Université Paris-Saclay M1 M.F., Orsay 2022-2023 Arithmétique

T.D. 5 : Fractions continues et équation de Pell-Fermat

Exercice 1

- 1. Soit m>0 un entier et soit $\alpha=\frac{1}{2}(m+\sqrt{m^2+4})$. Développer α en fraction continue.
- 2. Donner la valeur du nombre réel β dont le développement en fraction continue est $[\overline{1,2,3}] = [1;2,3,1,2,3,\ldots]$.

Exercice 2 Dans cet exercice on utilise les notions suivantes.

- Soit α un réel dont le développement en fraction continue est $[a_0; a_1, a_2, \ldots]$. Pour $n \geq 0$, le n-ème reste de α est la valeur de la fraction continue $[a_n; a_{n+1}, \ldots]$.
- Soit β un nombre algébrique sur \mathbf{Q} de degré 2. On appelle discriminant de β le discriminant de l'unique équation quadratique à coefficients entiers $Ax^2+Bx+C=0$ (avec A>0 et pgcd(A,B,C)=1) satisfaite par β , c'est-à-dire B^2-4AC .
- Si $\beta \in \mathbf{Q}(\sqrt{D})$, c'est-à-dire si $\beta = x + y\sqrt{D}$ avec $x, y \in \mathbf{Q}$ et $D \in \mathbb{N}$ qui n'est pas un carré, on appelle *conjugué* de β le nombre algébrique $\beta' = x y\sqrt{D}$. Il s'agit de l'image de β par l'unique homomorphisme de corps non trivial de $\mathbf{Q}(\sqrt{D})$ dans lui-même.
- Un nombre algébrique réel β de degré 2 est dit réduit si $\beta > 1$ et $-1/\beta' > 1$.
- 1. Notons β_n le *n*-ème reste de β . Montrer que pour tout $n \geq 0$ le discriminant de β_n est le même que celui de β .
- 2. Montrer qu'il n'y a qu'un nombre fini de nombres algébriques réels de degré 2 sur ${\bf Q}$ qui sont réduits et de discriminant fixé D.
- 3. Montrer que pour tout nombre algébrique réel β de degré 2 il existe un entier N tel que β_n soit réduit pour tout n > N. Indication : on pourra écrire une sorte de développement asymptotique de $-1/\beta'_n$.
- 4. Déduire des questions précédentes une nouvelle preuve du fait que le développement en fraction continue d'un irrationnel quadratique est périodique.
- 5. Montrer que pour β algébrique réel de degré 2 les assertions suivantes sont équivalentes : (i) β est réduit.
 - (ii) β_n est réduit pour tout $n \geq 0$.
 - (iii) Le développement en fraction continue de β est purement périodique, c'est-àdire de la forme $[\overline{a_0; a_1, \dots a_k}] = [a_0; a_1, \dots a_k, a_0, a_1, \dots a_k, \dots]$.
- 6. En déduire que si $d \in \mathbb{N}$ n'est pas un carré alors le développement en fraction continue de \sqrt{d} est de la forme $[a_0; \overline{a_1, \ldots, a_n}]$ avec $a_n = 2a_0$.

Exercice 3

- 1. Montrer que l'équation $x^2 dy^2 = -1$ n'a pas de solution dans ${\bf Z}^2$ lorsque $d \equiv 3 \pmod 4$.
- 2. Montrer que si cette même équation possède au moins une solution $(x,y) \in \mathbf{Z}^2$ alors d est somme de deux carrés (on pourra approcher -x/d par un rationnel de dénominateur inférieur à \sqrt{d}).
- 3. Montrer que si $p \equiv 1 \pmod{4}$ est premier alors l'équation $x^2 py^2 = -1$ admet des solutions dans \mathbb{Z}^2 . En déduire que p est somme de deux carrés.

Exercice 4 Expliciter la solution fondamentale de l'équation de Pell–Fermat $x^2 - dy^2 = \pm 1$ lorsque d = 7, puis lorsque $d = a^2 + a$ avec $a \in \mathbb{N}^*$. Y a-t-il des solutions telles que $x^2 - dy^2 = -1$?

