Restricted rational approximation and Apéry-type constructions

by Stéphane Fischler

Univ. Paris-Sud, Laboratoire de Mathématiques d'Orsay, Orsay Cedex, F-91405, France and CNRS, Orsay Cedex, F-91405, France

Communicated by Prof. M.S. Keane

ABSTRACT

Let ξ be a real irrational number, and φ be a function (satisfying some assumptions). In this text we study the φ -exponent of irrationality of ξ , defined as the supremum of the set of μ for which there are infinitely many $q \geqslant 1$ such that q is a multiple of $\varphi(q)$ and $|\xi - \frac{p}{q}| \leqslant q^{-\mu}$ for some $p \in \mathbb{Z}$. We obtain general results on this exponent (a lower bound, the Haussdorff dimension of the set where it is large, ...) and connect it to sequences of small linear forms in 1 and ξ with integer coefficients, with geometric behaviour and a divisibility property of the coefficients. Using Apéry's proof that $\zeta(3)$ is irrational, we obtain an upper bound for the φ -exponent of irrationality of $\zeta(3)$, for a given φ .

1. INTRODUCTION

Apéry has proved [2] (see also [9] for a survey) that for $\xi = \zeta(3)$, $\alpha = e^3(1 + \sqrt{2})^{-4} < 1$, and $\beta = e^3(1 + \sqrt{2})^4 > 1$, the following holds:

(1.1)
$$\begin{cases} \text{There exist two integer sequences } (u_n)_{n\geqslant 1} \text{ and } (v_n)_{n\geqslant 1} \text{ such that} \\ u_n\geqslant 0, |u_n\xi-v_n|^{1/n}\to \alpha \text{ and } u_n^{1/n}\to \beta \end{cases}$$

and also, with $\delta_n = d_n^3$ where $d_n = \text{lcm}(1, 2, ..., n)$:

(1.2) δ_n divides u_n for any $n \ge 1$.

 $E\text{-}mail: stephane.fischler@math.u-psud.fr} \ (S.\ Fischler).$

Since $\alpha < 1$, (1.1) implies the irrationality of $\zeta(3)$. It is well known that

(1.3) (1.1) implies
$$\mu(\xi) \leqslant 1 - \frac{\log \beta}{\log \alpha}$$
,

where $\mu(\xi)$ is the exponent of irrationality of ξ , so that $\mu(\zeta(3)) \leq 13.4178202...$ It is proved in [11] (together with more precise results connected to [10]) that, conversely, for $\xi \in \mathbb{R} \setminus \mathbb{Q}$,

(1.4) if
$$\mu(\xi) < 1 - \frac{\log \beta}{\log \alpha}$$
 with $0 < \alpha < 1 < \beta$, then (1.1) holds.

In this paper, we generalize both implications (1.3) and (1.4), to take into account the divisibility property (1.2), under the assumption that δ_n divides δ_{n+1} for any $n \ge 1$ (which is the case in Apéry's construction since $\delta_n = d_n^3$). For instance, Apéry's construction implies the following result (the analogue of which, where $\zeta(3)$ is replaced with log(2), has been proved by Dubitskas [6] in a stronger version, see further):

Theorem 1. For any $\varepsilon > 0$, there are only finitely many integers $q \ge 1$ satisfying both

$$\left|\zeta(3) - \frac{p}{q}\right| < \frac{1}{q^{2+\varepsilon}} \quad \text{for some } p \in \mathbb{Z}$$

and

$$d_n^3$$
 divides q , with $n = \left[\frac{\log q}{\log((1+\sqrt{2})^4)}\right]$.

To state our results more precisely, let us denote by \mathcal{E} the set of all functions $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ (with $\mathbb{N}^* = \{1, 2, 3, \ldots\}$) such that:

- For any $q\geqslant 1$, $\varphi(q+1)$ is a multiple of $\varphi(q)$. The limit $\gamma_{\varphi}:=\lim_{q\to\infty}\frac{\log \varphi(q)}{\log q}$ exists and satisfies $0\leqslant \gamma_{\varphi}<1$.

The following definition generalizes that of the usual exponent of irrationality $\mu(\xi)$ (which is obtained as a special case when φ is the function 1 defined by $\mathbf{1}(q) =$ 1 for any q).

Definition 1. For $\varphi \in \mathcal{E}$ and $\xi \in \mathbb{R} \setminus \mathbb{Q}$, the φ -exponent of irrationality of ξ is the supremum, denoted by $\mu_{\varphi}(\xi)$, of the set of real numbers μ for which there are infinitely many $q \ge 1$ such that

$$q$$
 is a multiple of $\varphi(q)$ and $\left|\xi - \frac{p}{q}\right| \leqslant \frac{1}{q^{\mu}}$ for some $p \in \mathbb{Z}$.

Of course, when this set is \mathbb{R} , we have $\mu_{\varphi}(\xi) = +\infty$. If we let $\varphi(q) = d_n^3$ where $n = [\frac{\log q}{\log((1+\sqrt{2})^4)}]$, then $\varphi \in \mathcal{E}$ and Theorem 1 means that $\mu_{\varphi}(\zeta(3)) \leq 2$.

In the case of log(2), Dubitskas' result implies $\mu_{\varphi}(\log(2)) \leq 2$ where $\varphi(q) = d_n$ with $n = [\frac{\log q}{\log(3 + 2\sqrt{2})}]$. On the other hand, Rivoal has proved [21] that

$$\left|\log(2) - \frac{p}{2^n d_n}\right| \geqslant \frac{1}{(2^n d_n)^{1.948967}}$$
 for any $p \in \mathbb{Z}$ and n sufficiently large,

so that only finitely many convergents in the continued fraction expansion of log(2)have a denominator of the form $2^n d_n$. Maybe Rivoal's methods (which apply also to $\log(r)$ for other positive rational numbers r) can lead to upper bounds less than 2 for $\mu_{\varphi}(\log(r))$, for suitable $\varphi \in \mathcal{E}$ and $r \in \mathbb{Q}$, r > 0.

The main result of this paper is the following generalization of (1.3) and (1.4), which allows one to deduce Theorem 1 from Apéry's construction:

Theorem 2. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$, $0 < \alpha < 1$, $\beta > 1$, and $(\delta_n)_{n \ge 1}$ be a sequence of positive integers such that δ_n divides δ_{n+1} for any $n \ge 1$, and $\delta_n^{1/n}$ tends to δ as $n \to \infty$. Define a function $\varphi \in \mathcal{E}$ by

$$\varphi(q) = \delta_n \quad \text{with } n = \left\lceil \frac{\log q}{\log(\delta/\alpha)} \right\rceil.$$

Then we have the following implications:

- (i) If (1.1) and (1.2) hold then $\mu_{\varphi}(\xi) \leqslant \frac{\log \beta \log \alpha}{\log \delta \log \alpha}$ (ii) If $\mu_{\varphi}(\xi) < \frac{\log \beta \log \alpha}{\log \delta \log \alpha}$ then (1.1) and (1.2) hold.

