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Abstract. This article is devoted to simultaneous approximation to ¢ and & by rational numbers
with the same denominator, where £ is an irrational non-quadratic real number. We focus on an exponent
Fo(§) that measures the regularity of the sequence of all exceptionally precise such approximants. We
prove that §y(&) takes the same set of values as a combinatorial quantity that measures the abundance
of palindromic prefixes in an infinite word w. This allows us to give a precise exposition of Roy’s
palindromic prefix method. The main tools we use are Davenport-Schmidt’s sequence of minimal points
and Roy’s bracket operation.
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1. Introduction

Throughout this text, we denote by ¢ a real number, assumed to be irrational
and non-quadratic (that is, [Q() : @] > 3). We study the quality of simultaneous
rational approximants to ¢ and &2, that is the possibility to find triples x =
(x0,X1,X2) € Z* with

L(x) = max(|xo€ — x1], [xo€® — x2|)

very small in comparison with |x|. In more precise terms, for any 0 <e < 1 we
consider the exponent (3.(¢) defined as follows: (-(€) is the infimum of the set of
all § such that for any sufficiently large B > 0 there exists x € Z> such that

1<|x|<B and L(x) < min(B~/7, |x[""). (1)
If this set of (3 is empty, we let 3.(§) = +o0. For € = 0, we let
Bo(§) = sup lﬂa(g) = lll%ﬂs(f)

0<e<
since for any fixed &, the map e+ [3.(£) is non-increasing. We 90 not consider
(&) for e <0, since L(x) < |xo|" with € <0 implies 2= (;C—(')) if |xo] is suffi-
ciently large (see [6]); therefore these exponents merely concern rational approxi-

mants to &.
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The exponents 3. (), introduced in [8], generalize the classical exponent (3 ()
(denoted by w5 (&) or by 1/X(€) in [3], [2] and [10]) for which the following
results are known:

e (31(&) < 2 for any & by applying Dirichlet’s pigeon-hole principle;

e B1(§) =~= 1+T\/§ =1.618. .. for any &, proved by Davenport and Schmidt [6];
e There exists £ such that 3;(§) = ~, proved by Roy [11];

e The set of values taken by £ (€) is dense in [, 2], proved by Roy [10].

The aim of this paper is to prove analogous results on (y(£). One can prove
easily (see [3]) that 53y(&) = +oo for almost all £ with respect to Lebesgue mea-
sure, and Davenport-Schmidt’s lower bound on (3 () yields §y(§) = + for any &
Moreover Roy’s palindromic prefix method ([11]; see also [8]) allows one to obtain
a & such that 3y(&) < 2, starting from any word w with “sufficiently many” palin-
dromic prefixes. In more precise terms, let w = wyw, ... be an infinite word on a
finite alphabet. We denote by (n;),. ; the increasing sequence of all lengths of
palindromic prefixes of w, in such a way that n is among the »; if, and only if, the
prefix wyw; ... w, of wis a palindrome (i.e., w; = w,, wp = w,_1,...). We let

iy

6(w) = limsup
i—+oo M

if the sequence (n;) is infinite, and 6(w) = +o0o otherwise. The words w such that
6(w) <2 are studied in [7]. Roy’s palindromic prefix method enables one to con-
struct, from any non ultimately periodic word w such that §(w) < 2, a real number
& such that (y(£) <2. Moreover, the equality (y(§) = 6(w) holds if w is the
Fibonacci word (see [11]), and more generally for any characteristic Sturmian
word w (see [3]). In this paper, we prove this equality for any non ultimately peri-
odic word w such that 6(w) < 2. We also show a reciprocal statement:

Theorem 1.1. We have

{Bo(&): £€R irrational, non-quadratic} N (1,2)
= {6(w): w an infinite word} N (1,2).

The set S = {6(w)} N (1,2) that appears in Theorem 1.1 is studied in [7]. The
least element of S is the golden ratio v (as implied by the previously mentioned
results). Apart from +, the least element is o, = 1 +72 = 1.707..., then (apart
from oy) itis o3 = 2+3—'0, and so on: there is an increasing sequence (o) of isolated
points in S, that converges to the least accumulation point oo, = 1.721... of S.
This follows from a result of Cassaigne [4] and the property ([7], Theorem 1.3)
that S N (1, v/3] coincides with the set of values of §(w) coming from characteristic
Sturmian words w. Combining this property with Theorem 1.1 proves Théoreme 2.1
announced in [8], namely: all values of Gy(§) less than v/3 can be obtained from
characteristic Sturmian words as in [3]. In particular, the following corollary shows
that the situation is completely different from the case of the exponent 3; (§), which

assumes [10] a set of values dense in [, 2].

Corollary 1.2. There is no real number £ such that v < $y(§) <o, = 1.707 .. ..
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We shall deduce Theorem 1.1 from a “structure theorem” on numbers £ such
that 5p(§) < 2, namely that the sequence of all “exceptionally precise” approx-
imants to ¢ and & satisfies the “‘same” recurrence relation as the sequence of all
palindromic prefixes of some word w with §(w) < 2. This enables us to associate
with each £ such that 3y(§) <2 a word w such that §(w) <2, in such a way that
Bo(€) = 6(w). This gives a kind of converse to Roy’s palindromic prefix method.
As byproduct of our approach, we also obtain the following result:

Theorem 1.3. Let & be such that 3y(§) < 2. Then there exists €1 > 0 (depending
only on (y(§)) such that 3.(§) = Bo(§) for any € <ey.

Throughout the text, we shall use the following notation. We denote by N =
{0,1,2,...} the set of non-negative integers, and let N* = N\{0}. We write
u; < v, (and v, > u,) if v, is positive for ¢ sufficiently large, and u,/v; is bounded
from above as 7 tends to infinity. When u, < v; and v, < u,, we write u; = v;. At
last, when a point of Z? is referred to as an underlined letter (e.g. x), we denote by
the corresponding uppercase letter its norm, that is the largest absolute value of its
coordinates (e.g. X = max(|xo, |x1], [x2]) if x = (x0, x1,%2))-

The structure of this text is as follows. In Section 2 we recall the notation and
results of [7] about words with many palindromic prefixes, classical estimates
about approximants, and also the definition and properties of Roy’s bracket opera-
tion. Our main tool is the sequence of minimal points introduced by Davenport and
Schmidt. Section 3 is devoted to this sequence: we recall classical results and
prove new ones (which may be of independent interest). We state and prove in
Section 4 our main diophantine result, which is the crucial step in the proof (§5.3)
of the results stated in this introduction. This enables us in Section 5 to give a
precise account on Roy’s palindromic prefix method — which was the original
motivation of this paper. At last, Section 6 is devoted to some open questions.

2. Palindromes, Classical Estimates, and Roy’s Bracket

In this section, we recall the properties [7] of words with many palindromic
prefixes, and also the bracket operation introduced by Roy [12].

2.1. Words with Many Palindromic Prefixes. Let us recall the definitions and
results of [7] that will be useful here (with minor changes intended to fit into the
diophantine setting).

Let ¢ : N* — N be a function such that

Yn)<n—1 for any n > 1. (2)

Denote by (¥), - o the sequence of all indices n > 1 (in increasing order) such
that ¢»(n) < n — 2. This sequence may be either finite or infinite; it is infinite for
the functions 1) of interest here (see (3) below). We shall use the following variant
of Definition 4.9 of [7]:

Definition 2.1. A function v is said to be asymptotically reduced if (2) holds
and the associated sequence (t) is such that

Y(U) < Vg1 and P(Jy) # P(Vg-1)
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for any sufficiently large k. When the sequence (V) is finite, we agree that 1) is
asymptotically reduced.

Let us denote by .7 the set of all functions 1) : N* — N such that

1) is asymptotically reduced.
There exists ¢ such that i — ¢ < ¢(i) <i—1 for any i > 1. (3)
There are infinitely many i such that (i) <i— 2.

For ¢ € &, the sequence (¥) is infinite, and we have ¥y, < ¥ + ¢ — 1 for any k
sufficiently large (since Yy11 — ¢ < Y(Fpi1) < ).

Given an infinite word w = wiw, ... on an arbitrary (finite or infinite) alphabet
</, we denote by (7;); - the (finite or infinite) sequence of all palindromic pre-
fixes of w, and by n; the length of m; (in such a way that m = wiw, ... wy, is
a palindrome for any i > 1). For i/ < i, 7y is a prefix of m;, so there is a word
b =Wy, 11 ...wy, such that m; = myb. We denote by 7;'m; this word b.

We let #" be the set of all non ultimately periodic words w such that the
increasing sequence (7;) is infinite and satisfies lim sup n;;1 /n; < 2. Then the fol-
lowing result is proved in [7]:

Theorem 2.2. (i) For any w € W~ there exists 1) € # such that
Tir] = ﬂiﬂ;('[)m for any i sufficiently large. 4)
(ii) For any 1 € F there exists we W~ such that (4) holds.

