �0ð�Þ< 2
the existence of a c such that  ðtÞ5 t � c for any t. So we have proved that  2F.

As noticed before the statement of Lemma 4.8,  depends only on the choice
of some initial values. If these choices were different, then  ðnÞ would be replaced
(for n sufficiently large) with  ðnþ cÞ þ c0 for some integers c, c0 independent
from n. This means exactly that  remains the same modulo R, thereby conclud-
ing the proof of Lemma 4.8.

Step 8. Proof of Theorem 4.1. Let us prove Part ðaÞ first. Let "2ð0; "1Þ, and
ðuiÞ be the sequence of all minimal points in A", ordered according to their norms
Ui. Up to shifting indices, Lemma 4.5 shows that ui ¼ wi for any i sufficiently
large (and the value of " has an influence only on the shift). So Corollary 4.6 im-
plies LðuiÞ ¼ U

�1þoð1Þ
i and �0ð�Þ ¼ �"ð�Þ ¼ lim supi!1

logUiþ1

logUi
.

Let i be sufficiently large, and k be such that Dk 4Wi�1 <Dkþ1. Since (22) is
an equality, we have (using (16) and (17)):

WiW
�1
i�1 ¼ E

1þoð1Þ
k D�1

k 5HðVkÞ1þoð1Þ 5W
2�	þoð1Þ
i�1

for any (fixed) 	2ð�1ð�Þ; 2Þ, hence

lim inf
i!1

logWi

logWi�1

5 3 � �1ð�Þ> 1:

28 S. Fischler



Since the function  2F has been constructed in Step 7, this concludes the proof
of Part ðaÞ.

Let us prove Part ðbÞ now. Let ðviÞ and � < 2 be as in Theorem 4.1. Since

LðviÞ ¼ V
�1þoð1Þ
i , for any i sufficiently large we have vi2A"2

, and vi is a minimal
point thanks to Proposition 3.6.

Let k be sufficiently large. Proposition 3.7 shows that dk ¼ vi for some i, and
Lemma 4.3 (applied with a small "0> 0 thanks to Corollary 4.6, and �V ¼ �)
yields ek ¼ viþ1. Let t be such that wt ¼ dk (that is, t ¼ #k with the notation of
Step 7). We have wt ¼ vi and wtþ1 ¼ viþ1; let us prove by induction that wtþ‘ ¼
viþ‘ for any ‘2f0; . . . ; ‘0g, where ‘0 is such that Wtþ‘0

¼ Dkþ1.
We may assume ‘0 5 2, otherwise this is proved already. Let ‘2f1; . . . ; ‘0 � 1g

be such that wtþ‘ ¼ viþ‘. Since ‘0 5 2, we have Dk 4Wtþ‘�1 <Wtþ‘ <
Wtþ‘þ1 4Dkþ1 so wtþ‘ is not among the dk. Lemma 4.8 yields  ðt þ ‘Þ ¼
t þ ‘� 1, so that wtþ‘þ1 is the primitive point, with non-negative first coordinate,
collinear to ½wtþ‘;wtþ‘;wtþ‘�1�. By induction hypothesis, this bracket is equal to
½viþ‘; viþ‘; viþ‘�1�. Now Viþ‘ ¼ Wtþ‘ <Wtþ‘þ1 4Dkþ1 yields Viþ‘þ1 4Dkþ1, since
ðdkÞ is a subsequence of ðviÞ up to a finite number of terms. So viþ‘�1, viþ‘ and
viþ‘þ1 are linearly dependent. By assumption on the sequence ðviÞ, this proves that
viþ‘þ1 is collinear to ½viþ‘; viþ‘; viþ‘�1�, and to wtþ‘þ1. Since both vectors are
primitive and have non-negative first coordinates, we have wtþ‘þ1 ¼ viþ‘þ1,
thereby concluding the induction.

Since this result holds for any k sufficiently large, we have proved that the
sequence ðviÞ is obtained from ðwtÞ by shifting the index (up to a finite number of
terms). In particular, we have � ¼ �0ð�Þ thanks to Corollary 4.6, thereby conclud-
ing the proof of Theorem 4.1.

