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ABSTRACT

Let ξ be a real irrational number, and ϕ be a function (satisfying some assumptions). In this text we
study the ϕ-exponent of irrationality of ξ , defined as the supremum of the set of μ for which there are
infinitely many q � 1 such that q is a multiple of ϕ(q) and |ξ − p

q | � q−μ for some p ∈ Z. We obtain
general results on this exponent (a lower bound, the Haussdorff dimension of the set where it is large, . . .)
and connect it to sequences of small linear forms in 1 and ξ with integer coefficients, with geometric
behaviour and a divisibility property of the coefficients. Using Apéry’s proof that ζ(3) is irrational, we
obtain an upper bound for the ϕ-exponent of irrationality of ζ(3), for a given ϕ.

1. INTRODUCTION

Apéry has proved [2] (see also [9] for a survey) that for ξ = ζ(3), α = e3(1 +√
2)−4 < 1, and β = e3(1 + √

2)4 > 1, the following holds:

{
There exist two integer sequences (un)n�1 and (vn)n�1 such that
un � 0, |unξ − vn|1/n → α and u

1/n
n → β

(1.1)

and also, with δn = d3
n where dn = lcm(1,2, . . . , n):

δn divides un for any n � 1.(1.2)
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Since α < 1, (1.1) implies the irrationality of ζ(3). It is well known that

(1.1) implies μ(ξ) � 1 − logβ

logα
,(1.3)

where μ(ξ) is the exponent of irrationality of ξ , so that μ(ζ(3)) � 13.4178202 . . . .

It is proved in [11] (together with more precise results connected to [10]) that,
conversely, for ξ ∈ R \ Q,

if μ(ξ) < 1 − logβ

logα
with 0 < α < 1 < β, then (1.1) holds.(1.4)

In this paper, we generalize both implications (1.3) and (1.4), to take into account
the divisibility property (1.2), under the assumption that δn divides δn+1 for any
n � 1 (which is the case in Apéry’s construction since δn = d3

n). For instance,
Apéry’s construction implies the following result (the analogue of which, where
ζ(3) is replaced with log(2), has been proved by Dubitskas [6] in a stronger version,
see further):

Theorem 1. For any ε > 0, there are only finitely many integers q � 1 satisfying
both

∣∣∣∣ζ(3) − p

q

∣∣∣∣ <
1

q2+ε
for some p ∈ Z

and

d3
n divides q, with n =

[
logq

log((1 + √
2)4)

]
.

To state our results more precisely, let us denote by E the set of all functions
ϕ : N∗ → N

∗ (with N
∗ = {1,2,3, . . .}) such that:

• For any q � 1, ϕ(q + 1) is a multiple of ϕ(q).
• The limit γϕ := limq→∞ logϕ(q)

logq
exists and satisfies 0 � γϕ < 1.

The following definition generalizes that of the usual exponent of irrationality
μ(ξ) (which is obtained as a special case when ϕ is the function 1 defined by 1(q) =
1 for any q).

Definition 1. For ϕ ∈ E and ξ ∈ R \ Q, the ϕ-exponent of irrationality of ξ is the
supremum, denoted by μϕ(ξ), of the set of real numbers μ for which there are
infinitely many q � 1 such that

q is a multiple of ϕ(q) and
∣∣∣∣ξ − p

q

∣∣∣∣ � 1

qμ
for some p ∈ Z.
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Of course, when this set is R, we have μϕ(ξ) = +∞.
If we let ϕ(q) = d3

n where n = [ logq

log((1+√
2)4)

], then ϕ ∈ E and Theorem 1 means

that μϕ(ζ(3)) � 2.
In the case of log(2), Dubitskas’ result implies μϕ(log(2)) � 2 where ϕ(q) = dn

with n = [ logq

log(3+2
√

2)
]. On the other hand, Rivoal has proved [21] that

∣∣∣∣log(2) − p

2ndn

∣∣∣∣ � 1

(2ndn)1.948967
for any p ∈ Z and n sufficiently large,

so that only finitely many convergents in the continued fraction expansion of log(2)

have a denominator of the form 2ndn. Maybe Rivoal’s methods (which apply also
to log(r) for other positive rational numbers r) can lead to upper bounds less than 2
for μϕ(log(r)), for suitable ϕ ∈ E and r ∈ Q, r > 0.

