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(Communicated by Ken Ono)

Abstract. Let ξ be a real irrational number. We are interested in sequences
of linear forms in 1 and ξ, with integer coefficients, which tend to 0. Does
such a sequence exist such that the linear forms are small (with given rate of
decrease) and the coefficients have some given rate of growth? If these rates
are essentially geometric, a necessary condition for such a sequence to exist is
that the linear forms are not too small, a condition which can be expressed
precisely using the irrationality exponent of ξ. We prove that this condition
is actually sufficient, even for arbitrary rates of growth and decrease. We also
make some remarks and ask some questions about multivariate generalizations

connected to Fischler-Zudilin’s new proof of Nesterenko’s linear independence
criterion.

1. Introduction

In 1978, Apéry [2] proved the irrationality of ζ(3) by constructing two explicit
sequences of integers (un)n and (vn)n such that 0 �= unζ(3) − vn → 0 and un →
+∞, both at geometric rates. He also deduced from this an upper bound for the
irrationality exponent µ(ζ(3)) of ζ(3). In general, the irrationality exponent µ(ξ)
of an irrational number ξ is defined as the infimum of all real numbers µ such that
the inequality ∣∣∣∣ξ − p

q

∣∣∣∣ > 1

qµ

holds for all integers p, q, with q sufficiently large. It is well-known that µ(ξ) ≥ 2
for any irrational number ξ and that it equals 2 for almost all irrational numbers.
The following lemma is often used (as in Apéry’s proof) to bound µ(ξ) from above,
for example for the numbers log(2) and ζ(2). (Other lemmas can be used to bound
the irrationality exponent of numbers of a different nature, such as exp(1).)

Lemma 1. Let ξ ∈ R \ Q, and let α, β be real numbers such that 0 < α < 1 and
β > 1. Assume there exist integer sequences (un)n≥1 and (vn)n≥1 such that

(1.1) lim
n→+∞

|unξ − vn|1/n = α and lim sup
n→+∞

|un|1/n ≤ β.

Then we have µ(ξ) ≤ 1− log β
logα .
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The proof of Lemma 1 is not difficult. Many variants of this result exist; a
slightly more general version of Lemma 1 will be proved in §4.1. Another variant,
proved in [6] (Proposition 3.1), asserts that Lemma 1 holds when (1.1) is replaced
with

lim sup
n→+∞

|un+1ξ − vn+1|
|unξ − vn|

≤ α and lim sup
n→+∞

un+1

un
≤ β.

In this text, we prove that Lemma 1 and these variants are best possible by
obtaining a very precise converse result:

Theorem 1. Let ξ ∈ R \ Q, and let α, β be real numbers such that 0 < α < 1,

β > 1 and µ(ξ) < 1− log β
logα . Then there exist integer sequences (un)n≥1 and (vn)n≥1

such that

lim
n→+∞

unξ − vn
αn

= lim
n→+∞

un

βn
= 1

and, consequently,

lim
n→+∞

|un+1ξ − vn+1|
|unξ − vn|

= lim
n→+∞

|unξ − vn|1/n = α

and

lim
n→+∞

un+1

un
= lim

n→+∞
|un|1/n = β.

Theorem 1 answers completely all questions asked in [6], where the density ex-
ponent is defined (see §3 below).

An essential feature of Lemma 1 and all its variants is that the sequences (un) and
(unξ − vn) are assumed to have essentially geometrical behaviour. An assumption
of this kind is necessary, since the convergents of the continued fraction expansion
of ξ (for instance) always make up a sequence of approximants to ξ that are far
more precise, but if µ(ξ) > 2, they don’t have geometrical behaviour.

However, a geometrical behaviour is not necessary in Theorem 1, as the following
generalization shows. In this statement and throughout the paper, we denote by
o(1) any sequence that tends to 0 as n tends to infinity.

Theorem 2. Let ξ ∈ R \ Q, and let (Qn) and (εn) be sequences of positive real
numbers with

lim
n→+∞

Qn = +∞, lim
n→+∞

εn = 0 and εn ≥ Q
− 1

µ−1+o(1)
n ,

where µ is a real number such that µ > µ(ξ).
Then there exist integer sequences (un) and (vn) such that

lim
n→+∞

un

Qn
= lim

n→+∞

unξ − vn
εn

= 1.

