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Abstract

In this paper we refine the Ball-Rivoal theorem by proving that for any odd integer
a sufficiently large in terms of ε > 0, there exist b (1−ε) log a1+log 2 c odd integers s between
3 and a, with distance at least aε from one another, at which the Riemann zeta
function takes Q-linearly independent values. As a consequence, if there are very few
integers s such that ζ(s) is irrational, then they are rather evenly distributed.

The proof involves series of hypergeometric type, a trick to apply the saddle
point method with parameters, and the generalization to vectors of Nesterenko’s
linear independence criterion.

Math. Subject Classification (2010): 11J72 (Primary); 33C20, 11M06, 11M32
(Secondary).

Keywords: Linear independence, irrationality, Riemann zeta function, series of hy-
pergeometric type, saddle point method.

1 Introduction

Conjecturally, all values of the Riemann zeta function at odd integers s ≥ 3 are irrational,
and together with 1 they are linearly independent over the rationals. However very few
results are known in this direction. After Apéry’s breakthrough, namely the proof [1] that
ζ(3) is irrational, the next major result is due to Ball-Rivoal ([2], [11]):

Theorem 1.1 (Ball-Rivoal). Let ε > 0, and a be an odd integer sufficiently large with
respect to ε. Then the Q-vector space

SpanQ(1, ζ(3), ζ(5), . . . , ζ(a)) (1.1)

has dimension at least 1−ε
1+log 2

log(a).

Except when a is bounded, this is the only known linear independence result on the
values ζ(s) for odd s ≤ a. Trying to find integers s such that ζ(s) is irrational, the following
result of Zudilin (Theorem 0.2 of [12]) has also to be mentioned.
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Theorem 1.2 (Zudilin). For any odd integer d ≥ 1, at least one of the numbers

ζ(d+ 2), ζ(d+ 4), ζ(d+ 6), . . . , ζ(8d− 1)

is irrational.

The purpose of the present paper is to prove results on the distribution of (provably)
irrational (or linearly independent) zeta values. For instance, given a large odd integer a,
Theorems 1.1 and 1.2 do not exclude the possibility that 1, ζ(3), ζ(5), . . . , ζ(N) are Q-
linearly independent, with N = b log a

1+log 2
c, and ζ(N + 2), ζ(N + 4), . . . , ζ(a) are all rational

multiples of ζ(3). More generally, there might exist a few small blocks of consecutive odd
integers among which one has to take the integers s ≤ a so that the values ζ(s) make up a
basis of the Q-vector space (1.1), for instance c log a blocks of length some fixed power of
log a, with c < 1/(1 + log 2). We prove that this cannot happen for a sufficiently large, as
the following result shows.

Theorem 1.3. Let ε > 0, and a ≥ d ≥ 1 be such that 0 < ε ≤ 1/20 and a ≥ ε−12/εd.
Then there exist odd integers σ1, . . . , σN between d and a, with N = b 1−ε

1+log 2
log(a/d)c,

such that:

• 1, ζ(σ1), . . . , ζ(σN) are linearly independent over the rationals.

• For any i 6= j, we have |σi − σj| > d.

Taking d = aε in this result, we obtain Theorem 1.1 with two additional properties:
linearly independent zeta values with distance at least aε from one another, and an explicit
value a(ε) such that the conclusion of Theorem 1.1 holds for any a ≥ a(ε). The latter could
have been derived from Ball-Rivoal’s proof ([2], [11]), whereas the former is the central new
result of the present paper.

Coming back to arbitrary values of d, one may weaken the conclusion |σi − σj| > d of
Theorem 1.3 to σi > d, discarding at most one zeta value ζ(σj). This yields the following
corollary, in which for simplicity we omit the explicit relations of Theorem 1.3 on ε, d, a.

Corollary 1.4. Let ε > 0. Let a ≥ 3 and d ≥ 1 be odd integers such that a/d is sufficiently
large (in terms of ε). Then

dimQ SpanQ(ζ(d), ζ(d+ 2), ζ(d+ 4), . . . , ζ(a)) ≥ (1− ε) log(a/d)

1 + log 2
.

Moving now to bounded values of a, Ball and Rivoal have proved ([2], [11]) that (1.1)
has dimension at least 3 for a = 169. This numerical value has been improved to 145 by
Zudilin [12], and to 139 in [5]. We obtain the following result in the spirit of Theorem 1.2
and Corollary 1.4.
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Theorem 1.5. For any odd integer d ≥ 1 there exist odd integers σ1, σ2 with

d+ 2 ≤ σ1 < σ2 ≤ 151 d, σ2 > σ1 + 6 · 10−6 d,

such that 1, ζ(σ1) and ζ(σ2) are Q-linearly independent.

This result is new for any d ≥ 3, even if σ2 > σ1 + 6 · 10−6 d is omitted. The numerical
value 151 (instead of 145 or 139) comes from the fact that some estimates are slightly worse
when d is large than for d = 1.

Now let us move from linear independence to irrationality of zeta values. Ball-Rivoal’s
theorem yields an increasing sequence (ui)i≥1 of odd integers such that ζ(ui) 6∈ Q for any

i, and lim supu
1/i
i ≤ 2e; for instance it is enough to denote by ui the i-th odd integer

s ≥ 3 such that ζ(s) 6∈ Q. The existence of such a sequence with limu
1/i
i = 2e can be

deduced from Corollary 1.4 (by following the proof of Corollary 1.6 below). Actually, using
Theorem 1.3 we obtain the following result, in which the odd integers ui are quite distant
from one another.

Corollary 1.6. Let ε be a positive real number such that ε ≤ 1/20; put η = ε15/ε. Then
there exists an increasing sequence (ui)i≥1 of odd integers, depending only on ε, with the
following properties:

• For any i ≥ 1, ζ(ui) is an irrational number.

• For any i ≥ 1, we have ui+1/ui > 1 + η.

• For any i ≥ 1, we have η(2e)(1+ε)i < ui < η−1(2e)(1+ε)i.

• For any a ≥ η−1/ε we have uN ≤ a, where N is the integer part of 1−2ε
1+log 2

log a.

The point here is that the lower bound ui+1 > (1 + η)ui is much stronger than the one
of Theorem 1.3, namely ui+1 > ui+d where d has to be comparable to log a (and therefore
to log ui, at least for most values of i) in order to keep a proportion of irrational zeta
values as large as in Ball-Rivoal’s result. Note that in this respect, Corollary 1.6 refines on
the Ball-Rivoal theorem, Theorem 1.3 and Corollary 1.4, if in these statements the linear
independence with 1 is replaced with irrationality.

If we imagine that only b 1−ε
1+log 2

log ac odd integers s ≤ a are such that ζ(s) 6∈ Q, then

(up to a few exceptions) these are the odd integers u1, . . . , uN of Corollary 1.6; in particular
they are rather well distributed.

To conclude this introduction we mention the following result, analogous to the one of
[8] concerning the numbers λ0ζ(s) + λ1sζ(s+ 1) (see also Théorème 2 of [4]).
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Theorem 1.7. Let ε, a, d be as in Theorem 1.3. Let λ0, . . . , λd be real numbers, not all
zero. Then the real numbers

λ0ζ(s)+λ1

(
s+ 1

2

)
ζ(s+2)+λ2

(
s+ 3

4

)
ζ(s+4)+. . .+λd

(
s+ 2d− 1

2d

)
ζ(s+2d), (1.2)

for odd integers s between d and a, span a Q-vector space of dimension at least b 1−ε
1+log 2

log(a/d)c.

Corollary 1.8. Let d ≥ 1 and λ0, . . . , λd be real numbers, not all zero. Then the number
(1.2) is irrational for infinitely many odd integers s.

The proofs of the results stated in this introduction rely on a classical construction of
linear forms in zeta values, namely

∞∑
k=1

dβ−1

dtβ−1

((k − 2rn)b2rn(k + 2n+ 1)b2rn
(k)a2n+1

)
(1.3)

for suitable parameters a, b, r, β, n (see §3.2 for details). These are linear forms small
at several points, and the generalization to vectors [3] of Nesterenko’s linear independence
criterion [10] enables one to deduce a lower bound on the rank of a family of vectors of which
the coordinates involve zeta values; this lower bound is our main Diophantine result, stated
as Theorem 3.1 in §3.1. We would like to outline three main tools used in implementing
this strategy, which seem to be new in this context and may be of independent interest:

• A general result from linear algebra, namely Proposition 4.1 in §4.1, enables one to
deduce the linear independence of zeta values well apart from one another from the
lower bound of Theorem 3.1. This proposition could be used in any other context
where the generalization to vectors of Nesterenko’s linear independence criterion is
applied, since it is completely independent from any specific property of the Riemann
zeta function.

• It turns out that for 1 ≤ β ≤ b − 2, the asymptotic behavior as n → ∞ of the
linear forms (1.3) does not depend on β. Since the linear independence criterion
requires linear forms with pairwise distinct asymptotics, we consider suitable linear
combinations of the linear forms (1.3).

• When applying the saddle point method, as Zudilin did in this context, we have
to check that we do not take the real part of a quantity of which the argument
tends to π/2 mod π (otherwise we obtain only an upper bound on the upper limit,
which is not sufficient to apply the criterion). This is usually done by numerical
computations, but we cannot do it here because the parameters vary. Therefore we
allow the parameter r to be a rational number, and prove that this argument tends to
π/2 mod π only for finitely many values of r (namely zeroes of an analytic function).
By right-continuity, the output of this method is the same as if this problem had
never occurred. We believe this trick could be applied to other situations where the
same problem arises.
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The structure of this text is as follows. We recall in §2 the linear independence criterion,
and state in §3.1 our main Diophantine result. Sections 3.2 to 3.6 are devoted to its proof,
starting with a sketch and concluding with the details. At last we deduce in §4 the results
stated in this introduction, starting in §4.1 with the above-mentioned general proposition
of linear algebra.

