Université Paris-Saclay M1 M.F., Orsay 2022-2023 Arithmétique

T.D. 4 : Théorème des nombres premiers

Les exercices soulignés sont ceux qui seront corrigés en TD; ils sont à chercher en priorité.

Exercice 1 Soient p > 3 un nombre premier, et χ un caractère de Dirichlet réel modulo p. Montrer que

$$\sum_{k=1}^{p-1} k\chi(k)$$

est un entier divisible par p. Qu'en est-il pour p = 3?

Exercice 2 (Série de Dirichlet de la fonction de Liouville) On rappelle la définition de la fonction de Liouville : $\lambda(n) = (-1)^{\Omega(n)}$ où $\Omega(n)$ est le nombre de facteurs premiers de n comptés avec multiplicités (c'est-à-dire $\Omega(n) = \alpha_1 + \cdots + \alpha_r$ si $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ est la décomposition de n en produit de facteurs premiers).

Donner l'abscisse de convergence absolue de la série de Dirichlet F_{λ} associée à λ . Donner le développement en produit eulérien de F_{λ} puis exprimer F_{λ} uniquement en fonction de la fonction zêta de Riemann.

Exercice 3 (Quelques produits eulériens)

- 1. Soit \mathcal{P} un sous-ensemble (éventuellement infini) de l'ensemble des nombres premiers; notons $f_{\mathcal{P}}$ la fonction indicatrice de l'ensemble des entiers premiers à tout élément de \mathcal{P} . Développer la série de Dirichlet $F_{\mathcal{P}}$ associée à $f_{\mathcal{P}}$ en produit eulérien. Exprimer ce produit à l'aide d'un produit indexé par \mathcal{P} et de la fonction ζ de Riemann. Si \mathcal{P} est fini, quelle est l'abscisse de convergence absolue de $F_{\mathcal{P}}$?
- 2. Soit $k \geq 2$ un entier et f_k la fonction indicatrice de l'ensemble des entiers non divisibles par une puissance k-ème de nombre premier. Exprimer la série de Dirichlet associée à f_k en n'utilisant que la fonction ζ de Riemann. Quelle est l'abscisse de convergence absolue de cette série? Que vaut la série de Dirichlet associée à la fonction g_k définie par $f_k = 1 * g_k$?
- 3. Donner le développement en produit eulérien et l'abscisse de convergence absolue de la série de Dirichlet associée à l'indicatrice d'Euler φ .

Exercice 4 (Une racine carrée pour la convolution) Soit f une fonction complètement multiplicative vérifiant $|f(p)| \leq M$ pour tout p premier, où M est une constante indépendante de p. En considérant les séries de Dirichlet associées, construire une fonction multiplicative g telle que g * g = f.

<u>Exercice 5</u> (*Premières conséquences du TNP*) Déduire chacun des points suivants du théorème des nombres premiers.

- 1. Le *n*-ème nombre premier p_n vérifie $p_n \sim n \log n$ lorsque $n \to \infty$.
- 2. Si ω désigne la fonction « nombre de facteurs premiers distincts », alors $\limsup_{n\to\infty} \frac{\omega(n)}{(\log n)(\log\log n)^{-1}}=1$.
- 3. Pour tout $\varepsilon > 0$ il existe $x_0(\varepsilon) \ge 2$ tel que pour tout $x \ge x_0(\varepsilon)$, il existe p premier satisfaisant x .
- 4. L'ensemble des rationnels de la forme p/q avec p et q premiers est dense dans $\mathbb{R}_{>0}$.
- 5. Étant donné n'importe quelle chaîne de caractères $a_1 \cdots a_n$ où $a_i \in \{0, 1, \dots, 9\}$, $a_1 \neq 0$, il existe un nombre premier dont l'écriture décimale commence par cette chaîne.

Exercice 6 (TNP et fonction de Möbius, I) Le but de cet exercice est de montrer que le théorème des nombres premiers implique $\sum_{1 \le n \le x} \mu(n) = o(x)$ lorsque $x \to \infty$.

1. Soit f une fonction arithmétique bornée. On considère, sous réserve d'existence :

$$M(f) = \lim_{x \to \infty} \frac{1}{x} \sum_{1 \le n \le x} f(n)$$
 et $H(f) = \lim_{x \to \infty} \frac{1}{x \log x} \sum_{1 \le n \le x} f(n) \log n$.

Montrer que M(f) existe si et seulement si H(f) existe, et qu'alors M(f) = H(f).

- 2. Montrer que si $n \ge 1$ alors on a $\mu(n) \log n = -(\mu * \Lambda)(n)$.
- 3. Conclure; on rappelle que le théorème des nombres premiers est équivalent à $\psi(x) \sim x$ lorsque $x \to \infty$, où ψ est la fonction sommatoire de la fonction de von Mangoldt.

Exercice 7 (TNP et fonction de Möbius, II) Le but de cet exercice est de démontrer l'implication réciproque à celle de l'exercice 6.