We also prove various results (of independent interest) on the φ -exponent of irrationality $\mu_{\omega}(\xi)$, namely:

- For any $\xi \in \mathbb{R} \setminus \mathbb{Q}$, we have $\mu_{\varphi}(\xi) \geqslant 2 \gamma_{\varphi}$, and equality holds for almost any ξ with respect to Lebesgue measure.
- For $\mu > 2 \gamma_{\varphi}$, the set of real numbers $\xi \in \mathbb{R} \setminus \mathbb{Q}$ such that $\mu_{\varphi}(\xi) \geqslant \mu$ has Hausdorff dimension $\frac{2-\gamma_{\varphi}}{\mu}$.
- For any $\xi \in \mathbb{R} \setminus \mathbb{Q}$, we have $\mu_{\varphi}(\xi) = +\infty$ if, and only if, $\mu(\xi) = +\infty$ (that is, if and only if ξ is a Liouville number).

In the case of $\zeta(3)$, we obtain the following result as a consequence of Theorem 1 and this Hausdorff dimension computation.

Corollary 1. For any $q \ge 1$, let $\varphi(q) = d_n^3$ where $n = \lfloor \frac{\log q}{\log((1+\sqrt{2})^4)} \rfloor$. Let S denote the set of all $\xi \in \mathbb{R} \setminus \mathbb{Q}$ such that $\mu_{\varphi}(\xi) > 2$. Then $\zeta(3) \notin S$ and S has Hausdorff *dimension* 0.5745....

As far as we know, this is the largest known Hausdorff dimension for a subset of \mathbb{R} , defined by Diophantine conditions, which does not contain $\zeta(3)$. It is worthwile noticing that variants of Apéry's construction (due to Hata, and Rhin and Viola, ...) give better bounds for the (usual) irrationality exponent $\mu(\zeta(3))$, but do not seem to allow any improvement on Corollary 1 (see Section 4).

In this text, we consider asymptotic estimates like (1.1) since these can be easily used to work with exponents like $\mu_{\varphi}(\xi)$. However, in the case of $\zeta(3)$ (and also $\zeta(2)$ and log 2), more precise estimates are known. They enable us to prove the following result, which refines Theorem 1 and is analogous to Dubitskas' result [6] for log 2.

Theorem 3. There exists c > 0 such that for any $q \ge 1$ and any $p \in \mathbb{Z}$ we have

$$\left|\zeta(3) - \frac{p}{q}\right| \geqslant \frac{c(\log q)^3}{q^2}$$

provided that

$$d_n^3$$
 divides q , with $n = \left[\frac{\log q}{\log((1+\sqrt{2})^4)}\right]$.

Corollary 2. Only finitely many convergents p/q in the continued fraction expansion of $\zeta(3)$ are such that d_n^3 divides q, with $n = \lfloor \frac{\log q}{\log((1+\sqrt{2})^4)} \rfloor$.

The structure of this text is as follows. In Section 2, we prove the general results stated above (and some others) about the φ -exponent of irrationality $\mu_{\varphi}(\xi)$. In Section 3, we give a proof of Theorem 2. Finally, in Section 4 we apply our results to particular numbers ξ , especially $\zeta(3)$, $\zeta(2)$, and $\log 2$, and in Section 5 we prove Theorem 3 and Corollary 2.

2. GENERAL PROPERTIES

The definition of $\mu_{\varphi}(\xi)$ makes sense because for any $\varphi \in \mathcal{E}$ there are infinitely many integers q such that q is a multiple of $\varphi(q)$. More precise statements are given in the proofs of Lemmas 1 and 2 and also in the statement of Proposition 1.

Let us start with examples of functions in \mathcal{E} . Let $b_1, \ldots, b_r \geqslant 2$ be pairwise distinct integers, and $\varepsilon_1, \ldots, \varepsilon_r > 0$ be such that $\sum_{i=1}^r \varepsilon_i \log b_i < 1$. Then the function defined by $\varphi(q) = \prod_{i=1}^r b_i^{\lfloor \varepsilon_i \log q \rfloor}$ belongs to \mathcal{E} , and satisfies $\gamma_{\varphi} = \sum_{i=1}^r \varepsilon_i \log b_i$.

2.1. A lower bound

The following lemma generalizes the lower bound $\mu(\xi) \ge 2$ which holds for any $\xi \in \mathbb{R} \setminus \mathbb{Q}$. The proof uses the same tool as Dirichlet's proof, namely the pigeonhole principle.

Lemma 1. For any $\varphi \in \mathcal{E}$ and any $\xi \in \mathbb{R} \setminus \mathbb{Q}$, we have $\mu_{\varphi}(\xi) \geqslant 2 - \gamma_{\varphi}$.

Proof. Let $\varepsilon > 0$, and Q be sufficiently large in terms of ε . Consider, for $0 \le n \le [Q/\varphi(Q)]$, the fractional part of $n\varphi(Q)\xi$. Since $\xi \notin \mathbb{Q}$, this gives $[Q/\varphi(Q)]+1$ pairwise distinct points in [0,1]. Thanks to the pigeonhole principle, two of them lie within a distance less than or equal to $[Q/\varphi(Q)]^{-1}$. The difference of the corresponding integers n yields an integer m, with $1 \le m \le Q/\varphi(Q)$, such that $|m\varphi(Q)\xi - p| \le [Q/\varphi(Q)]^{-1}$ for some $p \in \mathbb{Z}$. Now let $q = m\varphi(Q)$. Then $q \le Q$ so that $\varphi(q)$ divides $\varphi(Q)$, and also $\varphi(Q)$ divides q by definition of q. Finally $\varphi(q)$ divides q, and since Q is sufficiently large in terms of ε we have:

$$\left|\xi - \frac{p}{q}\right| \leqslant \frac{1}{q} \left[\frac{Q}{\varphi(Q)}\right]^{-1} \leqslant \frac{1}{q \, Q^{1 - \gamma_{\varphi} - \varepsilon}} \leqslant \frac{1}{q^{2 - \gamma_{\varphi} - \varepsilon}}.$$

This concludes the proof of Lemma 1. \Box

2.2. Comparisons between $\mu_{\varphi}(\xi)$ for various φ

In this section, we show how $\mu_{\varphi}(\xi)$ and $\mu_{\varphi'}(\xi)$ are connected for $\varphi, \varphi' \in \mathcal{E}$. It is specially interesting when $\varphi' = 1$ since in this case $\mu_{\varphi'}(\xi)$ is the classical exponent of irrationality $\mu(\xi)$.