Theorem 2.2 implies that any w € ¥~ can be written on a finite alphabet. So we
may assume, throughout this text, that the alphabet .o/ is finite.
The following relation follows from (4) and will be used repeatedly:

niy1 = 2n; — nyy;) for any i sufficiently large.

The three conditions that appear in (3) are of different nature. The last one corre-
sponds, in the definition of #”, to the assumption that w is not ultimately periodic
(which is equivalent to w not being periodic: see Lemma 5.6 of [7]). The second one
enables us to get rid of the case 6(¢)) = 2; this is very useful since Theorem 2.2
generalizes only to a specific class of words w such that §(w) = 2. At last, the
assumption that ¢ is asymptotically reduced ensures that distinct functions ) (modulo
the equivalence relation # defined below) always correspond to distinct words w.

Example 2.3. The Fibonacci word abaaba . . . on the two-letter alphabet {a,b}
corresponds (in Theorem 2.2) to all functions ¢ such that ¥)(n) = n — 2 for any
sufficiently large n (see [7], Example 4.7). More generally, if w is the characteristic
Sturmian word with slope [0, s1, 52, . ..] then §(w) = 2 if, and only if, the sequence
(s,) is unbounded. In the opposite case, w belongs to #~ and corresponds to any
function 9 such that ¢)(n) = n — s; — 1 if n can be written s; + - - - + s for some
k, and 1(n) = n — 1 otherwise, for n sufficiently large (see [7], Example 4.6). We
recover the Fibonacci word by considering the special case s; = s, =--- = 1.

Example 2.4. Let w € ¥/ be written on a finite alphabet, say .7 = {ay,...,a,}.
Let py,...,p, be arbitrary palindromes, written on another alphabet .«#’. Then
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replacing each a; with p; in the word w yields a word w’ written on .o/’. Denote by
(mi); > | the sequence of all palindromic prefixes of w, and by = the finite word
obtained from 7; by replacing each a; with p;. Since py,...,p, are palindromes,
all m; are palindromic prefixes of w'. However, in general, the sequence (7}); -
does not contain all palindromic prefixes of w'. For instance, if all p; have length
greater than 2 then the first letter of w' is a palindromic prefix of w' but is not
among the 7.

Throughout this text, we are interested only in asymptotic properties, so the
palindromic prefixes of w' that are missing in Example 2.4 are not a problem (as
long as their number is finite). To take this observation into account, we define an
equivalence relation # on % as follows:

Definition 2.5. For ¢,/ € #, we set YA if there exist 6 and i; such that
(i) —i=(i—06)— (i —9) for any i > i.

We now define an analogous equivalence relation on #:

Definition 2.6. Let w,w' € ¥/, and (7;); - | (resp. ( i)i> 1) be the sequence of

all palindromic prefixes of w (resp. w). We set w#'w' if there exist YeF and
such that

—1 -1
il = Ty i and 7rl+1 = 7r 7’ Wi 5)+57T
for any i sufficiently large.

This definition means that w#'w' if, and only if, there exist 1,1y’ € # with
YR such that iy = 7r,7rw(1i) 7 and 7| = T W(i)ﬂ'; for any i sufficiently large.
Another way of stating this is the following: w#'w’ if, and only if, after omitting a
finite number of initial terms in the sequence (77,)1 >, orin (7);- ;, we have
Ml = T «/)( )m and 7} = =mn, ¢ m; for some ¢ € # and any i sufficiently large.

Thanks to Definitions 2.5 and 2. 6, Theorem 2.2 yields a bijective map

WIR " F R (5)
We now define a quantity §(1)) as follows:
Definition 2.7. For ¢ € 7, we let

. m;
§(1b) = lim sup —~
mi
where (m;); ; is any increasing sequence of non-negative integers such that
mir1 = 2m; — my; for any i sufficiently large.

The value of 6(1)) does not depend on the choice of a peculiar sequence (m;),
thanks to Proposition 6.2 of [7]. In particular, if i) corresponds to a word w as in
Theorem 2.2 then one can choose m; = n;, hence §()) = 6(w). It follows from this
remark and from Proposition 6.2 of [7] that:

e The map #" — (1,2), w— &(w) factors into a map # /%' — (1,2).
e The map # — (1,2), ¢ 6(¢) factors into a map F /2 — (1,2).
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e These two maps, together with the bijection (5), make up a commutative
diagram:
WIR = F|R
N e (6)
(1,2)

We have constructed in [7] (Remark 7.6) two words w and w’ such that
5(w) = 6(w') = /3, but with w#w' mod # (actually w is not episturmian
whereas w' is characteristic Sturmian). This proves that in the diagram (6), the
maps # /% — (1,2) and F /% — (1,2) induced by § are not injective.

2.2. Classical Estimates about Approximants. Throughout this text, we let for
any ¢ such that 0 <e < 1:

o ={xe’\{0}; L(x) <x "7},
with X = max(|xgl, |x1], |x2|) (as explained in the Introduction). By convention, for
e > 1, we let 7. = Z°\{0}. Moreover, we identify a point x = (xo,x;,x;) € Z°

. . . X0 x
with the symmetric matrix [ 0 }
X1 X2
In this section, we state classical estimates which are due (mainly) to Davenport
and Schmidt. For instance, the first inequality of the following lemma is proved in

Lemmas 2 and 3 of [6], the second one in Lemma 4.
Lemma 2.8. We have
|det(x)| = [xoxs — 3] < XL(x).

Moreover, if x,y,z are such that X > max(Y,Z) and L(x) < min(L(y), L(z)),
then we have

| det(x, y, 2)| < XL(y)L(z).

Let ||x|| denote the norm of a vector x € Z° (that is, its greatest coordinate in
absolute value, usually denoted by X in this text). Let ¥~ be a sub-Z-module of Z°,
of rank 2. Then ||x A y||, computed for a Z-basis (x,y) of #~, does not depend on
the chosen basis but only on ¥". This is the height of ¥~, denoted by H(7").

Let x and y be two linearly independent vectors in #". Then ||x A y|| = NH(?")
where N is the index, in 7~, of the subgroup generated by x and y. Moreover,
Lemma 3 of [6] shows that B

llx A yll < XL(y) + YL(x). (7)

2.3. Roy’s Bracket Operation. The bracket operation ., ., .] introduced by Roy
[12] will be used in a crucial manner in the statement, and proof, of our results. If
X, y, z are three linearly dependent vectors in 73, understood as symmetric matrices,

then the matrix —xJzly (where J= [21 (1)}) is also symmetric, and it is denoted
by [x,y,z]. The importance of this operation in our context is easily seen, for
instance, by considering Lemma 5.5 below. The following relation holds:

det([x,y,z]) = det(x) det(y) det(z).
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Moreover z can be obtained back from x, y and [x, y, z] using the following formula:

det(x) det(y)z = [x, y, [x, y,2]] (8)

which makes sense since x, y and [x, X,g] are linearly dependent (see [12],
Lemma 2.1). At last, since (Jy 2= —det(y)Id we have:

[x,y,y] = det(y)x. 9)

The main property of this bracket is the following slight generalization of [12],
Lemma 3.1 (iii) (with X = max(|xo|, |x1], |x2|) and so on).

Proposition 2.9. Let x,y, z be linearly dependent vectors in 73, Let
A= ZL(x)L(y) + L(z) max(YL(x), XL(y))-
Then the bracket u = [x,y,z] is such that
U<XYL(z)+ A and L(u) < A
Proposition 2.9 will also be used through the following Corollary:

Corollary 2.10. Let k,e,&' €(0,1) be such that e {32 <&’ <1. Let x,y,z be
linearly dependent vectors in </ ., with X, Y, Z large enough in terms of k, €, ¢’ and
& We assume

X,Y<Z, Z < (XY)" and det(x),det(y),det(z) #0.
Then the bracket u = [x,y,z] belongs to .o/ ..

Proof. Let the notation be as in the Proposition 2.9. Then we have A <
Z(xY)" ' < (xY)" T < 1since e + k< 1, and XYL(z) > XYZ ' > (XY)' 7" > 1
since det(z) # 0 (using Lemma 2.8). Therefore U < XYL(z) and L(u) < A, hence

U'™L(u) < (XY)7 7z~ < (xy) (9=,

Since x, y and z have non-zero determinants, u is not zero; this concludes the proof
of Corollary 2.10.