The important point in this theorem is that our only assumption is that εn is
not too small, namely

lim sup
n→+∞

− log εn
logQn

<
1

µ(ξ)− 1
.

Theorem 2 answers the questions asked in §8 of [6].
The structure of this text is as follows. In Section 2, we prove Theorem 2 (and

therefore, as a special case, Theorem 1). Then we recall (in §3) the definition [6]
of the density exponent and deduce from Theorem 1 that it is always 0 or ∞.
In §4 we prove a slight generalization of Lemma 1 which enables us to obtain a
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general statement (containing Lemma 1, Theorem 1 and Theorem 2) consisting of
the equality of several exponents of Diophantine approximation.

Finally we partially generalize (in §4.3) this statement to the multivariate setting,
where we consider simultaneously several real numbers ξ0, . . . , ξr instead of just
one ξ. We then explain the connection between Lemma 1 and Nesterenko’s linear
independence criterion [10], used in particular in the proof ([3], [11]) that ζ(s) is
irrational for infinitely many odd integers s ≥ 3. This criterion has been recently
generalized in [7] to take into account common divisors to the coefficients of the
linear forms; the proof involves Minkowski’s convex body theorem. In §4.3, we write
down this new proof in the case of Nesterenko’s criterion only (where Minkowski’s
convex body theorem is simply replaced with Dirichlet’s pigeonhole principle) in
terms of exponents of Diophantine approximation. This enables us to make a
connection with the other results of the present paper and to ask several questions
in the multivariate setting.

2. Proof of Theorem 2

The proof of Theorem 2 is based on the following lemma, which is proved inside
the proof of Lemma 7.3 of [6] (p. 39) and is the main step in the proof [6] that
almost all ξ (with respect to Lebesgue measure) have density exponent zero.

Lemma 2. Let c, c′, ε, Q be real numbers such that 1 < c < c′ < 2, 0 < ε < 1,
and Q > 1.

Let ξ be an irrational number with 0 < ξ < 1. Then (at least) one of the following
assertions holds:

(i) There exist coprime integers u ≥ 1 and v ∈ {0, . . . , u} such that

u <
2c2

(c− 1)(c′ − c)

1

ε

and ∣∣∣ξ − v

u

∣∣∣ ≤ 2

c− 1

(
1 +

c2

c′ − c

)
1

uQ
.

(ii) There exist integers p and q such that

Q ≤ q ≤ cQ and
ε

q
≤ ξ − p

q
≤ c′ε

q
.

This lemma is interesting when ε is much larger than 1/Q. It means that unless
ξ is very close to a rational number with denominator essentially bounded by 1/ε,
it is possible to find a fraction p/q (which may not be in its lowest terms) such
that q has essentially the size of Q, and qξ − p that of ε. The interesting part in
proving Theorem 2 is that we obtain Q ≤ q ≤ cQ and ε ≤ qξ − p ≤ c′ε, where
c and c′ are constants that can be chosen arbitrarily close to 1. A variant of this
lemma, in which one obtains only Q ≤ q ≤ 2Q and ε ≤ qξ− p ≤ 3ε, is proved in [5]
(Lemma 5). The proof uses the same ideas as those of Lemma 2, but is fairly less
complicated.

The proof [6] of Lemma 2 makes use of Farey fractions. It might be possible to
prove this lemma using continued fractions.

Let us now deduce Theorem 2.
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Proof. We may assume 0 < ξ < 1. Let (ηn) be a sequence of positive real numbers

such that limn→+∞ ηn = 0 and ηn = ε
o(1)
n . We let λn = 1 + ηn, µn = 1 + 2ηn,

Q′
n = Qn√

λn
and ε′n = εn√

µn
. For n sufficiently large, Lemma 2 applies with c = λn,

c′ = µn, ε = ε′n, and Q = Q′
n. If (i) holds in this lemma and n is sufficiently large,

then we obtain integers un and vn such that∣∣∣ξ − vn
un

∣∣∣ ≤ 2

ηn

(
1 +

λ2
n

ηn

) 1

unQ′
n

≤ 20

η2nunQn

and

un <
2λ2

n

η2n

1

ε′n
≤ 16

η2nεn
.