5. The Palindromic Prefix Method

Roy’s construction [11] of a number � such that �1ð�Þ ¼ � makes a crucial use
of a specific word w with many palindromic prefixes, namely the Fibonacci word
(see Example 2.3 above). Bugeaud and Laurent have generalized his construction
[3] to any characteristic Sturmian word w (see also [1]). We explain here how to do
it, more generally, with any word w such that �ðwÞ< 2.

This method produces a real number �; the key property (proved in Section 5.2
below) is that

�1ð�Þ4 �0ð�Þ4 �ðwÞ: ð28Þ
The main difficulty in proving (28) is to study the asymptotic behaviour of a sequence
defined by induction using Roy’s bracket. This was done by Roy and Bugeaud-Laurent
by using specific properties of the words w they were considering; we do it in the
general case in Section 5.1. The proof is elementary, but rather technical.

The difficult diophantine question is to know whether (28) is an equality. Using
the results of Section 4, we prove in Section 5.2 that

�0ð�Þ ¼ �ðwÞ
but we do not know whether the equality �1ð�Þ ¼ �0ð�Þ holds for a general word w
(it does if w is characteristic Sturmian, as proved by Bugeaud-Laurent).
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5.1. Asymptotic Behaviour of Some Sequences. The following Proposition (in
which �ð Þ is defined in Section 2.1) will be useful in Sections 5.2 and 5.3 below. It
is a more general version of the arguments used in [11] (end of the proof of
Th�eeor�eeme 2.2), [10] (Lemma 5.2) and [3] (Lemma 4.1). The proof essentially
involves Lemma 5.2 below, which is a generalization of Proposition 6.2 of [7].

Proposition 5.1. Let �2R and  2F. Let ðvnÞn5 1 be a sequence of non-zero
points in Z3 such that ½vn; vn; vnþ1� is collinear to v ðnÞ for any sufficiently large n,

LðvnÞ ¼ V�1þoð1Þ
n ð29Þ

and Vnþ1 5V�
n for some � > 1 and any sufficiently large n. Then we have

lim sup
n!þ1

logVnþ1

logVn

¼ �ð Þ: ð30Þ

Proof of Proposition 5.1. For any n5 1, let �n2Q� be such that

½vn; vn; vnþ1� ¼ �nv ðnÞ. Proposition 2.9 and Eq. (29) yield j�njV ðnÞ � V2
nV

�1þoð1Þ
nþ1

and j�njLðv ðnÞÞ � V�2þoð1Þ
n Vnþ1 hence j�nj2V ðnÞLðv ðnÞÞ � Voð1Þ

n V
oð1Þ
nþ1 . Therefore

(10) yields j�nj2 � V
oð1Þ
nþ1 . Now let an; bn2Z be coprime integers such that

�n ¼ an=bn. Then v ðnÞ 2bnZ
3, so Eqs. (29) and (10) imply jbnj ¼ V

oð1Þ
nþ1 , hence

janj ¼ V
oð1Þ
nþ1 . Finally j�nj ¼ V

oð1Þ
nþ1 , and the above inequalities (together with Eq. (10))

imply Vnþ1 � V2þoð1Þ
n and V ðnÞ ¼ V2þoð1Þ

n V�1
nþ1. Therefore applying the following

lemma with un ¼ logVn is enough to conclude the proof of Proposition 5.1.

Lemma 5.2. Let  2F, and ðunÞn5 1 be a sequence of positive real numbers
such that

unþ1 ¼ 2un � u ðnÞ þ oðunÞ
and lim inf unþ1=un> 1. Then we have

lim sup
n!þ1

unþ1

un
¼ �ð Þ: ð31Þ

In the proof of Lemma 5.2, we shall use the following result:

Lemma 5.3. Let  2F, and ð~uunÞn5 1 be an increasing sequence of positive
integers such that

~uunþ1 ¼ 2~uun � ~uu ðnÞ for any n sufficiently large:

Then we have lim inf ~uunþ1=~uun> 1 and lim sup ~uunþ1=~uun ¼ �ð Þ.
Thanks to this lemma, we see that in Lemma 5.2 the assumption lim inf unþ1=

un> 1 is automatically fulfilled if unþ1 ¼ 2un � u ðnÞ for any n sufficiently large.
However, as it stands, Lemma 5.2 would be false without this assumption since un
could be a polynomial in n.