Acknowledgements: This paper has benefited from discussions with Boris Adam-
czewski, Francesco Amoroso, Yann Bugeaud, Simon Dauguet, Detta Dickinson, Raffaele
Marcovecchio, Patrice Philippon, Tanguy Rivoal, Michel Waldschmidt, and Wadim Zudilin.

2 The linear independence criterion

Our results are based upon the following criterion, in which Rp is endowed with its canonical
scalar product and the corresponding norm.

Theorem 2.1. Let 1 ≤ k ≤ p− 1, and e1, . . . , ek ∈ Rp.
Let τ1 > . . . > τk > 0 be real numbers.
Let ω1, . . . , ωk, ϕ1, . . . , ϕk be real numbers such that ϕj 6≡ π

2
mod π for any j.

Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 = Q
1+O(1/n)
n .

For any n ≥ 1, let Ln = `1,nX1 + . . . + `p,nXp be a linear form on Rp, with integer
coefficients `i,n such that, as n→∞:

|Ln(ej)| = Q−τj+o(1)n | cos(nωj + ϕj) + o(1)| for any j ∈ {1, . . . , k}, (2.1)

and
max
1≤i≤p

|`i,n| ≤ Q1+o(1)
n .

Let M ∈ Matk,p(R) be the matrix of which e1, . . . , ek ∈ Rp are the rows; denote by
C1, . . . , Cp ∈ Rk its columns. Then

rkQ(C1, . . . , Cp) ≥ k + τ1 + τ2 + . . .+ τk

where rkQ(C1, . . . , Cp) is the rank of the family (C1, . . . , Cp) in Rk seen as a Q-vector space.

This result is proved in [3], with a little difference: instead of ϕj 6≡ π
2

mod π for any j,
it is assumed that there exist infinitely many integers n such that, for any j ∈ {1, . . . , k},
nωj + ϕj 6≡ π

2
mod π. However the former assumption implies the latter. Indeed, let J be

the set of all j ∈ {1, . . . , k} such that ωj/π ∈ Q. Let d be a common denominator of the
numbers ωj/π, j ∈ J ; if J = ∅ we let d = 1. If n is a multiple of d then nωj + ϕj ≡ ϕj 6≡
π
2

mod π for any j ∈ J . Moreover for each j ∈ {1, . . . , k} \ J there is at most one integer n
for which nωj + ϕj ≡ π

2
mod π. Therefore there exist infinitely many integers n such that,

for any j ∈ {1, . . . , k}, nωj + ϕj 6≡ π
2

mod π.
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Remark 2.2. In the proof of Theorem 1.5 we shall use the following refinement (see
Corollary 1 of [3]). Under the assumptions of Theorem 2.1, let π : Rk → Rt be a surjective
R-linear map, with t ≥ 1. Then

rkQ(π(C1), . . . , π(Cp)) ≥ t+ τk+1−t + τk+2−t + . . .+ τk

where rkQ(π(C1), . . . , π(Cp)) is the rank of the family (π(C1), . . . , π(Cp)) in Rt seen as a
Q-vector space.

3 The main Diophantine result

In this section we state (in §3.1) and then prove our main Diophantine result, of which all
results stated in the introduction will follow. We sketch the proof in §3.2, and give details
in §3.6. In the meantime, we recall Zudilin’s results on the saddle point method (§3.4) and
make two important steps: the construction of an invertible matrix (§3.3), and the proof
that only finitely many values of the parameter r lead to an imaginary main part when
applying the saddle point method (§3.5).

3.1 Statement of the result

Eventhough its conclusion is more involved than the ones of the results stated in the
introduction, the following theorem is the real Diophantine output of our proof; we refer to
[6], [7] and [9] for results of the same flavour, but providing (under very strict assumptions)
the linear independence of the whole set of vectors under consideration.

Theorem 3.1. Let a and b be positive odd integers such that b divides a and a ≥ 9b.
Consider the following vectors in R(b+1)/2:

v1 =


ζ(3)(
4
2

)
ζ(5)(

6
4

)
ζ(7)
...(

b + 1
b− 1

)
ζ(b+ 2)

 , v2 =


ζ(5)(
6
2

)
ζ(7)(

8
4

)
ζ(9)
...(

b + 3
b− 1

)
ζ(b+ 4)

 , . . . , v(a−1)/2 =


ζ(a)(

a + 1
2

)
ζ(a+ 2)(

a + 3
4

)
ζ(a+ 4)
...(

a + b− 2
b− 1

)
ζ(a+ b− 1)

 ,

and denote by (u1, . . . , u(b+1)/2) the canonical basis of R(b+1)/2. Then in R(b+1)/2 seen as a Q-
vector space, the family of vectors (u1, u2, . . . , u(b+1)/2, v1, v2, . . . , v(a−1)/2) has rank greater
than or equal to

b+ 1

2
sup
r∈Ia,b

(
1− logαr,a,b

logQr,a,b

)
(3.1)

where Ia,b is the set of all real numbers r ≥ 1 such that 9
2
br log(4r + 3) ≤ a,

αr,a,b =
e2(a+b−1)22b(r+1)

r2(a−2br){r}4b{r}
and Qr,a,b =

e2(a+b−1)22(a−2bbrc)(2r + 1)2b(2r+1)

(2{r})4b{r}
;

here {r} = r − brc denotes the fractional part of r.
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If r is an integer then {r} = 0; in this case the factors {r}4b{r} and (2{r})4b{r} disappear
since they are equal to 1.

Since a ≥ 9b we have Ia,b 6= ∅. However, if a < 9b then a ≤ 7b so that Ia,b = ∅. Of
course Theorem 3.1 is interesting when αr,a,b < 1 for some r ∈ Ra,b, but it holds also
otherwise.

Remark 3.2. In the proof of Theorem 1.5 we shall use the following refinement of The-
orem 3.1, which comes from Remark 2.2. Let π : R(b+1)/2 → Rt be a surjective R-linear
map, with t ∈ {1, . . . , (b+1)/2}. Then in Rt seen as a Q-vector space, the family of vectors
π(u1), π(u2), . . . , π(u(b+1)/2), π(v1), π(v2), . . . , π(v(a−1)/2) has rank greater than or equal
to

t sup
r∈Ia,b

(
1− logαr,a,b

logQr,a,b

)
.

This is specially interesting when π is defined over Q, because in this case the Q-vector
space spanned by π(u1), π(u2), . . . , π(u(b+1)/2) is Qt, so that we obtain

rkQ(u′1, u
′
2, . . . , u

′
t, π(v1), π(v2), . . . , π(v(a−1)/2)) ≥ t sup

r∈Ia,b

(
1− logαr,a,b

logQr,a,b

)
,

where (u′1, . . . , u
′
t) is the canonical basis of Rt. The most interesting example of this situa-

tion is when π is the projection on the last t coordinates; this is the one used in the proof
of Theorem 1.5 (see §4.4). It allows one to get rid of ζ(3), ζ(5), . . . , ζ(b + 2− 2t) in the
entries of the vectors vj’s.

Remark 3.3. If a/b is sufficiently large with respect to some ε > 0, then the lower bound
(3.1) is greater than or equal to b+1

2
1−ε

1+log 2
log(a/b) (see the proof of Theorem 1.3 in §4.2).

The result deduced in this way from Theorem 3.1 is new even when a→∞ and b is fixed
(already when b = 3).

3.2 Overview of the proof

In this section we construct the linear forms used in the proof of Theorem 3.1, and summa-
rize their properties. Some of them follow from results in the literature, or can be proved
easily; the other ones will be proved below.

Let a, b, n be positive integers, and r ≥ 0 be a rational number, such that a and b are
odd, rn is an integer, and 2br < a. We denote by E = {1, 3, 5, . . . , b} the set of all odd
integers β between 1 and b, and for any β ∈ E we let

Iβ,n =
(2n)!a−2bbrc

(β − 1)!(2{r}n)!2b

∞∑
t=n+1

dβ−1

dtβ−1

((t− (2r + 1)n)b2rn(t+ n+ 1)b2rn
(t− n)a2n+1

)
(3.2)

where the derivative is taken at t. As usual we denote by {r} the fractional part of r, and
Pochhammer’s symbol is defined by (α)k = α(α+ 1) . . . (α+ k− 1). Letting k = t− n, we
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have obviously

Iβ,n =
(2n)!a−2bbrc

(β − 1)!(2{r}n)!2b

∞∑
k=1

dβ−1

dtβ−1

((k − 2rn)b2rn(k + 2n+ 1)b2rn
(k)a2n+1

)
,

where the sum actually starts at k = 2rn+ 1. It is not difficult to prove that

Iβ,n = ˜̀
β,n+`3,n

(
β + 1
β − 1

)
ζ(β+2)+`5,n

(
β + 3
β − 1

)
ζ(β+4)+. . .+`a,n

(
β + a− 2
β − 1

)
ζ(β+a−1)

with rational numbers ˜̀β,n and `i,n (for odd integers β and i such that 1 ≤ β ≤ b and
3 ≤ i ≤ a). Moreover da+b−12n is a common denominator of these rational numbers, where
dk is the least common multiple of 1, 2, . . . , k. Recall (for ulterior use) that dk = ek+o(k)

as k →∞, an equivalent form of the Prime Number Theorem.
We shall also need an upper bound on the coefficients of the linear forms Iβ,n, namely

max
(

max
β
|˜̀β,n|,max

i
|`i,n|

)
≤
[22(a−2bbrc)(2r + 1)2b(2r+1)

(2{r})4b{r}
]n+o(n)

(3.3)

as n → ∞ with rn ∈ Z. This can be proved easily along the same lines as Proposi-
tion 3.1 of [12], where r is assumed to be a positive integer. The denominator(2{r}n)!2b in
Eq. (3.2) is responsible for the factor (2{r})4b{r}, since if {r} 6= 0 Stirling’s formula yields
(2{r}n)!1/n ∼ (2{r})2{r}(n/e)2{r}. Of course {r} = 0 if r is an integer, and (2{r})4b{r}
should be understood as 1 in this case; then we have also (2{r}n)!2b = 1 so that this factor
disappears in Eq. (3.2).