Let us start with the following remark.

Remark 1. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$ and $\varphi \in \mathcal{E}$. Then $\frac{\mu_{\varphi}(\xi)}{1-\gamma_{\varphi}}$ is the supremum of the set of μ for which there are infinitely many q such that

$$q ext{ is a multiple of } \varphi(q) ext{ and } \left| \xi - rac{p}{q}
ight| \leqslant rac{1}{(q/\varphi(q))^{\mu}} ext{ for some } p \in \mathbb{Z}.$$

The proof of this fact is easy, since for any $\varepsilon>0$ and any q sufficiently large in terms of ε we have $q^{1-\gamma_{\varphi}-\varepsilon}\leqslant q/\varphi(q)\leqslant q^{1-\gamma_{\varphi}+\varepsilon}$.

This remark is crucial in the proof (given further) of the following lemma.

Lemma 2. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$, and $\varphi, \varphi' \in \mathcal{E}$ be such that $\varphi'(q)$ divides $\varphi(q)$ for any $q \ge 1$. Then $\mu_{\varphi'}(\xi)$ is finite if, and only if, $\mu_{\varphi}(\xi)$ is finite, and in this case we have:

$$\frac{1-\gamma_{\varphi}}{1-\gamma_{\varphi'}}\mu_{\varphi'}(\xi) \leqslant \mu_{\varphi}(\xi) \leqslant \mu_{\varphi'}(\xi).$$

Letting $\varphi' = 1$, we obtain the following corollary.

Corollary 3. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$ and $\varphi \in \mathcal{E}$. Then $\mu_{\varphi}(\xi)$ is infinite if, and only if, $\mu(\xi)$ is infinite (that is, if and only if ξ is a Liouville number). Otherwise we have

$$(1 - \gamma_{\varphi})\mu(\xi) \leqslant \mu_{\varphi}(\xi) \leqslant \mu(\xi).$$

Remark 2. Let $\varphi \in \mathcal{E}$ be such that $\gamma_{\varphi} = 0$. Then for any ξ we have $\mu_{\varphi}(\xi) = \mu(\xi)$ so that μ_{φ} is nothing but the usual exponent of irrationality. More generally, if $\varphi, \varphi' \in \mathcal{E}$

are such that $\varphi'(q)$ divides $\varphi(q)$ for any $q \ge 1$, and $\gamma_{\varphi} = \gamma_{\varphi'}$, then Lemma 2 shows that $\mu_{\varphi}(\xi) = \mu_{\varphi'}(\xi)$ for any ξ .

Proof of Lemma 2. If q is a multiple of $\varphi(q)$ then q is a multiple of $\varphi'(q)$, so the second inequality is trivial. Let us prove the first one, that is $\frac{\mu_{\varphi'}(\xi)}{1-\gamma_{\varphi'}} \leqslant \frac{\mu_{\varphi}(\xi)}{1-\gamma_{\varphi}}$. This follows immediately from Remark 1 and the following fact. If $\varphi, \varphi' \in \mathcal{E}$ are such that $\varphi'(q)$ divides $\varphi(q)$ for any $q \geqslant 1$, and if $q' \geqslant 1$ is such that $\varphi'(q')$ divides q', then there exists an integer multiple q of q' such that $\varphi(q)$ divides q and $q/\varphi(q) = q'/\varphi'(q')$. To prove this fact, we let q be the least integer such that $q \geqslant q'$ and $\frac{q'}{\varphi'(q')}\varphi(q) \leqslant q$. Such an integer exists since $\varphi \in \mathcal{E}$. If q = q' then $\varphi(q') \leqslant \varphi'(q')$ so that $\varphi(q') = \varphi'(q')$, and the conclusion holds with q = q'. Otherwise, we have q > q' and, by minimality, $q \geqslant \frac{q'}{\varphi'(q')}\varphi(q) \geqslant \frac{q'}{\varphi'(q')}\varphi(q-1) > q-1$ so that $q = \frac{q'}{\varphi'(q')}\varphi(q)$. Now q' < q implies that $\varphi(q')$ divides $\varphi(q)$; since $\varphi'(q')$ divides $\varphi(q')$, we obtain that $q = q' \frac{\varphi(q)}{\varphi'(q')}$ is a multiple of q'. This concludes the proof of the fact, and that of Lemma 2. \square

2.3. A special set of functions

In this subsection, we focus on specific functions $\varphi \in \mathcal{E}$, of major importance to us since they are the ones involved in Theorem 2. Actually, since our interest lies only on the exponents of irrationality $\mu_{\varphi}(\xi)$, Lemma 4 below shows that we do not lose anything by considering only these functions (and even only a part of them). Let us start by the following lemma, in which these functions φ are defined. We omit the proof, since it is very easy.

Lemma 3. Let $(\delta_n)_{n\geqslant 1}$ be a sequence of positive integers such that δ_n divides δ_{n+1} for any $n\geqslant 1$, and $\delta_n^{1/n}$ tends to δ as $n\to\infty$. Let $\alpha\in\mathbb{R}$ be such that $0<\alpha<\delta$. Define a function φ by

$$\varphi(q) = \delta_n \quad \text{with } n = \left[\frac{\log q}{\log(\delta/\alpha)}\right].$$

Then we have $\varphi \in \mathcal{E}$ and $\gamma_{\varphi} = \frac{\log \delta}{\log(\delta/\alpha)}$.

When $\alpha = \delta/2$, the definition of φ in this lemma means

$$\varphi(q) = \delta_n = \varphi(2^n)$$
 when $2^n \leqslant q < 2^{n+1}$.

The following lemma shows that we would not lose too much by considering only functions φ obtained in this way. The number 2 in 2^n is not important, it could be replaced with any other number greater than one.

Lemma 4. Let $\varphi \in \mathcal{E}$. Define a function $\widetilde{\varphi}$ by letting, for any integers $q \geqslant 1$ and $n \geqslant 0$:

$$\widetilde{\varphi}(q) = \varphi(2^n)$$
 when $2^n \le q < 2^{n+1}$.

Then we have $\widetilde{\varphi} \in \mathcal{E}$, $\gamma_{\widetilde{\varphi}} = \gamma_{\varphi}$, and $\mu_{\varphi}(\xi) = \mu_{\widetilde{\varphi}}(\xi)$ for any ξ .