The main result of this paper is the following generalization of (1.3) and (1.4),
which allows one to deduce Theorem 1 from Apéry’s construction:

Theorem 2. Let ξ ∈ R\Q, 0 < α < 1, β > 1, and (δn)n�1 be a sequence of positive
integers such that δn divides δn+1 for any n � 1, and δ

1/n
n tends to δ as n → ∞.

Define a function ϕ ∈ E by

ϕ(q) = δn with n =
[

logq

log(δ/α)

]
.

Then we have the following implications:

(i) If (1.1) and (1.2) hold then μϕ(ξ) � logβ−logα

log δ−logα
.

(ii) If μϕ(ξ) <
logβ−logα

log δ−logα
then (1.1) and (1.2) hold.

We also prove various results (of independent interest) on the ϕ-exponent of
irrationality μϕ(ξ), namely:

• For any ξ ∈ R \ Q, we have μϕ(ξ) � 2 − γϕ , and equality holds for almost any
ξ with respect to Lebesgue measure.

• For μ > 2 − γϕ , the set of real numbers ξ ∈ R \ Q such that μϕ(ξ) � μ has

Hausdorff dimension 2−γϕ

μ
.

• For any ξ ∈ R \ Q, we have μϕ(ξ) = +∞ if, and only if, μ(ξ) = +∞ (that is, if
and only if ξ is a Liouville number).

In the case of ζ(3), we obtain the following result as a consequence of Theorem 1
and this Hausdorff dimension computation.

Corollary 1. For any q � 1, let ϕ(q) = d3
n where n = [ logq

log((1+√
2)4)

]. Let S denote

the set of all ξ ∈ R \ Q such that μϕ(ξ) > 2. Then ζ(3) /∈ S and S has Hausdorff
dimension 0.5745 . . . .
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As far as we know, this is the largest known Hausdorff dimension for a subset
of R, defined by Diophantine conditions, which does not contain ζ(3). It is
worthwile noticing that variants of Apéry’s construction (due to Hata, and Rhin
and Viola, . . .) give better bounds for the (usual) irrationality exponent μ(ζ(3)), but
do not seem to allow any improvement on Corollary 1 (see Section 4).

In this text, we consider asymptotic estimates like (1.1) since these can be easily
used to work with exponents like μϕ(ξ). However, in the case of ζ(3) (and also ζ(2)

and log 2), more precise estimates are known. They enable us to prove the following
result, which refines Theorem 1 and is analogous to Dubitskas’ result [6] for log 2.

Theorem 3. There exists c > 0 such that for any q � 1 and any p ∈ Z we have

∣∣∣∣ζ(3) − p

q

∣∣∣∣ � c(logq)3

q2

provided that

d3
n divides q, with n =

[
logq

log((1 + √
2)4)

]
.

Corollary 2. Only finitely many convergents p/q in the continued fraction
expansion of ζ(3) are such that d3

n divides q , with n = [ logq

log((1+√
2)4)

].

The structure of this text is as follows. In Section 2, we prove the general results
stated above (and some others) about the ϕ-exponent of irrationality μϕ(ξ). In
Section 3, we give a proof of Theorem 2. Finally, in Section 4 we apply our results
to particular numbers ξ , especially ζ(3), ζ(2), and log 2, and in Section 5 we prove
Theorem 3 and Corollary 2.

2. GENERAL PROPERTIES

The definition of μϕ(ξ) makes sense because for any ϕ ∈ E there are infinitely many
integers q such that q is a multiple of ϕ(q). More precise statements are given in
the proofs of Lemmas 1 and 2 and also in the statement of Proposition 1.

Let us start with examples of functions in E . Let b1, . . . , br � 2 be pairwise dis-
tinct integers, and ε1, . . . , εr > 0 be such that

∑r
i=1 εi logbi < 1. Then the function

defined by ϕ(q) = ∏r
i=1 b

[εi logq]
i belongs to E , and satisfies γϕ = ∑r

i=1 εi logbi .

2.1. A lower bound

The following lemma generalizes the lower bound μ(ξ) � 2 which holds for any
ξ ∈ R \ Q. The proof uses the same tool as Dirichlet’s proof, namely the pigeonhole
principle.