Since we have ηn = ε
o(1)
n and εn ≥ Q

− 1
µ−1+o(1)

n , these inequalities yield∣∣∣ξ − vn
un

∣∣∣ ≤ 20

η2nunQn
≤ 1

un

(εnη
2
n

16

)µ−1+o(1)

≤ 1

u
µ+o(1)
n

,

which is possible only for finitely many values of n since µ > µ(ξ). Therefore, as
soon as n is sufficiently large, Assertion (ii) of Lemma 2 holds and provides integers
pn and qn such that

Qn√
λn

≤ qn ≤ Qn

√
λn and

εn√
µn

≤ qnξ − pn ≤ εn
√
µn.

This concludes the proof of Theorem 2. �

3. Consequences for the density exponent

Let ξ ∈ R \Q. For any non-decreasing sequence u = (un)n of positive integers,
let us define

αξ(u) := lim sup
n

|un+1ξ − vn+1|
|unξ − vn|

, β(u) := lim sup
n

un+1

un
,

where vn is the nearest integer to unξ. We defined in [6] the density exponent ν(ξ)

of ξ as the infimum of the quantity log
√
αξ(u)β(u) when u ranges through the non-

decreasing sequences such that αξ(u) < 1 and β(u) < +∞ (with the convention
ν(ξ) = +∞ if there is no such u).

We proved in [6] that ν(ξ) = +∞ when ξ is a Liouville number, i.e., when
µ(ξ) = +∞ (that is, when for any µ > 0, there exists a rational number p/q such
that |ξ−p/q| < 1/qµ). Theorem 2 implies the converse statement in a more precise
form:

Theorem 3. If ξ ∈ R \Q is not a Liouville number, then ν(ξ) = 0.

Indeed, we may choose in Theorem 1 values of α and β arbitrarily close to 1 so
that the product αβ is also arbitrarily close to 1. In a sense, this annihilates the
interest of ν(ξ), since it takes only two values (0 and +∞) and distinguishes only
Liouville numbers from the other irrational numbers. However, the ideas of [6] are
at the base of the results presented in the present paper.

Let us make precise here what we expected in [6]. We hoped to define a quantity
that would enable us to distinguish between periods (in the sense of [8]) and other
numbers. In particular, we computed upper bounds for ν(ξ), for many examples of
ξ which are periods (see also [1]). But we did not really take into account another
property of the approximations used for this: they all satisfy a linear recursion of
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finite order with polynomial coefficients of a special kind. Indeed, in all the examples
of [6], the sequences (un)n as well as (vn)n are such that the power series

∑
n≥0 unz

n

and
∑

n≥0 vnz
n are G-functions1 satisfying the same minimal differential equation.

This is a very strong property that is not satisfied (in general) by the sequences
(un)n and (vn)n constructed by means of Lemma 2 to prove Theorem 1.

4. Exponents of diophantine approximation

In this section, we state the results of this paper in terms of exponents of
Diophantine approximation. This enables us to explain the connection with
Nesterenko’s linear independence criterion [10] and to ask some questions about
multivariate generalizations of our results.

4.1. A generalization of Lemma 1. We start with a generalization of the usual
Lemma 1. We do not write down the proof of this proposition because it is a
special case of the upper bound τr(ξ) ≤ 1

ω0(ξ)
proved in Theorem 5 (see §4.3). To

deduce Lemma 1 from this proposition, one takes τ = − logα
log β and uses the fact that

limn→+∞
log |unξ−vn|

n = logα implies limn→+∞
log |un+1ξ−vn+1|

log |unξ−vn| = 1.

Proposition 1. Let ξ ∈ R \ Q and τ > 0. Assume there exist integer sequences
(un) and (vn) with un �= 0 for any n and such that

unξ − vn → 0, |un+1ξ − vn+1| = |unξ − vn|1+o(1), and |unξ − vn| ≤ |un|−τ+o(1).

Then we have µ(ξ) ≤ 1 + 1
τ .

4.2. The univariate case. Let ξ be an irrational real number. Let us consider
the following sets:

• T (ξ) is the set of all τ > 0 for which there exist integer sequences (un) and
(vn) with un �= 0 for any n, and

unξ − vn → 0, |un+1ξ − vn+1| = |unξ − vn|1+o(1), and |unξ − vn| ≤ |un|−τ+o(1).