3. Davenport-Schmidt’s Minimal Points

In this section, we recall in paragraph 3.1 the definition and classical properties
of the sequence of minimal points, introduced by Davenport and Schmidt ([5] and
[6]). Then we move to new results on this sequence (Sections 3.2 to 3.4), that are
of independent interest and may be used to study numbers £ such that 3 (£) <2 but
not necessarily (y(£) < 2. The most important results are Proposition 3.6 (which
states that any sufficiently precise approximation is collinear to a minimal point)
and Proposition 3.7 (which deals with linear independence of approximants).

We shall make a frequent use of the notation and results of Section 2.2. Recall
that for any ¢ such that 0 <e <1, we let

o = {xe’\{0}; L(x) <x 79},

with X = max(|xol, |[x1], |x2|), and .. = Z*\{0} for £ > 1. Moreover, we identify
X0 X

a point x = (xg,X1,x2) € 7? with the symmetric matrix oo |
1 X2
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Throughout this Section, we let £ denote an irrational non-quadratic real num-
ber such that 3;(£) < 2. We do not assume anything about Gy(§).

3.1. Definition and Notation. Let £ be an irrational non-quadratic real number.
For any real X > 1, the set of all a = (ag,a,4a,) €73 such that 1 < ap < X and
L(a) <1 is finite, and contains exactly one element for which L is minimal.
Following [5] and [6], we call this element minimal point corresponding to X.
We denote by (g;), -, ; the sequence of all minimal points, in such a way that a; be a
minimal point corresponding to all X such that a; 9 < X <a;;1 . By definition, any
a; is a primitive point of 73 (thatis, g; 0, a;1 and a; » are globally coprime), and any
two distinct minimal points are always linearly independent over Z. As usual, we let
A; = max(|a;ol, |a;i 1], |ai2|) = 1. For any i sufficiently large, we have L(a;) <1/2
so that a;; (resp. a;») is the closest integer to a; & (resp. ai,ogz), and A; <Aj..

From now on, we assume ;(§) < 2. Then Lemma 2 of [6] implies det(g;) #0
for i sufficiently large, hence

1 < Ail(a;) (10)

using Lemma 2.8.

Let Iy denote the set of all indices i such that g;_;, @; and g;,, are linearly
independent. This set is infinite (see [6]); we denote by (ix) the sequence of all
elements of Iy, in increasing order. We let

d,=a

i

We denote by 77 the intersection with Z> of the sub-Q-vector space of Q°
spanned by d, et d;_,, and by H(7") its height (defined in Section 2.2). It follows
from [6] that H(7 ;) tends to infinity as k tends to infinity. Moreover, Lemma 4.1
of [12] (see also Lemma 2 of [5]) is the following result:

Lemma 3.1. For any k and i sufficiently large such that iy < i<i1, the points
a; and a;,.| make up a basis of the Z-module ¥y and we have A;,L(a;) =~ H(7 ).

Let £ € (0, 1], and (&), » | be the sequence of all minimal points in .7, ordered
according to their norms U;. Then, we have

. log Uiy g
(&) =1 —e =
B-(§) mSUp )

(11)
This fact immediately follows from the definition of 3:(§) (see [6]); the point is
that in Eq. (1) we may assume that x is a minimal point.

3.2. Estimates for the Height of 7;. In the following estimates, we assume
B£1(§) <2 and use repeatedly the following consequence of Eq. (11): for any
a> (31(€) we have

Ay < L(g;) ™ and L(g;) < A" (12)
Lemma 3.2. Let ¢ € (0, 1] and i be such that a; € o/ .. Then we have
A1 > H(V A S

where k is the only integer such that i <i<ipy.
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Proof. We have H(77}) =~ A;1L(a;) < Ai1A;7', thanks to Lemma 3.1 and
by definition of .o7..

Lemma 3.3. For any o> 31(§) we have
H(V') > DYy
Proof. Let i = iy1; then the following inequalities hold thanks to Lemmas 2.8
and 3.1:
1< |det(gi717a al+l>|
< Aip1L(a;)L(a;—y)
< Liay)' "ATH(1)
< AYTPH (7).
This proves the Lemma.
Lemma 3.4. For any o> [31(£) we have
(“Vk) > Dl/a
Proof. Let i = i;. The following inequalities hold:

1 < |det(a;_1,a;,a;.)
< Ai1L(a;)L(a;-y)
< H(V)L(g;—y)
< H(V AV

and prove the Lemma.

Remark 3.5. Lemmas 3.3 and 3.4 are optimal when ¢ is the number constructed
by Roy [11] from the Fibonacci word. Actually, for this number we have
H(7) = 2 7 ~ Dk/ 7. Now, let us assume that ¢ is, more generally, constructed
(asin [1] and [3]) from a characteristic Sturmian word w. Then Lemma 3.3 is still
optimal for some values of k; actually, if k is such that A, | = L(Qk 41) " then
the estimates proved by Bugeaud and Laurent imply H(77;) ~ Dk;l However,
Lemma 3.4 is not optimal, as can already be seen from the proof: the upper bound
L(a;, 1) < D, /% can be sharp only if a;, | =d,_,, and there are words w for
which this never happens.

3.3. Importance of Minimal Points. By definition of (3;(&), for any € > 1—
1/61(€) all minimal points belong to .o/, (except for a finite number of exceptions,
depending on ¢). This means that any minimal point is a rather good simultaneous
approximant to & and &2. The following Proposition is a converse statement, and
proves that the approximations provided by the palindromic prefix method (see
Section 5.2) are minimal points (up to proportionality).

Proposition 3.6. Let € >0 be such that ¢ <2 — 31(§). Let x € o/ . with X suffi-
ciently large (in terms of € and &). Then x is collinear to some minimal point a;.
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Question: Is it possible, in Proposition 3.6, to weaken the assumption on € to

e<1=1/51(8)?

A positive answer to this question would be very satisfactory, since the assumption
on ¢ would be optimal. Indeed, let £ be any real number such that 3 (£) < 2, and let
be such that 1 — 1/3;(§) <e<1/2. Let « satisfy e > 1 — 1/a, with 5;(€) < a < 2.
Then we have L(;) < L(a; ;) < A; /" hence | det(a, |, q;, ;)| < AiiA; /",
For i € I, this implies A; | > Ai2 “ hence a1 > 2a;p for i sufficiently large. Let
X; = a; + a;_,, for i € Iy. Then x; is primitive (otherwise Spang(a;,a;_,) N Z° would
strictly contain the subgroup generated by g; and g;_,), and a; o < x;0 < 2a;0 < @jt1,0.
Therefore x; is not collinear to any minimal point; however it satisfies L(x;) <
2L(g;_;) < Ai_l/a < Xi_l/a hence x; € o7, if i € I is sufficiently large.

Proof of Proposition 3.6. We may assume xp > 0. Let us denote by g; the
minimal point corresponding to xo; we have a;o < xo <a;10 and L(g;) < L(x).
Let a > 3;(&) be such that o + £ < 2. Using Eq. (12) we see that

XL(g;)L(a;y) < AinL(a;)? < L(g)* ™"
and
AiniL(a)L(x) < L(g;)' " A; T < AP

Therefore Lemma 2.8 proves that the integer det(x,a;,a;,,) is zero for i suffi-
ciently large in terms of € and &. This implies x € ¥, where k is the index such
that i < i<<igyg.

Let us assume that x is not collinear to g;. Then we have

H(7) < x Al < XL(x) < A7,y < H(77)7 @)

using Eq. (7) and Lemma 3.3. As o + € <2, this is impossible for k sufficiently
large (in terms of € and £). We obtain in this way x = Ag; for some non-zero
integer A, which concludes the proof.

3.4. Linear Independence Properties. The following proposition is very useful
as soon as [3.(£) <2 for some ¢ (see Eq. (11) above):

Proposition 3.7. Let (u;) be a sequence of minimal points, ordered according

to their norms U;, such that
log U;
lim sup (0BT <2.
i—oo T IOg L(ﬂi)

Then:

1. Up to a finite number of terms, (dy) is a subsequence of (u;).
2. For any i sufficiently large, u; is among the d, if, and only if, u;_,, u; and
u;,, are linearly independent.

To prove this proposition, we shall use the following lemma:

Lemma 3.8. Let (u;) be as in Proposition 3.7, and i be sufficiently large.
Denote by n and m the integers such that u; = a, and u;, | = a,,. Then the vectors
Ay Quity -+ Gp_1, G belong to a common plane.
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Proof of Lemma 3.8. Let (3 be such that lim sup jffg%&,-) <3< 2, and ¢ be such
that n <t <m. Then we have
| det(a,_y, a,,a,1)| < AviL{g1)* < Ui L(u;)* < L(u;)*™”
so the integer det(q,_;,q,,a,,,) is zero if i is sufficiently large. This concludes the
proof of Lemma 3.8.

