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Abstract
We show that the geometry-of-numbers method used by A. Bounemoura to obtain
filling times for linear flow on the torus satisfying Diophantine conditions may be
extended to the case of linear flow with truncatedDiophantine conditions, and we use
these methods to recover the optimal estimate first obtained by M. Berti, L. Biasco,
and P. Bolle in 2003. We also briefly review the dynamics of linear flow on the torus,
previous results, optimality, and applications of these estimates.

Keywords Filling time · Ergodization time · Linear flow · Geometry of numbers

1 Introduction

Linear flow on the n-torus T
n occurs routinely in integrable and nearly integrable

Hamiltonian systems, as well as in other mathematical settings. When the direction of
such flow satisfies Diophantine conditions (as happens for example on KAM tori), for
given δ > 0 it can be shown that each orbit of the flow becomes δ-dense on the torus
after a time T that may be estimated in terms of δ and the Diophantine parameters.
In fact, this “filling” occurs even when the flow only satisfies truncated Diophantine
conditions (i.e., satisfies Diophantine conditions only up to a certain critical order N∗).
The first crude estimates of the filling time1 T were found in the late 1980s by one of
us (HSD) in the context of an application to physics [9]. Since then, estimates have

1 In earlier work, we used the term “ergodization time” rather than “filling time.”
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been refined and improved by a number of authors, and in 2003 the optimal estimate
was proved for the more general case (truncated Diophantine conditions) by M. Berti,
L. Biasco, and P. Bolle [1]. In this paper, we give a new proof of this estimate by
modifying the geometry-of-numbers method used by A. Bounemoura [2] to get filling
times for the less general case (untruncated Diophantine conditions). Bounemoura’s
method is in turn based on techniques developed earlier with one of us (SF) in [3].

In addition to our proof, we provide background material and an overview of the
filling-time problem and how it has evolved.We hope this will make the subject acces-
sible to a wider audience and draw attention to its many contributors and surprising
number of applications.

The remainder of this paper is organized as follows. InSect. 2,we set out our notation
and terminology, defining the filling property for linear flow on T

n and Diophantine
sets of vectors both with and without truncation. In Sect. 3, we state our basic problem
and main result (Theorem 1) along with corollaries for comparison with other results.
We next look at properties of Diophantine sets and discuss the dynamics of linear
flow in Sect. 4. Section 5 serves as a short review by surveying past results on filling
times, their optimality, and their use in applications. In Sect. 6 we prove Theorem 1
by means of a proposition adapted from [3] to treat the case of truncated Diophantine
conditions, and we briefly discuss our new proposition and overall proof. Finally, to
make the paper self contained, basic elements from geometry of numbers are presented
in an appendix at the end.

2 Notation and Terminology

For integer dimension n ≥ 2 and x = (x1, . . . , xn) ∈ R
n , k = (k1, . . . , kn) ∈ Z

n , we
use the Euclidean norms ‖x‖ = (x21 + · · · + x2n )

1/2 and ‖k‖ = (k21 + · · · + k2n)
1/2. We

denote byTn ≡ R
n/Zn the flat n-torus, on which we use modular (modZn) arithmetic

(i.e., mod 1 arithmetic in each coordinate). For α ∈ S
n−1 = {α ∈ R

n
∣
∣ ‖α‖ = 1},

t ∈ R, and θ ∈ T
n , we use the unconventional but convenient notation αt : Tn → T

n ,
αt (θ) = θ + tα to denote linear flow on Tn with unit speed and direction vector α. In
this paper we consider Zn to be included in R

n , so when we say that a set of integer
vectors is linearly independent, or we indicate the span of a set of integer vectors,
these have their ordinary meanings in Rn .

Our key concept is what we call the filling property of linear flow on T
n , defined

as follows.

Filling T
n to within δ after time T . Given δ ∈ (0, 1

2 ), we say αt fills Tn to within δ

after time T if, for any starting point θ ∈ T
n , the orbit segment {αt (θ), 0 ≤ t ≤ T }

forms a δ-dense subset of Tn . (This means that every closed ball of radius δ in T
n

contains a point of the orbit segment.)
It is not difficult to see that the filling property and filling time T are independent

of the starting point θ . For more details about this fact, see the introductory parts of
[2] or [10].

Diophantine vectors. The filling property of the flow αt depends strongly on the
Diophantine properties of the direction vector α. We use the following sets.
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For dimension n ≥ 2 and parameters τ > n − 1, γ > 0, we define Dn(τ, γ ), the
set of Diophantine vectors in Rn by

Dn(τ, γ ) = {

α ∈ R
n
∣
∣ |k · α| ≥ γ ‖k‖−τ for any k ∈ Z

n\{0}}.

With n, τ, γ as above, we adjoin the parameter N ≥ 1 and define the set of truncated
Diophantine vectors by

Dn(τ, γ, N ) = {

α ∈ R
n
∣
∣ |k · α| ≥ γ ‖k‖−τ for any k ∈ Z

n with 0 < ‖k‖ ≤ N
}

.

Finally, we attach the superscript 1 to these sets to indicate the restriction to vectors
of unit length. In other words, D1

n(τ, γ ) = S
n−1 ∩ Dn(τ, γ ) and D1

n(τ, γ, N ) =
S
n−1 ∩ Dn(τ, γ, N ). We loosely refer to α in Dn(τ, γ ) or Dn(τ, γ, N ) as frequency

vectors, and α in D1
n(τ, γ ) or D1

n(τ, γ, N ) as direction vectors.
The parameter N is called the truncation order, or simply the cutoff. We provide

more details aboutDiophantine sets and the significanceof the cutoff below inSect. 4.2.
For now, we note that, as discussed in Sect. 4.2 (i) below, D1

n(τ, γ ) and thus also its
supersets are nonempty for τ > n − 1 and sufficiently small γ ∈ (0, 1).