• T ′(ξ) is the set of all τ > 0 for which there exist integer sequences (un) and
(vn), and 0 < α < 1 < β, with

|unξ − vn|1/n → α, lim sup
n→+∞

|un|1/n ≤ β, and τ =
− logα

log β
.

• T ′′(ξ) is the set of all τ > 0 such that, for any increasing sequence (Qn) of
positive integers there exist integer sequences (un) and (vn) with

|un| ≤ Q1+o(1)
n and |unξ − vn| = Q−τ+o(1)

n .

• T ′′′(ξ) is the set of all τ > 0 such that, for any sequences (Qn) and (εn) of
positive real numbers with

lim
n→+∞

Qn = +∞, lim
n→+∞

εn = 0 and εn ≥ Q−τ+o(1)
n ,

there exist integer sequences (un) and (vn) with

lim
n→+∞

un

Qn
= lim

n→+∞

unξ − vn
εn

= 1.

1A power series
∑

n≥0 anz
n ∈ Q[[z]] is a G-function when: 1) it satisfies a linear differential

equation, 2) it has a finite positive radius of convergence, 3) the least common multiple of the
denominators of a0, a1, . . . , an is bounded by Cn for some C > 0.
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Theorem 4 below shows that τ ≤ 1 for any τ in T (ξ) (resp. T ′(ξ), T ′′(ξ), T ′′′(ξ)).
We let

τ (ξ) = sup T (ξ),

and in the same way τ ′(ξ) = sup T ′(ξ), τ ′′(ξ) = sup T ′′(ξ), τ ′′′(ξ) = sup T ′′′(ξ),
with the convention sup ∅ = 0, so that each of τ (ξ), τ ′(ξ), τ ′′(ξ), τ ′′′(ξ) belongs to
[0, 1].

If we have 0 < τ < τ ′ and τ ′ ∈ T (ξ), then τ ∈ T (ξ) so that T (ξ) is ∅, (0, τ (ξ)]
or (0, τ (ξ)). The same holds for T ′(ξ), T ′′(ξ), T ′′′(ξ).

Moreover the inclusions T ′′′(ξ) ⊂ T ′′(ξ) ⊂ T ′(ξ) ⊂ T (ξ) hold trivially, so that
we have

(4.1) τ ′′′(ξ) ≤ τ ′′(ξ) ≤ τ ′(ξ) ≤ τ (ξ).

The main result of this section is the following chain of equalities, which sum-
marizes Lemma 1, Theorem 1 and Theorem 2.

Theorem 4. For any ξ ∈ R \Q we have

τ ′′′(ξ) = τ ′′(ξ) = τ ′(ξ) = τ (ξ) =
1

µ(ξ)− 1
∈ [0, 1].

In particular the following assertions are equivalent: τ ′′′(ξ) = 0, τ ′′(ξ) = 0, τ ′(ξ) =
0, τ (ξ) = 0, ξ is a Liouville number.

As a corollary, we have τ ′′′(ξ) = τ ′′(ξ) = τ ′(ξ) = τ (ξ) = 1 for almost all ξ with
respect to Lebesgue measure.

Proof. Since 2 ≤ µ(ξ) ≤ +∞ for any ξ ∈ R \Q, we have 1
µ(ξ)−1 ∈ [0, 1].

For any τ ∈ T (ξ), Proposition 1 yields µ(ξ) ≤ 1 + 1
τ , that is, τ ≤ 1

µ(ξ)−1 . If

T (ξ) �= ∅, this gives µ(ξ) < ∞ and τ (ξ) ≤ 1
µ(ξ)−1 ; this upper bound holds trivially

if T (ξ) = ∅.
By Eq. (4.1), we just have to prove that 1

µ(ξ)−1 ≤ τ ′′′(ξ) to finish the proof of

Theorem 4. This is trivial if µ(ξ) = +∞. Otherwise, for any µ > µ(ξ), Theorem 2
gives 1

µ−1 ∈ T ′′′(ξ) so that 1
µ(ξ)−1 ≤ τ ′′′(ξ). This concludes the proof of Theorem 4.