Proof of Lemma 5.3. The assertion on the upper limit is exactly Proposition 6.2
of [7], already recalled in Section 2.1. Let us prove the statement on the lower limit.

Let ð#kÞ be the sequence associated with  , as in Section 2.1 (namely, this is
the increasing sequence of all integers n such that  ðnÞ4 n� 2). For k sufficiently
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large, we have  ð#kþ1Þ4#k � 1 (since  2F) and  ðnÞ ¼ n� 1 for #k< n<
#kþ1 hence:

~uu#kþ1�1 5 2~uu#kþ1
� ~uu#k�1 ¼ ~uu#kþ1

þ ~uu#kþ1�1 þ ~uu#kþ1 � ~uu#k � ~uu#k�1

(as in the proof of Lemma A.1 of [7]). This implies (by induction) the existence of
some integer c such that ~uu#kþ1 � ~uu#k � ~uu#k�1 5 c, hence ~uu#kþ1 5 5

4
~uu#k , for any k

sufficiently large (since ~uun 4 2~uun�1 for n sufficiently large, and ~uun ! 1). Now for
#k< n4#kþ1 we have

~uun � ~uun�1 ¼ ~uu#kþ1 � ~uu#k 5
1

4
~uu#k 5

1

2B
~uu#kþ1�1 5

1

2B
~uun�1

where B is such that #kþ1 � B4 ð#kþ1Þ<#k hence #kþ1 4#k þ B� 1 for any k;
such a B exists since  2F. Therefore we have ~uun 5 ð1 þ 2�BÞ~uun�1 for any n
sufficiently large, thereby concluding the proof of Lemma 5.3.

Proof of Lemma 5.2. Let n0 be a sufficiently large integer. We let "n ¼ unþ1 � un;
then "n> 0 for n5 n0. Let �n2R be defined by unþ1 ¼ 2un � u ðnÞ þ �nunþ1. Then
�n ! 0 (since un< unþ1 < 3un for n5 n0), and

"n ¼
 Xn�1

j¼ ðnÞ
"j

!
þ �nunþ1:

Let us consider an increasing sequence ð~uunÞn5 1 of positive integers such that
~uunþ1 ¼ 2~uun � ~uu ðnÞ for any n5 n0. As recalled in Lemma 5.3, Eq. (31) holds for
the sequence ð~uunÞ. The associated sequence ð~��nÞ is identically zero, and ð~""nÞ satis-

fies ~""n ¼
Pn�1

j¼ ðnÞ ~""j, for n5 n0.
We consider now the quotient 	n ¼ "n=~""n. We haveXn�1

j¼ ðnÞ
	j~""j ¼

Xn�1

j¼ ðnÞ
"j ¼ "n � �nunþ1 ¼ 	n~""n � �nunþ1

hence

	n ¼
Xn�1

j¼ ðnÞ

~""j
~"" ðnÞ þ � � � þ ~""n�1

	j þ �0n	n ð32Þ

by letting

�0n ¼ �n
unþ1

"n
¼ �n

1

1 � un
unþ1

:

Let 0<
< 1 be such that unþ1 5 1
1�
 un for any n5 n0. Then we have j�0nj4


�1j�nj hence �0n ! 0. Letting 	0
n ¼ ð1 � �0nÞ	n, Eq. (32) yields

	0
n ¼

Xn�1

j¼ ðnÞ

~""j
~"" ðnÞ þ � � � þ ~""n�1

	j: ð33Þ

Since  2F, there exists B be such that  ðnÞ5 n� B for any n5 n0.
For n5 n0, let In�1 denote the convex hull of 	n�B; . . . ; 	n�1 in R, say
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In�1 ¼ ½�n�1	n�1; �
0
n�1	n�1� with �n�1 4 14 �0n�1. Let �n ¼ maxð1 � �0n;

1
1��0n

Þ
(since we may assume j�0nj41=2 for any n5n0). Then we have �n51 and �n ! 1.