3 Basic Problem andMain Result

Using the notation and terminology above, our basic problem is relatively simple to
state. For fixed δ ∈ (0, 1

2 ), we seek the largest set S ⊂ S
n−1 of direction vectors α

whose corresponding flows αt fill Tn quickly, i.e., within a time T depending only
(and if possible optimally) on δ and the parameters determining S.

In Sect. 5.1 below,we give an overview of previous results on this problem. For now,
we repeat that the optimal estimate for the largest set S = Dn(τ, γ, N∗)wasobtained in
2003 in [1]. Our contribution in the present paper is to show that geometry-of-numbers
methods used by A. Bounemoura [2] to get optimal estimates for Dn(τ, γ ) may be
used to recover the results of [1] for the larger setDn(τ, γ, N∗). More specifically, we
have the following

Theorem 1 For integer dimension n ≥ 2, let τ > n − 1, γ ∈ (0, 1) be such that
D1

n(τ, γ ) is nonempty. Choose δ ∈ (0, 1
2 ) and set N∗ = (1 + n2n!)/δ. Then given

any direction vector α ∈ D1
n(τ, γ, N∗), the flow αt fills T

n to within δ after time

T <
C(n, τ )

γ δτ
, where C(n, τ ) = (1 + n2n!)τ+1.

We call N∗ the critical truncation order or critical cutoff. From the definitions of
Diophantine sets, for fixed n, τ , γ , and any N ≥ N∗ ≥ 1, we have the inclusions
D1

n(τ, γ ) ⊆ D1
n(τ, γ, N ) ⊆ D1

n(τ, γ, N∗). These immediately give the following
corollaries of Theorem 1.

Corollary 1 For integer dimension n ≥ 2, let τ > n − 1, γ ∈ (0, 1) be such that
D1

n(τ, γ ) is nonempty. Then given δ ∈ (0, 1
2 ) and any direction vector α ∈ D1

n(τ, γ ),
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the flow αt fills Tn to within δ after time T <
C(n, τ )

γ δτ
, where C(n, τ ) = (1 +

n2n!)τ+1.

Corollary 2 For integer dimension n ≥ 2, let τ > n − 1, γ ∈ (0, 1) be such that
D1

n(τ, γ ) is nonempty. Then given δ ∈ (0, 1
2 ), a cutoff N ≥ N∗ = (1 + n2n!)/δ,

and a direction vector α ∈ D1
n(τ, γ, N ), the flow αt fills Tn to within δ after time

T <
C(n, τ )

γ δτ
, where C(n, τ ) = (1 + n2n!)τ+1.

Although these corollaries are simply weaker versions of Theorem 1 (since their
hypotheses are more restrictive), we state them here for their potential use in applica-
tions, and for comparison with other results, as discussed further below in Sect. 5.2.

4 Diophantine Sets and the Dynamics of Linear Flow

In this section, we provide some background for the reader who may be unfamiliar
with the connection between Diophantine sets and the filling property for linear flow
on Tn . The presentation is elementary and informal, and many facts are stated without
proof. For further details, we recommend the texts [5] and [15].

4.1 Resonance

To see the connection between Diophantine sets and linear flow, we need some termi-
nology pertaining to the phenomenon of resonance as it arises in small divisor theory of
dynamical systems. For background and more details, see Appendix 3 of [15], where
what we call resonant multiplicity is instead called resonant dimension, and note that
our situation is simplified substantially by the lack of variables I in an action-like
base space (where resonance is usually studied) and a “frequency map” I �→ α to our
frequency vectors α.

We say that the frequency vector α ∈ R
n is resonant if there is a k ∈ Z

n\{0}
such that k · α = 0. We denote the set of resonant frequency vectors by R, and its
complement, the set of nonresonant frequency vectors, byN . It is not hard to see that
both R and N are dense in R

n , while R is of Lebesgue measure 0 and N is of full
measure.

Given k ∈ Z
n\{0}, the simple resonance (or resonance ofmultiplicity 1) determined

by k is the hyperplane through the originRk = {α ∈ R
n
∣
∣ k · α = 0}. More generally,

α ∈ R
n belongs to a resonance of multiplicity m ∈ {1, . . . , n − 1} if it belongs to m

independent simple resonances Rk(1) , . . . ,Rk(m) , in other words if α ∈ ⋂m
j=1Rk( j)

where {k(1), . . . , k(m)} is linearly independent. Multiple resonances are nested in the
sense that whenever a frequency vector belongs to a resonance of multiplicity m, it
also belongs to resonances of lesser multiplicity l ∈ {1, . . . ,m − 1}.