�

4.3. The multivariate case. Let ξ0, . . . , ξr be real numbers, with r ≥ 1. Through-
out this section we assume

dimQ SpanQ(ξ0, . . . , ξr) ≥ 2

so that non-vanishing linear forms in ξ0, . . . , ξr with integer coefficients can be
arbitrarily small. We consider linear forms L = 
0X0 + · · · + 
rXr with integer
coefficients 
i, and we let H(L) = max0≤i≤r |
i| and L(ξ) = 
0ξ0+ · · ·+ 
rξr, where

ξ stands for the point (ξ0, . . . , ξr) in Rr+1.
Let us define the following sets:

• Tr(ξ) is the set of all τ > 0 for which there exists a sequence (Ln) of linear
forms with Ln(ξ) �= 0 for any n, and

Ln(ξ) → 0, |Ln+1(ξ)| = |Ln(ξ)|1+o(1), and |Ln(ξ)| ≤ H(Ln)
−τ+o(1).
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• T ′
r (ξ) is the set of all τ > 0 for which there exists a sequence (Ln) of linear

forms, and 0 < α < 1 < β, with

|Ln(ξ)|1/n → α, lim sup
n→+∞

H(Ln)
1/n ≤ β, and τ =

− logα

log β
.

• T ′′
r (ξ) is the set of all τ > 0 such that, for any increasing sequence (Qn) of

positive integers, there exists a sequence (Ln) of linear forms with

H(Ln) ≤ Q1+o(1)
n and |Ln(ξ)| = Q−τ+o(1)

n .

• T ′′′
r (ξ) is the set of all τ > 0 such that, for any sequences (Qn) and (εn) of

positive real numbers with

lim
n→+∞

Qn = +∞, lim
n→+∞

εn = 0 and εn ≥ Q−τ+o(1)
n ,

there exists a sequence (Ln) of linear forms with

lim
n→+∞

H(Ln)

Qn
= lim

n→+∞

Ln(ξ)

εn
= 1.

Theorem 5 shows that τ ≤ s for any τ in Tr(ξ), with s = dimQ SpanQ(ξ0, . . . , ξr)
− 1 (and the same holds for T ′

r (ξ), T ′′
r (ξ) and T ′′′

r (ξ)).
We let

τr(ξ) = sup Tr(ξ),
and in the same way, τ ′r(ξ) = sup T ′

r (ξ), τ
′′
r (ξ) = sup T ′′

r (ξ), τ ′′′r (ξ) = sup T ′′′
r (ξ),

with the convention sup ∅ = 0, so that each of τr(ξ), τ
′
r(ξ), τ

′′
r (ξ), τ

′′′
r (ξ) belongs to

[0, s].
If we have 0 < τ < τ ′ and τ ′ ∈ Tr(ξ), then τ ∈ Tr(ξ) so that Tr(ξ) is ∅, (0, τr(ξ)]

or (0, τr(ξ)). The same holds for T ′
r (ξ), T ′′

r (ξ), T ′′′
r (ξ).

Moreover the inclusions T ′′′
r (ξ) ⊂ T ′′

r (ξ) ⊂ T ′
r (ξ) ⊂ Tr(ξ) hold trivially, so that

we have

(4.2) τ ′′′r (ξ) ≤ τ ′′r (ξ) ≤ τ ′r(ξ) ≤ τr(ξ).

Let ω0(ξ) be the supremum of the set of all ω > 0 such that there exist infinitely

many r + 1-tuples (q0, . . . , qr) ∈ Zr+1 with

(4.3) |qiξj − qjξi| ≤ max(|q0|, . . . , |qr|)−ω for any 1 ≤ i < j ≤ r.

Up to renumbering ξ0, . . . , ξr, we may assume ξ0 �= 0, and in this case we can
replace (4.3) with

(4.4)
∣∣∣ ξj
ξ0

− qj
q0

∣∣∣ ≤ |q0|−ω−1 for any i ∈ {1, . . . , r}

so that ω0(ξ) measure the quality of simultaneous approximations to (ξ1/ξ0, . . . ,
ξr/ξ0) by rational numbers with the same denominator.

When r = 1 and ξ0 �= 0, we have τ1(ξ0, ξ1) = τ (ξ1/ξ0) (and the analogous
equalities for τ ′1(ξ0, ξ1), τ

′′
1 (ξ0, ξ1) and τ ′′′1 (ξ0, ξ1)), and ω0(ξ0, ξ1) = µ(ξ1/ξ0) − 1.