Let us prove (by induction on ‘) that for any integers n5 n0 and ‘5�1 we have

	nþ‘2
�

1

�n�nþ1 � � ��nþ‘
1 þ ðB‘þ1 � 1Þ�n�1

B‘þ1
	n�1;

�n�nþ1 � � ��nþ‘
1 þ ðB‘þ1 � 1Þ�0n�1

B‘þ1
	n�1

	
: ð34Þ

This is true for ‘ ¼ �1; let ‘5 0 be such that (34) holds for any ‘0 2 f�1; . . . ; ‘� 1g
(with the same n, which remains fixed). For any j such that  ðnþ ‘Þ4 j4 nþ
‘� 2, we have

	j5
�n�1	n�1

�n�nþ1 � � ��nþ‘�1

by using the definition of In�1 if j4 n� 1, and the induction hypothesis otherwise.
For j ¼ nþ ‘� 1, the induction hypothesis reads

	nþ‘�1 5
1

�n�nþ1 � � ��nþ‘�1

1 þ ðB‘ � 1Þ�n�1

B‘
	n�1:

Now Eq. (33) implies that 	0
nþ‘ is a weighted average of 	 ðnþ‘Þ; . . . ; 	nþ‘�1 with

non-negative weights; moreover the weight of 	nþ‘�1 is ~""nþ‘�1=ð~"" ðnþ‘Þ þ � � � þ
~""nþ‘�1Þ5 1=B since the sequence ð~""nÞn5 n0

is non-decreasing. Therefore the pre-
vious lower bounds yield:

	0
nþ‘5

1

�n�nþ1 � � ��nþ‘�1

1 þ ðB‘þ1 � 1Þ�n�1

B‘þ1
	n�1:

Now

	nþ‘ ¼
1

1 � �0nþ‘
	0
nþ‘5

1

�nþ‘
	0
nþ‘;

thereby proving the lower bound in (34). The upper bound can be proved in the
same way, concluding the proof of (34).

Applying (34) for ‘ ¼ 0; 1; . . . ;B� 1 yields

14
�0nþB�1

�nþB�1

4�2
n�

2
nþ1 � � ��2

nþB�1

1 þ ðBB � 1Þ�0n�1

1 þ ðBB � 1Þ�n�1

:

From this inequality we obtain

04
�0nþB�1

�nþB�1

� 1

4�2
n�

2
nþ1 � � ��2

nþB�1 � 1 þ
�2
n�

2
nþ1 � � ��2

nþB�1ðBB � 1Þð�0n�1 � �n�1Þ
1 þ ðBB � 1Þ�n�1

4�2
n�

2
nþ1 � � ��2

nþB�1 � 1 þ �2
n�

2
nþ1 � � ��2

nþB�1

BB � 1

BB



�0n�1

�n�1

� 1

�
:
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Since �n ! 1, this proves that �0nþ‘B�1=�nþ‘B�1 tends to 1 as ‘ tends to infinity,
from which we deduce 	nþ‘B�1=	nþ‘B�2 !‘!1 1. Taking B consecutive values
for n yields 	‘=	‘�1 !‘!1 1. Since 14 ~""n=~""n�1 4B for any n5 n0, this implies
"n="n�1 ¼ ~""n=~""n�1 þ oð1Þ, hence

"n
"n�t

¼ ~""n
~""n�t

þ oð1Þ for any fixed t; as n ! 1: ð35Þ

Moreover the quantities "n="n�t and ~""n=~""n�t remain (as n varies) in a fixed interval
½at; bt� 
 ð0;þ1Þ depending only on t, so that we have also "n�t

"n
¼ ~""n�t

~""n
þ oð1Þ.

For any T 5 1, let us consider

�T ¼ lim sup
n!1

unþ1 � un�T

un � un�T

and e��T ¼ lim sup
n!1

~uunþ1 � ~uun�T

~uun � ~uun�T

:

The previous relations, and the definitions of "n and ~""n, yield

unþ1 � un�T

un � un�T

¼ 1 þ 1
"n�T

"n
þ � � � þ "n�1

"n

¼ 1 þ 1
~""n�T

~""n
þ � � � þ ~""n�1

~""n
þ oð1Þ

¼ ~uunþ1 � ~uun�T

~uun � ~uun�T

þ oð1Þ:

Letting n tend to infinity, we obtain �T ¼ e��T for any T 5 1. Now we are going to

compute, separately, the limits of �T and e��T as T tends to infinity.