Theorem 2.1 almost applies to this setting (see §3.6); the difficulties come from the
asymptotic estimates of the linear forms Iβ,n. To begin with, I3,n, I5,n, . . . , Ib,n have
essentially the same size as n → ∞ (see the end of §3.3 below), so that the assumption
that τ1, . . . , τk are pairwise distinct is not satisfied (unless b ≤ 3). Indeed, Iβ,n can
be estimated asymptotically in terms of complex integrals Jλ,n (defined just before the
statement of Lemma 3.5, in §3.4 below). Following the proof of Lemma 2.5 and Corollary
2.1 of [12] (in which only the case where r ∈ Z and β = b is considered), one obtains

(2{r}n)!2b

(2n)!2b{r}
Iβ,n = πβ Ĩβ,n

(−1)n(2
√
πn)a−2rb2b

na−1

(
1 +O(n−1)

)
as n→∞ with rn ∈ Z, (3.4)

where
Ĩβ,n = −2

∑
λ∈E

c
(b)
λ,β Re Jλ,n (3.5)

and the matrix [c
(b)
λ,β]λ,β∈E is defined in Lemma 3.4 below; here we multiply Iβ,n by (2{r}n)!2b

(2n)!2b{r}

so that the normalizing factor in Eq. (3.2) becomes (2n)!a−2br

(β−1)! . Zudilin has given, using

the saddle point method, a precise asymptotic expression for |Re Jλ,n| as n → ∞ (under
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appropriate assumptions, see Lemma 3.5 below). This expression depends on λ, but the
previous relations imply that Iβ,n has the same order of magnitude for all values of β
(except β = 1); see the end of §3.3 for details. In the notation of Theorem 2.1, all values
of τi (except one) would be equal, so that this criterion does not apply.

To overcome this difficulty, we prove in Lemma 3.4 that the matrix [c
(b)
λ,β]λ,β∈E is invert-

ible. Denoting by [d
(b)
β,λ]β,λ∈E the inverse matrix, we consider the following linear combina-

tions of I1,n, . . . , Ib,n:

Sλ,n =
∑
β∈E

d
(b)
β,λπ

−βIβ,n

for λ ∈ E and n ≥ 1 such that rn ∈ Z. Then we have

Sλ,n = χn Re Jλ,n with χn ∈ R such that lim
n→∞
rn∈Z

|χn|1/n =
1

{r}4b{r}
, (3.6)

since

lim
n→∞
rn∈Z

[ (2n)!2b{r}

(2{r}n)!2b

]1/n
=

1

{r}4b{r}
(3.7)

using Stirling’s formula. Provided the saddle point method applies as in Zudilin’s paper,
it turns out that the linear forms Sλ,n have pairwise distinct asymptotic behaviors; this
would allow us to apply Theorem 2.1 and conclude the proof.

However another problem arises. Using the saddle point method, |Sλ,n| = |χn Re Jλ,n|
can be written as the real part of a quantity for which a very precise asymptotic estimate
is known. However the main part of this estimate might (for some values of λ) be an
imaginary complex number for any n. In this case, one can only derive an upper bound
on lim sup |Sλ,n|1/n, and this is not sufficient to apply Theorem 2.1. To overcome this
difficulty, we construct in §3.5 a non-zero analytic function (depending only on a and b)
which vanishes at all rational numbers r for which this main part is imaginary for some
λ. This provides a finite set Ra,b such that lim |Sλ,n|1/n exists (and can be computed) as
soon as r 6∈ Ra,b, under the mild assumptions that b divides a, a ≥ 5b and 1 ≤ r ≤ a−1

3b
.

Of course we have no way to control this set Ra,b: we are not even able (except if some
additional assumptions are made on a and b) to exclude the case where Ra,b contains all
integers r between 1 and a−1

3b
. However, since Ra,b is a finite set and we allow r to be a

rational number, this finite number of exceptions has no influence on the result: a rational
r 6∈ Ra,b can be found in any open interval contained in [1, a−1

3b
].

Finally, assuming that r 6∈ Ra,b, r ≥ 1 and 9
2
br log(4r + 3) ≤ a we can apply Zudilin’s

results and obtain as n→∞ with rn ∈ Z:

|Sλ,n| =
( ελ
{r}4b{r}

)n+o(n)
| cos(nωλ + ϕλ) + o(1)| for any λ ∈ E , (3.8)

with

0 < ε1 < ε3 < . . . < εb ≤
22b(r+1)

r2(a−2br)
< 1 and ϕλ 6≡

π

2
mod π for any λ ∈ E . (3.9)

This enables us to apply Theorem 2.1, and deduce Theorem 3.1.
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3.3 Construction of an invertible matrix

In this section we prove that the matrix [c
(b)
λ,β]λ,β∈E of Eq. (3.5) (see §3.2) is invertible.

Recall that b is an odd integer, fixed in this section, and E = {1, 3, 5, . . . , b}. As in [12] we
let

cotβ(z) =
(−1)β−1

(β − 1)!

dβ−1

dzβ−1
cot(z),

where cot(z) = cos z
sin z

is the cotangent function.

Lemma 3.4. There exists a unique matrix [c
(b)
λ,β]λ,β∈E such that

sinb(z) cotβ(z) =
∑
λ∈E

c
(b)
λ,β

(
eiλz + e−iλz

)
for any z and any β ∈ E . (3.10)

Moreover the coefficients c
(b)
λ,β are rational numbers, and this matrix is invertible.

Eq. (3.5) can be proved easily with these numbers c
(b)
λ,β, by following the proof of

Lemma 2.5 and Corollary 2.1 of [12] (in which only the case where r ∈ Z and β = b is
considered).

Proof of Lemma 3.4: Lemma 2.2 of [12] provides, for any β ∈ E , a polynomial Vβ(X) ∈
Q[X] of degree at most β such that

sinβ(z) cotβ(z) = Vβ(cos z) and Vβ(−X) = −Vβ(X).

We let
Wb,β(X) = (1−X2)(b−β)/2Vβ(X) (3.11)

so that

sinb(z) cotβ(z) = Wb,β(cos z), degWb,β ≤ b and Wb,β(−X) = −Wb,β(X).

Letting X = 1
2
(Y + Y −1), the last two properties yield

Wb,β

(1

2
(Y + Y −1)

)
=
∑
λ∈E

c
(b)
λ,β

(
Y λ + Y −λ

)
(3.12)

for uniquely defined real numbers c
(b)
λ,β, which are rational and such that Eq. (3.10) holds.

It remains to prove that the matrix [c
(b)
λ,β]λ,β∈E is invertible. If it is not then there exist

real numbers µ1, µ3, . . . , µb, not all zero, such that
∑

β∈E µβc
(b)
λ,β = 0 for any λ ∈ E . Using

Eq. (3.12) this implies
∑

β∈E µβWb,β(X) = 0, that is∑
β∈E

µβ(1−X2)(b−β)/2Vβ(X) = 0.

10



Considering the largest β such that µβ 6= 0, this is a contradiction because Vβ(1) = 1 (as
Eq. (2.4) of [12] shows by induction on β). This concludes the proof of Lemma 3.4.

Let us conclude this section with a remark (which is not directly used in the proofs).

We have V1(X) = X so that degWb,1(X) = b and c
(b)
b,1 6= 0. Using Eqns. (3.4), (3.5), (3.9),

(3.7) and Lemma 3.5 below, we deduce that (under the assumptions of this lemma)

lim sup
n→∞

|I1,n|1/n =
1

{r}4b{r}
lim sup
n→∞

|Re Jb,n|1/n = εb (3.13)

so that |I1,n| and |Sb,n| have the same asymptotic behavior (in particular Eq. (3.8) holds
also for |I1,n|). On the other hand, for any odd β ≥ 3 we have deg Vβ = β − 2 (see

Lemma 2.2 of [12]) so that degWb,β(X) = b− 2 and c
(b)
b,β = 0, c

(b)
b−2,β 6= 0. As above, under

the assumptions of Lemma 3.5 we obtain for β ∈ {3, 5, . . . , b}:

lim sup
n→∞

|Iβ,n|1/n =
1

{r}4b{r}
lim sup
n→∞

|Re Jb−2,n|1/n = εb−2.

Since this value does not depend on β, the linear independence criterion does not apply
directly to the linear forms corresponding to Iβ,n, β ∈ E (except if β ≤ 3). This is why the
linear combinations Sλ,n have been introduced in §3.2.

3.4 Application of the saddle point method

In this section we recall Zudilin’s results [12] based on the saddle point method; we try to
use the same notation. The main difference is that Zudilin assumes the parameter r to be
an integer, whereas we allow rational values of r (because Ra,b may contain all integers r,
see §3.2). Unless otherwise stated, the proofs of [12] generalize directly to this setting.

