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Abstract

We continue our investigation of E-operators, in particular their connection with
G-operators; these differential operators are fundamental in understanding the dio-
phantine properties of Siegel’s E and G-functions. We study in detail microsolutions
(in Kashiwara’s sense) of Fuchsian differential operators, and apply this to the con-
struction of basis of solutions at 0 and∞ of any E-operator from microsolutions of a
G-operator; this provides a constructive proof of a theorem of André. We also focus
on the arithmetic nature of connection constants and Stokes constants between differ-
ent bases of solutions of E-operators. For this, we introduce and study in details an
arithmetic (inverse) Laplace transform that enables one to get rid of transcendental
numbers inherent to André’s original approach. As an application, we define a set of
special values of arithmetic Gevrey series, and discuss its conjectural relation with
the ring of exponential periods of Kontsevich-Zagier.

1 Introduction

In this paper, we continue our investigation of the arithmetic properties of certain differ-
ential operators related to E and G-functions. Throughout the paper we fix a complex
embedding of Q and let N = {0, 1, 2, . . .}. To begin with, let us recall the following defini-
tion, essentially due to Siegel.

Definition 1. A G-function G is a formal power series G(z) =
∑∞

n=0 anz
n such that the

coefficients an are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of an is ≤ Cn+1 for any n.

(ii) there exists a sequence of rational integers dn, with |dn| ≤ Cn+1, such that dnam is
an algebraic integer for all m ≤ n.

(iii) G(z) satisfies a homogeneous linear differential equation with coefficients in Q(z).
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An E-function is defined similarly, as E(z) =
∑∞

n=0
an
n!
zn with the same assumptions

(i), (ii), (iii) (with E(z) instead of G(z) there).

A minimal differential equation satisfied by a given G-function is called a G-operator.
Any E-function is solution of an E-operator (not necessarily minimal) obtained as the
Fourier-Laplace transform of a G-operator. In [4], André set the foundations of the theory
of E-operators; he proved in particular that 0 and ∞ are the only possible singularities,
with rational exponents, and that 0 is a regular one. He also constructed two special
bases of solutions of any E-operator at 0 and ∞ respectively, and obtained a fundamental
duality between these bases. A basic approach for constructing such bases is to lift the
basis of solutions of the underlying G-operator through the Fourier-Laplace transform.
However, it is well-known that there may not be enough such solutions to build a basis of
the E-operator. A crucial ingredient in André’s construction is the notion of microsolutions
(of the G-operator here) in the sense of Kashiwara [12], which enables one to lift enough
“solutions” of the G-operator.

Our first theorem below is aimed at a better understanding of microsolutions of Fuchsian
operators, of which G-operators are a special case. We shall explain in detail after the
statement of the theorem the implications to André’s E-operators theory. For any ρ ∈ C,
let Oρ denote the ring of germs of functions holomorphic at ρ. Given θ ∈ R, let Ôρ denote
the inductive limit as ε→ 0 of the space of functions holomorphic on

{z ∈ C, 0 < |z − ρ| < ε, −θ − π < arg(z − ρ) < −θ + π}. (1.1)

Given also a differential operator D ∈ C[z, d
dz

], we denote by Σ the set of all finite
singularities of D, and by Ωθ the cut plane obtained from C by removing the union of all
closed half-lines of direction −θ + π starting at elements of Σ.

Theorem 1. Let D ∈ C[z, d
dz

] and θ ∈ R be such that arg(ρ − ρ′) 6≡ −θ mod π whenever
ρ, ρ′ ∈ Σ are distinct. Assume that ∞ is a regular singularity of D.

For any ρ ∈ Σ, let fρ ∈ Ôρ such that Dfρ ∈ Oρ. Then there exists a function f ,
holomorphic on the cut plane Ωθ, such that:

• Df is a polynomial.

• For any ρ ∈ Σ, we have f − fρ ∈ Oρ.

Moreover if f and f̃ have these properties then f − f̃ is a polynomial.

We refer to §1.4 of [19] for an analogous result. We shall prove Theorem 1 in §3, with
an explicit upper bound on the degree of Df . The interest of this result is twofold. On
the one hand, given ρ ∈ Σ any microsolution at ρ (see below) can be represented by a
fonction holomorphic on Ωθ and such that Df is a polynomial; this is of special interest to
us when D is a G-operator, because f can therefore be expressed in terms of G-functions
using the André-Chudnovski-Katz Theorem. On the other hand, microsolutions at all finite
singularities of D can be glued together to produce a global function f (as in [19]).
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Theorem 1 will be used in this paper only when D is Fuchsian, so that we did not try
to remove the assumption that ∞ is a regular singularity of D. The proof of Theorem 1 is
based on a linear bijective map κ (provided by analytic continuation) from

S∞ = {f holomorphic on Ωθ, Df ∈ C[z]}/C[z]

to ⊕ρ∈ΣSρ. Here

Sρ = {f ∈ Ôρ, Df ∈ Oρ}/Oρ
is the space of microsolutions of D at ρ as considered by Kashiwara [12]. When D is a
G-operator, we prove also that κ and κ−1 are represented (in algebraic bases) by matrices
of which all coefficients are values of G-functions at algebraic points.

We apply Theorem 1 more specifically to the following setting. Let F : C[z, d
dz

] →
C[x, d

dx
] denote the Fourier-Laplace transform of differential operators, i.e. the morphism

of C-algebras defined by F(z) = d
dx

and F( d
dz

) = −x. Let D be an E-operator, that is FD
for some G-operator D (see [4]). We denote by S0, resp. S∞, the space of local solutions
of D at the origin, resp. of formal solutions at infinity. We recall [4] that a Gevrey series
of order s ∈ Q of arithmetical type is a power series

∑∞
n=0 anz

n with an ∈ Q such that∑∞
n=0

an
n!s
zn is a G-function, except maybe that it doesn’t satisfy the holonomy assumption

(iii). Provided it is holonomic, with s = 0, resp. s = −1, resp. s = 1, such a series is (by
definition) a G-function, resp. an E-function, resp. an Э-function [4]. These series form a
differential algebra over Q denoted by Q{z}As . A finite sum∑

α∈S

∑
j∈T

zα(log(z))j
∑
k∈K

λα,j,khα,j,k(z)

with S ⊂ Q, T,K ⊂ N, λα,j,k ∈ C and hα,j,k(z) ∈ Q{z}As , is called in [4] a Nilsson-Gevrey
series of order s of arithmetical type. This differential algebra is denoted by NGA{z}s.
We denote by NGA{z}Qs the subset obtained by restricting to algebraic coefficients λα,j,k.

André proved [4] that S0 has a basis B0 in NGA{x}Q−1, i.e. consisting of Nilsson-Gevrey
series of order −1 of arithmetical type with algebraic coefficients λα,j,k. Denoting again
by Σ the set of finite singularities of D, he has proved also that S∞ has a basis B∞ in

⊕ρ∈Σe
ρxNGA{1/x}Q1 . We refer to Theorem 5 in §4.1 below for the precise statement of

André’s result, including duality relations between B0 and B∞.
In this paper we give a new proof of André’s result, in a more constructive way. André’s

proof is based on Laplace transform, which connects solutions of D to microsolutions of D
and enables him to apply fundamental results on G-functions. We revisit his approach in
several directions. First we factor the inverse Laplace transform as T ◦ R, where T is a
transcendental part (involving values of the Gamma function and its derivatives at rational
points), and R is a rational part (with only rational coefficients in suitable bases); R is
strongly related to Manjra-Remmal’s operator [18] but is not exactly the same. Moreover T
commutes with differential operators, whereasR behaves like the inverse Laplace transform
with respect to differential operators. We prove that R induces (for ρ ∈ Σ) an explicit
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linear isomorphism defined over Q between the space Sρ of microsolutions of D at ρ and the

space of solutions of D in eρxNGA{1/x}Q1 . Since microsolutions of D can be represented
in terms of G-functions (see the remark following Theorem 1 above), this provides an
effective construction of a basis B∞ of S∞ as in [4]. We obtain also, in the same effective
way, a basis B0 of S0. A major difference with André’s paper is the use of R, which is a
formal operator, instead of the Laplace transform itself and operational calculus to give it
a meaning when it is divergent. This enables us to get rid completely of Γ values, and to
work only with algebraic coefficients λα,j,k; we also obtain a new proof of the formal version
of Theorem 2.2 of [16]. Another important difference is that our study includes the case
of integer exponents of D, whereas André uses a trick to avoid it (see p. 734 of [4]).

Our point of view enables us to study from an arithmetic point of view the bijective
linear map Aθ : S0 → S∞ given by asymptotic expansion in a large sector bisected by θ;
here θ ∈ R is a fixed non-anti-Stokes direction, and throughout the paper a large sector
bisected by θ is a sector of the form θ − π

2
− ε < arg(x) < θ + π

2
+ ε with ε > 0. We refer

to [20] or [11] for the definition of asymptotic expansion; in other words, A−1
θ is Ramis’ 1-

summation in the direction θ (which coincides in this case with Borel-Laplace summation).
Let MAθ denote the matrix of Aθ in bases B0 and B∞ as above. The main result of [11]
asserts that MAθ has coefficients in the G-module S generated by all values at rational
points of Γ and its derivatives, where G is the ring of values at algebraic points of analytic
continuations of G-functions (see [10]). We recall that S is also a ring. We shall prove in
§4.2 that MAθ has a non-zero algebraic determinant, so that M−1

Aθ has also coefficients in
S. This enables us to obtain the following result:

Theorem 2. Let f(1/x) be an Э-function, and θ ∈ R be a non-anti-Stokes direction. Then

there exist an integer A ≥ 1 and Fa ∈ NGA{x}Q1 , $a ∈ S (for 1 ≤ a ≤ A) such that

A−1
θ f(1/x) =

A∑
a=1

$aFa(x).