On rappelle le cas particulier suivant de la formule d'Euler–Maclaurin : soit $x \ge 1$ et f une fonction continûment dérivable sur [1, x]. Alors :

$$\sum_{1 \le n \le x} f(n) = \int_1^x f(t)dt + \int_1^x \{t\}f'(t)dt - \{x\}f(x) + f(1).$$

1. Montrer qu'il existe une constante c telle que pour tout $N \geq 1$ on ait :

$$\sum_{n \le N} \log n = N(\log N - 1) + \frac{1}{2} \log N + c + O\left(\frac{1}{N}\right).$$

2. On rappelle la formule suivante pour la fonction sommatoire de d, fonction « nombre de diviseurs » : pour tout $x \ge 1$,

$$\sum_{1 \le n \le x} d(n) = x \log x + (2\gamma - 1)x + O(\sqrt{x}).$$

Soit f (resp. r) la fonction arithmétique définie par $f(n) = d(n) - 2\gamma$ (resp. $r(n) = \log n - f(n)$). Montrer que pour tout $x \ge 1$,

$$\sum_{1 \le n \le x} r(n) = O(\sqrt{x}).$$

- 3. Montrer que pour tout $x \ge 1$, on a $\psi(x) = x + E(x) + O(1)$ en posant $E(x) = \sum_{1 \le n \le x} (\mu * r)(n)$.
- 4. En supposant $\sum_{1 \le n \le x} \mu(n) = o(x)$ lorsque $x \to \infty$, montrer que E(x) = o(x) lorsque $x \to \infty$. Conclure.

Exercice 8 (Non-annulation en 1 de $L(s,\chi)$) Soient q>0 un entier et χ un caractère de Dirichlet modulo q à valeurs réelles. On suppose χ non principal. Le but de cet exercice est de montrer que $L(1,\chi)\neq 0$.

- 1. Notons $f = \mathbf{1} * \chi$. Montrer que $f(n) \ge 0$ pour tout $n \ge 1$ et que $f(n) \ge 1$ si n est un carré.
- 2. En utilisant la formule d'Euler–Maclaurin rappelée au début de l'exercice 7, justifier l'existence d'une constante A telle que pour tout $x \ge 1$ on ait

$$\sum_{n \le x} \frac{1}{\sqrt{n}} = 2\sqrt{x} + A + O\left(\frac{1}{\sqrt{x}}\right).$$

3. Montrer que pour tout s tel que $\Re(s) = \sigma > 0$, on a uniformément en $x \ge 1$:

$$\sum_{n \le x} \frac{\chi(n)}{n^s} = L(s, \chi) + O_{q,s}(x^{-\sigma}).$$

- 4. Pour $x \ge 2$, notons $S(x) = \sum_{n \le x} f(n) / \sqrt{n}$. Justifier $S(x) \gg \log x$, pour tout $x \ge 2$.
- 5. Justifier que $S(x) = \Sigma_1 + \Sigma_2 \Sigma_3$ en posant

$$\Sigma_1 = \sum_{d \le \sqrt{x}} \frac{\chi(d)}{\sqrt{d}} \sum_{m \le x/d} \frac{1}{\sqrt{m}}, \qquad \Sigma_2 = \sum_{m \le \sqrt{x}} \frac{1}{\sqrt{m}} \sum_{d \le x/m} \frac{\chi(d)}{\sqrt{d}},$$
$$\Sigma_3 = \sum_{d \le \sqrt{x}} \frac{\chi(d)}{\sqrt{d}} \sum_{m \le \sqrt{x}} \frac{1}{\sqrt{m}}.$$

- (a) Montrer que $\Sigma_1 = 2\sqrt{x}L(1,\chi) + O(1)$.
- (b) Montrer que $\Sigma_2 = L(1/2, \chi)2x^{1/4} + O(1)$.
- (c) Montrer que $\Sigma_3 = L(1/2, \chi)2x^{1/4} + O(1)$.
- 6. En déduire que $L(1,\chi) \neq 0$.

Exercice 9 Soit β la fonction arithmétique définie par $\beta(p_1^{\alpha_1} \cdots p_r^{\alpha_r}) = \alpha_1 \cdots \alpha_r$ et $\beta(1) = 1$. On note F_{β} la série de Dirichlet associée à β .

- 1. Donner le développement en produit eulérien de F_{β} , et majorer son abscisse de convergence absolue.
- 2. En déduire un équivalent asymptotique de $\sum_{n \leq x} \beta(n)$.

Exercice 10 (P'olya-Vinogradov) Le but de cet exercice est de généraliser les exercices 2 et 4 du T.D. 3. Soient $m \geq 2$ un entier et χ un caractère de Dirichlet modulo m. On suppose χ primitif, ce qui signifie qu'il n'existe aucun couple (d, χ') tel que d divise m, $d \neq m$, χ' est un caractère de Dirichlet modulo d, et $\chi(n) = \chi'(n)$ pour tout $n \in \mathbf{Z}$ premier à m.

On définit le k-ème coefficient de Fourier de χ de la manière suivante :

$$\hat{\chi}(k) = \frac{1}{m} \sum_{j=0}^{m-1} \chi(j) \exp\left(-\frac{2i\pi kj}{m}\right).$$

- 1. Montrer que pour tout $n \in \mathbf{Z}$ on a $\chi(n) = \sum_{k=0}^{m-1} \hat{\chi}(k) \exp\left(\frac{2i\pi kn}{m}\right)$.
- 2. Montrer que pour tout entier k on a $\hat{\chi}(k) = \overline{\chi(k)}\hat{\chi}(1)$.
- 3. Montrer que $|\hat{\chi}(1)| = 1/\sqrt{m}$.
- 4. Soit $N \geq 1$ un entier; notons f la fonction définie sur les entiers par $f(k) = \sum_{n=1}^{N} \exp(2i\pi kn/m)$. En utilisant la formule $f(m-k) = \overline{f(k)}$, démontrer l'inégalité de Pólya–Vinogradov :

$$\left| \sum_{n=1}^{N} \chi(n) \right| \le \sqrt{m} \log \left(\frac{em}{2} \right) .$$