Proof. The properties $\widetilde{\varphi} \in \mathcal{E}$ and $\gamma_{\widetilde{\varphi}} = \gamma_{\varphi}$ are obvious, and $\mu_{\varphi}(\xi) = \mu_{\widetilde{\varphi}}(\xi)$ follows from Remark 2 since $\widetilde{\varphi}(q)$ divides $\varphi(q)$ for any $q \geqslant 1$. \square

The function $\widetilde{\varphi}$ of Lemma 4 is useful to prove the following statement, which shows "how many" integers q are multiples of $\varphi(q)$. This statement will be helpful in the proof of metric results in Section 2.4.

Proposition 1. Let $\varphi \in \mathcal{E}$, and denote by \mathcal{Q}_{φ} the set of all $q \ge 1$ such that $\varphi(q)$ divides q. Then for any $\varepsilon > 0$, the series $\sum_{q \in \mathcal{Q}_{\varphi}} q^{-1+\gamma_{\varphi}-\varepsilon}$ is convergent and the series $\sum_{q \in \mathcal{Q}_{\varphi}} q^{-1+\gamma_{\varphi}+\varepsilon}$ is divergent.

Proof. Let $\varepsilon > 0$; we may assume $\varepsilon < 1 - \gamma_{\varphi}$. For any $n \ge 0$ and q such that $2^n \le q < 2^{n+1}$, we let $\varphi_1(q) = \varphi(2^n)$ and $\varphi_2(q) = \varphi(2^{n+1})$. As in Lemma 4, we have $\varphi_1, \varphi_2 \in \mathcal{E}$ with $\gamma_{\varphi_1} = \gamma_{\varphi_2} = \gamma_{\varphi}$, and $\mathcal{Q}_{\varphi_2} \subset \mathcal{Q}_{\varphi} \subset \mathcal{Q}_{\varphi_1}$. This implies

$$\begin{split} \sum_{q \in \mathcal{Q}_{\varphi}} q^{-1 + \gamma_{\varphi} - \varepsilon} &\leqslant \sum_{q \in \mathcal{Q}_{\varphi_1}} q^{-1 + \gamma_{\varphi} - \varepsilon} \\ &= \sum_{n \geqslant 0} \sum_{\substack{q \in \mathcal{Q}_{\varphi_1} \\ 2^n \leqslant q < 2^{n+1}}} q^{-1 + \gamma_{\varphi} - \varepsilon} \\ &\leqslant \sum_{n \geqslant 0} (2^n)^{-1 + \gamma_{\varphi} - \varepsilon} \frac{2^n}{\varphi(2^n)} < + \infty \end{split}$$

since, for *n* sufficiently large, $(2^n)^{\gamma_{\varphi}-\varepsilon} < \frac{1}{n^2}\varphi(2^n)$. In the same way,

$$\sum_{q \in \mathcal{Q}_{\varphi}} q^{-1+\gamma_{\varphi}+\varepsilon} \geqslant \sum_{q \in \mathcal{Q}_{\varphi_{2}}} q^{-1+\gamma_{\varphi}+\varepsilon}$$

$$= \sum_{n \geqslant 0} \sum_{\substack{q \in \mathcal{Q}_{\varphi_{2}} \\ 2^{n} \leqslant q < 2^{n+1}}} q^{-1+\gamma_{\varphi}+\varepsilon}$$

$$\geqslant \sum_{n \geqslant 0} (2^{n+1})^{-1+\gamma_{\varphi}+\varepsilon} \frac{2^{n}}{\varphi(2^{n+1})} = +\infty$$

since $(2^{n+1})^{\gamma_{\varphi}+\varepsilon} \geqslant \varphi(2^{n+1})$ for n sufficiently large. This concludes the proof of Proposition 1. \square

2.4. Metric results

Proposition 2. Let $\varphi \in \mathcal{E}$. For almost any $\xi \in \mathbb{R}$ in the sense of Lebesgue measure, we have $\mu_{\varphi}(\xi) = 2 - \gamma_{\varphi}$.

Proof. Thanks to Lemma 1, it is enough to prove that for any $\varepsilon>0$ the set of all $\xi\in[0,1]$ with $\mu_{\varphi}(\xi)>2-\gamma_{\varphi}+\varepsilon$ has Lebesgue measure 0. Now this set is contained, for any $q_0\geqslant 1$, in the union of $[\frac{p}{q}-\frac{1}{q^{2-\gamma_{\varphi}+\varepsilon}},\frac{p}{q}+\frac{1}{q^{2-\gamma_{\varphi}+\varepsilon}}]$ with $0\leqslant p\leqslant q$ and $q\in\mathcal{Q}_{\varphi},q\geqslant q_0$ (where \mathcal{Q}_{φ} is defined in the statement of Proposition 1), so that is has measure less than or equal to

$$\sum_{\substack{q \in \mathcal{Q}_{\varphi} \\ q \geqslant q_0}} \frac{2(q+1)}{q^{2-\gamma_{\varphi}+\varepsilon}} \leqslant 4 \sum_{\substack{q \in \mathcal{Q}_{\varphi} \\ q \geqslant q_0}} \frac{1}{q^{1-\gamma_{\varphi}+\varepsilon}}.$$

Now Proposition 1 proves that this upper bound is finite, and tends to 0 as q_0 tends to infinity. This concludes the proof of Proposition 2. \Box

Proposition 3. Let $\varphi \in \mathcal{E}$ and $\mu > 2 - \gamma_{\varphi}$. Then the set of all real numbers $\xi \in \mathbb{R}$ such that $\mu_{\varphi}(\xi) \geqslant \mu$ has Lebesgue measure zero and Hausdorff dimension $\frac{2-\gamma_{\varphi}}{\mu}$.

In the special case $\varphi = 1$, we obtain the classical theorem of Jarník [15] and Besicovitch [3] stating that the set of $\xi \in \mathbb{R}$ such that $\mu(\xi) \geqslant \mu$ has Hausdorff dimension $2/\mu$ (see for instance [5], p. 104, Theorem 5.2, or Chapter 10 of [8]).

Proposition 3 follows immediately from Proposition 1 and the following theorem due to Borosh and Fraenkel [4].

Theorem 4 (Borosh–Fraenkel). Let $v \in [0, 1]$, and Q be a subset of \mathbb{N}^* such that, for any $\varepsilon > 0$, the series $\sum_{q \in Q} q^{-v-\varepsilon}$ is convergent and the series $\sum_{q \in Q} q^{-v+\varepsilon}$ is divergent. Let $\mu > v + 1$. Then the set of all $\xi \in \mathbb{R}$ for which there are infinitely many $q \in Q$ such that

$$\left|\xi - \frac{p}{q}\right| \leqslant \frac{1}{q^{\mu}} \quad \text{ for some } p \in \mathbb{Z}$$

has Hausdorff dimension $\frac{\nu+1}{\mu}$.