For any simple resonanceRk , there are precisely two nonzero integer vectors (−k′
and k′ ∈ span{k}) of smallest norm ‖k′‖ such that Rk = Rk′ = R−k′ ; this smallest
norm ‖k′‖ is called the order of the simple resonance.
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Weconnect simple resonanceswithDiophantine sets as follows. From the definition
of Dn(τ, γ ), we see that for each k ∈ Z

n\{0}, the set Zk = {α ∈ R
n
∣
∣ |k · α| <

γ ‖k‖−τ } is excluded from Dn(τ, γ ) (for simplicity, we suppress dependence of Zk

on parameters n, γ , τ ). Geometrically, Zk is an open “hyperslab” centered on Rk ,
of half-thickness γ ‖k‖−τ−1. In other words, Zk is the set of points α between the
two affine hyperplanes k · α = ±γ ‖k‖−τ . The thickest such hyperslab containing
the simple resonance Rk is Zk′ , where k′ is one of the two shortest integer vectors
determiningRk (i.e., ‖k′‖ is the order ofRk). We call this thickest hyperslab Zk′ the
resonant zone around Rk .

4.2 The Structure of Diophantine and Truncated Diophantine Sets

In this subsection, we discuss the parameter values for which the Diophantine sets
(truncated or not) are nonempty, the resonance properties of vectors in them, and the
geometry and topology of these sets.

(i) Diophantine sets are nonempty for τ > n − 1 and small γ
By writing the set of Diophantine frequency vectors in the form Dn(τ, γ ) =
R
n \⋃

0 �=k∈Zn Zk , it becomes a simple exercise to estimate (crudely) its relative
Lebesgue measure, as we now outline. Denoting the closed unit ball in R

n by B
and Lebesgue measure by μ, we readily see that μ

(

B ∩ Dn(τ, γ )
) ≥ μ(B) −

∑

0 �=k∈Zn μ(Zk ∩ B) ≥ μ(B) − γ an
∑

0 �=k∈Zn ‖k‖−τ−1 where an > 0 is an appro-

priate constant. Now the series
∑

0 �=k∈Zn ‖k‖−τ−1 converges precisely for τ > n− 1;

in this case we set b(n, τ ) = an
∑

0 �=k∈Zn ‖k‖−τ−1, and we have μ
(

B ∩Dn(τ, γ )
) ≥

μ(B) − γ b(n, τ ). This shows that, for any τ > n − 1 and for sufficiently small γ ,
the measure μ

(

B ∩Dn(τ, γ )
)

is positive and thusDn(τ, γ ) is nonempty. We can also
see that for τ > n − 1, the relative measure of the complement of Dn(τ, γ ) is O(γ )

as γ → 0+. A similar argument gives an analogous result for D1
n(τ, γ ) as a sub-

set of Sn−1. Of course, the truncated Diophantine sets are nonempty under the same
conditions, since Dn(τ, γ, N ) ⊃ Dn(τ, γ ) and D1

n(τ, γ, N ) ⊃ D1
n(τ, γ ).

(ii) Resonance properties of vectors in Diophantine sets
Not only doDn(τ, γ ) andD1

n(τ, γ ) contain no resonant vectors (since
⋃

0 �=k∈Zn Rk ⊂
⋃

0 �=k∈Zn Zk) but the exclusion of resonant zonesZk′ around each resonanceRk means
that remaining vectors are “far from resonance,” or “highly nonresonant,” with the
distance of exclusion diminishing with the order of resonance. By contrast, although
Dn(τ, γ, N∗) andD1

n(τ, γ, N∗)maintain these exclusions up to order N∗, beyond this
order, no resonances are excluded; the truncated Diophantine sets contain infinitely
many vectors resonant at orders higher than N∗.

(iii) Geometry and topology of Diophantine sets
First, we know that Dn(τ, γ ) is a closed subset of R

n , since its complement
⋃

0 �=k∈Zn Zk is open. Second, Dn(τ, γ ) has a simple radial structure: Given any
α ∈ Dn(τ, γ ) and any r ≥ 1, it follows immediately from the definition of Dn(τ, γ )

that rα ∈ Dn(τ, γ ). This shows that Dn(τ, γ ) is a collection of closed half lines
directed outward from the origin inRn . The endpoints of the half lines cannot be closer
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than distance γ to the origin, since the thickest resonant zones (Zk′ with ‖k′‖ = 1)
contain the open ball of radius γ . Finally, the complement of Dn(τ, γ ) contains the
dense set R (the resonant points), so Dn(τ, γ ) has empty interior. Since Dn(τ, γ ) is
closed with empty interior, it is nowhere dense.

The authors H.K. Broer, G.B. Huitema, and M.B. Sevryuk go further in their
description of the Diophantine sets. In §1.5.2 of [5], they show that the setD1

n(τ, γ ) =
Dn(τ, γ )∩S

n−1 is the union of a countable set and a Cantor set, and they callDn(τ, γ )

(which they denote byRn
γ ) a “Cantor bundle of closed half-lines.” Many authors refer

informally to both D1
n(τ, γ ) and Dn(τ, γ ) as Cantor sets or Cantor-like sets.

The topology of the truncated Diophantine sets is quite different. We may
write Dn(τ, γ, N ) = R

n \⋃

0<‖k‖≤N Zk , which emphasizes the construction of
Dn(τ, γ, N ) by the removal from R

n of finitely many hyperslabs Zk . In fact, the
relation between Dn(τ, γ ) and Dn(τ, γ, N ) is analogous to the relation between the
Cantor ternary set in R and the finite collection of closed subintervals obtained at
the N th step of its construction. While Dn(τ, γ ) has the complicated topology of
a Cantor-like set, its approximating superset Dn(τ, γ, N ) has a simple structure: it
consists of finitely many closed connected components, each having nonempty inte-
rior and boundary formed by (portions of) hyperplanes. The sets of direction vectors
D1

n(τ, γ ) and D1
n(τ, γ, N ) inherit a very similar relationship, since they are simply

the intersections of Dn(τ, γ ) and Dn(τ, γ, N ) with Sn−1.
The difference between the Diophantine and truncated Diophantine sets has sig-

nificant practical consequences. In order to decide whether a vector α belongs to the
Cantor-like sets Dn(τ, γ ) or D1

n(τ, γ ) we must check infinitely many inequalities, in
other words we must specify α with infinite precision. To see whether α belongs to
Dn(τ, γ, N ) or D1

n(τ, γ, N ), we need check only finitely many inequalities; this is
roughly analogous to determining if a real number belongs to a closed subinterval of
R.