Proof of Proposition 3.7. Let k be sufficiently large, with d; = a,. If d; were
not among the u;, Lemma 3.8 would apply with n<p<m: g, ;, a, and g,
would be linearly dependent. This is impossible, so the first part of Proposition 3.7
is proved.

Let us prove the second part. If u; = g, is not among the d,, with i sufficiently
large, then a,_;, a, and @, belong to a common plane. Lemma 3.8 (applied twice)
proves that this plane contains also u,;_; and u, ;. To prove the converse statement,
assume there is a plane that contains u;_,, u; and &, ,, with u; = @, and i sufficiently
large. Then this plane contains also @, ; and g, ;, by applying Lemma 3.8 twice; so
u; is not among the d,. This concludes the proof of Proposition 3.7.

4. The Main Diophantine Result

This section is devoted to the statement (Section 4.1) and proof (Section 4.2) of
our main diophantine result. This theorem will be the key point in the proofs of
Section 5.

4.1. Statement of the Results. Throughout this Section, we define €, by
e1=(2-=51(9)2=Bi(§) + (2= Ho(§)Bi(E))- (13)

Since (1(£) < fo(€), we have &, = (2 — Bo(€))*(1 + Bo(€)). For instance, if
Go(§) =1+ \/72 (denoted by o, in the Introduction) then £; > 0.232.

This is the number ¢ referred to in Theorem 1.3 stated in the Introduction,
which is contained in the following result (recall that & and % were defined in
Section 2.1, and .o/, in Section 2.2):

Theorem 4.1. Let £ be an irrational non-quadratic real number.

(a) Suppose first By(§) < 2. Choose a real number € such that 0 < e < ey, and
let (u;); > | be the sequence of minimal points in .</., ordered according to their
norms U;. Then, we have

log Uiy

log U;
lim inf >1 and [y(§) = P:(§) =lim SUPM

—1+4o(1)
L(w) = U .
(1) i log U oo’ log U;

i 9
Moreover, there exists a function ) € F such that [u;, u;, u;.,] is collinear to u,
Sor any i sufficiently large. At last, (u;) (modulo a finite number of terms) and
(modulo R) are independent from the choice of ¢.

(b) Conversely, let (v;); > 1 be any sequence of primitive points in 73 such that:

o The sequence of first Coordl;nates (vi0);> | is positive and increasing,

o Asi— oo, L(Q,) _ V;l+0(l i
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e The real number 3 = limsup,_, (logVi.1)/(logV;) satisfies 3 <2,
e For any i sufficiently large, if v;_y, v; and v;,, are linearly dependent then
[0, V3, v;_y] is collinear to v;_,.

Then [(y(§) = 3<2, and (v;) is exactly (up to a finite number of terms) the
sequence (u;) of Part (a).

In Part (a), the assertion on Roy’s bracket is equivalent to u,;,; collinear to
[;, u;, ()] thanks to (8). Therefore knowing 1 enables one to construct the
sequence (y;) by induction. On the other hand, it follows from Proposition 5.1
(proved in Section 5.1 below) that we have

Bo(§) = (1),

where 6(1)) was defined in Section 2.1. However, knowing (y(£) does not deter-
mine ¢ (modulo ). Indeed, there are functions v and ¢/, distinct modulo £,
such that 6(¢) = 6(¢') (see the end of Section 2.1). The numbers &, & con-
structed from them using the palindromic prefix method are such that 5y(§) =
Bo(€') (thanks to Theorem 5.4), but their approximants satisfy completely dif-
ferent recurrence relations.

In Part (b), the last assumption on (v;) is necessary. Indeed, let us consider the
real number £ constructed using the palindromic prefix method (as in [1] and [3])
from the characteristic Sturmian word with slope [0,3,3,3,...]. Then (y(§) =
1.767 ... <2, but the sequence (v;) consisting in all points denoted by d, and ¢,
in Section 4.2 below satisfies the first three assumptions with 5 = 1.868. . ..

Theorem 4.1 can be generalized to the case where we assume [3.(&) <2 for
some very small €. This leads to Théoreme 2.2 announced in [8]; the proof follows
the same lines as the one given here.

4.2. Proof of Theorem 4.1. The proof falls into eight steps. We let £ be a real
number such that [Q(¢) : Q] > 3 and [(y(§) < 2. These are the only assumptions
throughout the first seven steps. The notation of Theorem 4.1 comes into the play
only in Step 8.

Recall that (g;) denotes Davenport-Schmidt’s sequence of minimal points con-
structed from &, and (d,) is the subsequence consisting in all g; such that a;_,,
a; and g, ; are linearly independent (see Section 3.1). As in Section 2.2, for
£€(0,1] we let 7. be the set of all x€Z*\{0} such that L(x) < X*~!, where
X = max(|xol, [x1, |x2]).

The sketch of the proof is as follows. We first construct a sequence (¢;) of
minimal points, such that (essentially) e, is the first very precise minimal point
after d,. We have Dy < E; < Dy, and we show how d,, ¢, and H(77) are in-
terrelated. Then we construct a sequence (w,) of minimal points, which turns out
to be the sequence of “all” very precise approximants; (d,) and (e,) are subse-
quences of this sequence, and other points between ¢, and d,_; are constructed
thanks to an interpolation procedure using Roy’s bracket. The key point of the
proof is the definition and properties of this sequence (w,), and of the function
associated with it. Then Theorem 4.1 follows easily: the sequences (¥;) and (v;) in
Theorem 4.1 are proved to coincide (up to a finite number of terms) with (w,).
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Step 1. Construction of the sequence (e;). Let us fix a real number €, such that
0< ey <ey, where ¢ is defined by Eq. (13). Let (b,), - | be the sequence of all
minimal points in .oZ.,, ordered according to their norms B,. Since [, (§) <
Bo(€) < 2, Proposition 3.7 applies (thanks to (11)) and shows that for any k suffi-
ciently large d; is equal to some b,; then we let ¢, = b, ;.

The sequence (¢; ), - | defined in this way (by choosing e, arbitrarily for small
values of k) seems to depend on the choice of ¢;, but actually this dependence
concerns only finitely many terms, as the following lemma shows.

Lemma 4.2. Let € be such that 0 < € < ;. Then for any k sufficiently large (in

terms of €), d, and e, are consecutive elements of the sequence of minimal points
in .of,.

It is possible to state more precise versions of this lemma (see Lemma 4.5
below). We shall prove the following one now:

Lemma 4.3. Let By €(1,2), and (v;), . | be any sequence of minimal points in
o ,, ordered according to their norms V;, such that

log V;
lim sup 98 Vil

—° T L .
i—moo T log L(Qi) ﬁV

Assume that for some €' >0 with

€< (2-618)2 =618 + (2 - Bv)Bi(9)),

we have ¢, € of o when k is sufficiently large. Then, for any k sufficiently large, d,
and ey are consecutive elements of the sequence (v;); - ;-

To deduce Lemma 4.2, it suffices to apply Lemma 4.3 to the sequence (v;)
of all minimal points in .«7., with &’ =&, <&y and By = 5.(§) < [o(€) thanks
to Eq. (11). The full generality of Lemma 4.3 will be useful in Step 8, since it
turns out that ¢, € .o/ for any €' >0 (as soon as k is sufficiently large in terms
of £).

Proof of Lemma 4.3. Let k be sufficiently large. Proposition 3.7 provides an
integer i such that d, = v,. Since (v;) is a subsequence of (b,), we have V| > Ej.
Let us assume that Vi >E;. Since d;.; is among the v, we have
Dy < E; < Viy1 < Dyy1. Choosing B € (fy,2), we have Vi < L(Qi)_‘g hence,
by Lemma 3.1:

H(7') < EL(d,) and H(7') < ViiiL(e,) < L(d,) "L(ey).

The product of these relations yields, by choosing a € (3;(£),2) and using
Lemmas 3.3 and 3.4:

H(7)? < Ldy)' ™ E]
< DDy < H(y )

hence ¢/ > (2 — a)(2 — a(B — 1)). This contradicts the assumption on ¢’ if o and
(3 are close enough to 3;(&) and Sy.
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Step 2. Relations between d, and e;. The following properties will be used
many times in the proof of Theorem 4.1, sometimes without reference:

L(d) =D, Lie)=E 'V (14)
Dy <E <Dy,  E <D (15)
H(v DY < E (16)

D/* <H(Y), DI <H( ). (17)

In these formulas, o and (3 are chosen such that 3;(§) <o <2 and (y(&) <5< 2;
in the applications, they are assumed to be sufficiently close to 5;(£) and Gy(§).
The inequalities hold for k large enough (in terms of « and ). The symbol o(1)
denotes a sequence (possibly depending on « and [3) that tends to zero as k tends to
infinity.

Equations (14) and (15) follow immediately from Lemma 4.2. Thanks to
Lemma 3.1, they imply (16). At last, Eq. (17) follows from Lemmas 3.3 and 3.4.