With respect to [4], the new feature in this result is that $a ∈ S. To state our next
result, we recall that a Stokes matrix (relative to an E-operator D) is the matrix of change
of coordinates between A−1

θ B∞ and A−1
θ′ B∞, where θ and θ′ are non-anti-Stokes directions

and B∞ is a basis of S∞ as above. In general θ and θ′ are assumed to be one anti-Stokes
direction apart from each other, but we shall not need this assumption here.

Corollary 1. Any Stokes matrix (relative to an E-operator D) has coefficients in S and
a non-zero algebraic determinant.

Finally, we define a very large class of values of special functions.

Definition 2. We denote by V the S-module generated by E.

We recall [11] that E is the set of values at algebraic points of E-functions; it is a ring.
Therefore V is also a ring; it consists in all finite sums of products G(1)E(1)Γ(r)γj where
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G is the analytic continuation of a G-function, E is an E-function, r ∈ Q\Z≤0, j ∈ N, and
γ is Euler’s constant (see [10] and [11]). For instance V contains all values at algebraic
points of Airy’s oscillating integral, and that of Bessel’s functions Jα(z) with α ∈ Q.
Actually it contains all values at algebraic points of Nilsson-Gevrey series of any order of
arithmetical type with algebraic coefficients λα,j,k (up to 1-summation in any direction in
the case of divergent series), and especially values of all generalized hypergeometric series
with rational parameters.

We shall deduce from the duality between E- and Э-functions a dual expression of
V. Let us denote by Э the set of all complex numbers fθ(ξ) where ξ ∈ Q?

and f is an
Э-function; here θ = arg(ξ) and fθ = A−1

θ f is Ramis’ 1-summation of f in the direction θ if θ
is not anti-Stokes, and fθ = A−1

θ+εf for any small ε > 0 if θ is anti-Stokes (this is independent
from the choice of such an ε). André has conjectured [5] that the Siegel-Shidlovskii theorem
on values of E-functions has an analogue for Э-functions. We shall prove in §4.3 that Э is
a ring which contains algebraic numbers, Gompertz’ s constant

∫ +∞
0

e−t

1+t
dt, and

√
πAi(z)

for any z ∈ Q where Ai(z) is Airy’s oscillating integral. Using Theorem 2 and the results
of [11] we obtain the following dual characterization of V.

Theorem 3. The S-module generated by the numbers eρχ, with ρ ∈ Q and χ ∈ Э, is equal
to V.

We believe that V is related to the ring Pe of exponential periods, defined in the last sec-
tion of [13]. An exponential period is an absolutely convergent integral

∫
Ω
f(x) exp(g(x))dx

where n ≥ 1, x = (x1, . . . , xn), Ω ⊂ Rn is a semi-algebraic domain (i.e., it is defined
by polynomial inequalities and/or equalities with algebraic coefficients), and f , g are al-
gebraic functions. Restricting to g = 0 yields the ring P of periods, in the sense of
Kontsevich-Zagier [13]. In view of the Bombieri-Dwork conjecture, it is natural to ask
whether G = P [1/π] (see §2.2 of [10]). In the present setting, the corresponding question
would be whether V = Pe[1/π] (see §4.3).

The structure of this paper is as follows. In §2 we factor the (inverse) Laplace transform
as announced above: we construct the operators T andR, and study their properties. This
part of the paper does not involve any specific class of differential operators; it would be
interesting to find other situations where it could be used. In §3 we study the microsolutions
at all finite singularities of a differential operator D ∈ C[z, d

dz
] of which ∞ is a regular

singularity, and prove Theorem 1. When D is Fuchsian, we also explain how the analytic

continuation map κ : S∞
∼
// ⊕ρ∈ΣSρ corresponds, through Laplace transform, to a duality

between the solutions of FD at 0 and at ∞, given by asymptotic expansion. Using either
κ, or R and T , we get two new constructions of André’s extension of Laplace transform
(based on operational calculus). We relate them and sum up our results in a commutative
diagram (see §3.4). At last we apply our results in §4 to the case where D is a G-operator.
This enables us to obtain a new constructive proof of André’s duality theorem, and to
prove the arithmetic results announced in this introduction. At last, we work out in §4.4
a simple example related to Gompertz’ constant, to illustrate the whole situation.
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2 A rational version of the inverse Laplace transform

In this section we define formal operators Rρ for ρ ∈ C ∪ {∞} (see §2.2), which behave
like the inverse Laplace transform with respect to differential operators and involve only
rational coefficients. Their properties are stated in §2.3, and proved in §2.4. Then we define
in §2.5 formal operators T0 and T∞ which involve values of derivatives of Γ and allow us
to factor the Laplace transform and its inverse (see Propositions 5, 6, and 7) and to write
down explicitly the implicit formulas obtained by André using operational calculus (see
Remark 2 at the end of §2.5).

2.1 Notation

Until the end of §2.4, we consider formal variables z and x.
Let ρ ∈ C. We denote by Eρ the set of all (formal) functions that can be written as

f(z − ρ) =
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n(z − ρ)n+α(log(z − ρ))j (2.1)

where S ⊂ C and T ⊂ N are finite subsets, and cα,j,n ∈ C for any α, j, n. If we assume
for a given f that S and T have the least possible cardinality (so that α− α′ 6∈ Z for any
distinct elements α, α′ ∈ S) and that for any α ∈ S there exists j ∈ T such that cα,j,0 6= 0,
then the expansion (2.1) is uniquely determined by f . We say that f has coefficients and
exponents in a subfield K of C if all cα,j,n and all α involved in this expansion belong to K.

Of course f(z − ρ) ∈ Eρ if, and only if, f(z) ∈ E0.
If all power series

∑∞
n=0 cα,j,n(z − ρ)n have positive radii of convergence, the function

(2.1) is said to belong to the Nilsson class; we denote by Nρ this subset of Eρ. We have
NGA{z − ρ}s ⊂ Eρ for any s ∈ Q, and NGA{z − ρ}s ⊂ Nρ if s ≤ 0.

In the same way, we also let E∞ denote the set of all formal functions

f(x) =
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,nx
−n−α−1(log(1/x))j, (2.2)

with the same remarks; N∞ is the corresponding Nilsson class. The variables x and z will
play similar roles until §2.4; however, from §2.5 on, x will often denote a variable around
∞ and z a variable around a finite point ρ.
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2.2 Definition of the operators Rρ

To begin with, let us define a rational inverse Laplace transform Rρ as follows, for ρ ∈
C ∪ {∞}. For any α ∈ C and any j ∈ N we first define

R
(
zα(log(z))j

)
=

j∑
k=0

(
j

k

)
dj−k

dyj−k

(Γ(1− {y})
Γ(−y)

)
|y=α

x−α−1(log(1/x))k. (2.3)

Here we let {u + iv} = Frac(u) + iv for u, v ∈ R, where Frac(u) ∈ [0, 1) is the fractional

part of u; moreover the (j − k)-th derivative of Γ(1−{y})
Γ(−y)

is computed at the right of α (i.e.,

as y → α, Re y > Reα) if Reα ∈ Z (otherwise it is simply computed at α).
For any ρ ∈ C we define a linear map Rρ : Eρ → eρxE∞ by letting

Rρ

(∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n(z − ρ)n+α(log(z − ρ))j
)

=
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,ne
ρxR

(
zn+α(log(z))j

)
with the same notation as in Eq. (2.1). These linear maps Rρ, depending on ρ ∈ C, are
related to one another since

Rρ(f(z − ρ)) = eρxR0(f(z)) (2.4)

for any f(z) ∈ E0. Using Leibniz’ rule they can be written in a more compact way, upon
noticing that

Rρ

(
(z − ρ)α(log(z − ρ))j

)
= eρx

∂j

∂yj

(Γ(1− {y})
Γ(−y)

x−y−1
)
|y=α

. (2.5)

We also define a linear map R∞ : E∞ → E0 by

R∞
(∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,nz
−n−α−1(log(1/z))j

)
=
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n(−1)jR
(
z−n−α−1(log(z))j

)
.

Here we let (formally) log(1/x) = − log(x) ∈ E0 in (2.3); with this convention R∞ and R0

coincide on zαC[log(z)] for any α ∈ C. However R∞ and R0 are defined on different sets,
namely E∞ and E0 respectively.

Remark 1. Very similar formulas appear in §5 of [18], where Manjra and Remmal define
a formal Laplace transform with properties analogous to Propositions 1 and 2 below.
However they restrict to α 6∈ Z, whereas the case of integer exponents is very important
in our approach, and their version of the Laplace transform depends on the choice of a
certain square matrix Λ.
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2.3 Statement of the Properties of Rρ

The following propositions will be proved in §2.4 below. We recall that F : C[z, d
dz

] →
C[x, d

dx
] is the Fourier-Laplace transform of differential operators, i.e. the morphism of

C-algebras defined by F(z) = d
dx

and F( d
dz

) = −x.

Proposition 1. For any ρ ∈ C ∪ {∞} and any D ∈ C[z, d
dz

] we have

Rρ ◦ D = (FD) ◦ Rρ.