Lemma 1. For any ϕ ∈ E and any ξ ∈ R \ Q, we have μϕ(ξ) � 2 − γϕ .
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Proof. Let ε > 0, and Q be sufficiently large in terms of ε. Consider, for 0 � n �
[Q/ϕ(Q)], the fractional part of nϕ(Q)ξ . Since ξ /∈ Q, this gives [Q/ϕ(Q)] + 1
pairwise distinct points in [0,1]. Thanks to the pigeonhole principle, two of them
lie within a distance less than or equal to [Q/ϕ(Q)]−1. The difference of the
corresponding integers n yields an integer m, with 1 � m � Q/ϕ(Q), such that
|mϕ(Q)ξ − p| � [Q/ϕ(Q)]−1 for some p ∈ Z. Now let q = mϕ(Q). Then q � Q

so that ϕ(q) divides ϕ(Q), and also ϕ(Q) divides q by definition of q . Finally ϕ(q)

divides q , and since Q is sufficiently large in terms of ε we have:

∣∣∣∣ξ − p

q

∣∣∣∣ � 1

q

[
Q

ϕ(Q)

]−1

� 1

qQ1−γϕ−ε
� 1

q2−γϕ−ε
.

This concludes the proof of Lemma 1. �
2.2. Comparisons between μϕ(ξ) for various ϕ

In this section, we show how μϕ(ξ) and μϕ′(ξ) are connected for ϕ,ϕ′ ∈ E . It is
specially interesting when ϕ′ = 1 since in this case μϕ′(ξ) is the classical exponent
of irrationality μ(ξ).

Let us start with the following remark.

Remark 1. Let ξ ∈ R \ Q and ϕ ∈ E . Then μϕ(ξ)

1−γϕ
is the supremum of the set of μ

for which there are infinitely many q such that

q is a multiple of ϕ(q) and
∣∣∣∣ξ − p

q

∣∣∣∣ � 1

(q/ϕ(q))μ
for some p ∈ Z.

The proof of this fact is easy, since for any ε > 0 and any q sufficiently large in
terms of ε we have q1−γϕ−ε � q/ϕ(q) � q1−γϕ+ε .

This remark is crucial in the proof (given further) of the following lemma.

Lemma 2. Let ξ ∈ R \ Q, and ϕ,ϕ′ ∈ E be such that ϕ′(q) divides ϕ(q) for any
q � 1. Then μϕ′(ξ) is finite if, and only if, μϕ(ξ) is finite, and in this case we have:

1 − γϕ

1 − γϕ′
μϕ′(ξ) � μϕ(ξ) � μϕ′(ξ).

Letting ϕ′ = 1, we obtain the following corollary.

Corollary 3. Let ξ ∈ R \ Q and ϕ ∈ E . Then μϕ(ξ) is infinite if, and only if, μ(ξ)

is infinite (that is, if and only if ξ is a Liouville number). Otherwise we have

(1 − γϕ)μ(ξ) � μϕ(ξ) � μ(ξ).

Remark 2. Let ϕ ∈ E be such that γϕ = 0. Then for any ξ we have μϕ(ξ) = μ(ξ) so
that μϕ is nothing but the usual exponent of irrationality. More generally, if ϕ,ϕ′ ∈ E
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are such that ϕ′(q) divides ϕ(q) for any q � 1, and γϕ = γϕ′ , then Lemma 2 shows
that μϕ(ξ) = μϕ′(ξ) for any ξ .

Proof of Lemma 2. If q is a multiple of ϕ(q) then q is a multiple of ϕ′(q), so the

second inequality is trivial. Let us prove the first one, that is
μϕ′ (ξ)

1−γϕ′ � μϕ(ξ)

1−γϕ
. This

follows immediately from Remark 1 and the following fact. If ϕ,ϕ′ ∈ E are such
that ϕ′(q) divides ϕ(q) for any q � 1, and if q ′ � 1 is such that ϕ′(q ′) divides q ′,
then there exists an integer multiple q of q ′ such that ϕ(q) divides q and q/ϕ(q) =
q ′/ϕ′(q ′). To prove this fact, we let q be the least integer such that q � q ′ and

q′
ϕ′(q′)ϕ(q) � q . Such an integer exists since ϕ ∈ E . If q = q ′ then ϕ(q ′) � ϕ′(q ′) so
that ϕ(q ′) = ϕ′(q ′), and the conclusion holds with q = q ′. Otherwise, we have q > q ′

and, by minimality, q � q′
ϕ′(q′)ϕ(q) � q′

ϕ′(q′)ϕ(q − 1) > q − 1 so that q = q′
ϕ′(q′)ϕ(q).