Let a ≥ 3 and b ≥ 1 be odd integers, and r be a positive real number such that 3br ≤ a.
We assume also that (

3 +
1

r

)b
<
(

1 +
1

2r

)a+b
. (3.14)

This assumption appears at the bottom of p. 503 of [12]. Zudilin proves (p. 504) that it
holds if r = 1 or r ≥ 2. In the proof of Theorem 3.1 we shall use the fact that Eq. (3.14)
holds for any r ∈ (0, a

3b
] if 5b ≤ a. Indeed this follows from Zudilin’s proof if r ≥ 2, and for

any r ∈ (0, 2] we have (
3 +

1

r

)b
<
(

1 +
1

2r

)6b
≤
(

1 +
1

2r

)a+b
since the polynomial (2X + 1)6 − 26X5(3X + 1) takes only positive values on (0, 2].

Let us consider the complex plane with cuts along the rays (−∞, 1] and [2r + 1,+∞);
for τ ∈ (2r + 1,+∞), we denote by τ + i0 the corresponding point on the upper bank of

11



the cut [2r + 1,+∞). We let for τ ∈ C \ ((−∞, 1] ∪ [2r + 1,+∞)):

f(τ) = b(τ + 2r + 1) log(τ + 2r + 1) + b(2r + 1− τ) log(2r + 1− τ)

+(a+ b)(τ − 1) log(τ − 1)− (a+ b)(τ + 1) log(τ + 1) + 2(a− 2br) log(2). (3.15)

In this formula all logarithms are evaluated at positive real numbers if τ belongs to the
real interval (1, 2r + 1), and we choose the determinations so that all of them take real
values in this case.

The complex roots of the polynomial

Q(X) = (X + 2r + 1)b(X − 1)a+b − (X − 2r − 1)b(X + 1)a+b ∈ Q[X] (3.16)

are localized in Lemma 2.7 of [12]. They are all simple; exactly one of them, denoted by µ1,
belongs to the real interval (2r+1,+∞). There are also exactly (b−1)/2 roots in the domain
Re z > 0, Im z > 0; we denote them by %1, %3, %5, . . . , %b−2 with Re %1 < . . . < Re %b−2
since these real parts are pairwise distinct. For convenience we let %b = µ1 + i0, and recall
that Re %b−2 < Re %b; we shall also use the fact that f ′(%λ) = λiπ for any λ ∈ E . Of course
the polynomial Q and the roots %λ (for λ ∈ E) depend on a, b, and r but not on n.

For τ ∈ C \ ((−∞, 1] ∪ [2r + 1,+∞)) we let also

f0(τ) = f(τ)− τf ′(τ).

Since log(2r + 1 − (τ + i0)) = log(τ − (2r + 1)) − iπ with τ − (2r + 1) > 0, we have for
τ ∈ (2r + 1,+∞):

f(τ + i0) = b(τ + 2r + 1) log(τ + 2r + 1) + b(2r + 1− τ) log(τ − 2r − 1)

+(a+ b)(τ − 1) log(τ − 1)− (a+ b)(τ + 1) log(τ + 1) + 2(a− 2br) log(2)− b(2r + 1− τ)iπ.

This function of τ ∈ (2r+ 1,+∞) is increasing on (2r+ 1, µ1), assumes a maximal value at
τ = µ1, and is decreasing on (µ1,+∞) (see Eq. (2.34) and Corollary 2.2 of [12]). Following
the second proof of Lemma 3 in [2], we obtain:

lim
n→∞

1

n
log
((2{r}n)!2b

(2n)!2b{r}
|I1,n|

)
= Ref(µ1 + i0) = Ref0(µ1 + i0) (3.17)

since f ′(µ1 + i0) = biπ ∈ iR; this estimate will be used below to prove that εb ≤ 22b(r+1)

r2(a−2br)

(see Eq. (3.25)). The main difference with the proof of [2] is the term 2(a − 2br) log 2 in
(3.15), which comes from the fact that the integer denoted here by n is actually 2n with
the notation of [2]; this has an effect because of the normalization factor (2n)!a−2br that

occurs in (2{r}n)!2b
(2n)!2b{r}

I1,n.

By applying the saddle point method, Zudilin proves the following result, where the
roots %1, %3, . . . , %b of Q are defined above, g is defined on the cut plane C \ (−∞, 1]∪ [2r+
1,+∞) by

g(τ) =
(τ + 2r + 1)b/2(2r + 1− τ)b/2

(τ + 1)(a+b)/2(τ − 1)(a+b)/2
,

12



and for λ ∈ E and µ ∈ R with 1 < µ < 2r + 1 we let

Jλ,n =
1

2iπ

∫ µ+i∞

µ−i∞
en(f(τ)−λiπτ)g(τ)dτ.

Lemma 3.5. Assume that a ≥ 3 and b ≥ 1 are odd integers, and r > 0 is a real number
such that 3br ≤ a and Eq. (3.14) holds. Assume also that

µ1 ≤ 2r + 1 + min
(br(r + 1)

2(a+ b)
,
r(r + 1)

3(2r + 1)

)
. (3.18)

Let λ ∈ E. Put

ελ = exp Ref0(%λ), ωλ = Imf0(%λ), and ϕλ = −1

2
arg f ′′(%λ) + arg g(%λ),

and assume that
either ϕλ 6≡

π

2
mod π or ωλ 6≡ 0 mod π. (3.19)

Then we have, as n→∞,

|Re Jλ,n| = ε
n+o(n)
λ | cos(nωλ + ϕλ) + o(1)|.

In this lemma, for λ = b we have %b = µ1 + i0 so that f0(%b) = f0(µ1 + i0) ∈ R and
ωb ∈ πZ, which is consistant with Eq. (3.17) and shows that in Eq. (3.13) both upper
limits are actually limits.

3.5 Finiteness of the set of exceptional values of r

In this section we prove the following result, which will enable us to choose the parameter
r in such a way that Lemma 3.5 applies and provides an asymptotic estimate for |Re Jλ,n|.
We keep the notation of §3.4.

Lemma 3.6. Let a and b be positive odd integers such that b divides a and a ≥ 5b. Then
there exists a finite set Ra,b, depending only on a and b, with the following property: for any
real number r such that 1 ≤ r ≤ a−1

3b
and r 6∈ Ra,b, we have for any λ ∈ E = {1, 3, . . . , b}:

−1

2
arg f ′′(%λ) + arg g(%λ) 6≡

π

2
mod π. (3.20)

In the notation of Lemma 3.5, the conclusion of Lemma 3.6 is ϕλ 6≡ π
2

mod π, so that
assumption (3.19) holds.

Proof of Lemma 3.6: Let a, b ≥ 1 be odd integers such that b divides a and a ≥ 5b. As
noticed at the beginning of §3.4, Eq. (3.14) holds for any real number r with 0 < r ≤ a

3b
, so

that Zudilin’s results [12] recalled in §3.4 apply. For any odd integer λ such that −b < λ ≤ b
we consider the following polynomial:

Gr,λ(X) = (X + 2r + 1)(X − 1)
a
b
+1 − eλiπ/b(2r + 1−X)(X + 1)

a
b
+1.
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Since b is odd and the b-th roots of −1 are the complex numbers eλiπ/b for odd integers
λ such that −b < λ ≤ b, we have the following factorization of the polynomial defined in
Eq. (3.16):

Q(X) =
∏
−b<λ≤b
λ odd

Gr,λ(X);

accordingly Gr,λ(X) divides Q(X) for any λ. We shall use the fact that for τ ∈ C \
((−∞, 1] ∪ [2r + 1,+∞)),

Gr,λ(τ) = 0 if, and only if, exp(
1

b
f ′(τ)) = exp(λiπ/b);

this follows from the formula

f ′(τ) = b log(τ + 2r + 1)− b log(2r + 1− τ) + (a+ b) log(τ − 1)− (a+ b) log(τ + 1)

(see [12], Eq. (2.23)).
Now let us fix λ ∈ E \ {b} = {1, 3, 5, . . . , b − 2}. We have f ′(%λ) = λiπ so that %λ is

a root of Gr,λ(X). Moreover %λ is the only root of Gr,λ(X) with a positive real part (see
Lemma 2.7 of [12]), and Gr,λ(X) has only simple roots (because this property holds for
Q(X)). Therefore when λ ∈ E \{b} is fixed, %λ is an algebraic function of r with no branch
point in (0, a

3b
]: it is a real-analytic function of r on (0, a

3b
]. Eventhough we consider %λ as

a function of r, we shall continue (for simplicity) to omit this dependence in the notation.
Now we let

Ψλ(r) =
g(%λ)

2

|g(%λ)|2
|f ′′(%λ)|
f ′′(%λ)

for any real number r such that 0 < r < a
3b

. This function is well-defined because g(%λ)
and f ′′(%λ) are non-zero (see [12], p. 512), and it is real-analytic on the real interval (0, a

3b
).

Let us compute its limit as r → 0.
We have |%λ − 2r − 1| ≤ |µ1 − 2r − 1| < 2r using assumption (3.14) (see [12], p. 503),

so that limr→0 %λ = 1. Let us write u = o(v) whenever u and v are functions of r such that
limr→0 u/v = 0, and u ∼ v when u = v + o(v); here the parameters a, b and λ are fixed.
Then we have %λ + 1 ∼ 2 and %λ + 2r + 1 ∼ 2, so that taking equivalents in the relation
Gr,λ(%λ) = 0 yields

(%λ − 1)
a
b
+1 ∼ 2

a
b eλiπ/b(2r + 1− %λ). (3.21)

This implies 2r − (%λ − 1) = o(%λ − 1) so that %λ − 1 ∼ 2r. Plugging this equivalence into
Eq. (3.21) yields

2r + 1− %λ ∼ 2e−λiπ/br
a
b
+1

so that
%λ = 1 + 2r − 2e−λiπ/br

a
b
+1 + o(r

a
b
+1).