In particular, for any f(z − ρ) ∈ Eρ we have

Rρ(z f(z − ρ)) =
d

dx
Rρ(f(z − ρ)) and Rρ

(df

dz
(z − ρ)

)
= −xRρ(f(z − ρ)),

where z − ρ should be understood as 1/z if ρ =∞.

These relations are satisfied by the usual inverse Laplace transform; they are the reason
why Rρ is a modified inverse Laplace transform. On the contrary, the following rationality
property holds for Rρ but not for the usual inverse Laplace transform, and it is crucial in
our approach.

Proposition 2. For any ρ ∈ C, if f(z − ρ) ∈ Eρ has coefficients and exponents in a
subfield K of C then e−ρxRρ(f(z − ρ)) ∈ E∞ has coefficients and exponents in the same
subfield.

In the same way, if f(1/z) ∈ E∞ has coefficients and exponents in K then so does
R∞(f(1/z)) ∈ E0.

Recall from §2.1 that an element of Eρ or E∞ is said to have coefficients and exponents
in K if it can be written as (2.1) or (2.2) with S ⊂ K and all coefficients cα,j,n in K.

In particular, if we restrict Rρ to the subspace of Eρ consisting of the functions (2.1)
with S ⊂ Q, then we obtain a linear map defined over the rationals; the analogous property
holds also for R∞.

It will be important for us thatRρ induces a bijective linear map Eρ/C[[z−ρ]]→ eρxE∞,
and also R∞ : E∞/C[z]→ E0. This is the meaning of the following proposition.

Proposition 3. Let ρ ∈ C. Then Rρ : Eρ → eρxE∞ is surjective, and its kernel is exactly
the space C[[z − ρ]] of formal power series

∑∞
n=0 cn(z − ρ)n.

On the other hand, R∞ : E∞ → E0 is also surjective, and its kernel is exactly the space
of polynomials C[z].

Finally, we shall use the fact that Rρ and R∞ map Nilsson-Gevrey series of order s ∈ Q
of arithmetical type with algebraic coefficients to Nilsson-Gevrey series of order s ± 1 of
arithmetical type with algebraic coefficients. The same property holds for the usual inverse
Laplace transform (see [4]), except for the algebraicity of coefficients; for this reason our
proof is more direct.
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Proposition 4. If f(z−ρ) ∈ NGA{z−ρ}Qs with ρ ∈ C and s ∈ Q, then e−ρxRρ(f(z−ρ)) ∈
NGA{1/x}Qs+1.

On the other hand, if f(1/z) ∈ NGA{1/z}Qs then R∞(f(1/z)) ∈ NGA{x}Qs−1.

2.4 Proof of these properties

In this section we prove Propositions 1, 2, 3, and 4. To begin with, recall that Pochham-
mer’s symbol is defined by (y)0 = 1 and (y)p = y(y + 1) . . . (y + p − 1) for p ≥ 1. Given
y ∈ C \ N we denote by n ∈ Z the integer part of its real part, so that {y} = y − n and

Γ(1− {y})
Γ(−y)

=
Γ(−y + n+ 1)

Γ(−y)
=


(−y)n+1 if n ≥ 0

1
(−y+n+1)−n−1

if n ≤ −1
(2.6)

is a rational function of y, with rational coefficients (as long as n is fixed). To differentiate
this function of y and then take y = α (or y → α, Re y > Reα, if Reα ∈ Z), we may
assume that Re y and Reα have the same integer part. Then the values of all derivatives
of this rational function belong to Q(α): all coefficients in Eq. (2.3) belong to Q(α), and
Proposition 2 follows immediately.

To prove Proposition 1 for ρ ∈ C, it enough to check that for any f(z − ρ) ∈ Eρ we
have

d

dx
Rρ(f(z − ρ)) = Rρ(z f(z − ρ)) and − xRρ(f(z − ρ)) = Rρ

(df

dz
(z − ρ)

)
.

Let us begin with the case ρ = 0. We may assume f(z) = zα(log(z))j, and Eq. (2.5) yields

d

dx
R0(zα(log(z))j) =

∂j

∂yj

( ∂
∂x

(Γ(1− {y})
Γ(−y)

x−y−1
))
|y=α

=
∂j

∂yj

(Γ(1− {y})
Γ(−y − 1)

x−y−2
)
|y=α

= R0(zα+1(log(z))j)

and

−xR0(zα(log(z))j) = −x ∂
j

∂yj

(Γ(1− {y})
Γ(−y + 1)

x−y · −y
x

)
|y=α

= α
∂j

∂yj

(Γ(1− {y})
Γ(−y + 1)

x−y
)
|y=α

+ j
∂j−1

∂yj−1

(Γ(1− {y})
Γ(−y + 1)

x−y
)
|y=α

= αR0(zα−1(log(z))j) + jR0(zα−1(log(z))j−1)

= R0

( d

dz

(
zα(log(z))j

))
.
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These computations prove also Proposition 1 for R∞. To deduce the same property for
Rρ with any ρ ∈ C, we use Eq. (2.4):

d

dx

(
Rρ(f(z − ρ))

)
= eρx

( d

dx
R0(f(z)) + ρR0(f(z))

)
= eρx

(
R0(zf(z) + ρf(z))

)
= Rρ(zf(z − ρ)) since z = (z − ρ) + ρ

and

Rρ

( d

dz

(
f(z − ρ)

))
= eρxR0

(df

dz

)
= −xeρxR0(f(z)) = −xRρ(f(z − ρ)).

Let us prove Proposition 3 now. Let α ∈ C \ N and j ∈ N. Then Eq. (2.3) asserts
that R(zα(log(z))j) is equal to x−α−1 times a polynomial in log(1/x) of degree at most j.

Moreover the coefficient of degree j of this polynomial is Γ(1−{α})
Γ(−α)

6= 0 since α 6∈ N, so that

Rρ induces a bijective degree-preserving map (z−ρ)αC[log(z−ρ)]→ eρxx−α−1C[log(1/x)].
Similarly, R∞ induces a bijective degree-preserving map zαC[log(1/z)]→ x−α−1C[log(x)].

Now let us move to non-negative integer values of α. For α ∈ N, the function y 7→
Γ(1−{y})

(y−α)Γ(−y)
is holomorphic at the right of α and does not vanish at y = α, and Leibniz’

formula shows that

dj−k

dyj−k

(Γ(1− {y})
Γ(−y)

)
|y=α

= (j − k)
dj−k−1

dyj−k−1

( Γ(1− {y})
(y − α)Γ(−y)

)
|y=α

for any 0 ≤ k ≤ j. Therefore this quantity is zero for k = j and non-zero for k = j − 1,
and Eq. (2.3) yields for α ∈ N:

Rρ

(
(z−ρ)α(log(z−ρ))j

)
= jeρx

j−1∑
k=0

(
j − 1

k

)
dj−k−1

dyj−k−1

( Γ(1− {y})
(y − α)Γ(−y)

)
|y=α

x−α−1(log(1/x))k.

This shows that Rρ induces in this case a map (z−ρ)αC[log(z−ρ)]→ eρxx−α−1C[log(1/x)]
which decreases the degree by 1; it vanishes exactly on constant multiples of (z − ρ)α. We
prove in a similar way that R∞ induces a map zαC[log(1/z)] → x−α−1C[log(x)] with the
same properties. This concludes the proof of Proposition 3.

Let us prove Proposition 4 now. By linearity we may assume that f(z − ρ) = (z −
ρ)α(log(z − ρ))jh(z − ρ) with α ∈ Q, j ∈ N, and h ∈ Q{z − ρ}As . Then

Rρ(f(z − ρ)) = j!eρx
j∑

k=0

(yα,j−k ? h)(1/x)x−α−1 (log(1/x))k

k!
(2.7)

where ? is Hadamard coefficientwise product of formal series in z, and

yα,i(z) =
∞∑
n=0

1

i!

di

dyi

(Γ(1− {y})
Γ(−y − n)

)
|y=α

zn.
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Now Eq. (2.6) yields
Γ(1− {y})
Γ(−y − n)

= (−1)[y]+n+1({y})[y]+n+1

for any n ≥ −[y] so that yα,0(z) ∈ Q{z}A1 , because (−1)[α]+1
2F0

(
1, {α}

-

∣∣∣∣− z) ∈ Q{z}A1
since α ∈ Q (see [2], Chapter I, §4.4). It is not difficult to prove more generally that
yα,i(z) ∈ Q{z}A1 for any α ∈ Q and any i ∈ N. The first part of Proposition 4 follows
easily, using Eq. (2.7).

To prove the second part, we proceed in the same way. Letting

ỹα,i(z) =
∞∑
n=0

1

i!

di

dyi

(Γ(1− {y})
Γ(−y + n)

)
|y=α

z−n

we have for α ∈ Q, j ∈ N and h(z) ∈ Q{1/z}As :

R∞(z−α−1(log(1/z))jh(z)) = (−1)jj!

j∑
k=0

(−1)k
(
ỹ−α−1,j−k ? h

)
(x)xα

(log x)k

k!

where ? is Hadamard’s product of formal series in 1/z, so that (ỹ−α−1,j−k ?h)(x) is a power
series in x. Now ỹα,i(z) ∈ Q{1/z}A−1 for any α ∈ Q and any i ∈ N, and Proposition 4
follows.