Now q ′ < q implies that ϕ(q ′) divides ϕ(q); since ϕ′(q ′) divides ϕ(q ′), we obtain
that q = q ′ ϕ(q)

ϕ′(q′) is a multiple of q ′. This concludes the proof of the fact, and that of
Lemma 2. �
2.3. A special set of functions

In this subsection, we focus on specific functions ϕ ∈ E , of major importance to us
since they are the ones involved in Theorem 2. Actually, since our interest lies only
on the exponents of irrationality μϕ(ξ), Lemma 4 below shows that we do not lose
anything by considering only these functions (and even only a part of them). Let us
start by the following lemma, in which these functions ϕ are defined. We omit the
proof, since it is very easy.

Lemma 3. Let (δn)n�1 be a sequence of positive integers such that δn divides
δn+1 for any n � 1, and δ

1/n
n tends to δ as n → ∞. Let α ∈ R be such that 0 < α < δ.

Define a function ϕ by

ϕ(q) = δn with n =
[

logq

log(δ/α)

]
.

Then we have ϕ ∈ E and γϕ = log δ

log(δ/α)
.

When α = δ/2, the definition of ϕ in this lemma means

ϕ(q) = δn = ϕ
(
2n

)
when 2n � q < 2n+1.

The following lemma shows that we would not lose too much by considering only
functions ϕ obtained in this way. The number 2 in 2n is not important, it could be
replaced with any other number greater than one.

Lemma 4. Let ϕ ∈ E . Define a function ϕ̃ by letting, for any integers q � 1 and
n � 0:

ϕ̃(q) = ϕ
(
2n

)
when 2n � q < 2n+1.
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Then we have ϕ̃ ∈ E , γϕ̃ = γϕ , and μϕ(ξ) = μϕ̃(ξ) for any ξ .

Proof. The properties ϕ̃ ∈ E and γϕ̃ = γϕ are obvious, and μϕ(ξ) = μϕ̃(ξ) follows
from Remark 2 since ϕ̃(q) divides ϕ(q) for any q � 1. �

The function ϕ̃ of Lemma 4 is useful to prove the following statement, which
shows “how many” integers q are multiples of ϕ(q). This statement will be helpful
in the proof of metric results in Section 2.4.

Proposition 1. Let ϕ ∈ E , and denote by Qϕ the set of all q � 1 such that ϕ(q)

divides q . Then for any ε > 0, the series
∑

q∈Qϕ
q−1+γϕ−ε is convergent and the

series
∑

q∈Qϕ
q−1+γϕ+ε is divergent.

Proof. Let ε > 0; we may assume ε < 1 − γϕ . For any n � 0 and q such that 2n �
q < 2n+1, we let ϕ1(q) = ϕ(2n) and ϕ2(q) = ϕ(2n+1). As in Lemma 4, we have
ϕ1, ϕ2 ∈ E with γϕ1 = γϕ2 = γϕ , and Qϕ2 ⊂ Qϕ ⊂ Qϕ1 . This implies

∑
q∈Qϕ

q−1+γϕ−ε �
∑

q∈Qϕ1

q−1+γϕ−ε

=
∑
n�0

∑
q∈Qϕ1

2n�q<2n+1

q−1+γϕ−ε

�
∑
n�0

(
2n

)−1+γϕ−ε 2n

ϕ(2n)
< +∞

since, for n sufficiently large, (2n)γϕ−ε < 1
n2 ϕ(2n). In the same way,

∑
q∈Qϕ

q−1+γϕ+ε �
∑

q∈Qϕ2

q−1+γϕ+ε

=
∑
n�0

∑
q∈Qϕ2

2n�q<2n+1

q−1+γϕ+ε

�
∑
n�0

(
2n+1)−1+γϕ+ε 2n

ϕ(2n+1)
= +∞

since (2n+1)γϕ+ε � ϕ(2n+1) for n sufficiently large. This concludes the proof of
Proposition 1. �
2.4. Metric results

Proposition 2. Let ϕ ∈ E . For almost any ξ ∈ R in the sense of Lebesgue measure,
we have μϕ(ξ) = 2 − γϕ .
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Proof. Thanks to Lemma 1, it is enough to prove that for any ε > 0 the set of
all ξ ∈ [0,1] with μϕ(ξ) > 2 − γϕ + ε has Lebesgue measure 0. Now this set is
contained, for any q0 � 1, in the union of [p

q
− 1

q2−γϕ+ε ,
p
q

+ 1
q2−γϕ+ε ] with 0 � p � q

and q ∈ Qϕ , q � q0 (where Qϕ is defined in the statement of Proposition 1), so that
is has measure less than or equal to

∑
q∈Qϕ

q�q0

2(q + 1)

q2−γϕ+ε
� 4

∑
q∈Qϕ

q�q0

1

q1−γϕ+ε
.