This enables us to compute the following limit as r → 0:

g(%λ)
2 =

(%λ + 2r + 1)b(2r + 1− %λ)b

(%λ + 1)a+b(%λ − 1)a+b
∼ 22be−λiπra+b

22(a+b)ra+b
= −2−2a
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since λ is an odd integer, so that limr→0
g(%λ)

2

|g(%λ)|2
= −1. In the same way the quantities

(%λ − 1)−1, (%λ + 1)−1 and (%λ + 2r + 1)−1 can all be written as o((%λ − 2r − 1)−1); since

f ′′(%λ) =
b

%λ + 2r + 1
+

b

2r + 1− %λ
+

a+ b

%λ − 1
− a+ b

%λ + 1
(3.22)

(see at the end of the proof of Lemma 2.9 of [12]), we have

f ′′(%λ) ∼
b

2r + 1− %λ
∼ b

2
eλiπ/br−

a
b
−1

so that limr→0
|f ′′(%λ)|
f ′′(%λ)

= e−λiπ/b. Finally we have

lim
r→0

Ψλ(r) = −e−λiπ/b 6= −1. (3.23)

Now for any λ ∈ E \ {b} we let Ra,b,λ be the set of all r ∈ [1, a−1
3b

] such that Ψλ(r) = −1.
If Ra,b,λ is infinite for some λ then Ψλ + 1 has non-isolated zeros in the segment [1, a−1

3b
]:

this analytic function of r is identically zero on the real interval (0, a
3b

). This implies
limr→0 Ψλ(r) = −1, in contradiction with Eq. (3.23). Therefore Ra,b,λ is a finite set. Let
Ra,b be the union of these finite sets, as λ ranges through E \{b}. Then for any λ ∈ E \{b}
and any r ∈ [1, a−1

3b
]\Ra,b we have Ψλ(r) 6= −1 so that arg g(%λ)

2−arg f ′′(%λ) 6≡ π mod 2π.
Eq. (3.20) follows for λ ∈ E \ {b}. For λ = b we have %b = µ1 + i0 so that arg g(%b) = −bπ

2

and f ′′(%b) is a negative real number (see Eq. (3.22)). Therefore ϕb ≡ 0 mod π since b is
odd: Eq. (3.20) holds also for λ = b. This concludes the proof of Lemma 3.6.

3.6 End of the proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1 and Remark 3.2. Let a ≥ 3 and b ≥ 1
be odd integers such that b divides a and a ≥ 9b. We put k = (b + 1)/2 and consider the
k following vectors in R(a+b)/2:

e1 = (1, 0, 0, . . . , 0, ζ(3), ζ(5), . . . , ζ(a))
e2 = (0, 1, 0, . . . , 0,

(
4
2

)
ζ(5),

(
6
2

)
ζ(7), . . . ,

(
a + 1

2

)
ζ(a+ 2))

e3 = (0, 0, 1, . . . , 0,
(

6
4

)
ζ(7),

(
8
4

)
ζ(9), . . . ,

(
a + 3

4

)
ζ(a+ 4))

...
ek = (0, 0, 0, . . . , 1,

(
b + 1
b− 1

)
ζ(b+ 2),

(
b + 3
b− 1

)
ζ(b+ 4), . . . ,

(
a + b− 2
b− 1

)
ζ(a+ b− 1)).

Let r be a rational number such that r ≥ 1, 9
2
br log(4r + 3) ≤ a, and r 6∈ Ra,b (where Ra,b

is the finite set constructed in Lemma 3.6). Such a rational number exists since a ≥ 9b
and Ra,b is finite. We keep the notation of §3.2, and use the results recalled there.

We denote by X1, X3, . . . , Xb, Y3, Y5, . . . , Ya the coordinates on R(a+b)/2 and consider,
for any n ≥ 1 such that rn ∈ Z, the linear form

Ln = da+b−12n

(˜̀
1,nX1 + ˜̀3,nX3 + . . .+ ˜̀b,nXb + `3,nY3 + `5,nY5 + . . .+ `a,nYa

)
15



so that
Ln(ej) = da+b−12n I2j−1,n for any j ∈ {1, . . . , k},

that is Ln(e(β+1)/2) = da+b−12n Iβ,n for any β ∈ E = {1, 3, . . . , b}. Using the matrix [d
(b)
β,λ]β,λ∈E

(which is the inverse of [c
(b)
λ,β]λ,β∈E , see §§3.2 and 3.3), we let

e′(λ+1)/2 =
∑
β∈E

d
(b)
β,λπ

−βe(β+1)/2 ∈ R(a+b)/2 for any λ ∈ E ,

so that
Ln(e′(λ+1)/2) = da+b−12n Sλ,n for any λ ∈ E (3.24)

by definition of Sλ,n (see §3.2). To obtain an asymptotic estimate for Ln(e′(λ+1)/2), it is

enough (using Eq. (3.6)) to apply Lemma 3.5. Let us check the assumptions of this lemma,
starting with Eq. (3.18).

Since the map x 7→ log x
x

is decreasing on the interval [e,+∞) and a+b
br
≥ a

br
≥ 9

2
log 7 > e,

we have − log( br
a+b

) = log(a+b
br

) ≤ 2 log( 9
2
log 7)

9 log 7
a+b
br

. On the other hand, since b
2(a+b)

≤ 1
20

we
have

log
(

1 +
b

2(a+ b)

)
− log

(
1 +

1

r
+

b

2(a+ b)

)
≤ −1

r

1

1 + 1
r

+ b
2(a+b)

≤ −20

41r
.

Therefore we have

b log
(

4r + 2 +
br

a+ b

)
+ (a+ b)

[
log
(

1 +
b

2(a+ b)

)
− log

(
1 +

1

r
+

b

2(a+ b)

)]
− b log

( br

a+ b

)
≤ a+ b

r

(2

9
− 20

41
+

2 log(9
2

log 7)

9 log 7

)
< 0

so that

Q
(

2r+1+
br

a+ b

)
= (2r)a+b

[(
4r+2+

br

a+ b

)b(
1+

b

2(a+ b)

)a+b
−
( br

a+ b

)b(
1+

1

r
+

b

2(a+ b)

)a+b]
< 0,

where Q is the polynomial defined in Eq. (3.16). Since Q(2r + 1) > 0 and µ1 is the only
root of Q in the real interval (2r + 1,+∞), we obtain

µ1 < 2r + 1 +
br

a+ b
≤ 2r + 1 +

br(r + 1)

2(a+ b)
≤ 2r + 1 +

r(r + 1)

3(2r + 1)

since 6br ≤ a. Therefore Eq. (3.18) holds.

Moreover Lemma 3.6 yields ϕλ 6≡ π
2

mod π, so that assumption (3.19) holds. As noticed
at the beginning of §3.4, Eq. (3.14) holds since a ≥ 5b. Therefore Lemma 3.5 applies, and
provides real numbers ελ, ωλ and ϕλ. The asymptotic estimate (3.8) is an immediate
consequence of Eq. (3.6). The inequalities

0 < ε1 < ε3 < . . . < εb ≤
22b(r+1)

r2(a−2br)
(3.25)
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are a consequence of Lemma 2.10 of [12], except for the last one that we prove now, following
the second proof of Lemme 3 of [2]. Since k+(2r+1)n < 21+1/rk for any k > 2rn, we have

(2n)!a−2br
(k − 2rn)b2rn(k + 2n+ 1)b2rn

(k + 1)a2n
< (2n)2n(a−2br)

k2brn(21+1/rk)2brn

k2an

=
(2n

k

)2n(a−2br)
22brn(1+1/r) <

[ 22b(r+1)

r2(a−2br)

]n
.

This yields

(2{r}n)!2b

(2n)!2b{r}
|I1,n| ≤

[ 22b(r+1)

r2(a−2br)

]n +∞∑
k=2rn+1

1

ka

so that εb ≤ 22b(r+1)

r2(a−2br) (using Eq. (3.17) and the fact that εb = exp Re f0(µ1 + i0)).

We are now in position to apply the linear independence criterion, namely Theorem 2.1.
We let

τ(λ+1)/2 =
− log(e2(a+b−1)ελ{r}−4b{r})

logQr,a,b

for any λ ∈ E , and Eq. (3.25) yields

τ1 > τ2 > . . . > τk ≥ −
logαr,a,b
logQr,a,b

. (3.26)

Now let δ denote the denominator of the rational number r, and Qn = Qδn
r,a,b for any n ≥ 1.

Then Theorem 2.1 applies to the linear forms Lδn, n ≥ 1, at the points e′1, . . . , e
′
k, using

(among others) Eqns. (3.3), (3.24) and (3.6), and Lemmas 3.5 and 3.6. The columns
C1, . . . , C(a+b)/2 are exactly the vectors denoted by u1, . . . , u(b+1)/2, v1, . . . , v(a−1)/2 in The-
orem 3.1. Using Eq. (3.26) we obtain in this way the lower bound (3.1) with a supremum
over r ∈ Ia,b \ Ra,b; since Ra,b is a finite set, this makes no difference by right-continuity.
This concludes the proof of Theorem 3.1; Remark 3.2 can be proved in the same way, using
Remark 2.2 stated after Theorem 2.1.

4 Proof of the Diophantine consequences

In this section we deduce from Theorem 3.1 all results stated in the introduction; the main
tool is a result coming from linear algebra, stated and proved in §4.1.