We will use repeatedly the following consequence of these relations:

o(1 o(1 0
Dk():EkH_Dki%* (7/k)<)-

Step 3. Construction of a sequence (w,) of primitive points. Let k be a suffi-
ciently large integer, say k = ko. We define now an integer s; = 1, and points
nék), . ( )€ 7?, as follows. To begin with, let nék) =dy,,. For any 0 >0
such that n( ) is defined and N¥ > Ey, we let n) ll be the primitive element of
73, with non-negative first coordinate, collinear to [n(F), d,, e,]. At last, we let s; be
the greatest integer ¢ for which ng) is defined (and s; = +o0 if ng) is defined for
any o).

We let (w,), - | be the sequence of all points n{*), with k > ko and 0 < o < s,
ordered according to their norms W,. Since det(d,) and det(e;) are non-zero for k
sufficiently large, we have det(w,) # 0 for ¢ sufficiently large.

Step 4. First properties of the sequence (w,). In this step, we prove the follow-
ing lemma:

Lemma 4.4. We have

1+o0(1)
Sk < as k — oo, 18
22819 (18)
L(ﬂgk)) _ N(gk)—l—i—o(l)’ (19)

and
(k) ini ~ ; =N%s .. s NB = p,:
all n”) are minimal points, vz/l)th Diy1 =Ny’ > >Ny, Dy; (20)
in particular n< ) =d, and Ny | = €.

Accordingly, sy is finite.
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Proof. Thanks to Eq. (14), Proposition 2.9 yields, fork > ko and o € {1,... s }:

NO < NY DEY and La®) < L@ D VE. (21)
By induction on o, this implies
N® < Diyy (DyE, )7 (22)
and
L) < D (0 E) (23)
for 0 €{0, ..., s}, where the sequences involved in the notation o(1) tend to 0 as

k tends to infinity, uniformly with respect to o. Since L(n®))N% > 1, it turns out
that (22) and (23) are actually equalities.
Moreover, (16), (17) and (21) imply

N <N (24)
if k is large enough and 1 < 0 < ;.

Let us prove (18) now. Let k > koand 0€{0,..., s — 1}. Using Egs. (17) and
(22), and the fact that N¥) > E, we obtain:

H(ﬁ/‘k)l/(Zfoz) > Dk+1 2 D;{TEI((U+1)(]+U(])).
Now Eq. (16) yields
H(nd)l/Qfa) > H("Vk)<ﬂ+l>(l+()<1))Dll{+Uo<l). (25)

If (18) fails to hold then for infinitely many such o then we have (o + 1)(1+
o(1)) >1/(2 — «) (if « is chosen small enough), hence (25) yields 1 + go(1) <0
and (using Eq. (17))

1

which implies

1
nH(1 )< —-—
(+ 1)1 +o(1) € 5——a
This contradiction concludes the proof of (18). In particular, ¢ is bounded uni-
formly with respect to k, hence go(1) = o(1). Therefore the following inequality
follows from (17), (22), and (23):
NOLE®Y < H(77)°"  for any 0 €0, ..., s} (26)

Now H(7) < ED; ™ < E, < NWifoe{0,... s — 1}.Inthis case, Eq. (26)
and Proposition 3.6 imply that Qf,k) is a minimal point. Let us conclude the proof of
(20) now.

We know that n< )71 is a minimal point, with N( ) = E; hence L(gﬁfﬂl) <
L(e;). Egs. (14), (15) and (21) yield

L) < oW, (27)
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If NS( ) < Dy then (27) gives n( ) E ,52/0“ otherwise we have N<k> D >

/ = H(V k)l/ % and (26) 1mp11es n 6&/,,( Therefore Eq. (19) holds in both
cases Then Proposmon 3.6 proves that n(A) is a minimal point, say a;. If i < i — 1
(that is, N < Dy) then Egs. (27) and (17) yield

DI < H(V 1) ~ DiL(g;, 1) < DiL(n ()) DZ(I)

which is impossible. Therefore N{) > Dj; but we have also N < E;. by definition
of s;. So n( ) is a minimal point in .o/, () between d; and ¢, distinct from ¢;.
Lemma 4.2 proves that n( ) =d,.

By definition of n( ) thls proves that d,, is collinear to [ﬁifll,dk,gk]. Eq. (8)
implies that ¢, is collinear to [Il§f)71,d od k], hence to ngll thanks to (9). This
concludes the proof of Lemma 4.4.

Step 5. Connection between (w,) and of .. The following result is a stronger
version of Lemma 4.2:

Lemma 4.5. Let ¢ € (0,¢y), and (u;) be the sequence of all minimal points in
o/ -, ordered according to their norms U;. Then the sequences (u;) and (w,) coin-
cide up to a finite number of terms.

Proof. Eq. (19) means L(w,) = Wt_Ho(l), and shows that w, belongs to .<Z, for

¢ sufficiently large in terms of . Assume there is a minimal point g; in .7, with j
(k)

—o+1 and

arbitrarily large, such that W; <A; <W, ;. Then we can write w, =n
W, = n¥ for some k and some o€ {0,...,s — 1}. Lemma 3.1 yields

H(/ ) < AL@RY)) and H(7) < NYL(g)

hence, by choosing € (3(£),2) and B € (5y(£),2) and using (22), (23), (15), and
17):
—lto € o € L a0(B-1)+o
H(1 ) < AED; Y <« D DT < H(ypate- Do),

Since € < €1, this gives a contradiction when « and ( and sufficiently small, and k
is sufficiently large. This concludes the proof of Lemma 4.5.

Corollary 4.6. We have

and

for any e €(0,¢).

Proof. The first equality is nothing but Eq. (19). The second one follows from
it, thanks to Eq. (11) and Lemma 4.5.

Step 6. Linear dependence between consecutive terms of the sequence (w,).
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Lemma 4.7. Let t be a sufficiently large integer suchthatw, |, w,and w,, | are
linearly dependent. Then the bracket [w,,w,,w, | is collinear to w,_,, so that
w,w,w, ] is collinear to w,. .

Proof. Thanks to Corollary 4.6, Proposition 3.7 applies (since () <2) and
provides an integer k such that D; < W,_; < W, < W,;| < Dy . By construction,
there exist non-zero integers A, X' such that

W, =Wy, dy, el = —w,Je Jd,
and
Nw, = [w,,dy, e] = —w JeJdy.
This implies
Wow,wo] = —wdw, Jw,

= Ai]ﬂr(JWzH )2J§k‘]dk
=det(w,, DA " Nw,_,

since (Jg)2 = —det(x)Id for any x € 7> identified with a symmetric matrix. This
concludes the proof of the first statement of Lemma 4.7; the second one immedi-
ately follows from Eq. (8).

Step 7. Construction and properties of 1. Let [3 be such that 5y(£) < < 2, and
= (3/2. Corollary 2.10 proves, thanks to Corollary 4.6, that [w,, w,, w, ] €.%,).
By Proposition 3.6, this bracket is collinear to a minimal point for ¢ sufficiently
large; and by Lemma 4.5 this minimal point belongs to the sequence (w,).

Therefore for any sufficiently large integer ¢, there exists a unique integer,
denoted by 9(t), such that [w,, w,, w,,,] is collinear to w . If # is not sufficiently
large, we let ¥(¢) =t — 1.

In this definition, ¢ depends on the choice of a threshold for determining when
t is “sufficiently large™, on the integer k( chosen at the beginning of Step 3 (in the
sequence (w,), the index ¢ is shifted if the choice of kj is modified), and on finitely
many arbitrary choices of initial values (see Step 1). Actually this dependence is
very mild, as shows the following lemma.

Lemma 4.8.

o The function 1 belongs to the set F defined in Section 2.1, and up to R it
depends only upon &.
e For any t sufficiently large, the following assertions are equivalent:

@) v(r) =11
(i) w,_y, w, and w, | are linearly dependent.
(i) w, is not among the d,.

Proof. Let us start with the second statement. Thanks to Corollary 4.6,
Proposition 3.7 applies and proves that (ii) < (iii). Since w,, w,,; and
w,,w,,w,, ] are always linearly dependent, the implication (i) = (ii) is obvious.
At last, the implication (ii) = (i) follows from Lemma 4.7.
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Let us prove the first statement now. Let ¢ and k be sufficiently large integers
such that w, = d,. Proposition 2.9, Corollary 4.6, and Egs. (16) and (17) yield,
since w,, | = ¢;:

W ” < W2 1+0( ) < W1+0( ) (Vk> < Wl 1/a+o(1)

hence 9(t) <t — 1. As @/} is defined by (z) =t — 1 for small values of ¢, this
proves that (¢) <t — 1 for any .