A conversation one of us (HSD) had years ago with a theoretical physicist serves
to illustrate this last point. The physicist wished to apply a theorem from dynamical
systems to a mathematical model of particle accelerator dynamics using realistic data,
but the hypotheses of the theorem included Diophantine conditions on the frequency
vector. “I can’t check infinitely many inequalities,” said the physicist, to which HSD
replied “You only need to check them up to a certain order.” The physicist then asked
“But what is that ‘certain order’ precisely? And can I be sure that the theorem still
applies rigorously when I do that?” We observe that a result like our Theorem 1
responds positively to the physicist’s questions.

4.3 The Dynamics of Linear Flow onTn

Although linear flow on R
n is very simple, it is not entirely trivial on T

n because the
torus is compact and in some sense “multiply periodic.” On T

n , there is a basic dis-
tinction between the dynamics of linear flow arising from nonresonant versus resonant
frequency vectors. If α ∈ N , the linear flow αt is minimally ergodic2 onTn . If α ∈ R,

2 “Minimally ergodic” is short for “minimal and ergodic,” where minimal means that every orbit of the
flow is dense in T

n .
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the flow is not ergodic on T
n ; in fact, if α ∈ R

n is resonant with multiplicity m, then
αt foliatesTn into invariant “subtori” of dimension n−m, and αt is minimally ergodic
on each subtorus instead.

Nevertheless, for fixed δ > 0, resonant flow may quickly fill Tn to within δ,
provided α is resonant at high order, because the subtorus on which αt is invariant
may itself be δ-dense in Tn . This is most readily seen in the lowest dimension n = 2,
where all resonances are simple and resonant α generate periodic orbits invariant
on subtori of dimension 1 (topological circles). To consider specific examples, for
(0, 0) �= (a, b) ∈ R

2 wedenote the normalization of (a, b)by N (a, b) [i.e., N (a, b) =
(a, b)/

√
a2 + b2 ]. Now let q ∈ Z+ and consider the direction vector α = N (q, 1)

which is resonant at order
√

q2 + 1. The corresponding flow αt is not ergodic on T
2,

yet fills T2 to within δ = 1/(2
√

q2 + 1) after time T = √

q2 + 1, which is no doubt
the shortest possible filling time for this δ. On the other hand, ergodicity does not by
itself ensure rapid filling. For any q ∈ Z+, the flow βt of the nonresonant direction
vector β = N (q,

√
2) is ergodic on T

2, but for fixed δ ∈ (0, 1
2 ), the filling time

becomes arbitrarily long with increasing q.
Clearly, the filling property does not coincide with ergodicity on T

n . Ergodicity is
an asymptotic phenomenon realized over infinite time intervals, ensuring that filling
occurs for every δ > 0. The filling property, as defined in Sect. 2 and as used in
applications, is realized over finite time intervals for fixed δ > 0. This in a nutshell is
why non-ergodic, high-order resonant flow may also fill Tn quickly, and why the set
D1

n(τ, γ, N∗) is a better approximation than D1
n(τ, γ ) to the largest set S of direction

vectors whose flows quickly fill the torus. (It is also one reason we now prefer “filling
time” over the term “ergodization time” used in our earliest discussions [9, 10].)

5 Previous Results, Optimality, and Applications

In this section,we place filling-time results in context by briefly discussing their origins
and development, their optimality, and their various uses.

5.1 Previous Results on Filling Times

Some preliminary remarks are pertinent here. We point out that the results discussed
below are not always precisely comparable without slight adjustments; this is usually
because of variations in the definition of filling (e.g., the filling radius δ is sometimes
replaced by a filling diameter � = 2δ), or in the definition of Diophantine sets (e.g.,
different norms are used). We won’t detail these minor variations in the discussion
below. Speaking more broadly, now that filling-time results are relatively mature,
we think it’s important to highlight various authors’ contributions, especially since a
number of advances appear in papers where filling times were used as a tool in the
proof of other results, and so haven’t always received the attention they deserve by
themselves.

We now briefly describe previous results in chronological order.
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Result (i). Although the filling-time problem is clearly related to earlier results in
ergodic theory and uniform distribution, to our knowledge, the first explicit definitions
and treatments as outlined above in Sects. 2 and 3 were given in the thesis [9] (pre-
senting a mathematical theory of charged particle motions in crystals) and subsequent
article [10]. Here Fourier series methods are used first to show that if α ∈ Dn(τ, γ ),
then αt fills Tn to within δ after time T ≤ Kγ −1δ−(τ+n/2) where K = K (n, τ ) is
a suitable constant. For the truncated Diophantine case, it is also shown that there is
an N 	 = N 	(δ, n, τ ) such that if N > N 	 and α ∈ Dn(τ, γ, N ), then αt fills Tn to
within δ after a time which is T (above) multiplied by a messy factor involving N ,
N 	, n, and τ . These results may be compared (unfavorably) to our Corollaries 1 and 2
in Sect. 3. See Theorems 1 and 2 of [10] for details.