For a, b ∈ Z with a ≤ b we denote by Ja, bK the set {a, a+ 1, . . . , b}.

4.1 A result of linear algebra

We state in this section one of the main tools in the proof of the results stated in the
introduction. It enables one to deduce from a lower bound on the rank of a family of
vectors (v1, . . . , vN), such as the one provided by Theorem 3.1, the existence of linearly
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independent entries of the vectors vj with indices j not too close from one another. We
state it in a general form, dealing with any vector space E on a field K. We shall apply
it with E = R/Q and K = Q: real numbers have linearly independent images in R/Q if,
and only if, together with 1 they are Q-linearly independent in R. We hope this result can
be used in other contexts (not involving Riemann zeta function), to take advantage of the
lower bound provided by the linear independence criterion.

To state the result we fix k ≥ 1, N ≥ 1, and let [λi,j]1≤i≤k,1≤j≤N be a k × N matrix
with entries in K and ξ : J1, N + k − 1K→ E be a map. We consider the following vectors
in the K-vector space Ek:

v1 =


λ1,1ξ(1)
λ2,1ξ(2)

...
λk,1ξ(k)

 , v2 =


λ1,2ξ(2)
λ2,2ξ(3)

...
λk,2ξ(k + 1)

 , . . . , vN =


λ1,Nξ(N)

λ2,Nξ(N + 1)
...

λk,Nξ(N + k − 1)

 .

Proposition 4.1. Let δ ≥ 0 and p, q ≥ 0 be such that

rkK(v1, . . . , vN) > (k + 4δ)(p+ q − 1).

Then for any m1, . . . ,mq ∈ J1, N + k − 1K there exist n1, . . . , np ∈ J1, N + k − 1K with the
following properties:

• ξ(n1), . . . , ξ(np) are K-linearly independent.

• For any i, j ∈ {1, . . . , p} with i 6= j, |ni − nj| > δ.

• For any i ∈ {1, . . . , p} and any j ∈ {1, . . . , q}, |ni −mj| > δ.

The integer q plays a crucial role in the proof of this proposition, but in this paper we
apply it only with q = 0.

With δ = 0, Proposition 4.1 can be proved easily. Indeed, let L denote the set of
indices ` such that some ξ(mj), 1 ≤ j ≤ q, appears in an entry of v`; then L = J1, NK ∩
∪qj=1Jmj − k + 1,mjK so that CardL ≤ kq. Therefore the family (v`)`6∈L has rank greater
than k(p−1). Now letting F denote the K-subspace of E generated by the numbers ξ(n) for
n ∈ J1, N+k−1K\{m1, . . . ,mq}, we have v` ∈ F k for any ` 6∈ L so that dim(F k) > k(p−1)
and dimF ≥ p. This concludes the proof of Proposition 4.1 in this case.

To prove Proposition 4.1 when δ > 0, it is enough to apply p times the following result
with Rj = max(1,mj − δ) and Sj = min(N + k − 1,mj + δ).

18



Lemma 4.2. Let δ ≥ 1 and p, q ≥ 0 be such that

rkK(v1, . . . , vN) > (k + 4δ)(p+ q).

Let R1, . . . , Rq, S1, . . . , Sq ∈ J1, N + k − 1K be such that Rj ≤ Sj ≤ Rj + 4δ for any
j ∈ {1, . . . , q}, and put

N = J1, N + k − 1K \
q⋃
j=1

JRj, SjK.

Let n1, . . . , np ∈ N be such that ξ(n1), . . . , ξ(np) are K-linearly independent and |ni−nj| >
δ for any i, j ∈ {1, . . . , p} with i 6= j. Then there exist n′1, . . . , n

′
p+1 ∈ N such that:

• ξ(n′1), . . . , ξ(n′p+1) are K-linearly independent.

• For any i, j ∈ {1, . . . , p+ 1} with i 6= j, |n′i − n′j| > δ.

• SpanK(ξ(n1), . . . , ξ(np)) ⊂ SpanK(ξ(n′1), . . . , ξ(n
′
p+1)).

Proof of Lemma 4.2: We let

N ′ = J1, N + k − 1K \
q⋃
j=1

JRj − k + 1, SjK

and argue by induction on p. If p = 0, the assumption rk(v1, . . . , vN) > (k + 4δ)q yields
rk{vn, n ∈ J1, NK ∩N ′} > 0 since

Card(J1, NK \ N ′) ≤
q∑
j=1

(Sj −Rj + k) ≤ (k + 4δ)q. (4.1)

Therefore vn 6= 0 for some n ∈ J1, NK∩N ′; there exists n′1 ∈ Jn, n+ k− 1K ⊂ N such that
ξ(n′1) 6= 0. This concludes the proof of Lemma 4.2 if p = 0.

Assume this lemma holds for any p′ ≤ p − 1, with p ≥ 1, and let us prove it for p.
Consider the vector subspace F of E generated by the elements ξ(n), for n ∈ N such that
|n−ni| > δ for any i ∈ {1, . . . , p}, and let G = Span(ξ(n1), . . . , ξ(np)). If F is not contained
in G, we take n′1 = n1, . . . , n′p = np and there exists n′p+1 ∈ N such that |n′p+1 − ni| > δ
for any i ∈ {1, . . . , p} and ξ(n′p+1) 6∈ G; the lemma follows at once in this case. Therefore
we assume from now on that F ⊂ G.

Now we have rk(v1, . . . , vN) > (k + 4δ)(p+ q) so that Eq. (4.1) yields

rk{vn, n ∈ J1, NK ∩N ′} > (k + 4δ)p > kp = dimGk

where Gk is the subset of Ek consisting in vectors of which all coordinates belong to G.
Therefore vn 6∈ Gk for some n ∈ J1, NK∩N ′: there exists s ∈ Jn, n+ k− 1K ⊂ N such that
ξ(s) 6∈ G. Since F ⊂ G we have ξ(s) 6∈ F so that |s − ni| ≤ δ for some i ∈ {1, . . . , p}, by
definition of F . Since n1, . . . , np play symmetric roles we may assume that i = 1. Let us
distinguish between two cases.
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• To begin with, let us consider the case where |s − ni| > δ for any i ∈ {2, . . . , p}; in
particular this holds if p = 1. Then we let Rq+1 = min(s, n1)−δ and Sq+1 = max(s, n1)+δ
so that n2, . . . , np 6∈ JRq+1, Sq+1K. Therefore Lemma 4.2 applies with R1, . . . , Rq+1, S1,
. . . , Sq+1, and n2, . . . , np. This provides integers n′2, . . . , n′p, n

′
p+1 such that:

(a) n′2, . . . , n
′
p, n

′
p+1 ∈ N \ JRq+1, Sq+1K,

(b) ξ(n′2), . . . , ξ(n
′
p), ξ(n

′
p+1) are K-linearly independent,

(c) For any i, j ∈ {2, . . . , p+ 1} with i 6= j, |n′i − n′j| > δ,

(d) Span(ξ(n2), . . . , ξ(np)) ⊂ Span(ξ(n′2), . . . , ξ(n
′
p), ξ(n

′
p+1)).

Now ξ(n′2), . . . , ξ(n
′
p), ξ(n

′
p+1) are p linearly independent vectors thanks to (b), and ξ(n1),

. . . , ξ(np), ξ(s) are p+ 1 linearly independent vectors by construction of s. Therefore one
can find n′1 ∈ {n1, . . . , np, s} such that ξ(n′2), . . . , ξ(n′p), ξ(n

′
p+1), ξ(n

′
1) are p + 1 linearly

independent vectors. Assertion (d) above implies n′1 6∈ {n2, . . . , np}, so that n′1 = n1 or
n′1 = s; if possible we choose n′1 = n1. Let us check the conclusions of Lemma 4.2 with
n′1,. . . , n′p+1.

Assertion (a) and the construction of s yield n′1, . . . , n
′
p+1 ∈ N ; and ξ(n′1), . . . , ξ(n′p+1)

are K-linearly independent by definition of n′1. Given i, j ∈ {1, . . . , p + 1} with i 6= j, we
have |n′i − n′j| > δ: this follows from assertion (c) if i, j ≥ 2, and from (a) if i = 1 or j = 1
(by definition of Rq+1 and Sq+1, since n′1 ∈ {n1, s}). At last, assertion (d) yields

G = Span(ξ(n1), . . . , ξ(np)) ⊂ Span(ξ(n1), ξ(n
′
2), . . . , ξ(n

′
p), ξ(n

′
p+1)).

This concludes the proof of Lemma 4.2 if n′1 = n1. Otherwise, namely if n′1 = s, we have
assumed that choosing n′1 = n1 was not possible so that ξ(n′2), . . . , ξ(n′p+1), ξ(n1) are
linearly dependent. Using assertion (b) this implies ξ(n1) ∈ Span(ξ(n′2), . . . , ξ(n

′
p+1)) so

that assertion (d) yields

G = Span(ξ(n1), . . . , ξ(np)) ⊂ Span(ξ(n′2), . . . , ξ(n
′
p+1)) ⊂ Span(ξ(n′1), ξ(n

′
2), . . . , ξ(n

′
p+1)).

This concludes the proof of Lemma 4.2 in the first case.