Actually in [4] it is assumed that the series $\sum_{q\in\mathcal{Q}}q^{-\nu}$ is divergent, but this assumption is not necessary (see the remark before Lemma 2.1 of [22], p. 72).

3. A TRANSFERENCE THEOREM

In this section, we prove Theorem 2 stated in the Introduction. Let us recall the following from Lemma 3 stated in Section 2.3. Let $(\delta_n)_{n\geqslant 1}$ be a sequence of positive integers such that δ_n divides δ_{n+1} for any $n\geqslant 1$, and $\delta_n^{1/n}$ tends to δ as $n\to\infty$. Let $\alpha\in\mathbb{R}$ be such that $0<\alpha<\delta$. Define a function φ by

(3.1)
$$\varphi(q) = \delta_n \quad \text{with } n = \left[\frac{\log q}{\log(\delta/\alpha)}\right].$$

Then we have $\varphi \in \mathcal{E}$ and $\gamma_{\varphi} = \frac{\log \delta}{\log(\delta/\alpha)}$.

We can now re-state Theorem 2 as follows.

Theorem 5. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$, $0 < \alpha < 1$, $\beta > 1$, and $(\delta_n)_{n \geqslant 1}$ be a sequence of positive integers such that δ_n divides δ_{n+1} for any $n \geqslant 1$, and $\delta_n^{1/n}$ tends to δ as $n \to \infty$. Let $\varphi \in \mathcal{E}$ be the function defined by (3.1). Then the following implications hold.

(i) If there exist two integer sequences (u_n) and (v_n) such that $u_n \ge 0$, $|u_n\xi - v_n|^{1/n} \to \alpha$, $u_n^{1/n} \to \beta$ and δ_n divides u_n for any n, then we have

(3.2)
$$\mu_{\varphi}(\xi) \leqslant \frac{\log \beta - \log \alpha}{\log \delta - \log \alpha}$$

(ii) If we have

$$\mu_{\varphi}(\xi) < \frac{\log \beta - \log \alpha}{\log \delta - \log \alpha}$$

then there exist two integer sequences (u_n) and (v_n) such that $u_n \ge 0$, $|u_n\xi - v_n|^{1/n} \to \alpha$, $u_n^{1/n} \to \beta$ and δ_n divides u_n for any n.

In the special case where $\beta = \delta\beta_0$ and $\alpha = \delta/\beta_0$, we have $\frac{\log\beta - \log\alpha}{\log\delta - \log\alpha} = 2$. This is the situation with Apéry's construction for $\xi = \zeta(3)$ and $\xi = \zeta(2)$, and also with Alladi and Robinson's [1] for $\xi = \log 2$ (see Section 4 for more details). In this case, thanks to Lemma 3 and Proposition 3, the upper bound (3.2) means that ξ lies outside a set of Hausdorff dimension $1 - \frac{\log\delta}{2\log\beta_0}$ whereas the usual bound $\mu(\xi) \leqslant 1 - \frac{\log\beta}{\log\alpha}$ means that ξ lies outside a set of Hausdorff dimension $1 - \frac{\log\delta}{\log\beta_0}$. This means this Hausdorff dimension has come twice closer to 1.

Putting part (i) of Theorem 5 with the lower bound of Lemma 1, we obtain the following corollary which is a special case of the linear independence criteria of [12].

Corollary 4. Let $\xi \in \mathbb{R}$, $0 < \alpha < 1$, $\beta > 1$, and $(\delta_n)_{n \geqslant 1}$ be a sequence of positive integers such that δ_n divides δ_{n+1} for any $n \geqslant 1$, and $\delta_n^{1/n}$ tends to δ as $n \to \infty$.

If there exist two integer sequences (u_n) and (v_n) such that $u_n \ge 0$, $|u_n\xi - v_n|^{1/n} \to \alpha$, $u_n^{1/n} \to \beta$ and δ_n divides u_n for any n, then we have

$$\delta \leqslant \alpha \beta$$
.

Proof of (i) of Theorem 5. If $\delta = 1$, we have $\gamma_{\varphi} = 0$ thanks to Lemma 3, so that $\mu_{\varphi}(\xi) = \mu(\xi)$ using Corollary 3, and assertion (i) follows from the classical implication (1.3). So we may assume $\delta > 1$.

Let $\mu > \frac{\log \beta - \log \alpha}{\log \delta - \log \alpha}$, $\varepsilon > 0$ be sufficiently small, and q be sufficiently large such that $\varphi(q)$ divides q and $|\xi - p/q| < q^{-\mu}$ for some $p \in \mathbb{Z}$. Let

$$n = \left\lceil (\log q) \frac{\log(\delta - \varepsilon) - \log \delta + \log \alpha}{\log(\alpha + \varepsilon) \log(\delta/\alpha)} \right\rceil + 1$$

and $m = [\frac{\log q}{\log(\delta/\alpha)}]$. We have $\log(\delta - \varepsilon) - \log \delta + \log \alpha < \log(\alpha + \varepsilon) < 0$ so that $m \le n$, and $\varphi(q) = \delta_m$ divides δ_n . Therefore δ_m is a common divisor of q and u_n , and the

determinant $\begin{vmatrix} q & p \\ u_n & v_n \end{vmatrix}$ is an integer multiple of δ_m . Now this determinant is equal (up to a sign) to $\begin{vmatrix} q & q\xi-p \\ u_n & u_n\xi-v_n \end{vmatrix}$; we shall prove it has absolute value less than δ_m , so that it is zero.

Since $\log(\alpha + \varepsilon) < 0$, the lower bound $n \ge (\log q) \frac{\log(\delta - \varepsilon) - \log \delta + \log \alpha}{\log(\alpha + \varepsilon) \log(\delta/\alpha)}$ yields

$$\frac{n}{\log q}\log(\alpha+\varepsilon) < \frac{\log(\delta-\varepsilon)}{\log(\delta/\alpha)} - 1,$$

so that $\log q + n \log(\alpha + \varepsilon) < (m+1) \log(\delta - \varepsilon)$ and $q(\alpha + \varepsilon)^n < (\delta - \varepsilon)^{m+1}$. On the other hand, with this choice of n we have $n \leq (\log q) \frac{\log(\delta - \varepsilon) - \log \delta + \log \alpha}{\log(\alpha + \varepsilon) \log(\delta/\alpha)} + 1$ so that

$$\begin{split} &\frac{n}{\log q} \log(\beta + \varepsilon) - \frac{\log(\delta - \varepsilon)}{\log(\delta/\alpha)} \\ &\leqslant \frac{1}{\log(\delta/\alpha)} \bigg[\frac{\log(\beta + \varepsilon) (\log(\delta - \varepsilon) - \log(\delta/\alpha))}{\log(\alpha + \varepsilon)} - \log(\delta - \varepsilon) \bigg]. \end{split}$$

If ε is sufficiently small, the right-hand side is close enough to $\frac{\log \beta - \log \delta}{\log(\delta/\alpha)}$ to ensure that it is less than $\mu - 1$. Therefore we have

$$\mu - 1 > \frac{n}{\log q} \log(\beta + \varepsilon) - \frac{\log(\delta - \varepsilon)}{\log(\delta/\alpha)},$$

so that $(\mu - 1) \log q > n \log(\beta + \varepsilon) - (m + 1) \log(\delta - \varepsilon)$ and $(\beta + \varepsilon)^n < q^{\mu - 1} (\delta - \varepsilon)^{m+1}$.