Let (U%); > o be the sequence associated with 1), as in Section 2.1; namely, (¢J;)
is the increasing sequence of all indices ¢ such that ¢(7) <t — 2. Since (d,) is a
subsequence of (w,), the second part of Lemma 4.8 shows that

wy, =d, foranyk

up to shifting the index k; in particular, the sequence (v) is infinite.

Let us prove that 1) is asymptotically reduced (as defined in Section 2.1, that is
W(0r) < Vk—1 and P(Ix) # (9_1) for any k sufficiently large).

First, assume that 1)(J) > v;_1 with k sufficiently large, hence Wy = Dy,
with7 = 9 (i.e.,w, = d}). Thenw,,) is aminimal point betweend,_; andd; = w,,
sothatw ) € ¥ x—1 = Spang(d;_;,dy) nz3. Butw,, is collinearto [w,, w,, w, ],
so that w ;) € 7% = Span@(w,,wtﬂ) NZ3. Now ¥, NV = Zd, by definition
of the sequence (d,), therefore W) is collinear to d;, = w,: this is impossible. So
we have () < 9;_; for any k sufficiently large.

Let us assume now that () = t(¥—;) with k sufficiently large. Then
W) = Wy, ,) 1S proportional to both [dy,dy, e] and [dy_,d;_;, ;] so it
belongs to ¥ "y_1 N ¥y = Zd,. This is impossible since () < ¥ — 1, so that
(%) £ 1P(9_1) for k sufficiently large.

This concludes the proof that v is asymptotically reduced. Using Corollary 4.6
(see also Lemma A.2 of [7]), it is not difficult to deduce from the property Go(&) <2
the existence of a ¢ such that ¢)(¢) > t — ¢ for any . So we have proved that ) € F.

As noticed before the statement of Lemma 4.8, 1 depends only on the choice
of some initial values. If these choices were different, then v)(n) would be replaced
(for n sufficiently large) with ¢)(n + ¢) + ¢’ for some integers ¢, ¢’ independent
from n. This means exactly that ) remains the same modulo %, thereby conclud-
ing the proof of Lemma 4.8.

Step 8. Proof of Theorem 4.1. Let us prove Part (a) first. Let € € (0,¢;), and
(u;) be the sequence of all minimal points in .7, ordered according to their norms
U;. Up to shifting indices, Lemma 4.5 shows that u; = w; for any i sufficiently
large (and the value of ¢ has an influence only on the shlft) So Corollary 4.6 im-
plies L(;) = U7V and (o (€) = f.(€) = Tim sup,_.,. S5,

Let i be sufﬁcnently 1arge and k be such that D < W;_| < Dy;. Since (22) is
an equality, we have (using (16) and (17)):

WW_l _ E1+0( )Dk > H("%k)1+0<1) > ‘/Vl'2__1a+0(1)

for any (fixed) ac€ (51(£),2), hence

1 ;
lim inf 28 W

>3- >1
minf W Bi(8)



Palindromic Prefixes and Diophantine Approximation 29

Since the function ¢ € % has been constructed in Step 7, this concludes the proof
of Part (a).

Let us prove Part (b) now. Let (v;) and 3 <2 be as in Theorem 4.1. Since
L(y;) = Vl-_Ho(l), for any i sufficiently large we have v; € o/.,, and v; is a minimal
point thanks to Proposition 3.6.

Let k be sufficiently large. Proposition 3.7 shows that d, = v; for some i, and
Lemma 4.3 (applied with a small & >0 thanks to Corollary 4.6, and By = )
yields ¢, = v;,;. Let f be such that w, = d, (that is, t = J; with the notation of
Step 7). We have w, = v; and w, | = v;,; let us prove by induction that w,. , =
v, for any £€{0,..., 4y}, where £ is such that W, ¢, = Dyy1.

We may assume £, > 2, otherwise this is proved already. Let £ € {1,...,6y — 1}
be such that w,,,=uv;,. Since fy>2, we have Dy < W1 <W, <
Wiier1 < Diy1 so w,,, is not among the d;. Lemma 4.8 yields ¢(r+¢) =
t+ ¢ —1, so that w,,,, is the primitive point, with non-negative first coordinate,
collinear to [w, ,,w,, s, w,.,_]. By induction hypothesis, this bracket is equal to
[Vit0s Vv Vipor]- Now Vigy = Wiy < Wigp1 < Diyy yields Viggyy < Diyy, since
(dy) is a subsequence of (v;) up to a finite number of terms. So v;,, ;, v;,, and
;o4 are linearly dependent. By assumption on the sequence (v;), this proves that
Vi o,y is collinear to [v;,,,0; 9,04y ], and to w, , . Since both vectors are
primitive and have non-negative first coordinates, we have w, ,. | = U; s (5
thereby concluding the induction.

Since this result holds for any k sufficiently large, we have proved that the
sequence (v;) is obtained from (w,) by shifting the index (up to a finite number of
terms). In particular, we have 8 = (y(&) thanks to Corollary 4.6, thereby conclud-
ing the proof of Theorem 4.1.

5. The Palindromic Prefix Method

Roy’s construction [11] of a number & such that 3;(£) = ~ makes a crucial use
of a specific word w with many palindromic prefixes, namely the Fibonacci word
(see Example 2.3 above). Bugeaud and Laurent have generalized his construction
[3] to any characteristic Sturmian word w (see also [1]). We explain here how to do
it, more generally, with any word w such that 6(w) < 2.

This method produces a real number &; the key property (proved in Section 5.2
below) is that

B1(€) < Bo(&) < 6(w). (28)

The main difficulty in proving (28) is to study the asymptotic behaviour of a sequence
defined by induction using Roy’s bracket. This was done by Roy and Bugeaud-Laurent
by using specific properties of the words w they were considering; we do it in the
general case in Section 5.1. The proof is elementary, but rather technical.

The difficult diophantine question is to know whether (28) is an equality. Using
the results of Section 4, we prove in Section 5.2 that

Bo(§) = 6(w)
but we do not know whether the equality 5;(£) = (Gy(€) holds for a general word w
(it does if w is characteristic Sturmian, as proved by Bugeaud-Laurent).
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5.1. Asymptotic Behaviour of Some Sequences. The following Proposition (in
which (7)) is defined in Section 2.1) will be useful in Sections 5.2 and 5.3 below. It
is a more general version of the arguments used in [11] (end of the proof of
Théoreme 2.2), [10] (Lemma 5.2) and [3] (Lemma 4.1). The proof essentially
involves Lemma 5.2 below, which is a generalization of Proposition 6.2 of [7].

Proposition 5.1. Let { € R and € F . Let (v,), - | be a sequence of non-zero

points in 7> such that [Uy, Uy Uyt B8 collinear to Uy(n) Jor any sufficiently large n,

L(y,) = v, "W (29)
and V1 = V ' for some 6> 1 and any sufficiently large n. Then we have
logV,
lim sup —2 2 — (4. (30)

n—+o00 10g Vn

Proof of Proposition 5.1. For any n>1, let )\, €Q* be such that

[0 0y Uy 1] = Ay ()~ Proposition 2.9 and Eq (29) yield |\, |Vy(ny < V,%anrlfm(w

and | Ay |L(vy(n)) <V 2*”( )V,..1 hence |\, Vi) L(Uypn)) < vety ill). Therefore

(10) yields |)\ | <V Now let a,,b,€Z be coprime integers such that

n+1
An = a,/b,. Then y(n) € bn 73, so Eqgs. (29) and (10) imply |b,| = n+1), hence
la,| =V, il) Finally |)\ |=V, J£1>, and the above inequalities (together with Eq. (10))
imply V41 < V,%*”( and Vi, = V,f*"< 'V f +1 Therefore applying the following

lemma with u,, = logV,, is enough to conclude the proof of Proposition 5.1.

Lemma 5.2. Let € 7, and (u,), . | be a sequence of positive real numbers
such that

Upy1 = 2Uy — Uj(n) + O(Mn)

and iminf u, 1 /u, > 1. Then we have

lim sup L = §(4p). (31)

n—+oo Up

In the proof of Lemma 5.2, we shall use the following result:

Lemma 5.3. Let € .7, and (i), | be an increasing sequence of positive
integers such that

Upy = 2U, — Uy(y) for any n sufficiently large.
Then we have liminf i, | /i, > 1 and limsup i, 11 /it, = 6(1).

Thanks to this lemma, we see that in Lemma 5.2 the assumption lim inf u, 1/
u, > 1 is automatically fulfilled if wu, 1 = 2u, — uy,) for any n sufficiently large.
However, as it stands, Lemma 5.2 would be false without this assumption since u,
could be a polynomial in 7.