Result (ii). Afewyears later, in [7], L.Chierchia andG.Gallavottimadeuse of afilling-
time estimate in their treatment of “Arnold diffusion,” a kind of instability occurring
in Hamiltonian dynamical systems (see their brief discussion following Eq. (8.26) on
p. 62 of [7]). Though the authors do not write down the proof in [7], during a later
discussion with one of us (HSD), Gallavotti explained that he had not been aware
of previous results, but had used his own simple Fourier series techniques to get the
filling time T ≤ T0γ −1δ−(τ+n) (with suitable T0 = T0(τ, n)) for α ∈ Dn(τ, γ ), using
only the special case n = 2 in [7]. We mention this because it seemed remarkable
that the problem arose independently in a different application than Result (i), yet the
solution involved Fourier series and gave a similar estimate, namely a power law of
the form T ∼ δ−(τ+bn) with b ≥ 0.

Result (iii). Next, in the article [12], by L. Dumas, F. Golse and one of us (HSD),
we used filling-time estimates to understand features of the kinetic theory and mean
free path for a Lorentz gas in a periodic array of obstacles. For dimensions n ≥ 3, we
used the estimates in [10], but for n = 2, we wrote down a proof based on continued
fractions developed earlier while working on [9] andmentioned in Remark 3.2 of [10].
We show that if α ∈ D2(τ, γ ), then αt fills T2 to within δ after time T ≤ C ′γ −1δ−τ

withC ′ = 3τ 2(τ+1)/2. The proof also shows that the same filling time holds whenever
N ≥ N∗ = 3/δ and α ∈ D2(τ, γ, N ). As we explain in Sect. 5.2 below, these results
in the special case n = 2 are optimal in terms of their power-law dependence on δ.

Result (iv). In the course of their detailed treatment of the periodic Lorentz gas
problem [4], J. Bourgain, F. Golse, and B.Wennberg obtained the filling-time estimate
T ≤ C ′′γ −1δ−τ (with suitable C ′′ = C ′′(τ, n)) for α ∈ Dn(τ, γ ), any n ≥ 2, using
Fourier series methods and combinatorial arguments (see Theorem D of [4], which
may be compared with our Corollary 1 in Sect. 3). Again, as explained below, this
estimate is optimal in terms of its power-law dependence on δ.

Result (v). In 2003, M. Berti, L. Biasco, and P. Bolle presented a new approach to the
Arnold diffusion problem inwhich they also developed their ownfilling-time estimates
implying both Result (iv) and our present Theorem 1. (Of course the authors’ own
constant—call it C ′′′—stands in place of our C in Theorem 1 and the C ′′ of Result
(iv).) See Theorems 4.1 and 4.2 of [1] and their proofs in Appendix B. We should say
that these results are already the best to date in terms of optimality and the size of
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the set of frequency vectors to which they apply. We briefly discuss the proof and its
relation to our own proof below in Sect. 6.

Result (vi). In 2016, A. Bounemoura [2] recovered the optimal power-law estimate (as
above in Results (iv) and (v)) for α ∈ Dn(τ, γ ) using geometry-of-numbers methods
developed earlier with one of us (SF) in [3] and extended further in the present paper.
In fact, Bounemoura gives the filling time for α ∈ Dn(τ, γ ) as simply T ∼ δ−τ , but
one can obtain the constants from his Theorem 1, which is more general. Applying his
theorem in the case α ∈ Dn(τ, γ ) gives T ≤ C ′′′′γ −1δ−τ with C ′′′′ = 2τ (n2n!)τ+1.
This is closely related to our Corollary 1 in Sect. 3, as it should be.

5.2 Optimality

In terms of the most important parameter δ, all filling-time estimates so far have the
form of a power law T ∼ δ−(τ+bn) with b ≥ 0. As explained in Remark 8 of [12]
(where R is used in place of δ), the use of these estimates in kinetic theory shows
that we cannot have b < 0. In other words b ≥ 0, thus the optimal (shortest possible)
estimate of this form is T ∼ δ−τ .

To summarize, the optimal δ-dependence was first achieved in the special case
n = 2, both for α ∈ D1

2(τ, γ ) and α ∈ D1
2(τ, γ, N∗) with N∗ = 3/δ (Result (iii)

above). It was then obtained for α ∈ D1
n(τ, γ ), any n ≥ 2 (Result (iv)). Finally, [1]

extended the optimal δ-dependence to α ∈ D1
n(τ, γ, N∗) or Dn(τ, γ, N∗), any n ≥ 2

(Result (v)).
We also believe that the δ-dependence of the critical cutoff in the form N∗ ∼ δ−1

is optimal. This is because, for certain α resonant at order less than O(δ−1), the flow
αt fills subtori leaving gaps in Tn larger than δ; in other words the flow fails to fill Tn

to within δ. A detailed proof of the optimality of N∗ along these lines would involve
carefully chosen sequences δ j → 0+ and {α( j)}with α( j) resonant at orders near δ−1

j .
Finally, we say a few words about optimality with respect to parameters other than