Using these two estimates, we obtain the following upper bound for the absolute value of $\begin{vmatrix} q & q\xi-p \\ u_n & u_n\xi-v_n \end{vmatrix}$:

$$q(\alpha + \varepsilon)^n + \frac{(\beta + \varepsilon)^n}{q^{\mu - 1}} < 2(\delta - \varepsilon)^{m+1} < \delta_m.$$

Therefore this determinant is zero, and

$$\frac{1}{q^{\mu-1}} > |q\xi - p| = \frac{q}{u_n} |u_n\xi - v_n| > q \left(\frac{\alpha - \varepsilon}{\beta + \varepsilon}\right)^n$$

hence $q^{\mu} < ((\beta + \varepsilon)/(\alpha - \varepsilon))^n$, therefore

$$\begin{split} \mu \log q &< n \Big(\log(\beta + \varepsilon) - \log(\alpha - \varepsilon) \Big) \\ &< (\log q) \Big(\log(\beta + \varepsilon) - \log(\alpha - \varepsilon) \Big) \frac{\log(\delta - \varepsilon) - \log\delta + \log\alpha}{\log(\alpha + 2\varepsilon) \log(\delta/\alpha)} \end{split}$$

which contradicts the assumption on μ for ε sufficiently small. This concludes the proof of (i) of Theorem 5. \square

The following lemma is essentially a special case of the one proved in [10] (in the proof of Lemma 7.3, on p. 39). We give the proof since (as announced in [10]) it is really easier than the one of [10].

Lemma 5. Let ε and Q be real numbers such that $0 < \varepsilon < 1$ and Q > 1. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$ be such that $0 < \xi < 1$. Then at least one of the following two assertions holds:

(i) There exist integers p and q such that $1 \le q < \frac{2}{s}$ and

$$(3.3) \left| \xi - \frac{p}{q} \right| < \frac{3}{qQ}.$$

(ii) There exist integers p and q such that $Q \le q \le 2Q$ and

$$\frac{p+\varepsilon}{q} \leqslant \xi \leqslant \frac{p+3\varepsilon}{q}.$$

This lemma is useful when ε is really bigger than 1/Q. In this case, p/q is a very precise approximation to ξ in case (i), whereas in case (ii) it is not precise at all but we have a very good control upon the exact size of q and $q\xi - p$ (namely, not only upper bounds as usual, but also lower bounds).

Proof of Lemma 5. Let \mathcal{F} be the set of all fractions p/q with $0 \le p \le q$ and $1 \le q \le 2Q$. For $f \in \mathcal{F}$, we write $f = \tilde{p}/\tilde{q}$ as a fraction in its lowest terms, and also f = p/q where q is the least denominator of f such that $Q \le q \le 2Q$. With this convention, for $f \in \mathcal{F}$ we denote by \mathcal{I}_f the interval $[\frac{p+\varepsilon}{q}, \frac{p+3\varepsilon}{q}]$. Let us assume that (ii) does not hold, i.e. ξ does not belong to any of these intervals \mathcal{I}_f . Assertion (i) holds with q = 1 and p = 0 if $\xi \le \varepsilon/Q = \min \mathcal{I}_0$, so we can assume $\xi > \min \mathcal{I}_0$ and therefore $\xi > \max \mathcal{I}_0$. Let f be the greatest fraction in \mathcal{F} such that $\max \mathcal{I}_f < \xi$. Since $\xi < 1$, there is a least element $f' \in \mathcal{F}$ such that f' > f. Thanks to our assumption on ξ , we have $\xi \notin \mathcal{I}_{f'}$ so that $\xi < \min \mathcal{I}_{f'}$. Letting f = p/q and f' = p'/q' with the same convention as above, we have

$$(3.4) \qquad \frac{p+3\varepsilon}{q} < \xi < \frac{p'+\varepsilon}{q'}.$$

Since $Q \leq q, q' \leq 2Q$, this gives

$$(3.5) \qquad \frac{p'}{q'} - \frac{p}{q} > \frac{3\varepsilon}{q} - \frac{\varepsilon}{q'} \geqslant \frac{\varepsilon}{2Q}.$$

Now we write $\frac{p}{q} = \frac{\tilde{p}}{\tilde{q}}$ and $\frac{p'}{q'} = \frac{\tilde{p}'}{\tilde{q}'}$ as fractions in their lowest terms. Since they are consecutive Farey fractions, it is well known (see for instance [13]) that $\tilde{q} + \tilde{q}' > 2Q$ and $\frac{p'}{q'} - \frac{p}{q} = \frac{1}{\tilde{q}\tilde{q}'}$. Let $m = \min(\tilde{q}, \tilde{q}')$ and $M = \max(\tilde{q}, \tilde{q}')$. Then M > Q so that $\frac{p'}{q'} - \frac{p}{q} = \frac{1}{\tilde{q}\tilde{q}'} < \frac{1}{mQ}$. Thanks to (3.5), this implies $m < 2/\varepsilon$. Now we use Equation (3.4) to bound from above the distance of ξ to the fraction (either $\frac{\tilde{p}}{\tilde{q}}$ or $\frac{\tilde{p}'}{\tilde{q}'}$) with denominator m. If $m = \tilde{q}$ we obtain

$$\left|\xi - \frac{\tilde{p}}{\tilde{q}}\right| < \frac{p'}{q'} - \frac{p}{q} + \frac{\varepsilon}{q'} < \frac{1}{mQ} + \frac{2}{mQ} = \frac{3}{mQ}$$

whereas if $m = \tilde{q}'$ we obtain

$$\left|\xi - \frac{\widetilde{p}'}{\widetilde{q}'}\right| < \max\left(\frac{\varepsilon}{q'}, \frac{p'}{q'} - \frac{p}{q} - \frac{3\varepsilon}{q}\right) < \frac{2}{mQ}.$$