Proof of Lemma 5.3. The assertion on the upper limit is exactly Proposition 6.2
of [7], already recalled in Section 2.1. Let us prove the statement on the lower limit.
Let (%) be the sequence associated with 1, as in Section 2.1 (namely, this is
the increasing sequence of all integers n such that ¢)(n) < n — 2). For k sufficiently
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large, we have (1) < U — 1 (since Yp€F) and p(n) =n—1 for ¥y <n<
J¢11 hence:

ﬁﬁkﬂ—l = 212191(“ - ﬁﬁk—l = ﬂﬁkﬂ + ﬁﬁkﬂ—l + ﬁﬂkJrl - 12191\' - 12191(_1

(as in the proof of Lemma A.1 of [7]). This implies (by induction) the existence of
some integer ¢ such that uy, 1 — ity, — ity,—1 = c, hence iy, 41 = f—‘ﬁm, for any k
sufficiently large (since i, < 2u,_; for n sufficiently large, and &, — 00). Now for
e <n < Y we have

1 1 1

itn - ﬁnfl = ﬁﬁkJrl - 12’19;( = Zﬁﬁk = 2_31219“171 = 2_312}171
where B is such that ¥y | — B < 1)(%+1) < U hence 19k+1 < Y + B — 1 forany k;
such a B exists since 1 € . Therefore we have &, > (1 + 2~ )un, | for any n
sufficiently large, thereby concluding the proof of Lemma 5.3.

Proof of Lemma 5.2. Let ng be a sufficiently large integer. We let €, = u,, 11 — uy;
then g, >0 for n > noy. Let ¢, € R be defined by u,11 = 2u, — wy () + 6pttny1. Then
bp — 0 (since u, < u,y1 < 3u, for n = ngp), and

n—1
En = ( > 6;) + Onltny1.
)

J=¢(n
Let us consider an increasing sequence (ﬁn)n > 1 of positive integers such that
Upi1 = 2u, — Uy, for any n > ny. As recalled in Lemma 5.3, Eq. (31) holds for
the sequence (u,,) The associated sequence (6 ) is identically zero, and (&,) satis-
fies &, = ZJ o )51, for n = ny.
We consider now the quotient o, = ¢,/¢,. We have
n—1

n—1
§ a]g] = § € =&n— 6nun+l - anén - 5nun+l

J=(n) j=tb(n)

hence
n—1 g
j y
oy = ~ —a; + 0, 32
' i Evn) T T e s (32)
by letting
Up+1 1
8 =6, Z =6
n Unt1
Let 0<n<1 be such that 1 > 77u,, for any n > ng. Then we have |0/ | <

7n~16,| hence &, — 0. Letting o/, = (1 6’)04,,, Eq. (32) yields

n—1

« 33
Jj=(n) Eun +E" ! >

Since € Z, there exists B be such that ¢(n) >n— B for any n > n.
For n = ngy, let I,_; denote the convex hull of «, p,...,,—; in R, say
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I, = [Cn,lan,l,gl_lan,l] with Cnfl <1< C}{L—l' Let u, = max(l — (5:,”%)
(since we may assume |6/ | < 1/2 for any n > ng). Then we have 1, > 1 and p,, — 1.
Let us prove (by induction on £) that for any integers n = ny and ¢ > —1 we have

1 1+ (B! = 1),
O PRWAS ( T )n-1 el
Hnln+1** Pnte B
1+ (B —1)¢
Hnln+1 **° Une BZJFI n| Qp—1 |- (34)

This is true for £ = —1; let £ > 0 be such that (34) holds forany ¢’ € {—1,...,¢ — 1}
(with the same n, which remains fixed). For any j such that w(n +0) <j<n+
¢/ — 2, we have
gn—lan—l
Hnfln+1 *** Upo—1

by using the definition of 1, if j < n — 1, and the induction hypothesis otherwise.
For j = n+ ¢ — 1, the induction hypothesis reads

Oéj>

1 1+ (B = 1),
Q-1 = + ( 7 )Cn 105,,71.
Mnfbpt1 " Ppte—1 B
Now Eq. (33) implies that o, ¢ 18 a weighted average of au(,4¢), - -+, Qppr—1 With

non-negative weights; moreover the weight of o, o1 i &uo-1/(Epnre) + -+
Ente—1) = 1/B since the sequence (€,), -, is non-decreasing. Therefore the pre-
vious lower bounds yield:

nz=n

. 1 L+ (B = )G
Qi = Bi+1 n—1-
Mnfnt1 - Undr—1
Now
1 ! > 1 /
Oy = —(——Q Z — Q.
n+ 1 — 6;14-( n+{ Lt n+{

thereby proving the lower bound in (34). The upper bound can be proved in the
same way, concluding the proof of (34).
Applying (34) for £ =0,1,...,B — 1 yields

1+ (B2 —-1)¢_,

Gripoi
1 < ontB—1 < 22 e 2 .
:u’n:u’n+1 :un+Bfl 1 4 (BB _ l)cn—l

= Cn—&-B—l

From this inequality we obtain

/
0 2Bl
Cn+Bfl
2,2 2 B /
BF—1 — o
< Miui+l .. .'Uﬁ%+371 -1 + /J’ny’n+l lunJrBfl( )( n—1 C l)

1 + (BB - I)Cn—l

B—l Q—/
2.2 2 2 2 2 _1
< Fonlonsr = Hnip—1 — 1 +Mn/1’n+l o 'ﬂn+B—17 <Cnl - 1>
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Since 1, — 1, this proves that ¢ 5 ;/Gi¢s—1 tends to 1 as £ tends to infinity,
from which we deduce o1 ¢p—1/0u1B—2 —r—o0o 1. Taking B consecutive values
for n yields oy /ay—1 —¢—oo 1. Since 1 < &,/&,-1 < B for any n > ny, this implies
En/En—1 = En/En—1 + 0(1), hence

En En ,
=——+o0(1) forany fixed t, asn— oc. (35)
En—t  En—t

Moreover the quantities ¢, /¢,—, and €,/€,—, remain (as n varies) in a fixed interval
lar, b;] C (0,+00) depending only on 7, so that we have also 2=t = &=t 4 o(1).
For any T > 1, let us consider

+1 — Up—T n+1 — Un—T

. Mn =~ . U
or = limsup and 67 = limsup -
n—o0o Up — Up—1 n—0o00 Up — Up-1

The previous relations, and the definitions of ¢, and &,, yield

Upy1 — Up-T 1 1

En— En—
Up — Up—T Z—hr‘l"l‘;_”]

1 _ Upyr —Up-T

:1+é"~—7T++€'1—71+0(1) ﬁn_’]n—T
En En

+o(1).

Letting n tend to infinity, we obtain 7 = §T for any 7 > 1. Now we are going to
compute, separately, the limits of 67 and é7 as T tends to infinity.
Let us start with 7. We have

Unil _ Uy T
Upy1 — Up-T Uy U,
Up — Up—T 1-— Hast

Un

with 0 < “=2 < (1 —n)" for any n > ny + T, hence

Un

U Upi1 — Up_ 1 u
n+1 N (1 . 77)T < n+1 n—T < n+1 .
T
Un Up — Up—T 1— (1 — 77) Un

Letting n tend to infinity, we obtain:

. Upt1 T 1 . Upt1
limsup—— | — (1 — <or< — | limsup—— |,
(}Hmp ) o ser 1—(1—n>T(mp )
thereby proving that
lim 67 = lim sup@.
T—o0 n—oo  Up

Now Lemma 5.3 yields lim inf% > 1, therefore the same arguments give

lim 67 = lim sup 2" = 8(x)).
T—o0 n— 00 Un
Since 6y = gr for any T, invoking the unicity of this limit enables us to con-
clude the proof of Lemma 5.2.
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5.2. The Palindromic Prefix Method. Let w be an infinite non ultimately
periodic word such that 6(w) <2. As in Section 2.1, we denote by (n;); | the
increasing sequence of all lengths of palindromic prefixes of w. As mentioned in
Section 2.1, the word w can be written on a finite alphabet .o7.