2.5 Factorization of the inverse Laplace transform

In this section we define differential operators T0 and T∞, the coefficients of which involve
values of derivatives of the Γ function. We prove that T∞Rρf and T0R∞f are respectively
the asymptotic expansion at infinity and the generalized Taylor expansion at 0 of inverse
Laplace transforms of f (where integration is performed along suitable paths). The Laplace
transform itself is given by (T∞ ◦ Rρ)

−1 or (T0 ◦ R∞)−1; this enables one to make André’s
proof of his duality theorem more explicit (see the remark at the end of this section).

For simplicity we let Γ̂(s) = 1/Γ(s). As in §2.2 we let {u + iv} = Frac(u) + iv for
u, v ∈ R, where Frac(u) ∈ [0, 1) is the fractional part of u. For any ρ, α ∈ C and any ν ∈ N
we let

T
(
eρxx−α−1(log(1/x))ν

)
= eρxx−α−1

ν∑
i=0

(−1)ν−i
(
ν

i

)
Γ̂(ν−i)(1− {α})(log(1/x))i

where the right handside can also be written as

eρx
( d

dy

)ν(
Γ̂(1− {y})x−y−1

)
|y=α

.
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As in the rest of this paper, all derivatives involving {y} are computed at the right of α.
We extend T to a linear map T∞ : eρxE∞ → eρxE∞ by letting

T∞
(∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,ne
ρxx−n−α−1(log(1/x))j

)
=
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,nT
(
eρxx−n−α−1(log(1/x))j

)
and also to a linear map T0 : E0 → E0 in the same way:

T0

(∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,nx
n+α(log(x))j

)
=
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n(−1)jT
(
xn+α(log(1/x))j

)
.

In other words, as in §2.2 we agree that, formally, log(x) = − log(1/x).
It is not difficult to prove that T0 ◦ d

dx
= d

dx
◦ T0 and T0 ◦ x = x ◦ T0 (where x denotes

multiplication with x), so that T0 commutes with any D ∈ C[x, d
dx

]; the same property
holds for T∞.

Before we can state the relation with the inverse Laplace transform, we have to define
the paths of integration (see [9, pp. 183–192] or [11]). Given θ ∈ R and ρ ∈ C, we consider
the cut plane defined by z 6= ρ and −θ − π < arg(z − ρ) < −θ + π. In this cut plane
we denote by Γρ the following path: a straight line from ρ + ei(−θ−π)∞ to ρ (on one bank
of the cut), a circle of radius essentially zero around ρ (with arg(z − ρ) increasing from
−θ − π to −θ + π), and finally a straight line from ρ to ρ+ ei(−θ+π)∞ (on the other bank
of the cut). In the same cut plane, for R > |ρ| we denote by Γ′R the circle minus one point
defined by |z| = R and −θ − π < arg(z − ρ) < −θ + π, positively oriented.

We can now state the relation with the inverse Laplace transform. Given θ ∈ R, we see
any f ∈ Nρ as a function holomorphic on

{z ∈ C, |z − ρ| < ε, −θ − π < arg(z − ρ) < −θ + π} (2.8)

for some ε > 0 by letting log(z − ρ) = log |z − ρ|+ i arg(z − ρ).

Proposition 5. Let ρ ∈ C, θ ∈ R, and f ∈ Nρ. Assume that f , seen as a function on
(2.8), can be analytically continued (for some ε > 0) to both

{z ∈ C, −θ − π < arg(z − ρ) < −θ − π + ε}

and
{z ∈ C, −θ + π − ε < arg(z − ρ) < −θ + π},

with sub-exponential growth on these sectors. Then T∞Rρf is the asymptotic expansion of
1

2iπ

∫
Γρ
f(z)exzdz as |x| → ∞ in a large sector bisected by θ.

By sub-exponential growth on these sectors U , we mean that for any ε0 > 0 there exists
cε0 > 0 such that, for any z ∈ U with |z| ≥ |ρ|+ 1, we have |f(z)| ≤ cε0 exp(ε0|z|).

On the other hand, given θ ∈ R any f ∈ N∞ yields a function holomorphic on

{z ∈ C, |z| > R0, −θ − π < arg(z) < −θ + π} (2.9)

provided R0 is sufficiently large, by letting log z = log |z|+ i arg(z).
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Proposition 6. Let θ ∈ R and f ∈ N∞. Then in the expansion (2.1) of T0R∞f ∈ E0, the
function

∑∞
n=0 cα,j,nx

n is entire for any α ∈ S and any j ∈ T . Moreover for x 6= 0 with
θ − π

2
< arg(x) < θ + π

2
we have

(T0R∞f)(x) = lim
R→+∞

1

2iπ

∫
Γ′R

f(z)exzdz

where f is seen in the right hand side as a function holomorphic on (2.9).

Finally, we have the following result related to the usual Laplace transform. It is in
disguise nothing but a form of the classical Watson’s lemma.

Proposition 7. Let θ ∈ R, and ε > 0. Let U denote the sector defined by x 6= 0 and
θ−ε < arg(x) < θ+ε. Let g be a function holomorphic on U such that |g(x)| ≤ A exp(B|x|)
for any x ∈ U , where A,B > 0 are fixed. Assume also that g has a generalized Taylor
expansion at 0 in the Nilsson class N0, and that g is locally integrable at 0.

Then the Laplace transform
∫ eiθ∞

0
g(x)e−zxdx is defined and holomorphic for z in a large

sector bisected by −θ with |z| sufficiently large, and its asymptotic expansion as |z| → ∞
in this sector is R−1

∞ T −1
0 g (where g is seen in N0).

In this statement we recall that R∞ : E∞ → E0 is not bijective: its kernel is C[z]
(see Proposition 3). However it induces by restriction a bijective linear map E ′∞ → E ′0,
where E ′∞ (resp. E ′0) is the space of formal functions (2.2) (resp. (2.1) with ρ = 0) with
S ⊂ {α ∈ C, Reα > −1}.

We omit the proof of Proposition 7, which is given in [7, p. 121, (4.4.17)] in another
form: to make the connection, it is enough to observe thatR−1

∞ ◦T −1
0 maps x−α−1(log(1/x))i

to ( d

dy

)i[
Γ(−y)zy

]
|y=α

=
i∑

k=0

(
i

k

)
(−1)i−kΓ(i−k)(−α)zα(log(z))k (2.10)

provided α 6∈ N.
Let us now prove Propositions 5 and 6. Proposition 5 is a generalization of the claim

made in the proof of Theorem 6 of [11] and can be proved along the same lines; the only
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new ingredient is the following computation, valid for α ∈ C and j ∈ N:

T∞Rρ

(
(z − ρ)α(log(z − ρ))j

)
= eρx

j∑
k=0

(
j

k

)(Γ(1− {y})
Γ(−y)

)(j−k)

(α)T∞
(
x−α−1(log(1/x))k

)
= eρxx−α−1

j∑
k=0

(
j

k

)(Γ(1− {y})
Γ(−y)

)(j−k)

(α)
k∑
i=0

(−1)k−i
(
k

i

)
Γ̂(k−i)(1− {α})(log(1/x))i

= eρxx−α−1

j∑
i=0

(
j

i

)
(log(1/x))i

j−i∑
`=0

(
j − i
`

)(Γ(1− {y})
Γ(−y)

)(j−i−`)
(α)(Γ̂(1− {y}))(`)(α)

= eρxx−α−1

j∑
i=0

(
j

i

)
(log(1/x))i(Γ̂(−y))(j−i)(α)

= eρx
( d

dy

)j[ x−y−1

Γ(−y)

]
|y=α

.

To conclude, let us prove Proposition 6. Let θ ∈ R, f ∈ N∞, and R0 be sufficiently
large. Then f(z) is given on (2.9) by a convergent expansion

f(z) =
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,nz
−n−α−1(log(1/z))j

where S ⊂ C and T ⊂ N are finite subsets, and cα,j,n ∈ C. We then have

1

2iπ

∫
Γ′R

f(z)ezxdz =
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n
1

2iπ

∫
Γ′R

z−n−α−1(log(1/z))jezxdz

=
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n
∂j

∂αj

[
1

2iπ

∫
Γ′R

z−n−α−1ezxdz

]
;

recall that −θ − π < arg(z) < −θ + π, log(1/z) = − log(z), and the cut corresponds to
arg(z) = −θ ± π. Assume that θ − π

2
< arg(x) < θ + π

2
; then arg(zx) belongs to either

(π
2
, 3π

2
) or (−3π

2
,−π

2
) on each bank of the cut. If Re (−n − α) > 0, we can flatten Γ′R on

the cut and let R→ +∞; a simple computation then shows that

lim
R→+∞

1

2iπ

∫
Γ′R

z−n−α−1ezxdz =
xn+α

Γ(n+ α + 1)
. (2.11)

If Re (−n − α) ≤ 0, we integrate enough times by parts (all the integrated parts vanish)
to come back to the above situation; in the end, (2.11) holds again.
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We deduce that when θ − π
2
< arg(x) < θ + π

2
,

lim
R→+∞

1

2iπ

∫
Γ′R

f(z)ezxdz =
∑
α∈S

∑
j∈T

∞∑
n=0

cα,j,n
∂j

∂αj

[
xn+α

Γ(n+ α + 1)

]
. (2.12)

Letting x tend to 0 and noticing that the above computation of T∞Rρ

(
(z−ρ)α(log(z−ρ))j

)
yields with ρ = 0:

T0R∞
(
z−n−α−1(log(1/z))j

)
= (−1)j

( d

dy

)j[ x−y−1

Γ(−y)

]
|y=−n−α−1

,

this concludes the proof of Proposition 6.