<u>Exercice 5</u> Soit d un entier positif qui n'est pas un carré. Pour $\lambda=\pm 1$, on considère l'équation de Pell–Fermat :

$$(E_{\lambda}) \qquad x^2 - dy^2 = \lambda \,.$$

- 1. Justifier que la solution fondamentale $\varepsilon_d = x_0 + y_0 \sqrt{d}$ de l'équation (E_{λ}) vérifie $\varepsilon_d \geq \sqrt{d}$.
- 2. Fixons $\lambda = 1$. Montrer que la borne de la question 1 est essentiellement optimale en général (on pourra considérer le cas où d est de la forme $n^2 1$).
- 3. En utilisant l'exercice 3, démontrer que si $p \equiv 1 \pmod{4}$ alors la solution fondamentale ε_p de l'équation (E_1) avec d = p vérifie en fait $\varepsilon_p \geq p$.

Exercice 6 Soit d un entier positif qui n'est pas un carré. Notons $a+b\sqrt{d}$ la solution fondamentale de l'équation $x^2-dy^2=\lambda$ avec $\lambda\in\{-1,1\}$. Considérons la suite $(b_n)_{n\geq 0}$ définie par la relation de récurrence $b_{n+1}=2ab_n-\lambda b_{n-1}$ pour tout $n\geq 1$ et les valeurs initiales $b_0=0,\ b_1=b$.

- 1. Démontrer que pour tout $n \ge 0$ il existe $a_n \ge 1$ tel que $(a + b\sqrt{d})^n = a_n + b_n\sqrt{d}$.
- 2. En déduire que les entiers $b \ge 1$ tels que $db^2 + \lambda$ soit un carré sont exactement les b_n avec $n \ge 1$ tel que $\lambda^{n-1} = 1$.

Exercice 7 Soit d un entier positif qui n'est pas un carré. Notons $\varepsilon_d = x_0 + y_0 \sqrt{d}$ la solution fondamentale de l'équation $x^2 - dy^2 = 1$, et supposons y_0 impair. Démontrer que ε_d^2 est la solution fondamentale de l'équation $x^2 - 4dy^2 = 1$.

Exercice 8 On appelle exposant d'irrationalité d'un nombre réel ξ , et on note $\mu(\xi)$, la borne supérieure (si elle existe) de l'ensemble des $\mu \in \mathbf{R}$ pour lesquels il existe une infinité de couples $(p,q) \in \mathbf{Z} \times \mathbb{N}^*$ tels que $0 < |\xi - \frac{p}{q}| < q^{-\mu}$. Si cette borne supérieure n'existe pas, on pose $\mu(\xi) = +\infty$.

1. Demontrer que $\mu(\xi)$ est la borne supérieure (si elle existe) de l'ensemble des $\mu \in \mathbf{R}$ pour lesquels il existe une infinité de $q \in \mathbb{N}^*$ tels que

$$\exists p \in \mathbf{Z}, \quad 0 < \left| \xi - \frac{p}{q} \right| < q^{-\mu}.$$

- 2. Démontrer que ξ est un nombre rationnel si et seulement si $\mu(\xi) = 1$, et que dans le cas contraire on a $\mu(\xi) \geq 2$.
- 3. Démontrer que si le développement de ξ en fraction continue est infini et que la suite (a_n) des quotients partiels est majorée alors $\mu(\xi) = 2$.
- 4. Justifier qu'il existe des nombres réels ξ dont le développement en fraction continue vérifie $a_{n+1} \geq q_n^n$ pour tout n assez grand. Démontrer que ces réels vérifient $\mu(\xi) = +\infty$, et en déduire qu'ils sont transcendants.
- 5. Démontrer que $\xi = \sum_{k=1}^{\infty} \frac{1}{10^{5^k}}$ vérifie $\mu(\xi) = 5$.
- 6. Démontrer que l'ensemble des réels ξ tels que $\mu(\xi) \neq 2$ est de mesure de Lebesgue nulle.