Let us start with �T . We have

unþ1 � un�T

un � un�T

¼
unþ1

un
� un�T

un

1 � un�T

un

with 04 un�T

un
4 ð1 � 
ÞT for any n5 n0 þ T, hence

unþ1

un
� ð1 � 
ÞT 4 unþ1 � un�T

un � un�T

4
1

1 � ð1 � 
ÞT
unþ1

un
:

Letting n tend to infinity, we obtain:

lim sup
n!1

unþ1

un

�
� ð1 � 
ÞT 4 �T 4

1

1 � ð1 � 
ÞT



lim sup
n!1

unþ1

un

�
;

thereby proving that

lim
T!1

�T ¼ lim sup
n!1

unþ1

un
:

Now Lemma 5.3 yields lim inf ~uunþ1

~uun
> 1, therefore the same arguments give

lim
T!1

e��T ¼ lim sup
n!1

~uunþ1

~uun
¼ �ð Þ:

Since �T ¼ e��T for any T, invoking the unicity of this limit enables us to con-
clude the proof of Lemma 5.2.
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5.2. The Palindromic Prefix Method. Let w be an infinite non ultimately
periodic word such that �ðwÞ< 2. As in Section 2.1, we denote by ðniÞi5 1 the
increasing sequence of all lengths of palindromic prefixes of w. As mentioned in
Section 2.1, the word w can be written on a finite alphabet A.

We consider an injective map ’ : A ! N� (which is just another way of
saying that w can be written on the alphabet of positive integers). Roy’s idea
[11] is to consider the real number �w;’ defined by the infinite continued fraction
expansion

�w;’ ¼ ½0; ’ðw1Þ; ’ðw2Þ; ’ðw3Þ; . . .� ¼ 0 þ 1

’ðw1Þ þ 1
’ðw2Þþ���

:

Since w is infinite and not ultimately periodic, �w;’ is neither rational nor quadratic.
Let pn=qn denote the n-th convergent of �w;’; the classical properties of con-

tinued fraction expansions (see for instance [13], Chapter I) give jqn� � pnj4 q�1
n

and:

qn qn�1

pn pn�1

� 	
¼ ’ðw1Þ 1

1 0

� 	
’ðw2Þ 1

1 0

� 	
. . .

’ðwnÞ 1

1 0

� 	
: ð36Þ

For n ¼ ni, the finite word w1w2 . . .wn is a palindrome, so that this product is a
symmetric matrix, hence qni�1 ¼ pni . In this case, we have simultaneous rational
approximants to �w;’ and �2

w;’ with the same denominator, namely:

jqni�w;’ � pni j4 q�1
ni

jqni�2
w;’ � pni�1j ¼ jðqni�w;’ � pniÞ�w;’ þ ðqni�1�w;’ � pni�1Þj4 ð1 þ �w;’Þq�1

ni�1:

�
ð37Þ

This gives LðviÞ4 cV�1
i where vi ¼ ðqni ; pni ; pni�1

Þ2Z3 is the vector correspond-
ing to the symmetric matrix (36), and c is a constant depending only on w and ’.
The definition of �0ð�w;’Þ gives immediately (as in [8]):

�0ð�w;’Þ4 lim sup
i!1

logViþ1

logVi

: ð38Þ

Our main result asserts that equality holds, and gives the value of this upper limit
in terms of w:

Theorem 5.4. We have �0ð�w;’Þ ¼ �ðwÞ.
The proof also shows that the function  associated with � (in Part ðaÞ of

Theorem 4.1) is the same, modulo R, as the one associated with w (in Theorem 2.2).

Question. Does the equality �1ð�w;’Þ ¼ �ðwÞ hold?

When w is the Fibonacci word (considered by Roy, see Example 2.3), Davenport-
Schmidt’s lower bound yields �4�1ð�w;’Þ4�0ð�w;’Þ ¼ �ðwÞ ¼ �, hence equal-
ity holds. For any characteristic Sturmian word, Bugeaud and Laurent have proved
[3] that equality always holds. Using the methods introduced here, it is possible to
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generalize this result to any word w equal modulo R0 to a characteristic Sturmian
word (where R0 was defined in Section 2.1).