Remark 2. As Proposition 7 shows, the mapR−1
∞ ◦T −1

0 extends the usual Laplace transform,
because it is formal, so that no convergence assumption is needed. It maps x−α−1(log(1/x))i

to
1

i+ 1

i+1∑
k=0

(
i+ 1

k

)( d

dy

)i+1−k(
(y − α)Γ(−y)

)
|y=α

zα(log(z))k mod C[[z]]

for any α ∈ C and any i ∈ N; if α 6∈ N this formula can also be written as (2.10). These
are exactly the implicit formulas (5.3.10) obtained by André [4] using operational calculus.
Therefore one may use them instead of operational calculus in André’s proof. However our
approach in §4.1 is different: we use only R so that no transcendental coefficient appears.

3 Microsolutions, analytic continuation, and Laplace

transform

In this section we prove Theorem 1 announced in the introduction (see §3.2), after restating
it in §3.1 in terms of microsolutions and analytic continuation. Assuming D to be Fuchsian,
we relate this theorem in §3.3 to Laplace transform, and then in §3.4 to a duality between
the solutions of FD at 0 and at ∞; we use it to obtain a new construction of André’s
extension of Laplace transform. We conclude this section with a commutative diagram
which summarizes the results of §§2 and 3, including the factorization of the inverse Laplace
transform obtained in §2.5.

3.1 Setting and notation

Let D ∈ C[z, d
dz

] be a differential operator of which ∞ is a regular singularity (or even not
a singularity at all). We denote by Σ the set of all finite singularities of D; some of them
might be apparent singularities but play a crucial role in our setting: see Remark 8 in
§4.4. We also fix a real number θ such that θ 6≡ − arg(ρ−ρ′) mod π whenever ρ, ρ′ ∈ Σ are
distinct. We shall work in the simply connected cut plane Ωθ obtained from C by removing
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the union of all closed half-lines of direction −θ + π starting at elements of Σ. For z in
this cut plane and ρ ∈ Σ, we agree that −θ − π < arg(z − ρ) < −θ + π.

Let us denote by δ the degree of D, by µ its order, and write

D =

µ∑
j=0

Pµ−j(z)(
d

dz
)j

where Pi(z) ∈ C[z] has degree at most δ − i (with equality for i = 0), since ∞ is a regular
singularity. For any j ∈ {0, . . . , µ} let aµ−j denote the coefficient of degree δ − µ + j of
Pµ−j(z), so that the indicial equation at infinity is R(−z) = 0, where

R(z) =

µ∑
j=0

aµ−jz(z − 1) . . . (z − j + 1) ∈ C[z] \ {0}. (3.1)

Let e1, . . . , ep denote the non-negative integer roots of R (with p = 0 if there is no such
root), so that −e1, . . . , −ep are the non-positive integer exponents of D at infinity. We let

M = max(0, µ− δ, e1, . . . , ep) and N = M + δ − µ ≥ 0.

We shall prove that in Theorem 1 the function f can be chosen such that degDf < N .

For any ρ ∈ Σ, recall that Oρ and Ôρ are defined in the introduction, and let Sρ denote

the kernel of D seen as a linear map Ôρ/Oρ → Ôρ/Oρ. In other words,

Sρ = {f ∈ Ôρ, Df ∈ Oρ}/Oρ.

This is the space of microsolutions of D at ρ. Kashiwara’s theorem [12] (see also §1.2 of
[19]) asserts that dimSρ = mρ, the multiplicity of ρ as a singularity of D. We also let

S∞ = ker
( H
C[z]

D→ H
C[z]

)
=
D−1(C[z])

C[z]

which is not the space of microsolutions at infinity; here H is the space of holomorphic
functions on Ωθ and D−1(C[z]) = {f ∈ H, Df ∈ C[z]}.

Now any f ∈ H can be restricted to a small cut disk (1.1) around any given ρ ∈ Σ. This

provides a map H → Ôρ, which induces a linear map S∞ → Sρ and then a diagonal map
κ : S∞ → ⊕ρ∈ΣSρ by mapping f to (f, f, . . . , f), where the coordinate f corresponding to
ρ ∈ Σ is seen locally around ρ. This map κ can be thought of as analytic continuation in
Ωθ from a neighborhood of infinity towards a neighborhood of all singularities ρ ∈ Σ.

With these notations, Theorem 1 is equivalent to the following result.

Theorem 4. The map κ : S∞ → ⊕ρ∈ΣSρ is bijective.

16



We shall also prove that S∞ = D−1(C[z]<N )
C[z]∩D−1(C[z]<N )

, where D−1(C[z]<N) = {f ∈ H, Df ∈
C[z]<N}. This shows that in Theorem 1 there exists f such that degDf < N , and implies
that

Sρ =
D−1(C[z]<N)

Oρ ∩ D−1(C[z]<N)
. (3.2)

This equality will be used in §4.1 because when D is a G-operator, D−1(C[z]<N) is the space
of solutions in H of ( d

dz
)N ◦D which is also a G-operator; therefore the André-Chudnovski-

Katz theorem can be applied.

The special case N = 0 is also worth mentioning, because D−1(C[z]<0) = kerD.

Corollary 2. Let D ∈ C[z, d
dz

] be a differential operator of which∞ is a regular singularity;
assume that µ ≥ δ and no integer exponent of D at∞ is less than δ−µ. Then in Theorem 1
there exists f such that Df = 0, and for any finite singularity ρ:

(i) Any microsolution in Sρ can be represented by a solution of D.

(ii) We have D−1(Oρ) = Oρ + kerD, and D induces a surjective map Oρ → Oρ.

Indeed given g ∈ Ôρ such that Dg ∈ Oρ, we find f ∈ kerD which has the same class as

g in Sρ: this proves (i). To prove (ii), given h ∈ Oρ we consider g ∈ Ôρ such that Dg = h,
and we have D(g − f) = h with g − f ∈ Oρ.

3.2 Proof of Theorem 4

The proof of Theorem 4 we shall present now splits into two parts.

The first step is to prove that, as a C-vector space,

S ′∞ =
D−1(C[z]<N)

C[z] ∩ D−1(C[z]<N)
has dimension δ = degD; (3.3)

recall that D−1(C[z]<N) = {f ∈ H, Df ∈ C[z]<N}. Taking this for granted, let us conclude
the proof of Theorem 4.

To begin with, we claim that κ : S∞ → ⊕ρ∈ΣSρ is injective. Indeed, let f ∈ D−1(C[z])
be such that f + C[z] ∈ kerκ. Then ( d

dz
)degDf+1Df = 0, and the finite singularities of

( d
dz

)degDf+1 ◦ D are the same as those of D, so that f is holomorphic at any point outside
Σ. Now f +C[z] ∈ kerκ so that f is also holomorphic at any ρ ∈ Σ. Therefore f is entire;
moreover it has moderate growth at infinity so that f (`) is bounded for some `. Liouville’s
theorem (see for instance [1], p. 122) shows that f (`) is constant so that f ∈ C[z]. Therefore
κ is injective.

On the other hand, combining (3.3) with Kashiwara’s theorem we obtain

dimS ′∞ = δ =
∑
ρ∈Σ

mρ =
∑
ρ∈Σ

dimSρ
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since degD is the degree of the coefficient P0(z) of ( d
dz

)µ in D because ∞ is a regular
singularity. Now S ′∞ can be seen as a subspace of S∞, so that dimS∞ ≥ dim⊕ρ∈ΣSρ.
But κ is injective, therefore equality holds and κ is bijective. This concludes the proof of
Theorem 4, and we obtain also that S∞ = S ′∞.

Remark 3. Since S∞ = S ′∞ we obtain f in Theorem 1 such that degDf < N .

Let us prove Eq. (3.3) now. The proof is a variant of that of Théorème 1.4 of [15] (see
also Théorème 2 of [6]).

For any k ≥ max(0, µ− δ) we have

Dzk = R(k)zk+δ−µ +Qk(z),

where Qk(z) ∈ C[z] has degree less than k + δ − µ and R(z) is the polynomial (3.1).
Therefore D induces, for any n ≥ max(0, µ− δ), a linear map

Dn : C[z]<n → C[z]<n+δ−µ

where C[z]<0 = {0}. Since Dzk has degree exactly k + δ − µ for any k ≥M (by definition
of M), we have C[z] ∩ D−1(C[z]<N) ⊂ C[z]<M so that we may consider the linear map

D̃ : S ′∞ =
D−1(C[z]<N)

C[z] ∩ D−1(C[z]<N)
→ C[z]<N
D(C[z]<M)

induced by D. It is surjective since D : H → H is surjective; its kernel is

ker D̃ =
D−1(D(C[z]<M))

C[z] ∩ D−1(D(C[z]<M))
=

C[z]<M + kerD
C[z]<M

=
kerD

C[z]<M ∩ kerD

where kerD = {f ∈ H, Df = 0} has dimension µ. Therefore we obtain:

dimS ′∞ = dim ker D̃ + rk D̃

= µ− dim(C[z]<M ∩ kerD) + dim
( C[z]<N
D(C[z]<M)

)
= µ− dim kerDM +N −

(
M − dim kerDM

)
= µ+N −M = δ.

This concludes the proof of (3.3).

