S3 Chimie, Parcours Chimie

Math 250: Matrices et équations différentielles

Univ. Paris-Sud, Orsay 22 octobre 2015

Corrigé du Partiel

Exercice 1 - Notons δ le déterminant cherché. En remplaçant L_1 par L_1-2L_2 on obtient

$$\delta = \det \left[\begin{array}{cccc} 0 & 0 & 2 & -1 \\ 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 3 & -1 & 2 \end{array} \right].$$

En développant par rapport à la première colonne on en déduit :

$$\delta = -\det \begin{bmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & -1 & 2 \end{bmatrix}.$$

On peut alors remplacer L_3 par $L_3 + 2L_1$ puis développer par rapport à la troisième colonne :

$$\delta = -\det \begin{bmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 3 & 0 \end{bmatrix} = -\det \begin{bmatrix} -1 & 1 \\ 3 & 3 \end{bmatrix} = -6.$$

Exercice 2 - Posons $z=2+2i\sqrt{3}$. On a $|z|=\sqrt{4+12}=4$ donc $z=4e^{i\theta}$, en notant θ l'argument de z (défini à l'addition près d'un multiple de 2π). Cela donne $e^{i\theta}=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ d'où $\theta=\pi/3$. Une racine carrée de z est donc $\delta=\sqrt{|z|}e^{i\theta/2}=2e^{i\pi/6}=\sqrt{3}+i$.

Exercice 3 - On voit que -1 est une racine évidente de P. Par identification ou par division euclidienne, on trouve :

$$P(z) = (z+1)Q(z)$$
 avec $Q(z) = z^2 - (3i+1)z + (2i-2)$.

Le discriminant du polynôme Q est $\Delta=(3i+1)^2-4(2i-2)=-2i=2e^{-i\pi/2}$. Une racine carrée de Δ est donc $\delta=\sqrt{2}e^{-i\pi/4}=1-i$. Les racines de Q sont donc données par la formule $\frac{1}{2}((3i+1)\pm(1-i))$; on trouve 2i et i+1, qui avec la racine évidente -1 sont donc les trois racines de P.

Exercice 4 - En remplaçant L_2 par $L_2 + 2L_1$ et L_3 par $L_3 + 3L_1$ on obtient le système équivalent suivant :

$$\begin{cases}
-x - 3y + 2z = 4 \\
-5y + 3z = 1 \\
-10y + 8z = 6
\end{cases}$$

On peut diviser L_3 par 2 puis lui soustraire L_2 , ce qui donne z=2. En remplaçant z par sa valeur dans L_2 on obtient $y=\frac{3z-1}{5}=1$ puis grâce à $L_1: x=-3y+2z-4=-3$.

Exercice 5 -

- (a) On obtient $AX = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$.
- (b) Le polynôme caractéristique $\chi_A(z)$ est le déterminant de la matrice $\begin{bmatrix} 1-z & -1 \\ 1 & 3-z \end{bmatrix}$, qui est $(1-z)(3-z)+1=z^2-4z+4$. Son discriminant vaut 0, et il admet 2 pour unique racine (ce qu'on aurait pu voir en remarquant la factorisation $\chi_A(z)=(z-2)^2$). L'unique valeur propre de A est donc 2.
- (c) Le sous-espace propre de A associé à la valeur propre 2 est l'ensemble des solutions du système linéaire

$$\begin{cases} -x - y = 0 \\ x + y = 0 \end{cases}$$

Ces deux équations sont proportionnelles; les solutions sont les couples (x,y)=(x,-x) avec $x \in \mathbb{C}$ quelconque, ce qui donne une base du sous-espace propre formée par l'unique vecteur (1,-1). On peut aussi écrire les solutions sous la forme (-y,y) avec $y \in \mathbb{C}$ quelconque, ce qui donne une autre base du sous-espace propre : le vecteur (-1,1).

- (d) La matrice A n'est pas diagonalisable, car l'unique sous-espace propre est de dimension 1 alors que A est de taille 2.
- (e) En (a) on a vu que AX = 2X, donc X est un vecteur propre associé à la valeur propre 2. Il appartient bien au sous-espace propre déterminé à la question (c), et en forme même une base.

Exercice 6 -

(a) En remplaçant L_1 par $L_1 - 3L_2$ on obtient le système équivalent suivant :

$$\begin{cases} (a-5)x = -3b \\ 2x + y = b \end{cases}$$

Si $a \neq 5$, on en déduit $x = \frac{-3b}{a-5}$ puis $y = -\frac{a+1}{3}x = \frac{b(a+1)}{a-5}$. Il y a donc une et une seule solution dans ce cas.

Si a=5, la première équation est 0=-3b. Si $b\neq 0$, il n'y a aucune solution. Si b=0, cette équation est toujours vérifiée, et les solutions sont les couples (x,y) de la forme (x,-2x) avec $x\in\mathbb{C}$ quelconque; on peut aussi écrire ces couples sous la forme $(\frac{-y}{2},y)$ avec $y\in\mathbb{C}$ quelconque. Il y a donc une infinité de solutions dans ce cas.

On peut calculer le déterminant la matrice du système de départ : il vaut a-5, ce qui est cohérent avec la distinction faite entre les cas a=5 et $a\neq 5$.

(b) Si $a \neq 5$, la seule solution est (x, y) = (0, 0) donc la base de solutions est vide. Si a = 5, une base de solutions est formée par le vecteur (1, -2). Une autre base est formée par le vecteur $(\frac{-1}{2}, 1)$.