Now Proposition 1 proves that this upper bound is finite, and tends to 0 as q0 tends
to infinity. This concludes the proof of Proposition 2. �
Proposition 3. Let ϕ ∈ E and μ > 2 − γϕ . Then the set of all real numbers ξ ∈ R

such that μϕ(ξ) � μ has Lebesgue measure zero and Hausdorff dimension 2−γϕ

μ
.

In the special case ϕ = 1, we obtain the classical theorem of Jarník [15] and
Besicovitch [3] stating that the set of ξ ∈ R such that μ(ξ) � μ has Hausdorff
dimension 2/μ (see for instance [5], p. 104, Theorem 5.2, or Chapter 10 of [8]).

Proposition 3 follows immediately from Proposition 1 and the following theorem
due to Borosh and Fraenkel [4].

Theorem 4 (Borosh–Fraenkel). Let ν ∈ [0,1], and Q be a subset of N
∗ such that,

for any ε > 0, the series
∑

q∈Q q−ν−ε is convergent and the series
∑

q∈Q q−ν+ε is
divergent. Let μ > ν + 1. Then the set of all ξ ∈ R for which there are infinitely
many q ∈ Q such that

∣∣∣∣ξ − p

q

∣∣∣∣ � 1

qμ
for some p ∈ Z

has Hausdorff dimension ν+1
μ

.

Actually in [4] it is assumed that the series
∑

q∈Q q−ν is divergent, but this
assumption is not necessary (see the remark before Lemma 2.1 of [22], p. 72).

3. A TRANSFERENCE THEOREM

In this section, we prove Theorem 2 stated in the Introduction. Let us recall the
following from Lemma 3 stated in Section 2.3. Let (δn)n�1 be a sequence of positive
integers such that δn divides δn+1 for any n � 1, and δ

1/n
n tends to δ as n → ∞. Let

α ∈ R be such that 0 < α < δ. Define a function ϕ by

ϕ(q) = δn with n =
[

logq

log(δ/α)

]
.(3.1)

Then we have ϕ ∈ E and γϕ = log δ

log(δ/α)
.

We can now re-state Theorem 2 as follows.
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Theorem 5. Let ξ ∈ R\Q, 0 < α < 1, β > 1, and (δn)n�1 be a sequence of positive
integers such that δn divides δn+1 for any n � 1, and δ

1/n
n tends to δ as n → ∞. Let

ϕ ∈ E be the function defined by (3.1). Then the following implications hold.

(i) If there exist two integer sequences (un) and (vn) such that un � 0, |unξ −
vn|1/n → α, u

1/n
n → β and δn divides un for any n, then we have

μϕ(ξ) � logβ − logα

log δ − logα
.(3.2)

(ii) If we have

μϕ(ξ) <
logβ − logα

log δ − logα

then there exist two integer sequences (un) and (vn) such that un � 0, |unξ −
vn|1/n → α, u

1/n
n → β and δn divides un for any n.

In the special case where β = δβ0 and α = δ/β0, we have logβ−logα

log δ−logα
= 2. This is

the situation with Apéry’s construction for ξ = ζ(3) and ξ = ζ(2), and also with
Alladi and Robinson’s [1] for ξ = log 2 (see Section 4 for more details). In this
case, thanks to Lemma 3 and Proposition 3, the upper bound (3.2) means that ξ lies
outside a set of Hausdorff dimension 1 − log δ

2 logβ0
whereas the usual bound μ(ξ) �

1 − logβ

logα
means that ξ lies outside a set of Hausdorff dimension 1 − log δ

logβ0
. This

means this Hausdorff dimension has come twice closer to 1.
Putting part (i) of Theorem 5 with the lower bound of Lemma 1, we obtain the

following corollary which is a special case of the linear independence criteria of
[12].

Corollary 4. Let ξ ∈ R, 0 < α < 1, β > 1, and (δn)n�1 be a sequence of positive
integers such that δn divides δn+1 for any n � 1, and δ

1/n
n tends to δ as n → ∞.

If there exist two integer sequences (un) and (vn) such that un � 0, |unξ −
vn|1/n → α, u

1/n
n → β and δn divides un for any n, then we have

δ � αβ.

Proof of (i) of Theorem 5. If δ = 1, we have γϕ = 0 thanks to Lemma 3, so
that μϕ(ξ) = μ(ξ) using Corollary 3, and assertion (i) follows from the classical
implication (1.3). So we may assume δ > 1.