The proof of Theorem 5.4 falls into two parts. First, the analytic study (Section 5.1)
of the asymptotics of the recurrence relation associated with w enables us to
prove that lim supi!1

logViþ1

logVi
¼ �ðwÞ. Then Eq. (38) implies the upper bound in

Theorem 5.4: this upper bound is only of combinatorial, and analytic, nature. For
the lower bound, one has to apply Theorem 4.1: diophantine properties really
come into the play.

In the proof of Theorem 5.4, we shall use twice the following lemma (see [7],
Section 5.1):

Lemma 5.5. Let i0, i1 and i2 be positive integers such that minðni0 ; ni1Þ4
ni2 4 ni0 þ ni1 . Then the following statements are equivalent:

� The prefix of w with length ni0 þ ni1 � ni2 is a palindrome.
� The vectors vi0 , vi1 and vi2 are linearly dependent.

Moreover,

� If i2 5 i1 and ni2 5 ni0 � ni1 then these statements hold.
� If these statements hold then denoting by i the integer such that ni ¼ ni0 þ

ni1 � ni2 we have

½vi0 ; vi1 ; vi2 � ¼ � vi ð39Þ
and �i ¼ �i0�

�1
i2
�i1 , where �j is the palindromic prefix of w with length nj.

Proof of Lemma 5.5. To begin with, let us assume i2 5 i1 and ni2 5 ni0 � ni1 ,
and prove that the prefix of w with length ni0 þ ni1 � ni2 is a palindrome. Let
14 p4 ðni0 þ ni1 � ni2Þ=2; then we have p4 ni1 hence:

wni0þni1�ni2þ1�p ¼ wni2�ni1þp ¼ wni1þ1�p ¼ wp

by using successively that �i0 , �i2 and �i1 are palindromes.
Let us prove now that the first two statements are equivalent, and at the same time

that (39) holds. We use the crucial formula (introduced in this context by Roy [12]):

detðMi0 ;Mi1 ;Mi2Þ ¼ TraceðJMi0JMi2JMi1Þ
where Mi is the symmetric matrix that corresponds to vi, and J ¼

h
0 1

�1 0

i
. Now a

matrix M is symmetric if, and only if, TraceðJMÞ ¼ 0. Therefore the linear de-
pendence of vi0 , vi1 and vi2 means that the matrix Mi0JMi2JMi1 , which is equal to
�Mi0M

�1
i2
Mi1 , is symmetric.

On the other hand, the prefix of w with length ni0 þ ni1 � ni2 is a palindrome if,
and only if, the matrix M given by Eq. (36) with n ¼ ni0 þ ni1 � ni2 is symmetric
(by unicity of such a decomposition). To conclude the proof, it is therefore enough
to prove the following equality:

M ¼ Mi0M
�1
i2
Mi1 : ð40Þ

To prove (40), we may assume i1 4 i2 (by interchanging i1 and i0 if necessary).
Then �i1 is a prefix of �i2 , hence there is a word b such that �i2 ¼ �i1b. The word b
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is a suffix of �i2 , therefore its mirror image ~bb is a prefix of �i2 (hence of w) since �i2
is a palindrome (i.e., �i2 ¼ f�i2�i2 ). Now ~bb consists in ni2 � ni1 4 ni0 letters, therefore
~bb is a prefix of �i0 . As �i0 is a palindrome, b is a suffix of �i0 : there is a word c such
that �i0 ¼ cb. Finally, we have �i0�

�1
i2
�i1 ¼ cbð�i1bÞ

�1�i1 ¼ c. As c is the prefix of
w of length n ¼ ni0 þ ni1 � ni2 , Eq. (40) is proved. This concludes the proof of
Lemma 5.5.

Proof of Theorem 5.4. We consider the sequence ðviÞ defined right after Eq. (37),
and we let  2F be a function associated with w as in Theorem 2.2. In particular,
we have �ð Þ ¼ �ðwÞ.

Let i be sufficiently large. Since niþ1 ¼ 2ni � n ðiÞ, it follows from Lemma 5.5
(applied with i0 ¼ i1 ¼ i and i2 ¼ iþ 1) that ½vi; vi; viþ1� ¼ � v ðiÞ.