This explains why the following result is a partial generalization of Theorem 4.

Theorem 5. Let ξ0, . . . , ξr ∈ R, with r ≥ 1. Then we have

τ ′′′r (ξ) ≤ τ ′′r (ξ) ≤ τ ′r(ξ) ≤ τr(ξ) ≤
1

ω0(ξ)
≤ s,

under the assumption that s = dimQ SpanQ(ξ0, . . . , ξr)− 1 is positive.
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In the rest of this section, we prove this theorem and make some comments. The
upper bounds τ ′′′r (ξ) ≤ τ ′′r (ξ) ≤ τ ′r(ξ) ≤ τr(ξ) hold trivially and have been observed
before in (4.2).

Let us prove that τr(ξ) ≤ 1
ω0(ξ)

. As above, we may assume that ξ0 = 1. If

τr(ξ) = 0, this result is trivial. Otherwise, let 0 < τ < τr(ξ) and 0 < ω < ω0(ξ)
(where ω0(ξ) could be +∞). Let (Ln) be a sequence of linear forms such that
Ln(ξ) �= 0 for any n, and

(4.5) Ln(ξ) → 0, |Ln+1(ξ)| = |Ln(ξ)|1+o(1), and |Ln(ξ)| ≤ H(Ln)
−τ+o(1).

There exist integers q0, . . . , qr, with |q0| arbitrarily large, such that (4.4) holds. Let
n be the least positive integer such that |q0Ln(ξ)| ≤ 1/2. Taking |q0| sufficiently
large ensures that n can be made arbitrarily large. Since n is defined in terms of q0,
any number denoted by o(1) depends actually on q0 and can be made arbitrarily
small by choosing |q0| sufficiently large.

Since n is the least positive integer such that |q0Ln(ξ)| ≤ 1/2, the integer n+ 1

does not satisfy this property, that is, 1/2 < |q0||Ln+1(ξ)| = |q0||Ln(ξ)|1+o(1), so
that

(4.6) |q0| = |Ln(ξ)|−1+o(1).

Now we have (since ξ0 = 1)

Ln(q0, . . . , qr) = q0Ln(ξ) + Ln(0, q1 − q0ξ1, . . . , qr − q0ξr).

In the right-hand side, the first term has absolute value less than or equal to 1/2, by
choice of n. If the second term has absolute value less than the first one, then the
integer Ln(q0, . . . , qr) has absolute value less than 1 so that it vanishes, and both
terms in the right-hand side have the same absolute value, thereby contradicting
the assumption.

Hence using also (4.6), (4.5) and (4.4), we have:

|Ln(ξ)|o(1) = |q0Ln(ξ)| ≤ |Ln(0, q1 − q0ξ1, . . . , qr − q0ξr)|
≤ rH(Ln) max

1≤i≤r
|qi − q0ξi|

≤ |Ln(ξ)|−
1
τ +o(1)|q0|−ω = |Ln(ξ)|ω− 1

τ +o(1).

Since limn→+∞ |Ln(ξ)| = 0 and n can be chosen arbitrarily large, this implies

ω ≤ 1
τ . This concludes the proof that τr(ξ) ≤ 1

ω0(ξ)
.

Let us prove that 1
ω0(ξ)

≤ s, that is, ω0(ξ) ≥ 1/s. Renumbering ξ0, . . . , ξr if

necessary, we may assume that ξ0, . . . , ξs are linearly independent over the rationals;
then ξs+1, . . . , ξr are linear combinations over Q of these numbers, and it is easy
to check that ω0(ξ0, . . . , ξr) = ω0(ξ0, . . . , ξs). Now the lower bound ω0(ξ0, . . . , ξs) ≥
1/s is a classical consequence of Dirichlet’s pigeonhole principle. Indeed, for any
positive integer Q, consider the Qs + 1 points ({q0ξ1/ξ0}, . . . , {q0ξs/ξ0}) ∈ [0, 1)s,
for 0 ≤ q0 ≤ Qs (here {x} denotes the fractional part of a real number x), and the
Qs cubes Ci1,...,is defined, for 0 ≤ i1, . . . , is < Q, by the inequalities i1