δ. We do not believe that any of the above constants C, C ′,C ′′,C ′′′,C ′′′′ in Sect. 5.1
are optimal. (These depend parametrically on τ and n and appear respectively in our
Theorem 1 and Results (iii), (iv), (v), (vi) above.) Without belaboring the point, this is
because these constants arise in chains of inequalitieswhere no special effort wasmade
to ensure sharpness. If for some reason a sharp or nearly sharp constant of this type is
needed,we believe it would be best to estimate it numerically for the desired dimension
n. However, we note the following possible future improvement of order constants in
our Theorem 1. As discussed at the end of the appendix below, it is conjectured that the
current bound n! in the Main Duality Result of Successive Minima could be improved
to Kn (suitable K > 0). If this were achieved, our constant C = (1 + n2n!)τ+1

could be replaced by (1 + Kn3)τ+1, and our critical cutoff N∗ = (1 + n2n!)/δ by
(1 + Kn3)/δ. (Bounemoura’s constant C ′′′′ could be similarly improved.)
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5.3 Applications

Since their introduction, filling-time estimates have had a number of applications in
dynamical systems and mathematical physics. Most—but not all—of these applica-
tions have connections with nearly integrable Hamiltonian systems (including KAM
and/or Nekhoroshev theory), since Diophantine linear flows on tori occur as a mat-
ter of course in such systems. In this subsection, we list four areas of application in
chronological order, citing a few references and giving a short sketch of each. We
make no attempt to be comprehensive in our list or references, but rather seek to give
the reader a bird’s-eye view of how the estimates have been used.

(i) Non-channeling directions in crystals. In their original application, filling-time
estimates were used in a mathematical theory describing the motion of high-energy
charged particles as they impinge upon crystals in various directions. In this setting,
direction vectors in a set like D1

3(τ, γ, N ) correspond to so-called non-channeling
motions,where a specializedNekhoroshev theory is used to show that particles undergo
rectilinear motion until they experience close encounters with crystal nuclei. The
filling-time estimates give an upper bound on the time (and depth) of close encounter,
with ramifications in the physics of ion implantation in crystals. The use of truncated
Diophantine conditions is key here. For details, see [9] or [11].

(ii) Arnold diffusion. In the mid 1960s, V.I. Arnold described a mechanism by
which a slow, large-scale instability may occur in nearly integrable Hamiltonian sys-
tems with more than two degrees of freedom, even when systems are arbitrarily close
to integrable (i.e., even when KAM and Nekhoroshev theorems apply). This discovery
spawned a large and continuing literature exploring various features of this instabil-
ity, now loosely called Arnold diffusion. Arnold’s original mechanism uses so-called
“transition chains,” which include tori supporting Diophantine linear flow. Unstable
orbits stay very near these tori for time intervals determined by filling-time estimates,
allowing the (average) speed of instability to be measured. This was first done in the
previously cited article [7] by Chierchia and Gallavotti. Other researchers, such as J.-
P. Marco [16] and J. Cresson [8], built upon these results with refined techniques and
better filling-time estimates. By contrast, the treatment of Arnold diffusion by Berti,
Biasco, and Bolle [1] avoids the use of transition chains, but uses the best filling-time
estimates in a related way to get optimal diffusion times in a particular setting.

(iii) Kinetic theory of theperiodicLorentz gas. This application studies the behavior
of a gas of non-interacting point particles moving rectilinearly in an array of obstacles
distributed periodically in space (here “space” meansRn with n ≥ 2). Interest focuses
on the behavior of the gas in the so-called macroscopic limit, as the spacing of the
array shrinks to zero while the size of obstacles shrinks at a different rate controlled by
an exponent γ (distinct from γ used in our Diophantine conditions). The macroscopic
limit depends in turn on the mean free path (hence on the distribution of free path
lengths) of particles in the array. Filling-time estimates may be used to measure the
free path lengths for directions in D1

n(τ, γ ), leading ultimately to the existence of a
critical exponent γc = n

n−1 dividing gas behavior into three regimes: hydrodynamic
behavior for 1 ≤ γ < γc; purely ballistic behavior for γ > γc; and, most interestingly,
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behavior possibly governed by a kinetic equation in the so-called Boltzmann-Grad
limit γ = γc. This project was begun in [12], continued in [4], and has led more
recently to a surprising sort of kinetic behavior in the Boltzmann-Grad limit. We
observe that this application of filling-time estimates is not directly connected to
nearly integrable Hamiltonian systems.

(iv) Weak KAM theory. This broad and evolving subject lies in the intersection of
nonlinear PDE and dynamical systems, using viscosity solutions of Hamilton-Jacobi
equations to findAubry-Mather sets in Hamiltonian systems. (Viscosity solutions are a
special type of weak solution arising in nonlinear PDE. Aubry-Mather sets are certain
invariant sets of Hamiltonian systems; they include the invariant tori of KAM theory,
but also other sets present under weaker conditions.) Certain Aubry-Mather sets are
obtained at points where viscosity solutions have a particular regularity (e.g., Lipschitz
continuity or differentiability). This regularity is shown, in part, by the use of filling-
time estimates. A procedure of this sort was first carried out by D.A. Gomes in [13];
related techniques have since been used by K. Wang and J. Yan [19], by K. Soga [18],
and by H. Mitake and K. Soga [17]. This is an area that might benefit from the use
of truncated Diophantine conditions, as it is connected with specialized numerical
methods.

6 Proofs

Wefirst state and prove the following proposition, which is a specially adapted version
of Proposition 2.3 from [3] and is the most novel part of the present paper. We then
essentially follow Bounemoura [2] in using the proposition to prove Theorem 1.