Let μ >
logβ−logα

log δ−logα
, ε > 0 be sufficiently small, and q be sufficiently large such

that ϕ(q) divides q and |ξ − p/q| < q−μ for some p ∈ Z. Let

n =
[
(logq)

log(δ − ε) − log δ + logα

log(α + ε) log(δ/α)

]
+ 1

and m = [ logq

log(δ/α)
]. We have log(δ−ε)− log δ+ logα < log(α+ε) < 0 so that m � n,

and ϕ(q) = δm divides δn. Therefore δm is a common divisor of q and un, and the
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determinant
∣∣∣ q
un

p
vn

∣∣∣ is an integer multiple of δm. Now this determinant is equal (up

to a sign) to
∣∣∣ q
un

qξ−p
unξ−vn

∣∣∣; we shall prove it has absolute value less than δm, so that

it is zero.
Since log(α + ε) < 0, the lower bound n � (logq)

log(δ−ε)−log δ+logα

log(α+ε) log(δ/α)
yields

n

logq
log(α + ε) <

log(δ − ε)

log(δ/α)
− 1,

so that logq +n log(α + ε) < (m+ 1) log(δ − ε) and q(α + ε)n < (δ − ε)m+1. On the
other hand, with this choice of n we have n � (logq)

log(δ−ε)−log δ+logα

log(α+ε) log(δ/α)
+ 1 so that

n

logq
log(β + ε) − log(δ − ε)

log(δ/α)

� 1

log(δ/α)

[
log(β + ε)(log(δ − ε) − log(δ/α))

log(α + ε)
− log(δ − ε)

]
.

If ε is sufficiently small, the right-hand side is close enough to logβ−log δ

log(δ/α)
to ensure

that it is less than μ − 1. Therefore we have

μ − 1 >
n

logq
log(β + ε) − log(δ − ε)

log(δ/α)
,

so that (μ − 1) logq > n log(β + ε) − (m + 1) log(δ − ε) and (β + ε)n < qμ−1(δ −
ε)m+1.

Using these two estimates, we obtain the following upper bound for the absolute

value of
∣∣∣ q
un

qξ−p
unξ−vn

∣∣∣:

q(α + ε)n + (β + ε)n

qμ−1
< 2(δ − ε)m+1 < δm.

Therefore this determinant is zero, and

1

qμ−1
> |qξ − p| = q

un

|unξ − vn| > q

(
α − ε

β + ε

)n

hence qμ < ((β + ε)/(α − ε))n, therefore

μ logq < n
(
log(β + ε) − log(α − ε)

)
< (logq)

(
log(β + ε) − log(α − ε)

) log(δ − ε) − log δ + logα

log(α + 2ε) log(δ/α)

which contradicts the assumption on μ for ε sufficiently small. This concludes the
proof of (i) of Theorem 5. �

The following lemma is essentially a special case of the one proved in [10] (in
the proof of Lemma 7.3, on p. 39). We give the proof since (as announced in [10])
it is really easier than the one of [10].
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Lemma 5. Let ε and Q be real numbers such that 0 < ε < 1 and Q > 1. Let
ξ ∈ R \ Q be such that 0 < ξ < 1. Then at least one of the following two assertions
holds:

(i) There exist integers p and q such that 1 � q < 2
ε

and

∣∣∣∣ξ − p

q

∣∣∣∣ <
3

qQ
.(3.3)

(ii) There exist integers p and q such that Q � q � 2Q and

p + ε

q
� ξ � p + 3ε

q
.

This lemma is useful when ε is really bigger than 1/Q. In this case, p/q is a very
precise approximation to ξ in case (i), whereas in case (ii) it is not precise at all but
we have a very good control upon the exact size of q and qξ − p (namely, not only
upper bounds as usual, but also lower bounds).