In order to apply Proposition 5.1, we need rough estimates for Vi. Let u be a

product of n matrices of the shape
h
a 1

1 0

i
with 14 a4�. Then it is not difficult

(see for instance [3], Eq. (11) p. 788) to prove that 2½n=2�4U4 ð2�Þn. Letting
� ¼ max’ðAÞ, this implies Vi 4 ð2�Þni and Viþ1 5Vi 2½ðniþ1�niÞ=2�. Now Lemma
5.3 yields lim inf niþ1=ni> 1, hence Viþ1 >V�

i for some � > 1. Therefore Proposi-
tion 5.1 applies, and gives

lim sup
i!1

logViþ1

logVi

¼ �ð Þ ¼ �ðwÞ:

Now the points vi are primitive (since gcdðqni ; pniÞ ¼ 1), have positive first
coordinates qni , and are ordered according to these first coordinates. Moreover,
let i be such that vi�1, vi and viþ1 are linearly dependent. Lemma 5.5, applied with
i0 ¼ i� 1, i1 ¼ iþ 1 and i2 ¼ i, proves that niþ1 þ ni�1 � ni is the length of a
palindromic prefix of w. Since this length is strictly between ni�1 and niþ1, it is
equal to ni, so that niþ1 ¼ 2ni � ni�1 and  ðiÞ ¼ i� 1. Then, as noticed in the
beginning of the proof, ½vi; vi; viþ1� is collinear to vi�1. Using Eq. (8), this is enough
to apply Part ðbÞ of Theorem 4.1, and conclude the proof of Theorem 5.4.

5.3. Proof of Theorem 1.1. Let � be an irrational non-quadratic real number
such that �0ð�Þ< 2. Denote by ðuiÞ the sequence in Part ðaÞ of Theorem 4.1 (with
" ¼ "1=2, say), and by  2F the associated function. Using also Proposition 5.1,
we have �0ð�Þ ¼ �ð Þ. Now, choosing a word w associated with  as in Theorem
2.2, we have �ðwÞ ¼ �ð Þ (see Section 2.1), so that �0ð�Þ ¼ �ðwÞ.

Conversely, if w is a word such that 1<�ðwÞ< 2, then w is not ultimately
periodic and Roy’s palindromic prefix method provides (for any embedding
’ : A ! N�) an irrational non-quadratic real number �w;’ for which �0ð�w;’Þ ¼
�ðwÞ thanks to Theorem 5.4. This concludes the proof of Theorem 1.1.

6. Open Questions

Given a non ultimately periodic word w such that �ðwÞ< 2 (or an associated
function  2F), it would be interesting to study more precisely the set of all
numbers � that correspond to  (as in Theorem 4.1). They all satisfy �0ð�Þ ¼
�ðwÞ; but to which extent do they all ‘‘essentially’’ come from the palindromic
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prefix method applied to w? Answering this question would lead to a better under-
standing of the numbers � such that �0ð�Þ< 2. For instance, does there exist a �
such that �1ð�Þ<�0ð�Þ< 2? More generally, what can be said about the function
" 7!�"ð�Þ?

The methods used in this paper do not apply to numbers � such that �0ð�Þ is
finite but greater than (or equal to) 2. For instance, it is a completely open problem
to determine the set of values 5 2 taken by the exponent �0ð�Þ.

The ‘‘Fibonacci sequences’’ introduced in [10] provide, when w is the Fibo-
nacci word, an arithmetic enrichment of the palindromic prefix method. How does
this enrichment generalize to other words w such that �ðwÞ< 2? Working this out
would yield new examples of numbers � such that �1ð�Þ< 2, and would be a first
step towards generalizing the results proved in this paper to the exponent �1ð�Þ.

At last, Jarnı́k has proved [9] (see also [10] and [3], end of Section 7) that �1ð�Þ
is intimately connected to the ‘‘dual’’ problem of finding polynomials of degree 2,
with not too large integer coefficients, that assume a small value at the point �.
Maybe some exponents (depending on "2 ½0; 1�) can be defined and studied in
relation with this dual problem.
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