Proposition 1 For integer dimension n ≥ 2, choose Diophantine parameters τ >

n − 1, γ ∈ (0, 1) such that D1
n(τ, γ ) is nonempty, and assume N > 1 + n2n!. Let

α ∈ D1
n(τ, γ, N ). Then there exist ω1, . . . , ωn ∈ R

n and x1, . . . , xn ∈ R such that,
for j ∈ {1, . . . , n}, we have
(i)

√
3

2
< x j ≤ nn! N τ

γ
,

(ii) ‖α − ω j‖ ≤ nn!
x j (N − 1)

, and

(iii) {x1ω1, . . . , xnωn} is a Z-basis for Zn.

In the proof below, we use basic definitions and results from the geometry of num-
bers. For the reader’s convenience, we summarize the needed material in an appendix
below. In what follows, we refer by [A(R)] to items labeled A(R) in the appendix, where
R is a small Roman numeral.

Because Proposition 1 is at the heart of our main result, before beginning the proof,
we try to give some insight here into how it works. The proof of Theorem 1 uses
the special Z-basis {x1ω1, . . . , xnωn} of Zn from assertion (iii) of Proposition 1. This
basis is separated into multipliers x1, . . . , xn and vectors ω1, . . . , ωn , which provides
enough flexibility to show two things: assertion (i) of Proposition 1, controlling the
size of the multipliers as they are used to estimate the filling time, and assertion (ii)
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ensuring that basis vectors x jω j lie close to the line spanned by α, which is used
to show that filling occurs. To achieve this, we first construct a long, slender, solid
cylinder C with central axis span{α} so that the truncated Diophantine conditions may
be used to check that the reciprocal body C∗ (see [A(i),(iv)]) contains no element of
Z
n\{0}. Then C, C∗ may be used in the Main Duality Result of Successive Minima

(cf. [A(v)]) to show that nn! C contains the specially adapted Z-basis for Zn satisfying
the required assertions.

Proof of Proposition 1 Let H = (

span{α})⊥, and consider C, C∗ ⊂ R
n defined by

C = {xα + y
∣
∣ x ∈ R, y ∈ H , |x | ≤ N τ /γ, ‖y‖ ≤ 1/(N − 1)} and

C∗ = {xα + y
∣
∣ x ∈ R, y ∈ H , |x | ≤ γ /N τ , ‖y‖ ≤ N − 1}.

It is a simple matter to verify that C, C∗ are mutually reciprocal CCSBs (com-
pact convex bodies which are symmetric around the origin), as defined below in the
appendix [A(i),(iv)].

We note that if k ∈ Z
n ∩C∗ then ‖k‖ < N , since ‖k‖ = ‖xα+ y‖ ≤ |x |‖α‖+‖y‖,

with |x | ≤ γ /N τ < 1, ‖α‖ = 1, and ‖y‖ ≤ N − 1. Now assume 0 �= k ∈ Z
n ∩ C∗.

Then combining ‖k‖ < N with α ∈ Dn(τ, γ, N ) shows that |x | = |k ·α| ≥ γ ‖k‖−τ >

γ/N τ , which contradicts the definition of C∗. ThereforeZn ∩C∗ = {0}; in other words
λ1(C∗,Zn) > 1 by definition of the first successive minimum [A(ii)].

The main duality result of successive minima [A(v)] reads 1 ≤ λk(C∗,Zn) λn+1−k

(C,Zn) ≤ n! for k ∈ {1, . . . , n}. Setting k = 1 and using λ1(C∗,Zn) > 1 yields
λn(C,Zn) < n!, which implies [A(i),(iii)] that there is a Z-basis {ω1, . . . , ωn} of Zn

such that for each j ∈ {1, . . . , n}, ω j ∈ nn! C. In other words, ω j = x jα + y j with
x j ∈ R, y j ∈ H , |x j | ≤ nn!N τ /γ , and ‖y j‖ ≤ nn!/(N − 1).

Since y j ∈ H = (

span{α})⊥, we have ‖ω j‖2 = x2j + ‖y j‖2, thus x2j = ‖ω j‖2 −
‖y j‖2 ≥ 1 − (

nn!/(N − 1)
)2

> 3/4 since we assume n ≥ 2 and N > 1 + n2n!.
Therefore |x j | >

√
3/2, and changing ω j to −ω j if necessary, we obtain x j >

√
3/2.

Together with |x j | ≤ nn!N τ /γ , this establishes (i).
Now setω j = ω j/x j = α+ y j/x j , so that ‖α−ω j‖ = ‖y j/x j‖ ≤ nn!/x j (N−1),

which verifies (ii). Finally, we see that {x1ω1, . . . , xnωn} = {ω1, . . . , ωn} is the Z-
basis for Zn required in (iii). ��

Proof of Theorem 1 Let θ ∈ T
n be arbitrary. We will prove the theorem by producing

a time T < (1 + n2n!)τ+1/(γ δτ ) such that the endpoint Tα of the orbit segment
{αt (0), 0 ≤ t ≤ T } lies within distance δ of θ . We use Proposition 1 with N = N∗ =
(1 + n2n!)/δ.