Proof of Lemma 5. Let F be the set of all fractions p/q with 0 � p � q and
1 � q � 2Q. For f ∈ F , we write f = p̃/q̃ as a fraction in its lowest terms, and
also f = p/q where q is the least denominator of f such that Q � q � 2Q. With
this convention, for f ∈ F we denote by If the interval [p+ε

q
,

p+3ε
q

]. Let us assume
that (ii) does not hold, i.e. ξ does not belong to any of these intervals If . Assertion
(i) holds with q = 1 and p = 0 if ξ � ε/Q = min I0, so we can assume ξ > min I0

and therefore ξ > max I0. Let f be the greatest fraction in F such that max If <

ξ . Since ξ < 1, there is a least element f ′ ∈ F such that f ′ > f . Thanks to our
assumption on ξ , we have ξ /∈ If ′ so that ξ < min If ′ . Letting f = p/q and f ′ =
p′/q ′ with the same convention as above, we have

p + 3ε

q
< ξ <

p′ + ε

q ′ .(3.4)

Since Q � q, q ′ � 2Q, this gives

p′

q ′ − p

q
>

3ε

q
− ε

q ′ � ε

2Q
.(3.5)

Now we write p
q

= p̃
q̃

and p′
q′ = p̃′

q̃′ as fractions in their lowest terms. Since they
are consecutive Farey fractions, it is well known (see for instance [13]) that q̃ +
q̃ ′ > 2Q and p′

q′ − p
q

= 1
q̃q̃′ . Let m = min(q̃, q̃ ′) and M = max(q̃, q̃ ′). Then M > Q

so that p′
q′ − p

q
= 1

q̃q̃′ < 1
mQ

. Thanks to (3.5), this implies m < 2/ε. Now we use

Equation (3.4) to bound from above the distance of ξ to the fraction (either p̃
q̃

or p̃′
q̃′ )

with denominator m. If m = q̃ we obtain
∣∣∣∣ξ − p̃

q̃

∣∣∣∣ <
p′

q ′ − p

q
+ ε

q ′ <
1

mQ
+ 2

mQ
= 3

mQ
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whereas if m = q̃ ′ we obtain

∣∣∣∣ξ − p̃′

q̃ ′

∣∣∣∣ < max

(
ε

q ′ ,
p′

q ′ − p

q
− 3ε

q

)
<

2

mQ
.

So in both cases assertion (i) holds. This concludes the proof of Lemma 5. �
Proof of (ii) of Theorem 5. First of all, let us notice that the assumptions of (ii)
imply δ < β , since μϕ(ξ) � 1 thanks to Lemma 1. Let μ be such that μϕ(ξ) < μ <
logβ−logα

log δ−logα
. Let n be sufficiently large. We denote by ξn be the fractional part of δnξ ,

Qn = 3βn

δn
and εn = 3αn δn

δn

so that εn < 1 and Qn > 1. Let us apply Lemma 5 to ξn, εn and Qn. In the first case,
we obtain integers un and vn such that un < 2

3α−n δn

δn
and

|unξn − vn| � 3

Qn

= δn

βn
<

1

(α−nδn)μ−1
<

1

(unδn)μ−1

since μ − 1 <
log(β/δ)

log(δ/α)
.

By definition of ξn, there is an integer ṽn such that unξn − vn = unδnξ − ṽn. So
we have

∣∣∣∣ξ − ṽn

unδn

∣∣∣∣ = 1

unδn

|unξ − vn| < 1

(unδn)μ
.

Moreover we have ϕ(unδn) = δk with

k =
[

log(unδn)

log(δ/α)

]
�

[
log( 2

3α−nδn)

log(δ/α)

]
� n

so that δk divides δn, and finally δk = ϕ(unδn) divides unδn. Since μϕ(ξ) < μ, this
is possible only for a finite number of values of n. Therefore, as soon as n is
sufficiently large, statement (ii) in Lemma 5 holds; let pn and qn be the integers
provided by this lemma. We have

Qn � qn � 2Qn and εn � qnξn − pn � 3εn,

so that limq
1/n
n = β/δ and lim |qnξn − pn|1/n = α. As above, there is an integer p̃n

such that qnξn − pn = qnδnξ − p̃n. Letting un = δnqn and vn = p̃n concludes the
proof of (ii) of Theorem 5. �
4. APPLICATION TO PARTICULAR NUMBERS ξ

Let us start by summarizing Theorem 2 and Proposition 3 in the following corollary
(which contains Corollary 1 as a special case).
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Corollary 5. Let ξ ∈ R\Q, 0 < α < 1, β > 1 and δ � 1. Assume there exist integer
sequences (un)n�1, (vn)n�1 and (δn)n�1 such that δn divides un and δn+1 for any n,
and

un � 0, |unξ − vn|1/n → α, u1/n
n → β and δ1/n

n → δ.

Let ϕ ∈ E be defined by ϕ(q) = δn where n = [ logq

log(δ/α)
]. Then we have

μϕ(ξ) � logβ − logα

log δ − logα
.