Q ≤ x1 < i1+1
Q ,

. . . , is
Q ≤ xs <

is+1
Q . At least two of these points, given (say) by q′0 and q′′0 , lie in the

same cube. Letting q0 = |q′0− q′′0 | and denoting by qj the nearest integer to q0ξj/ξ0
for j ∈ {1, . . . , s}, we obtain (4.4) with ω = 1/s. Since a given s+1-tuple (q0, . . . , qs)
is obtained in this way from only finitely many integers Q (because ξ0, . . . , ξs are
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Q-linearly independent), we obtain infinitely many tuples satisfying (4.4) so that
ω0(ξ0, . . . , ξr) = ω0(ξ0, . . . , ξs) ≥ 1/s. This concludes the proof of Theorem 5.

A consequence of Theorem 5 is the inequality τr(ξ) ≤ s, which amounts to the
following statement, known as Nesterenko’s linear independence criterion [10]:

Assume there exists a sequence (Ln) of linear forms with Ln(ξ) �= 0 for any n
and

Ln(ξ) → 0, |Ln+1(ξ)| = |Ln(ξ)|1+o(1), and |Ln(ξ)| ≤ H(Ln)
−τ+o(1)

for some τ > 0. Then we have dimQ SpanQ(ξ0, . . . , ξr) ≥ τ + 1.
The above arguments provide a simple proof of this criterion (adapted from [7]),

based on Dirichlet’s pigeonhole principle and the upper bound τr(ξ) ≤ 1
ω0(ξ)

(which

is also proved, essentially in the same way, as the first step in Nesterenko’s inductive
proof [10]).

In the one-dimensional case, where ξ = (1, ξ) with ξ ∈ R \ Q, the upper bound

τ1(ξ) ≤ 1
ω0(ξ)

corresponds to Proposition 1, while 1
ω0(ξ)

≤ 1 simply means µ(ξ) ≥ 2

(and one way to prove this fact is to use Dirichlet’s pigeonhole principle as in the
multivariate setting).

It would be very interesting to investigate further around Theorem 5, for instance
to know for which ξ equality holds (as in the univariate case of Theorem 4). Is it
the case for almost all ξ with respect to Lebesgue measure? It is well known that

1
ω0(ξ)

= s = r for almost all ξ.

Another question worth studying is the connection between τr(ξ), τ
′
r(ξ), τ

′′
r (ξ),

τ ′′′r (ξ), and the exponent ωk(ξ) that measures the distance of ξ = (ξ0, . . . , ξr) to

subspaces of dimension k + 1 of Rr+1 defined over Q, for k < s (see [12], [9], [4]
and [10]).

At last, many other questions may be asked about these exponents, for instance
how to understand the set of values taken by τr(ξ) (resp. τ ′r(ξ), τ ′′r (ξ), τ ′′′r (ξ))
as ξ varies, especially when ξ is assumed to be of a special form (for instance
ξ = (1, ξ, . . . , ξr) with ξ ∈ R \ Q). It would be interesting to study if there is any
connection with Mahler’s and Koksma’s classifications of numbers.
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national Math. Research Notices (2006), no. 24, Article ID 95418, 48 pages. MR2272100
(2007h:11079)

[7] S. Fischler and W. Zudilin, “A refinement of Nesterenko’s linear independence criterion with
applications to zeta values”, MPIM preprint 2009-35, May 2009, Math. Ann., to appear,
available from www.mpim-bonn.mpg.de/preprints/send?bid=4020.

[8] M. Kontsevich and D. Zagier, “Periods”, in: Mathematics unlimited—2001 and beyond,
Springer, 2001, pp. 771–808. MR1852188 (2002i:11002)

http://www.ams.org/mathscinet-getitem?mr=2345344
http://www.ams.org/mathscinet-getitem?mr=2345344
http://www.ams.org/mathscinet-getitem?mr=1859021
http://www.ams.org/mathscinet-getitem?mr=1859021
http://www.ams.org/mathscinet-getitem?mr=2272100
http://www.ams.org/mathscinet-getitem?mr=2272100
http://www.ams.org/mathscinet-getitem?mr=1852188
http://www.ams.org/mathscinet-getitem?mr=1852188


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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