By Part (iii) of Proposition 1 (and taking into account modular arithmetic on T
n),

there exists a unique (t1, . . . , tn) ∈ [0, 1)n such that θ = t1x1ω1 + · · · + tnxnωn

modZn . Set T = t1x1 + · · · + tnxn . Then by Part (i) of Proposition 1, we have 0 ≤
T = t1x1 + · · · + tnxn ≤ x1 + · · · + xn ≤ n2n!(N∗)τ /γ = n2n!(1+ n2n!)τ /(γ δτ ) <

(1 + n2n!)τ+1/(γ δτ ), as required. Next, we estimate the distance between Tα and θ

as ‖Tα−θ‖ = ‖∑n
j=1 t j x j (α−ω j )‖ ≤ ∑n

j=1 nn!/(N∗ −1) = n2n!/(N∗ −1) < δ,

where we use Part (ii) of Proposition 1 in the first inequality, and N∗ = (1+n2n!)/δ >

1 + n2n!/δ in the last inequality. ��
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Finally, we say a few words about our proof and its relation to other proofs, especially
the proof by Berti, Biasco, and Bolle. Proofs of the earliest filling-time results made
use of Fourier seriesmethods (cf. Results (i), (ii), (iv) in Sect. 5.2 above). Yet even then,
the short proof of optimal estimates using continued fractions in the special case n = 2
(Result (iii), Sect. 5.2) hinted that simpler proofs and better results would come from
number-theoretic methods. Indeed, though continued fractions don’t fully generalize
to higher dimensions, a hybrid number-theoretic approach was found by Berti et al. in
[1].Wewould characterize their approach as a very clever use of geometry-of-numbers
methods (without directly using any of the major theorems of that subject) combined
with an induction proof on the dimension. By contrast, our approach makes essential
use of successive minima in geometry of numbers, especially the Main Duality Result
of Successive Minima (cf. A(v) in the appendix below). Using this theorem not only
gives a short proof, but we also believe it shows filling-time estimates to be a natural
part of the geometry of numbers.
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Appendix. Geometry of Numbers

The geometry of numbers is a branch of number theory begun in the late 19th century
by Hermann Minkowski. It has by now grown substantially into a vigorous subject
in its own right, as the reader may verify by consulting [6, 14] or other texts. In this
appendix, we provide only the minimummaterial needed in the proof of Proposition 1,
and we refer to the texts just cited for proofs and further details.

A(i). Some notation and terminology.
In the geometry of numbers, it is customary to refer to a connected subset of Rn with
nonempty interior as a “body.” For simplicity, here we restrict attention to bodies that
are compact, convex, and symmetric around the origin.We use the abbreviation CCSB
to denote such a body.

For C ⊂ R
n and λ ≥ 0, we define λ C ⊂ R

n by λ C = {λx | x ∈ C}, and we
sometimes say that λ C is the dilation of C by λ, or simply that λ C is dilated.

We say that the set {ω1, . . . , ωn} ⊂ Z
n is aZ-basis forZn if it is linearly independent

and if, given any k ∈ Z
n , there arem1, . . . ,mn ∈ Z such that k = m1ω1+· · ·+mnωn .

A(ii). The n successive minima.
Given a CCSB C ⊂ R

n , for j ∈ {1, . . . , n} we define the n successive minima of C
with respect to Zn by λ j (C,Zn) = inf{λ > 0 | dim span (λ C ∩ Z

n) ≥ j}.
This says that λ j is the smallest λ for which the dilated body λ C contains j linearly

independent vectors in Z
n . (The definition ordinarily applies when Z

n is replaced by
a more general lattice �, but we don’t use such � in this paper.)
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A(iii). Obtaining a Z-basis for Zn .
Given a CCSB C ⊂ R

n , by the definition of λn = λn(C,Zn), the body λn C contains a
set of n linearly independent elements of Zn . This set is not necessarily a Z-basis for
Z
n , as the n-dimensional lattice consisting of its integer combinations may be a proper

sublattice of Zn . However, by dilating further, we can capture a Z-basis: it follows
from the remark after the corollary to Theorem VII in Chapter VIII of [6] that the
dilated body nλn C contains a Z-basis for Zn .

A(iv). Reciprocal bodies.
Given a CCSB C ⊂ R

n , we define the corresponding reciprocal body C∗ ⊂ R
n by

C∗ = {y ∈ R
n | x · y ≤ 1 for all x ∈ C}. It is not difficult to show that C∗ is also a

CCSB, and that C is the reciprocal body corresponding to C∗. For this reason, we also
say that C and C∗ are mutually reciprocal, or form a mutually reciprocal pair. (Some
authors use the adjectives “polar” or “dual” in place of reciprocal, and in [14], the
authors use the compound adjective “polar reciprocal.”)

A(v). The main duality result of successive minima.
Given a pair C, C∗ ⊂ R

n of mutually reciprocal CCSBs, for k ∈ {1, . . . , n} we have
1 ≤ λk(C∗,Zn) λn+1−k(C,Zn) ≤ n!.

This is stated (with Z
n replaced by a general lattice � and its dual) as Theorem

VI of Chapter VIII, Sect. 5 in [6]. A similar theorem, but with upper bound (n!)2
replacing n!, is stated as Theorem 5 of Chapter 2, §14.2 in [14]; then in Part ii.6 of the
“Supplement to Chapter 2” in the same book, it is explained that the upper bound was
improved to n! by K. Mahler in 1939. In fact, there is an ongoing effort to improve the
theorem’s upper bound to an optimal value, which is conjectured to be Kn for some
universal constant K > 0. See the end of Sect. 5.2 above for the effect this would have
on the order constants in our Theorem 1.
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