• Let us move now to the second case: assume there exists i ∈ {2, . . . , p} such that
|s − ni| ≤ δ. We may assume that i = 2 has this property. Exchanging n1 and n2 if
necessary, we may also assume that n1 < n2; since n2 − n1 > δ this implies n1 < s < n2.
We let Rq+1 = n1 − δ and Sq+1 = n2 + δ, so that n3, . . . , np 6∈ JRq+1, Sq+1K (because
n2 − n1 ≤ |s − n1| + |s − n2| ≤ 2δ so that no integer n ∈ JRq+1, Sq+1K satisfies both
|n− n1| > δ and |n− n2| > δ). Therefore Lemma 4.2 applies with R1, . . . , Rq+1, S1, . . . ,
Sq+1, and n3, . . . , np. It provides integers n′3, . . . , n

′
p+1 ∈ N \ JRq+1, Sq+1K, and we apply it

again with R1, . . . , Rq+1, S1, . . . , Sq+1, and n′3, . . . , n′p+1. We obtain in this way integers
n′′3, . . . , n

′′
p+1, n

′′
p+2 such that:

(a) n′′3, . . . , n
′′
p+2 ∈ N \ Jn1 − δ, n2 + δK,
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(b) ξ(n′′3), . . . , ξ(n′′p+2) are K-linearly independent,

(c) For any i, j ∈ {3, . . . , p+ 2} with i 6= j, |n′′i − n′′j | > δ,

(d) Span(ξ(n3), . . . , ξ(np)) ⊂ Span(ξ(n′3), . . . , ξ(n
′
p+1)) ⊂ Span(ξ(n′′3), . . . , ξ(n′′p+2)).

Of course the corresponding properties hold also for n′3, . . . , n′p+1. Now let us distinguish
between three cases according to the value of

d = dim
(

Span(ξ(n1), ξ(n2)) ∩ Span(ξ(n′′3), . . . , ξ(n′′p+2))
)
∈ {0, 1, 2}.

If d = 0 then we have also

Span(ξ(n1), ξ(n2)) ∩ Span(ξ(n′3), . . . , ξ(n
′
p+1)) = {0}

using (d), so that ξ(n1), ξ(n2), ξ(n
′
3), . . . , ξ(n′p+1) are linearly independent (using the

property analogous to (b) for n′3, . . . , n′p+1). In this case the conclusions of Lemma 4.2
hold with n1, n2, n

′
3, . . . , n′p+1 (using (d) and the fact that n′3, . . . , n

′
p+1 ∈ N \Jn1−δ, n2+δ]

so that |n′i − nj| > δ for any i ∈ {3, . . . , p+ 1} and any j ∈ {1, 2}).
If d = 1 then we may assume that ξ(n2), ξ(n

′′
3), . . . , ξ(n′′p+2) are linearly independent

and span a vector space which contains ξ(n1); indeed otherwise the same properties would
hold after permuting n1 and n2. Then the conclusions of Lemma 4.2 hold with n2, n

′′
3, . . . ,

n′′p+2.
At last, if d = 2 then Span(ξ(n′′3), . . . , ξ(n′′p+2)) contains both ξ(n1) and ξ(n2); therefore

it contains Span(ξ(n1), . . . , ξ(np)) using (d). These vector spaces are therefore equal be-
cause they have the same dimension; by construction of s, they do not contain ξ(s). Since
s ∈ Jn1, n2K, this is enough to prove that the conclusions of Lemma 4.2 hold with n′′3, . . . ,
n′′p+2, s.

This concludes the proof of Lemma 4.2 in all cases.

4.2 Proof of Theorem 1.3

Let ε > 0, and A ≥ D ≥ 1 be such that 0 < ε ≤ 1/20 and A ≥ ε−12/εD (we denote here
by capital letters the variables a and d of Theorem 1.3). We choose an odd integer b such
that 1 + 8D/ε < b < 9D/ε, and denote by a the odd integer such that b divides a and
A − 3b + 2 ≤ a ≤ A − b + 1. We put k = (b + 1)/2 and let ξ(s) = ζ(2s + 1) for any
s ∈ J1, (a+ b− 2)/2K. For any s ∈ J1, (a− 1)/2K we let also

vs =


ξ(s)(

2s + 2
2

)
ξ(s+ 1)(

2s + 4
4

)
ξ(s+ 2)
...(

2s + 2k − 2
2k − 2

)
ξ(s+ k − 1)

 =


ζ(2s+ 1)(

2s + 2
2

)
ζ(2s+ 3)(

2s + 4
4

)
ζ(2s+ 5)
...(

2s + 2k − 2
2k − 2

)
ζ(2s+ b)

 .
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Since A ≥ ε−12/εD ≥ 20240D, we have a ≥ 9b so that Theorem 3.1 yields

rkQ(e1, . . . , ek, v1, . . . , v(a−1)/2) ≥ k sup
r∈Ia,b

(
1− logαr,a,b

logQr,a,b

)
(4.2)

where (e1, . . . , ek) is the canonical basis of Rk. Now we let E = R/Q and denote by
π0 : Rk → Ek the canonical surjection on each component. Then Eq. (4.2) yields

rkQ(v′1, . . . , v
′
(a−1)/2) ≥ k sup

r∈Ia,b

(
− logαr,a,b

logQr,a,b

)
(4.3)

where v′i = π0(vi) ∈ Ek; indeed the restriction of π0 to the Q-subspace generated by
e1, . . . , ek, v1, . . . , v(a−1)/2 has kernel equal to Qk, which has dimension k. Letting ξ′(s)
denote the image of ξ(s) = ζ(2s + 1) in E = R/Q and λi,s =

(
2s + 2i− 2

2i− 2

)
∈ K = Q for

1 ≤ i ≤ k and 1 ≤ s ≤ (a − 1)/2, Proposition 4.1 applies with δ = D/2, p = N + 1 and
q = 0 if we use Eq. (4.3) and check that

k sup
r∈Ia,b

(
− logαr,a,b

logQr,a,b

)
> (k + 2D)N ; (4.4)

here N = b 1−ε
1+log 2

log(A/D)c as in Theorem 1.3. Assuming (for the time being) that this

inequality holds, Proposition 4.1 provides integers n1, . . . , nN+1 ∈ J1, (a + b − 2)/2K such
that

• ξ′(n1), . . . , ξ′(nN+1) are Q-linearly independent in E = R/Q,

• For any i, j ∈ {1, . . . , N + 1} with i 6= j, |ni − nj| > δ.

We let σi = 2ni+1 for any i ∈ {1, . . . , N+1}. Then for any i 6= j we have |σi−σj| > 2δ = D
so that σi > D for any i with at most one exception. Reordering the σi’s if necessary, we
may assume that D < σi ≤ a+ b− 1 ≤ A for any i ∈ {1, . . . , N}. Moreover if 1, ζ(σ1), . . . ,
ζ(σN) were linearly dependent over Q, there would exist λ0, . . . , λN ∈ Q, not all zero, such
that λ0 + λ1ζ(σ1) + . . . + λNζ(σN) = 0. Seen in the quotient space E, this relation reads
λ1ξ

′(n1) + . . . + λNξ
′(nN) = 0. It is non-trivial since (λ1, . . . , λN) 6= (0, . . . , 0), so that it

contradicts the Q-linear independence of ξ′(n1), . . . , ξ′(nN+1) in E. Therefore 1, ζ(σ1), . . . ,
ζ(σN) are Q-linearly independent real numbers; this concludes the proof of Theorem 1.3,
provided we check Eq. (4.4).

In order to check Eq. (4.4), we recall that 0 < ε ≤ 1/20 and A ≥ ε−12/εD, and let r ≥ 1
denote the integer part of (A/D)1−ε/3. Since the map x 7→ x−ε/2 log(x) is non-increasing
on [exp(2/ε),+∞) and A/D ≥ ε−12/ε ≥ exp(2/ε), we have

log(A/D) ≤ ε6 log(ε−12/ε)(A/D)ε/2 = 12ε5 log(1/ε)(A/D)ε/2

so that

br log(4r + 3) < br log(A/D) ≤ 12bε5 log(1/ε)A/D < 108ε4 log(1/ε)A < 0.041εA

22



since b < 9D/ε and 0 < ε ≤ 1/20. This implies 9
2
br log(4r + 3) ≤ a so that r ∈ Ia,b, and

also
4br log r + 2(a+ b− 1) + 2b(r + 1) log 2 < 2a+ εA/4

since b < 9D/ε ≤ 9ε12/εA/ε ≤ 9ε239A. In the same way we have

2(b− 1) + 2b(2r + 1) log(2r + 1) < εA/4.

These inequalities yield

− logαr,a,b
logQr,a,b

=
2(a− 2br) log r − 2(a+ b− 1)− 2b(r + 1) log 2

2(a+ b− 1) + 2(a− 2br) log 2 + 2b(2r + 1) log(2r + 1)

>
2a log r − 2a− εA/4
2(1 + log 2)a+ εA/4

>
log r − 1− ε/7.99

1 + log 2 + ε/7.99

since A ≤ a+3b ≤ a+27ε239A ≤ 8a/7.99. Moreover we have r ≥ (A/D)1/2 ≥ ε−6/ε so that

log r − 1− ε/7.99 ≥ log(r + 1)− 1

r
− 1− ε/7.99 ≥ (1− ε/3) log(A/D)− 1− ε/7.9.

On the other hand,

k + 2D

k
N =

(
1 + 4D/(b+ 1)

)[ 1− ε
1 + log 2

log(A/D)
]

≤ 1 + ε/2 +
(1 + ε/2)(1− ε)

1 + log 2
log(A/D).