We consider an injective map ¢ : .o/ — N* (which is just another way of
saying that w can be written on the alphabet of positive integers). Roy’s idea
[11] is to consider the real number &, , defined by the infinite continued fraction
expansion

1

iw,gc = [O,gO(WO,QO(Wz),(P(Wﬁ, e ] =0 +m

Since w is infinite and not ultimately periodic, &, is neither rational nor quadratic.
Let p,/g, denote the n-th convergent of &, .; the classical properties of con-
tinued fraction expansions (see for instance [13], Chapter I) give |g.£ — p,| < ¢!

and:
[qn qnl}:[ﬂwl) 1Hw<wz> 1]...[@%) 1] (36)

Pn DPn-1 1 0 1 0 1 0

For n = n;, the finite word ww; ... w, is a palindrome, so that this product is a
symmetric matrix, hence g,,_; = p,,. In this case, we have simultaneous rational

approximants to &, , and gzv ,, with the same denominator, namely:

|qn & — Pni| < qn_,-l }

|Gn, 3\/,@ = Pu—1] = |(@n&wp — Pn)éwip + (@n—1&wp — Pri—1)| < (1 + fw,ga)qn_,l_y
(37)

This gives L(v;) < cV;™! where v; = (¢, Pn;>Pn,,) €Z° is the vector correspond-

ing to the symmetric matrix (36), and c is a constant depending only on w and ¢.
The definition of (y(&,.,) gives immediately (as in [8]):

log V;
Bo(§wee) < limsup o8 Litl

. 38
i—00 10g Vi ( )

Our main result asserts that equality holds, and gives the value of this upper limit
in terms of w:

Theorem 5.4. We have (&, ;) = 6(w).

The proof also shows that the function 1 associated with £ (in Part (a) of
Theorem 4.1) is the same, modulo £, as the one associated with w (in Theorem 2.2).

Question. Does the equality 3 (&,.,) = 6(w) hold?

When w is the Fibonacci word (considered by Roy, see Example 2.3), Davenport-
Schmidt’s lower bound yields v < 31 (&4.,) < Bo(&w,e) = 6(w) = 7, hence equal-
ity holds. For any characteristic Sturmian word, Bugeaud and Laurent have proved
[3] that equality always holds. Using the methods introduced here, it is possible to



Palindromic Prefixes and Diophantine Approximation 35

generalize this result to any word w equal modulo %’ to a characteristic Sturmian
word (where %' was defined in Section 2.1).

The proof of Theorem 5.4 falls into two parts. First, the analytic study (Section 5.1)
of the asymptotics of the recurrence relation associated with w enables us to
prove that limsup,_, lﬁﬁgv"'jil = 6(w). Then Eq. (38) implies the upper bound in
Theorem 5.4: this upper bound is only of combinatorial, and analytic, nature. For
the lower bound, one has to apply Theorem 4.1: diophantine properties really
come into the play.

In the proof of Theorem 5.4, we shall use twice the following lemma (see [7],
Section 5.1):

Lemma 5.5. Let iy, iy and i, be positive integers such that min(n;,,n; ) <
ni, < n;, + n;,. Then the following statements are equivalent:

e The prefix of w with length n;, + n;, — n;, is a palindrome.
o The vectors v, v; and v;, are linearly dependent.

Moreover,

o Ifiy =i and n;, = n;, — n;, then these statements hold.
o [f these statements hold then denoting by i the integer such that n; = n;, +
— n;, we have

n;,

[Viy» iy V3] = E 0 (39)

iy
and m; = 7ri07ri;17rl~l, where T; is the palindromic prefix of w with length n;.
Proof of Lemma 5.5. To begin with, let us assume i, > i; and n;, > n;, — n;,,

and prove that the prefix of w with length n;, + n; —n;, is a palindrome. Let
1 <p < (n;, +n;, —n;,)/2; then we have p < n;, hence:

2

Wy +n;) —niy+1—p = Wnyy—nj +p = Wny +1-p = Wp

by using successively that m;,, m;, and m; are palindromes.

Let us prove now that the first two statements are equivalent, and at the same time

that (39) holds. We use the crucial formula (introduced in this context by Roy [12]):
det(MiO,Ml-l, iz) = Trace(JMl-OJM,-QJM,-I)

(i 1 (1)} .Now a

matrix M is symmetric if, and only if, Trace(JM) = 0. Therefore the linear de-

pendence of v, , v; and v;, means that the matrix M, JM;,JM; , which is equal to

j:MiOM;IMi], is symmetric.

On the other hand, the prefix of w with length n;, 4+ n;, — n;, is a palindrome if,
and only if, the matrix M given by Eq. (36) with n = n;, + n;, — n;, is symmetric
(by unicity of such a decomposition). To conclude the proof, it is therefore enough
to prove the following equality:

M = M;,M;,'M;,. (40)

where M; is the symmetric matrix that corresponds to v;, and J = [

To prove (40), we may assume i; < ip (by interchanging i; and i, if necessary).
Then m;, is a prefix of m;,, hence there is a word b such that m;, = m;,b. The word b
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is a suffix of 7;,, therefore its mirror image b is a prefix of 7;, (hence of w) since 7;,
is a palindrome (i.e., m;, = Ti,). Now b consists in n;, — n;, < n;, letters, therefore
b is a prefix of m;,. As 7, is a palindrome, b is a suffix of 7;,: there is a word ¢ such
that m;, = cb. Finally, we have 7rl-07rl.’217r,»] = cb(wilb)71w51 = c. As c is the prefix of
w of length n = n;, + n;, — n;,, Eq. (40) is proved. This concludes the proof of
Lemma 5.5.

Proof of Theorem 5.4. We consider the sequence (v;) defined right after Eq. (37),
and we let ¢ € Z be a function associated with w as in Theorem 2.2. In particular,
we have 8()) = 6(w).

Let i be sufficiently large. Since n;y1 = 2n; — nyy;), it follows from Lemma 5.5
(applied with iy =i; =i and iy = i + 1) that [v;, v;, ;4] = F vy

In order to apply Proposition 5.1, we need rough estimates for V;. Let u be a

product of n matrices of the shape [cll (1)] with 1 < a < €. Then it is not difficult

(see for instance [3], Eq. (11) p. 788) to prove that 2I"/? < U < (2Q)". Letting
Q = max ¢(.«7), this implies V; < (2Q)" and V;,; > V;2["+1=%)/2 Now Lemma
5.3 yields liminf n;y /n; > 1, hence Vi > Vf for some 6 > 1. Therefore Proposi-
tion 5.1 applies, and gives

. log Vi
h?ligp og V; 6() = 6(w).

Now the points v; are primitive (since gcd(gy,,pn,) = 1), have positive first
coordinates g,,, and are ordered according to these first coordinates. Moreover,
let i be such that v;_;, v; and v, ; are linearly dependent. Lemma 5.5, applied with
ip=1i—1,i; =i+ 1 and i, =i, proves that n;y; + n;_; — n; is the length of a
palindromic prefix of w. Since this length is strictly between n;_; and n;;4, it is
equal to n;, so that n;,; = 2n; —n;_ and (i) =i — 1. Then, as noticed in the
beginning of the proof, [v;, v;, v;,,] is collinear to v;_;. Using Eq. (8), this is enough
to apply Part (b) of Theorem 4.1, and conclude the proof of Theorem 5.4.

5.3. Proof of Theorem 1.1. Let £ be an irrational non-quadratic real number
such that 3y(§) < 2. Denote by (u;) the sequence in Part (a) of Theorem 4.1 (with
£ = £1/2, say), and by ¢ € Z the associated function. Using also Proposition 5.1,
we have (y(€) = 6(). Now, choosing a word w associated with ¢ as in Theorem
2.2, we have §(w) = 6(1)) (see Section 2.1), so that 3y(&) = 6(w).

Conversely, if w is a word such that 1< §(w) <2, then w is not ultimately
periodic and Roy’s palindromic prefix method provides (for any embedding
¢ : .o/ — N¥) an irrational non-quadratic real number & for which Gy(&y,) =
6(w) thanks to Theorem 5.4. This concludes the proof of Theorem 1.1.

6. Open Questions

Given a non ultimately periodic word w such that §(w) <2 (or an associated
function € #), it would be interesting to study more precisely the set of all
numbers £ that correspond to 1 (as in Theorem 4.1). They all satisfy Gy(&) =
6(w); but to which extent do they all “essentially” come from the palindromic
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prefix method applied to w? Answering this question would lead to a better under-
standing of the numbers ¢ such that Gy(§) < 2. For instance, does there exist a &
such that 31 (£) < Go(€) <2? More generally, what can be said about the function

e (5 )7

The methods used in this paper do not apply to numbers £ such that 3y(§) is
finite but greater than (or equal to) 2. For instance, it is a completely open problem
to determine the set of values > 2 taken by the exponent (3y(§).

The ““Fibonacci sequences” introduced in [10] provide, when w is the Fibo-
nacci word, an arithmetic enrichment of the palindromic prefix method. How does
this enrichment generalize to other words w such that §(w) < 27 Working this out
would yield new examples of numbers £ such that 3, (£) <2, and would be a first
step towards generalizing the results proved in this paper to the exponent 3;(§).

At last, Jarnik has proved [9] (see also [10] and [3], end of Section 7) that 3; (£)
is intimately connected to the ““dual’’ problem of finding polynomials of degree 2,
with not too large integer coefficients, that assume a small value at the point &.
Maybe some exponents (depending on ¢ € [0, 1]) can be defined and studied in
relation with this dual problem.
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