Remark 4. In this proof H may be replaced with N∞ since ∞ is a regular singularity. We
obtain in this way:

S∞ = ker
(N∞
C[z]

D−→ N∞
C[z]

)
=
{f ∈ N∞, Df ∈ C[z]}

C[z]
=
{f ∈ N∞, Df ∈ C[z]<N}
{f ∈ C[z], Df ∈ C[z]<N}

. (3.4)
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3.3 Laplace transforms

We keep the notation and assumptions of §3.1, and we assume (from now on) that D is
Fuchsian. This subsection is essentially an adaptation to our context of §1.5 of [19].

We denote by F : C[z, d
dz

] → C[x, d
dx

] the Fourier transform of differential operators,

i.e. the morphism of C-algebras defined by F(z) = d
dx

and F( d
dz

) = −x.

We denote by S [θ] the space of solutions of FD holomorphic on the simply connected
cut plane Ωθ defined by x 6= 0 and θ − π < arg(x) < θ + π. It has dimension δ (i.e., equal
to the order of FD which is the degree of D) since FD has no singularity except 0 and ∞
(the proof [4] of this property in the special case where D is a G-operator applies to any
Fuchsian operator). This space can be written (see [16] or [17]) as S [θ] = ⊕ρ∈ΣS

ρ

[θ] where

Sρ[θ] is the set of g ∈ S [θ] such that g(x)e−ρx has sub-exponential growth as |x| → +∞
in a large sector bisected by θ (i.e., such that for any ε > 0 there exists cε > 0 with
|g(x)e−ρx| ≤ cε exp(ε|x|) for any x in a large sector bisected by θ with |x| ≥ 1).

A local Laplace transform has been studied by Malgrange and Ecalle. Given ρ ∈ Σ,
they prove that letting

(Lρg)(z) =

∫ eiθ∞

x0

g(x)e−zxdx mod Oρ (3.5)

for g ∈ Sρ[θ] and z sufficiently close to ρ with −θ− π
2
< arg(z−ρ) < −θ+ π

2
(where x0 ∈ Ωθ

is chosen arbitrarily) provides a linear isomorphism

Lρ : Sρ[θ]
∼−→ Sρ = {f ∈ Ôρ, Df ∈ Oρ}/Oρ

(see Theorem 2.2 of [16]). For x0, x
′
0 ∈ Ωθ the map z 7→

∫ x′0
x0
g(x)e−zxdx is holomorphic at

ρ, so that Lρg ∈ Sρ is independent from the choice of x0. The inverse image of the class of

f ∈ Ôρ such that Df ∈ Oρ is given by

(L−1
ρ (f mod Oρ))(x) =

1

2iπ

∫
Γρ

f(z)exzdz (3.6)

for θ − π
2
< arg(x) < θ + π

2
, where Γρ is the following path in the cut plane Ωθ (as in

§2.5): a straight line from ρ + ei(−θ−π)∞ to ρ (on one bank of the cut), a circle of radius
essentially zero around ρ (with arg(z− ρ) increasing from −θ−π to −θ+π), and finally a
straight line from ρ to ρ+ ei(−θ+π)∞ (on the other bank of the cut). Here we use the fact
that f can be analytically continued to both sectors of Proposition 5; actually f can be
chosen to be holomorphic on Ωθ using Theorem 1, and it has moderate growth at infinity.
Note also that x has been changed into −x with respect to [16] since we consider here F
instead of F = F−1

.

These “local” Laplace transforms at various ρ ∈ Σ can be glued together to obtain a
linear isomorphism

Lloc : S [θ] = ⊕ρ∈ΣS
ρ

[θ]
∼−→ ⊕ρ∈ΣSρ
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0

-θ

ρ

Figure 1: The contour to which the residue theorem is applied

by letting Lloc(
∑

ρ gρ) =
∑

ρ Lρ(gρ). Now Theorem 4 provides a linear isomorphism κ :
S∞ → ⊕ρSρ. Therefore we can define a bijective linear map

L∞ = κ−1 ◦ Lloc : S [θ] = ⊕ρ∈ΣS
ρ

[θ]
∼−→ S∞. (3.7)

We shall prove at the end of §3.4 below that for any g ∈ S [θ] locally integrable around 0,
we have

(L∞g)(z) =

∫ eiθ∞

0

g(x)e−zxdx mod C[z] (3.8)

for any z ∈ C such that |z| is large enough and −θ − π
2
< arg z < −θ + π

2
. Therefore

L∞ extends the usual Laplace transform (taking θ = 0, say) to any g ∈ S [θ]: we recover
André’s extension [4] based on operational calculus. See also Remark 2 at the end of §2.5.

To compute the inverse map L−1
∞ we have to define another path of integration somewhat

similar to the path Γ′R of §2.5 (see also [9, pp. 183–192] or [11]). Let R be such that
R > |ρ| for any ρ ∈ Σ. Given ρ ∈ Σ, let ∆ρ = ρ − e−iθR+ denote the half-line of angle
−θ + π mod 2π starting at ρ. It intersects the circle C(0, R) centered at 0 of radius R at
one point zρ = ρ− Aρe−iθ, with Aρ > 0, which corresponds to two points at the border of
the cut plane Ωθ, namely ρ + Aρe

i(−θ±π) with values −θ ± π of the argument. We denote
by Γ′R the path going in the positive direction from zρ1 to zρp along the circle C(0, R). Here
ρ1, ρp ∈ Σ are such that the minimal (resp. maximal) value of Im (ρeiθ) for ρ ∈ Σ is taken
at ρ = ρ1 (resp. ρ = ρp). In this way, when R is very large, Γ′R is nearly the whole circle
and this is essentially the same notation Γ′R as in §2.5.

Now let f ∈ H be such that Df ∈ C[z]. Then we have

(L−1
∞ (f mod C[z]))(x) = lim

R→+∞

1

2iπ

∫
Γ′R

f(z)exzdz (3.9)
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for any x such that θ − π
2
< arg x < θ + π

2
. Indeed L−1

∞ f =
∑

ρ∈Σ L−1
ρ fρ where fρ is the

image of f in Sρ, so that Eq. (3.9) means∑
ρ∈Σ

1

2iπ

∫
Γρ

f(z)exzdz = lim
R→+∞

1

2iπ

∫
Γ′R

f(z)exzdz.

This equality follows from the residue theorem applied on the contour of Fig. 1 by letting
R→∞.

Remark 5. These Laplace transforms provide a way to compute κ−1, that is, given microso-
lutions fρ ∈ Sρ for any ρ ∈ Σ, to find an analytic solution f of D (or rather, a solution
“up to polynomials”) on the cut plane Ωθ such that, for any ρ, the function f − fρ is
holomorphic at ρ. Indeed, one may take

f =
∑
ρ∈Σ

L∞L−1
ρ fρ

and use Eq. (3.8) if it applies, or the operators R−1
∞ and T −1

0 (see below), to compute f .

3.4 Relation with the formal operators R and T
In this section we keep the assumptions and notation of §3.3, and study the relation with
the formal operators of §2. We shall summarize most constructions of §§2 and 3 in a
commutative diagram.

For any ρ ∈ Σ we denote by Sρ∞ the space of formal solutions at infinity of FD in
eρxE∞; it has dimension mρ (see [4], where the proof extends to any Fuchsian operator).
In general the elements of E∞ that appear here involve divergent series.

Taking asymptotic expansion as |x| → +∞ in a large sector bisected by θ (see [20] or
[11] for the precise definition) yields a linear isomorphism

Aθ : Sρ[θ]
∼−→ Sρ∞,

the inverse of which is Borel-Laplace summation A−1
θ (i.e., Ramis’ 1-summation) since θ is

not anti-Stokes (recall that θ 6≡ − arg(ρ− ρ′) mod π whenever ρ, ρ′ ∈ Σ are distinct). This
extends by linearity to a linear isomorphism still denoted by the same symbol:

Aθ : S [θ] = ⊕ρ∈ΣS
ρ

[θ]
∼−→ ⊕ρ∈ΣS

ρ

∞.

On the other hand, any f ∈ S [θ] is a holomorphic solution of FD on the cut plane Ωθ

defined by x 6= 0 and θ − π < arg(x) < θ + π. Since 0 is a regular singularity of FD (see
[4]), f can be seen locally around the origin as an element of E0. This provides a linear
bijective map A(0) (namely, a generalized Taylor expansion)

A(0) : S [θ]
∼−→ S0
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where S0 is the δ-dimensional space of formal solutions of FD in E0 (all of which involve
series with a positive radius of convergence, so that S0 ⊂ N0).

Using also Propositions 5 and 6 (proved in §2.5), we obtain that the following diagram
is commutative:

S∞

⊕ρSρ

κ

OO

S∞

S [θ] = ⊕ρS
ρ

[θ]
L−1
∞

11

⊕ρSρ

S [θ] = ⊕ρS
ρ

[θ]

L−1
loc

--
S [θ] = ⊕ρS

ρ

[θ]

⊕ρS
ρ

∞

Aθ

OO

S [θ] = ⊕ρS
ρ

[θ]

S0

A(0)

��

⊕ρSρ

⊕ρS
ρ

∞
⊕ρRρ

22 ⊕ρS
ρ

∞ ⊕ρS
ρ

∞
T∞ //

S∞

S0

R∞

,, S0 S0
T0 //

Here all maps are linear, bijective, and depend on θ. Only the vector spaces Sρ∞ and
S0 are independent from θ (for instance log(x) and xα, for α ∈ C, are formal quantities in
⊕ρ∈ΣS

ρ

∞ and S0). To define ⊕ρRρ and R∞, we identify Sρ with a subspace of Nρ/C[[z−ρ]]
using generalized Taylor expansion at ρ, and also S∞ with a subspace of N∞/C[z] using
generalized Taylor expansion at infinity.