So in both cases assertion (i) holds. This concludes the proof of Lemma 5. \Box

Proof of (ii) of Theorem 5. First of all, let us notice that the assumptions of (ii) imply $\delta < \beta$, since $\mu_{\varphi}(\xi) \geqslant 1$ thanks to Lemma 1. Let μ be such that $\mu_{\varphi}(\xi) < \mu < 1$ $\frac{\log \beta - \log \alpha}{\log \delta - \log \alpha}$. Let *n* be sufficiently large. We denote by ξ_n be the fractional part of $\delta_n \xi$,

$$Q_n = \frac{3\beta^n}{\delta^n}$$
 and $\varepsilon_n = 3\alpha^n \frac{\delta_n}{\delta^n}$

so that $\varepsilon_n < 1$ and $Q_n > 1$. Let us apply Lemma 5 to ξ_n , ε_n and Q_n . In the first case, we obtain integers u_n and v_n such that $u_n < \frac{2}{3}\alpha^{-n}\frac{\delta^n}{\delta_n}$ and

$$|u_n\xi_n - v_n| \leqslant \frac{3}{Q_n} = \frac{\delta^n}{\beta^n} < \frac{1}{(\alpha^{-n}\delta^n)^{\mu - 1}} < \frac{1}{(u_n\delta_n)^{\mu - 1}}$$

since $\mu - 1 < \frac{\log(\beta/\delta)}{\log(\delta/\alpha)}$. By definition of ξ_n , there is an integer \tilde{v}_n such that $u_n \xi_n - v_n = u_n \delta_n \xi - \tilde{v}_n$. So we have

$$\left|\xi - \frac{\tilde{v}_n}{u_n \delta_n}\right| = \frac{1}{u_n \delta_n} |u_n \xi - v_n| < \frac{1}{(u_n \delta_n)^{\mu}}.$$

Moreover we have $\varphi(u_n \delta_n) = \delta_k$ with

$$k = \left\lceil \frac{\log(u_n \delta_n)}{\log(\delta/\alpha)} \right\rceil \leqslant \left\lceil \frac{\log(\frac{2}{3}\alpha^{-n}\delta^n)}{\log(\delta/\alpha)} \right\rceil \leqslant n$$

so that δ_k divides δ_n , and finally $\delta_k = \varphi(u_n \delta_n)$ divides $u_n \delta_n$. Since $\mu_{\varphi}(\xi) < \mu$, this is possible only for a finite number of values of n. Therefore, as soon as n is sufficiently large, statement (ii) in Lemma 5 holds; let p_n and q_n be the integers provided by this lemma. We have

$$Q_n \leqslant q_n \leqslant 2Q_n$$
 and $\varepsilon_n \leqslant q_n \xi_n - p_n \leqslant 3\varepsilon_n$,

so that $\lim q_n^{1/n} = \beta/\delta$ and $\lim |q_n \xi_n - p_n|^{1/n} = \alpha$. As above, there is an integer \tilde{p}_n such that $q_n \xi_n - p_n = q_n \delta_n \xi - \tilde{p}_n$. Letting $u_n = \delta_n q_n$ and $v_n = \tilde{p}_n$ concludes the proof of (ii) of Theorem 5. □

4. APPLICATION TO PARTICULAR NUMBERS ξ

Let us start by summarizing Theorem 2 and Proposition 3 in the following corollary (which contains Corollary 1 as a special case).

Corollary 5. Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$, $0 < \alpha < 1$, $\beta > 1$ and $\delta \ge 1$. Assume there exist integer sequences $(u_n)_{n \ge 1}$, $(v_n)_{n \ge 1}$ and $(\delta_n)_{n \ge 1}$ such that δ_n divides u_n and δ_{n+1} for any n, and

$$u_n \geqslant 0$$
, $|u_n \xi - v_n|^{1/n} \to \alpha$, $u_n^{1/n} \to \beta$ and $\delta_n^{1/n} \to \delta$.

Let $\varphi \in \mathcal{E}$ be defined by $\varphi(q) = \delta_n$ where $n = \lfloor \frac{\log q}{\log(\delta/\alpha)} \rfloor$. Then we have

$$\mu_{\varphi}(\xi) \leqslant \frac{\log \beta - \log \alpha}{\log \delta - \log \alpha}.$$

Moreover, the set S of all $\xi' \in \mathbb{R} \setminus \mathbb{Q}$ such that $\mu_{\varphi}(\xi') > \frac{\log \beta - \log \alpha}{\log \delta - \log \alpha}$, which does not contain ξ , has Hausdorff dimension $\frac{\log \delta - 2\log \alpha}{\log \beta - \log \alpha}$.

When $\beta=\delta\beta_0$ and $\alpha=\delta/\beta_0$, the Hausdorff dimension of $\mathcal S$ is $1-\frac{\log\delta}{2\log\beta_0}$ (see the remark after the statement of Theorem 5). The linear forms constructed by Apéry for $\xi=\zeta(3)$ satisfy the assumptions of Corollary 5 with $\delta=e^3$ and $\beta_0=(1+\sqrt{2})^4$ so that $\mathcal S$ has Hausdorff dimension $1-\frac{3}{2\log(1+\sqrt{2})^4}=0.5745\ldots$ This Hausdorff dimension is larger than what we have been able to deduce from other constructions of linear forms in 1 and $\zeta(3)$ (due to Dvornicich and Viola [7], Hata [14], Rhin and Viola [19]), eventhough these constructions yield better upper bounds for $\mu(\zeta(3))$. It would be pleasant to have a precise statement showing that Apéry's linear forms are the ones, among a given set, that give the largest Hausdorff dimension for $\mathcal S$. Trying to find a point of view from which Apéry's linear forms would be "better" than its further refinements was the starting point of [10] (see also [11]).

For $\xi = \zeta(2)$, the situation is similar. Apéry's linear forms correspond to $\delta = e^2$ and $\beta_0 = ((\sqrt{5} - 1)/2)^5$, so that \mathcal{S} has Hausdorff dimension $1 - \frac{2}{2\log(((\sqrt{5} + 1)/2)^5)} = 0.5843...$

For $\xi = \log(2)$, Alladi–Robinson's linear forms [1] give $\delta = e$ and $\beta_0 = 3 + 2\sqrt{2}$, so that S has Hausdorff dimension 0.7163....

Let ξ be an algebraic irrational number, and $\varphi \in \mathcal{E}$. Assume there exists a finite set S of primes such that, for any $q \geqslant 1$, all prime factors of $\varphi(q)$ belong to S (this is the case for instance when φ is constructed as in the beginning of Section 2). Then Ridout's theorem [20] implies $\mu_{\varphi}(\xi) = 2 - \gamma_{\varphi}$. It would be interesting to generalize this result to other functions φ (for instance the one of Corollary 1). Indeed, when ξ is an algebraic irrational number or $\xi \in \{\log 2, \zeta(2), \zeta(3)\}$, it seems natural to imagine that $\mu_{\varphi}(\xi) = 2 - \gamma_{\varphi}$ for any $\varphi \in \mathcal{E}$.