Combining these inequalities yields

− logαr,a,b
logQr,a,b

− k + 2D

k
N >

g(ε)

1 + log 2
log(A/D)− h(ε)

with

g(ε) =
1− ε/3

1 + ε
7.99(1+log 2)

− (1 + ε/2)(1− ε) ≥ 0.09ε

and

h(ε) =
1 + ε/7.9

1 + log 2
+ 1 + ε/2 ≤ 1.62

since ε ≤ 1/20. Now ε log(A/D) ≥ 12 log 20 ≥ 35 so that

− logαr,a,b
logQr,a,b

− k + 2D

k
N >

0.09

1 + log 2
· 35− 1.62 ≥ 0.24 > 0.

This concludes the proof of Eq. (4.4), and that of Theorem 1.3.
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4.3 Proof of Theorem 1.7

To prove Theorem 1.7, we follow the proof of Theorem 1.3 and let π : R(b+1)/2 → R be
defined by π(x1, x2, . . . , xk) = λ0x1+λ1x2+ . . .+λdxd+1. We apply Remark 3.2 that follows
Theorem 3.1, so that Eq. (4.2) is replaced with

rkQ(1, π(v1), . . . , π(v(a−1)/2)) ≥ sup
r∈Ia,b

(
1− logαr,a,b

logQr,a,b

)
.

Since π(v(s−1)/2) is exactly the number (1.2), Theorem 1.7 follows from the fact that this
lower bound is greater than N + 1 (see Eq. (4.4)).

4.4 Proof of Theorem 1.5

In this section we prove Theorem 1.5 stated in the introduction, by following the proof of
Theorems 3.1 and 1.3 (see §§3 and 4.2). We just mention the differences.

Denoting by D the odd integer d in the statement of Theorem 1.5, we let b = D if
D ≤ 20000, and otherwise we define b to be the least odd integer such that D ≤ 0.993477 b.
We put also a = 149b, r = 11, and k = (b + 1)/2. We have 9

2
br log(4r + 3) ≤ a, and we

may assume that r 6∈ Ra,b (otherwise we replace everywhere r with r + ε for a sufficiently
small rational number ε > 0). The real root µ1 of §3.4 is independent from b, since it is the
unique root of the polynomial (X + 23)(X − 1)150− (X − 23)(X + 1)150 in the real interval
(23,+∞); we have µ1 ' 23.0000987. Here and below, the notation ' means that some
real number has been replaced with an approximate value. Since f ′(µ1 + i0) = biπ ∈ iR,
we obtain using Eq. (3.15):

εb = exp Ref0(µ1 + i0) = exp Ref(µ1 + i0) ' exp(−888.376706 b).

We shall use this numerical value instead of the last upper bound of Eq. (3.25).
Another refinement turns out to be necessary to complete the proof with these pa-

rameters: Zudilin has constructed in Proposition 1 of [12] a sequence (Πn)n≥1 of positive
integers such that Π−bn Ln is still a linear form with integer coefficients, and

lim
n→∞

Π1/n
n = $ ' 17.068934.

If D ≤ 20000, we let t = 1 and notice that the lower bound on σ2−σ1 in Theorem 1.5 is
equivalent to σ2 > σ1. Otherwise, we let t denote the integer part of 0.003261 b, and remark
(for future reference) that 150b ≤ 151D. We define π : R(b+1)/2 → Rt by π(x1, x3, . . . , xb) =
(xb−2t+2, . . . , xb−2, xb). Following the proof of Theorem 3.1 and Remark 3.2, we obtain

rkQ(u′1, u
′
2, . . . , u

′
t, π(v1), π(v2), . . . , π(v(a−1)/2)) ≥ t

(
1− logα

logQ

)
where (u′1, . . . , u

′
t) is the canonical basis of Rt, v1, . . . , v(a−1)/2 are defined in Theorem 3.1,

and
α = exp(2(a+ b− 1)− b$ + Ref(µ1 + i0)) ' exp(−605.44564 b− 2),
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Q = exp(2(a+b−1)−b$+2(a−2br) log 2+2b(2r+1) log(2r+1)) ' exp(603.22318 b−2).

Now we let E = R/Q and denote by π0 : Rt → Et the canonical surjection on each
component, as in §4.2. Letting also v′i = π0(π(vi)) we obtain

rkQ(v′1, . . . , v
′
(a−1)/2) ≥ −t

logα

logQ
> t+ 4δ

where δ = 3 · 10−6 b if D > 20000, and δ = 0 otherwise. Let us consider ξ(n) = ζ(b −
2t + 2n + 2) for 1 ≤ n ≤ N , with N = a−3

2
+ t. Proposition 4.1, applied with p = 2 and

q = 0, provides integers n1, n2 ≤ N such that n2 > n1 + δ. Letting σi = b − 2t + 2ni + 2
for i ∈ {1, 2}, we obtain if D > 20000:

σ2 > σ1 + 2δ = σ1 + 6 · 10−6 b ≥ σ1 + 6 · 10−6D,

D + 2 ≤ 0.993477 b+ 2 ≤ b− 2t+ 4 ≤ σ1 < σ2 ≤ b+ a− 1 = 150b− 1 ≤ 151D,

and 1, ζ(σ1), ζ(σ2) are Q-linearly independent. If D ≤ 20000 the last inequality is simply
replaced with

D + 2 = b+ 2 = b− 2t+ 4 ≤ σ1 < σ2 ≤ b+ a− 1 = 150b− 1 ≤ 150D.

In both cases this concludes the proof of Theorem 1.5.

Let us conclude this section with two remarks on the proof. First, taking b = d and
t = 1, the proof yields

dimQ SpanQ(1, ζ(d+ 2), ζ(d+ 4), . . . , ζ(150d− 1)) ≥ 3

for any d ≥ 1. On the other hand, if b is small then the estimates in the proof are slightly
better (see the definition of α and Q); this is the reason why Zudilin obtains 145 instead
of 151 when b = 1. The improvements of [5], leading to the value 139, fall also into error
terms as b→∞.

4.5 Proof of Corollary 1.6

In this section we deduce Corollary 1.6 from Theorem 1.3.

Let ε > 0 be such that ε ≤ 1/20; put η = ε15/ε and

ε′ = ε− ε

3 log(1/ε)

so that 0 < ε′ < ε ≤ 1/20. We consider also

C = ε′
−12/ε′

,M =
⌊ 1− ε′

1 + log 2
logC

⌋
, and D = (2e)(1+ε)M .
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We shall prove below that
C + 1 ≤ D < η−1. (4.5)

Taking this inequality for granted, we assume (by induction on n) that u1, u2, . . . , uMn are
already defined such that the first three conclusions of Corollary 1.6 hold for any i ≤Mn,
with uMn ≤ Dn−1C. If n = 0 this assumption is empty. Then we apply Theorem 1.3 with
ε′, a = DnC and d = Dn (since a/d = C = ε′−12/ε

′
and 0 < ε′ ≤ 1/20). This provides odd

integers uMn+1, . . . , uM(n+1) such that Dn < uMn+1 < . . . < uM(n+1) ≤ DnC, ζ(uMn+j) 6∈ Q
for any j ∈ {1, . . . ,M}, and uMn+j+1 − uMn+j > Dn for any j ∈ {1, . . . ,M − 1}. Using
Eq. (4.5) this lower bound implies

uMn+j+1/uMn+j > 1 +Dn/uMn+j ≥ 1 + 1/C ≥ 1 + η.

For j = 0 we obtain in the same way the following inequalities, since uMn ≤ Dn−1C:

uMn+1/uMn >
Dn

Dn−1C
≥ D/C ≥ (C + 1)/C ≥ 1 + η.

Letting i = Mn+ j with 1 ≤ j ≤M , we have i/M − 1 ≤ n < i/M so that, using Eq. (4.5)
again:

η(2e)(1+ε)i ≤ D−1η(2e)(1+ε)i = Di/M−1 ≤ Dn < si ≤ DnC < Di/MC ≤ η−1(2e)(1+ε)i.

This concludes the induction. At last, if a ≥ η−1/ε then letting N = b 1−2ε
1+log 2

log ac this
upper bound on sN yields

sN < η−1a1−ε−2ε
2

< aη2ε < a.

This concludes the proof of Corollary 1.6, except for Eq. (4.5) that we shall prove now.

To begin with, we notice that 3 log(1/ε) ≥ 3 log(20) ≥ 8.98 so that ε′ ≥ 0.88ε and ε ≤
1.14ε′. This implies log(1/ε) ≥ log(1/ε′) + log(0.88) > 19 log(1/ε′)/20 since log(20)/20 >
− log(0.88), and finally:

ε′/ log(1/ε′) < ε/ log(1/ε) < 1.2ε′/ log(1/ε′). (4.6)

This enables us to prove that D < η−1 because

logD ≤ (1 + ε)(1− ε′) logC ≤
(

1 +
ε

3 log(1/ε)

)
logC

≤ 1.006 logC since ε ≤ 1/20 and 3 log(1/ε) ≥ 3 log 20 ≥ 8.98

< log(η−1) by definition of C and η, and using Eq. (4.6).

At last, we have

logD − log(C + 1) ≥ (1 + ε)N(1 + log 2)− logC − log(1 + 1/C)

≥ [(1 + ε)(1− ε′)− 1] logC − (1 + ε)(1 + log 2)− 1/C

≥ 12(ε/ε′ − 1− ε) log(1/ε′)− (1 + ε)(1 + log 2)− ε′12/ε′ .
Since ε/ε′ = (1−1/(3 log(1/ε)))−1 ≥ 1 + 1/(3 log(1/ε)) and log(1/ε′) ≥ log(1/ε) we obtain

logD − log(C + 1) ≥ 4− 12ε log(1/ε)− (1 + ε)(1 + log 2)− ε′12/ε′ > 0.4 > 0

since ε′ < ε ≤ 1/20. This concludes the proof of Eq. (4.5), and that of Corollary 1.6.
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