This diagram yields L∞ = R−1
∞ ◦ T −1

0 ◦ A(0); using Proposition 7 this proves Eq. (3.8)
announced in §3.3, namely that Eq. (3.7) provides a new construction of André’s extension
of Laplace transform.

4 Applications to special values

In this section we (mostly) assume that D is a G-operator. To begin with, we recall André’s
duality result on E- and Э-functions, and give a new and constructive proof of it built on
our previous results. We also state and prove in §4.2 our main result on the arithmetic
nature of the coefficients of the matrices of all linear maps that appear in the commutative
diagram of §3.4. This result is then shown in §4.3 to imply all arithmetic results stated
in the introduction. At last, we conclude this paper in §4.4 with an example related to
Gompertz’ constant.

4.1 A new and constructive proof of André’s theorem

In this section we give a new and constructive proof of the following duality theorem ([4],
Théorème 4.3).
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Theorem 5 (André). Let K be a number field, and D ∈ K[z, d
dz

] be a G-operator of degree

δ; consider the differential equation (FD)y = 0. Then:

(i) There exists a basis of solutions around 0 of the form

(F1(x), . . . , Fδ(x)) · xΓ0

where F1(x), . . . , Fδ(x) are E-functions with coefficients in K, and Γ0 ∈Mδ(Q) is an
upper triangular matrix.

(ii) There exists a basis of formal solutions at infinity of the form

(f1(1/x), . . . , fδ(1/x)) · (1/x)Γ∞ · e∆x

where f1, . . . , fδ are Э-functions with coefficients in the number field K(Σ) generated
by K and all finite singularities ρ of D, ∆ is the diagonal matrix with the finite
singularities of D as diagonal elements (repeated according to their multiplicities),
and Γ∞ ∈Mδ(Q) is an upper triangular matrix which commutes with ∆.

(iii) The diagonal coefficients of Γ0 (resp. Γ∞) are either in Z, or congruent mod Z to
exponents of D at infinity (resp. at finite singularities).

In this section we deduce from the results of §§2-3 a new proof of this result, leading
to an effective construction of these bases. We also obtain a generalization (see assertion
(i) below), upon noticing that everything works as soon as D ∈ K[z, d

dz
] is Fuchsian with

exponents in K at all singularities, except that the Fj and the fj are no more E- or Э-
functions in general. We restrict to solutions of (FD)y = 0 at infinity, but the same
procedure can be carried out analogously to construct a basis of local solutions at 0 of FD
from a basis of S∞.

Let D ∈ C[z, d
dz

] be a Fuchsian operator, and N denote the integer defined in §3.1.
We denote by Σ the set of all finite singularities of D, and we choose a real number θ
such that θ 6≡ − arg(ρ − ρ′) mod π whenever ρ, ρ′ ∈ Σ are distinct. As in §3 we shall
work in the cut plane Ωθ obtained from C by removing the union of all closed half-lines
of direction −θ + π starting at elements of Σ. For z ∈ Ωθ and ρ ∈ Σ, we agree that
−θ − π < arg(z − ρ) < −θ + π. For any ρ ∈ Σ there exist (non necessarily distinct)
complex numbers tρ1, . . . , t

ρ
J(ρ), with J(ρ) ≥ 1, and functions gρj,k(z − ρ) holomorphic at ρ,

for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j), such that the functions

fρj,k(z − ρ) = (z − ρ)t
ρ
j

k∑
k′=0

gρj,k−k′(z − ρ)
(log(z − ρ))k

′

k′!
, (4.1)

for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j), form a basis of solutions of ( d
dz

)N ◦ D in H (where
H is the space of functions holomorphic on Ωθ). We denote by Iρ the set of pairs (j, k)
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such that fρj,k(z− ρ) is not holomorphic at ρ. Then the family (fρj,k(z− ρ))(j,k) 6∈Iρ is a basis

of the space of solutions of ( d
dz

)N ◦ D holomorphic at ρ. Using Eq. (3.2) we deduce that
the family (fρj,k(z − ρ) mod Oρ)(j,k)∈Iρ is a basis of Sρ. If D ∈ K[z, d

dz
], ρ ∈ K, and tρj ∈ K

for any ρ and any j, then one may choose all gρj,k with Taylor coefficients in K; moreover if
D is a G-operator then the André-Chudnovski-Katz Theorem shows that one may choose
all gρj,k to be G-functions, and in this case all exponents tρj are rational numbers.

Now recall from §2.4 that

yα,i(z) =
∞∑
n=0

1

i!

di

dyi

(Γ(1− {y})
Γ(−y − n)

)
|y=α

zn

and that ? denotes Hadamard’s product of formal series in z. With this notation we let

fρj,k(1/x) =
k∑

m=0

(ytρj ,m ? g
ρ
j,k−m)(1/x) ∈ C[[1/x]]

for any 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(j, ρ); it is not difficult to see that fρj,k(1/x) = 0 if

(j, k) 6∈ Iρ. Now ⊕Rρ : ⊕Sρ
∼−→ ⊕ρS

ρ

∞ is a bijective linear map (see §3.4), so that the
functions Rρ(f

ρ
j,k(z− ρ)), for ρ ∈ Σ and (j, k) ∈ Iρ, form a basis of formal solutions of FD

at infinity. We claim that they can be written explicitly as follows:

Rρ(f
ρ
j,k(z − ρ)) = eρxx−t

ρ
j−1

k∑
k′=0

fρj,k−k′(1/x)
(log(1/x))k

′

k′!
. (4.2)

Moreover:

(i) If K is a subfield of C such that D ∈ K[z, d
dz

], Σ ⊂ K, and all exponents of D at all
finite singularities belong to K, then all power series fρj,k(1/x) belong to K[[1/x]].

(ii) If D is a G-operator then the gρj,k can be chosen to be G-functions, and then all fρj,k
are Э-functions.

Indeed Eqns. (4.1) and (2.7) yield

Rρ(f
ρ
j,k(z − ρ)) =

k∑
k′=0

eρxx−t
ρ
j−1

k′∑
ν=0

(ytρj ,k′−ν ? g
ρ
j,k−k′)(1/x)

(log(1/x))ν

ν!

= eρxx−t
ρ
j−1

k∑
ν=0

fρj,k−ν(1/x)
(log(1/x))ν

ν!

so that (4.2) holds. The rationality property (i) follows at once from Proposition 2, and
(ii) is a consequence of the proof of Proposition 4.
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At last, given ρ ∈ Σ we have Card Iρ = dimSρ = mρ; this is exactly the number of
functions fρj,k associated with ρ. Combining them as ρ varies yields δ =

∑
ρmρ functions

fρj,k. The matrix Γ∞ of Theorem 5 (ii) is block-diagonal; with each ρ ∈ Σ is associated an
upper triangular block Γ∞,ρ ∈ Mmρ(Q) with diagonal coefficients tρj + 1. This completes
the proof of Theorem 5 relative to the basis at ∞; as already mentioned, the proof of the
other part is similar.

Remark 6. The basis (4.2) is used implicitly in §4.2 of [11] to compute Stokes constants.

4.2 Arithmetic nature of the coefficients

Let D ∈ Q[z, d
dz

] be a G-operator. As in §4.1 we denote by Σ the set of all finite singularities
of D, and we fix a real number θ such that θ 6≡ − arg(ρ − ρ′) mod π whenever ρ, ρ′ ∈ Σ
are distinct. We use the same notation as in §3.4. The point of Theorem 6 below is to
determine the arithmetic nature of the coefficients of the matrices of all linear maps that
appear in the commutative diagram of §3.4. With this aim in view we choose “algebraic”
bases of the vector spaces as follows.

We fix a basis of Sρ for any ρ ∈ Σ (resp. of S∞) consisting of elements of NGA{z−ρ}Q0
(resp. NGA{1/z}Q0 ), and in the same way a basis of S0 (resp. of Sρ∞ for any ρ ∈ Σ)

consisting of elements of NGA{x}Q−1 (resp. eρxNGA{x}Q1 ). We also choose the basis of S [θ]

in such a way that A(0) is represented by the identity matrix.

Theorem 6. Assume that D is a G-operator. Then in these bases:

• The determinant of the matrix of Aθ is a non-zero algebraic number.

• The matrices of Aθ, Lloc, L∞, and their inverse matrices have entries in S.

• The determinants of the matrices of Lloc and L∞ are products of values of Γ at
rational points, multiplied by non-zero algebraic numbers.

• The matrices of κ and κ−1 have entries in G, and their determinants are units of G.

The first assertion follows from the results of [4] (see the proof below). The main tool
in the proof of the other ones is the commutative diagram of §3.4, in which the maps R
and T are explicit. We shall also use the following restatement of Theorem 2 of [10].

Theorem 7. Let D be a G-operator of order µ, and ξ1, ξ2 ∈ Q∪{∞}. Let g ∈ NGA{z−ξ1}Q0
be a solution of D, and (g1, . . . , gµ) be a basis of solutions of D in NGA{z − ξ2}Q0 . Let
$1, . . . , $µ be the connection constants such that a given analytic continuation of g(z)
to a small cut disk (1.1) centered at ξ2 is equal to $1g1 + . . . + $µgµ. Then we have
$1, . . . , $µ ∈ G.