5. REFINED RESULTS FOR $\zeta(3)$

In this section, we prove Theorem 3 stated in the introduction (of which Corollary 2 is an immediate consequence). We follow Dubitskas' proof [6] in the case of $\log 2$. It is known that Apéry's linear forms are such that, for some $c_1, c_2 > 0$,

(5.1)
$$u_n \sim c_1 d_n^3 \frac{(\sqrt{2}+1)^{4n}}{n^{3/2}}$$
 and $u_n \zeta(3) - v_n \sim c_2 d_n^3 \frac{(\sqrt{2}-1)^{4n}}{n^{3/2}}$

(for u_n this is due to Cohen [18], see also Example 3.2 of [23] or [16]; for $u_n\zeta(3) - v_n$ see [17]).

Let q be a sufficiently large positive integer. Let n be such that

$$3c_2 \frac{(\sqrt{2}-1)^{4n}}{n^{3/2}} \leqslant \frac{1}{q} < 3c_2 \frac{(\sqrt{2}-1)^{4(n-1)}}{(n-1)^{3/2}}.$$

Then we have $q > (3c_2)^{-1}(n-1)^{3/2}(\sqrt{2}+1)^{4(n-1)} > (\sqrt{2}+1)^{4(n+1)}$ since n is sufficiently large, so that $[\frac{\log q}{\log((1+\sqrt{2})^4)}] \ge n+1$ and d_{n+1}^3 divides q.

Now the determinant $\begin{vmatrix} u_n & u_{n+1} \\ v_n & v_{n+1} \end{vmatrix}$ is non-zero (this classical fact [18] can be deduced from the estimates (5.1)), so that at least one among $\begin{vmatrix} u_n & q \\ v_n & p \end{vmatrix}$ and $\begin{vmatrix} u_{n+1} & q \\ v_{n+1} & p \end{vmatrix}$ is non-zero. Let us assume that $\begin{vmatrix} u_n & q \\ v_n & p \end{vmatrix} \neq 0$ (otherwise the proof is similar). Since d_n^3 divides the coefficients in the first row, this determinant has absolute value greater than or equal to d_n^3 . We obtain in this way (since n is large enough)

$$d_n^3 \le u_n |q\zeta(3) - p| + q |u_n\zeta(3) - v_n|$$

$$\le 2c_1 d_n^3 \frac{(\sqrt{2} + 1)^{4n}}{n^{3/2}} |q\zeta(3) - p| + \frac{2}{3} d_n^3$$

so that

$$|q\zeta(3) - p| \geqslant \frac{1}{6c_1} n^{3/2} \left(\sqrt{2} - 1\right)^{4n}$$
$$\gg n^3 \times 3c_2 \frac{(\sqrt{2} - 1)^{4(n-1)}}{(n-1)^{3/2}} \gg \frac{n^3}{q} \gg \frac{(\log q)^3}{q},$$

thereby concluding the proof.

ACKNOWLEDGEMENTS

I am grateful to Tanguy Rivoal and Wadim Zudilin for providing me with very useful references connected to this work. I would like also to thank the referee for his careful reading of the paper.

REFERENCES

- [1] Alladi K., Robinson M. Legendre polynomials and irrationality, J. Reine Angew. Math. 318 (1980) 137–155.
- [2] Apéry R. Irrationalité de $\zeta(2)$ et $\zeta(3)$, in: Journées Arithmétiques (Luminy, 1978), Astérisque, vol. 61, 1979, pp. 11–13.
- [3] Besicovitch A.S. Sets of fractional dimension (IV): on rational approximation to real numbers, J. London Math. Soc. 9 (1934) 126–131.
- [4] Borosh I., Fraenkel A.S. A generalization of Jarník's theorem on diophantine approximations, Indag. Mathem. 34 (1972) 193–201.
- [5] Bugeaud Y. Approximation by Algebraic Numbers, Cambridge Tracts in Math., vol. 160, Cambridge University Press, 2004.

- [6] Dubitskas A.K. Approximation of some logarithms of rational numbers by rational fractions of special form, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 45 (2) (1990) 69–71 [45–47].
- [7] Dvornicich R., Viola C. Some remarks on Beukers' integrals, in: Number Theory, Colloq. Math. Soc. János Bolyai, vol. 51, 1987, pp. 637–657.
- [8] Falconer K. Fractal Geometry: Mathematical Foundations and Applications, Wiley, 1990.
- [9] Fischler S. Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...), in: Sém. Bourbaki 2002/03, Astérisque, vol. 294, 2004, exp. no. 910, pp. 27–62.
- [10] Fischler S., Rivoal T. Un exposant de densité en approximation rationnelle, International Math. Research Notices (24) (2006), Article ID 95418, 48 pages.
- [11] Fischler S., Rivoal T. Irrationality exponent and rational approximations with prescribed growth, Proc. Amer. Math. Soc., to appear.
- [12] Fischler S., Zudilin W. A refinement of Nesterenko's linear independence criterion with applications to zeta values, Math. Annalen, to appear.
- [13] Hardy G., Wright E. An Introduction to the Theory of Numbers, 3rd. edn, Oxford Univ. Press, 1954
- [14] Hata M. A new irrationality measure for $\zeta(3)$, Acta Arith. 92 (1) (2000) 47–57.
- [15] Jarník V. Diophantischen Approximationen und Hausdorffsches Mass, Mat. Sbornik 36 (1929) 371–382
- [16] McIntosh R.J. An asymptotic formula for binomial sums, J. Number Theory 58 (1) (1996) 158– 172.
- [17] Nesterenko Yu. A few remarks on $\zeta(3)$, Mat. Zametki [Math. Notes] **59** (6) (1996) 865–880 [625–636].
- [18] Van Der Poorten A. A proof the Euler missed . . . Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer 1 (1978/1979) 195–203.
- [19] Rhin G., Viola C. The group structure for $\zeta(3)$, Acta Arith. 97 (3) (2001) 269–293.
- [20] Ridout D. Rational approximations to algebraic numbers, Mathematika 4 (1957) 125-131.
- [21] Rivoal T. Convergents and irrationality measures of logarithms, Rev. Mat. Iberoamericana 23 (3) (2007) 931–952.
- [22] Rynne B.P. The Hausdorff dimension of certain sets arising from Diophantine approximation by restricted sequences of integer vectors, Acta Arith. **61** (1) (1992) 69–81.
- [23] Wimp J., Zeilberger D. Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1) (1985) 162–176.

(Received January 2009)