Moreover, the set S of all ξ ′ ∈ R \ Q such that μϕ(ξ ′) >
logβ−logα

log δ−logα
, which does not

contain ξ , has Hausdorff dimension log δ−2 logα

logβ−logα
.

When β = δβ0 and α = δ/β0, the Hausdorff dimension of S is 1 − log δ

2 logβ0
(see the

remark after the statement of Theorem 5). The linear forms constructed by Apéry
for ξ = ζ(3) satisfy the assumptions of Corollary 5 with δ = e3 and β0 = (1 + √

2)4

so that S has Hausdorff dimension 1 − 3
2 log(1+√

2)4 = 0.5745 . . . . This Hausdorff

dimension is larger than what we have been able to deduce from other constructions
of linear forms in 1 and ζ(3) (due to Dvornicich and Viola [7], Hata [14], Rhin and
Viola [19]), eventhough these constructions yield better upper bounds for μ(ζ(3)).
It would be pleasant to have a precise statement showing that Apéry’s linear forms
are the ones, among a given set, that give the largest Hausdorff dimension for S .
Trying to find a point of view from which Apéry’s linear forms would be “better”
than its further refinements was the starting point of [10] (see also [11]).

For ξ = ζ(2), the situation is similar. Apéry’s linear forms correspond to δ = e2

and β0 = ((
√

5 − 1)/2)5, so that S has Hausdorff dimension 1 − 2
2 log(((

√
5+1)/2)5)

=
0.5843 . . . .

For ξ = log(2), Alladi–Robinson’s linear forms [1] give δ = e and β0 = 3 + 2
√

2,
so that S has Hausdorff dimension 0.7163 . . . .

Let ξ be an algebraic irrational number, and ϕ ∈ E . Assume there exists a finite
set S of primes such that, for any q � 1, all prime factors of ϕ(q) belong to S (this
is the case for instance when ϕ is constructed as in the beginning of Section 2).
Then Ridout’s theorem [20] implies μϕ(ξ) = 2 − γϕ . It would be interesting to
generalize this result to other functions ϕ (for instance the one of Corollary 1).
Indeed, when ξ is an algebraic irrational number or ξ ∈ {log 2, ζ(2), ζ(3)}, it seems
natural to imagine that μϕ(ξ) = 2 − γϕ for any ϕ ∈ E .

5. REFINED RESULTS FOR ζ(3)

In this section, we prove Theorem 3 stated in the introduction (of which Corollary 2
is an immediate consequence). We follow Dubitskas’ proof [6] in the case of log 2.

It is known that Apéry’s linear forms are such that, for some c1, c2 > 0,

un ∼ c1d
3
n

(
√

2 + 1)4n

n3/2
and unζ(3) − vn ∼ c2d

3
n

(
√

2 − 1)4n

n3/2
(5.1)
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(for un this is due to Cohen [18], see also Example 3.2 of [23] or [16]; for unζ(3)−
vn see [17]).

Let q be a sufficiently large positive integer. Let n be such that

3c2
(
√

2 − 1)4n

n3/2
� 1

q
< 3c2

(
√

2 − 1)4(n−1)

(n − 1)3/2
.

Then we have q > (3c2)
−1(n − 1)3/2(

√
2 + 1)4(n−1) > (

√
2 + 1)4(n+1) since n is

sufficiently large, so that [ logq

log((1+√
2)4)

] � n + 1 and d3
n+1 divides q .

Now the determinant
∣∣∣un
vn

un+1
vn+1

∣∣∣ is non-zero (this classical fact [18] can be

deduced from the estimates (5.1)), so that at least one among
∣∣∣un
vn

q
p

∣∣∣ and
∣∣∣un+1
vn+1

q
p

∣∣∣
is non-zero. Let us assume that

∣∣∣un
vn

q
p

∣∣∣ 
= 0 (otherwise the proof is similar). Since d3
n

divides the coefficients in the first row, this determinant has absolute value greater
than or equal to d3

n . We obtain in this way (since n is large enough)

d3
n � un|qζ(3) − p| + q|unζ(3) − vn|

� 2c1d
3
n

(
√

2 + 1)4n

n3/2
|qζ(3) − p| + 2

3
d3

n

so that

|qζ(3) − p| � 1

6c1
n3/2(√2 − 1

)4n

� n3 × 3c2
(
√

2 − 1)4(n−1)

(n − 1)3/2
� n3

q
� (logq)3

q
,

thereby concluding the proof.
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