In this result, z − ξi should be understood as 1/z, and (1.1) as (2.9), if ξi =∞.
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Let us prove Theorem 6 now. Let Mκ, MAθ , ML∞ , MLloc ,MT∞ , MT0 denote the respec-
tive matrices of κ, Aθ, L∞, Lloc, T∞, T0 in the bases we have fixed.

To begin with, let us prove the statements about MAθ . Let (F1(x), . . . , Fδ(x)) and
(H1(x), . . . , Hδ(x)) denote the bases of S0 and ⊕ρ∈ΣS

ρ

∞ (respectively) that we have chosen,

so that Fj(x) ∈ NGA{x}Q−1 and e−ρjxHj(x) ∈ NGA{1/x}Q1 for any j, with ρ1, . . . , ρδ ∈ Σ.
For any j, the asymptotic expansion of Fj(x) as |x| → ∞ in a large sector bisected by θ
can be written as $1,jH1(x) + . . . + $δ,jHδ(x); then MAθ is the matrix [$i,j]1≤i,j≤δ. We

have proved [11] that $i,j ∈ S; we shall prove now that detMAθ ∈ Q?
. This implies that

M−1
Aθ = (detMAθ)

−1 tComMAθ has coefficients in S, and determinant (detMAθ)
−1 ∈ Q?

.

Let

w(F1, . . . , Fδ) =


F1 F ′1 · · · F

(δ−1)
1

F2 F ′2 · · · F
(δ−1)
2

...
... · · · ...

Fδ F ′δ · · · F
(δ−1)
δ


denote the wronskian matrix built on (F1, . . . , Fδ), and W (F1, . . . , Fδ) be its determinant.
Then the asymptotic expansion of w(F1, . . . , Fδ) as |x| → ∞ in a large sector bisected by
θ is MAθw(H1, . . . , Hδ), and therefore that of W (F1, . . . , Fδ) is det(MAθ)W (H1, . . . , Hδ).
Now each (formal or convergent) wronskian determinant W (x) built on a basis of (formal
or convergent) solutions of FD satisfies Q0(x)W ′(x) +Q1(x)W (x) = 0, where

FD = Q0(x)
( d

dx

)δ
+Q1(x)

( d

dx

)δ−1

+ . . .+Qδ(x)

with Q0, . . . , Qδ ∈ Q[x] and Q0 6= 0; for simplicity we assume the leading coefficient of
Q0 to be 1. Since FD is an E-operator, we have Q0(x) = xµ where µ is the degree of
FD, and Q1(x) = −axµ − bxµ−1 with a, b ∈ Q (see §5.1 of [4]). Therefore W ′(x) − (a +
b
x
)W (x) = 0 so that W (x) = cWx

beax where cW ∈ C? depends on W . Applying this
property to both wronskians introduced previously, we obtain that det(MAθ)cHx

beax is the
asymptotic expansion of cFx

beax as |x| → ∞ in a large sector bisected by θ; this means cF =

det(MAθ)cH . Now we have W (F1, . . . , Fδ) ∈ NGA{x}Q−1 and e−ρ1x−...−ρδxW (H1, . . . , Hδ) ∈
NGA{1/x}Q1 so that ρ1 + . . .+ρδ = a and cF , cH ∈ Q?

. Therefore det(MAθ) = cF/cH ∈ Q?
.

Now since G and S are Q-vector spaces, the truth of Theorem 6 is independent from
the bases chosen, as long as the Q-structures are preserved (see for instance §8 of [8]).
Therefore we may assume that the basis of ⊕ρSρ is (fρj,k(z − ρ) mod Oρ)ρ∈Σ,(j,k)∈Iρ with
the notation of §4.1, ordered lexicographically with respect to (ρ, j, k). Let us consider an
element of the basis of S∞ we have chosen. Using Remark 3 (see §3.2) and the André-
Chudnovski-Katz Theorem, it is represented by a function f holomorphic on the cut plane

Ωθ, such that ( d
dz

)NDf = 0 and f ∈ NGA{1/z}Q0 around ∞. Recall from §4.1 that for any
ρ ∈ Σ, the functions fρj,k(z − ρ) with 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j) form a basis of

solutions of ( d
dz

)N ◦D in NGA{z− ρ}Q0 . Since ( d
dz

)N ◦D is a G-operator, we may expand f

26



in this local basis at ρ, with connection constants $ρ
j,k in G (using Theorem 7). Omitting

the indices (j, k) 6∈ Iρ and letting ρ vary, we obtain the coefficients in the column of Mκ

corresponding to f . This concludes the proof that Mκ has coefficients in G.

Let us focus on MT∞ now. Since the basis (fρj,k(z − ρ) mod Oρ)ρ∈Σ,(j,k)∈Iρ is ordered
lexicographically with respect to (ρ, j, k), the matrix MT∞ is upper triangular and its

diagonal coefficients are Γ̂(1 − {tρj}), where tρj ∈ Q appears in Eq. (4.1), {tρj} is the

fractional part of tρj and Γ̂(s) = 1/Γ(s); therefore

detMT∞ =
∏
ρ∈Σ

J(ρ)∏
j=1

(
Γ̂(1− {tρj})

)K(ρ,j)+1

.

In this product some factors should have been omitted, namely those which correspond to
triples (ρ, j, k) for which fρj,k(z−ρ) is holomorphic at ρ; however in this case Γ̂(1−{tρj}) = 1
so that equality holds anyway.

The situation is the same if ρ is replaced with ∞, upon replacing z − ρ with 1/z. The
only difference is that (1/z)t

∞
j should be seen as z−t

∞
j when applying R∞, so that we obtain

detMT0 =

J(∞)∏
j=1

(
Γ̂(1− {−t∞j })

)K(∞,j)+1

.

Now the matrices of ⊕Rρ and R∞ have algebraic coefficients (see Proposition 2), and

we have proved that detMAθ ∈ Q?
, so that

detMLloc =
cloc

detMT∞
= cloc

∏
ρ∈Σ

J(ρ)∏
j=1

(
Γ(1− {tρj})

)K(ρ,j)+1

and

detML∞ =
c∞

detMT0
= c∞

J(∞)∏
j=1

(
Γ(1− {−t∞j })

)K(∞,j)+1

with cloc, c∞ ∈ Q?
. Moreover MLloc = MκML∞ (see §3.3) so that detMκ = cloc

c∞

detMT0
detMT∞

. Now

we observe the following fact: if x1, . . . , xp, y1, . . . , yq ∈ R?
+ satisfy x1+. . .+xp = y1+. . .+yq

then ∏p
i=1 Γ(xi)∏q
j=1 Γ(yj)

=

∏p−1
i=1 B(x1 + . . .+ xi, xi+1)∏q−1
j=1 B(y1 + . . .+ yj, yj+1)

with B(a, b) = Γ(a)Γ(b)
Γ(a+b)

. Since D is Fuchsian, Fuchs’ relation on exponents yields

∑
ρ∈Σ∪{∞}

J(ρ)∑
j=1

(K(ρ, j) + 1)tρj ∈ Z
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so that using this fact we obtain that the number
detMT∞
detMT0

is a quotient of products of values

B(x, y) with x, y ∈ Q?
+; in particular it is a unit of G (see Proposition 1 of [10]). Therefore

detMκ = cloc
c∞

detMT0
detMT∞

is also a unit of G, and M−1
κ = (detMκ)

−1 tComMκ has coefficients

in G.
This concludes the proof of Theorem 6.

4.3 Special values and exponential periods

In this section we prove the arithmetic results stated in the introduction and explain the
connection with exponential periods. To deduce Theorem 2 from Theorem 6 proved in
§4.2, we just have to choose an E-operator that annihilates f(1/x), using Theorem 4.6 of
[4]. We obtain also Corollary 1 at once, since any Stokes matrix is the matrix of Aθ ◦ A−1

θ′

in the basis B∞ (with the notation of the introduction).
Before we prove Theorem 3, let us study briefly the set Э of all numbers fθ(ξ) where

ξ ∈ Q?
and f is an Э-function; here θ = arg ξ and fθ = A−1

θ f is Ramis’ 1-summation of f in
the direction θ if θ is not anti-Stokes, and fθ = A−1

θ+εf for any small ε > 0 if θ is anti-Stokes
(this is independent from the choice of such an ε). From now on, we shall always restrict
to the case of non-anti-Stokes directions, because the opposite case can be proved along
the same lines. We shall also assume, for simplicity, that f(1/x) =

∑∞
n=1 anx

−n has no
constant term. Then its formal Borel transform g(z) =

∑∞
n=1

an
(n−1)!

zn−1 is a G-function,
and we have

A−1
θ f(1/x) =

∫ eiθ∞

0

g(z)e−xzdz (4.3)

provided | arg(1/x)− θ| < π
2

(see [20]), in particular for 1/x = ξ. Moreover letting f̃(x) =

f(ξx) we have f̃0(1) = fθ(ξ) so that we may restrict to ξ = 1 in the definition of Э; therefore
Э is a ring. Moreover any G-function g(z) is the formal Borel transform of an Э-function
with no constant term so that all numbers (4.3) belong to Э, provided x is algebraic and
θ = arg(1/x) is not anti-Stokes. In particular Э contains Gompertz’s constant

∫ +∞
0

e−t

1+t
dt,

and
√
πAi(z) for any z ∈ Q where Ai(z) is Airy’s oscillating integral (see [4]).

Let us come now to the properties of V. Let ξ ∈ Q, s ∈ Q, and h ∈ Q{z}As be a
Gevrey series of order s of arithmetical type; assume that h is holonomic. If s = 0 then
h is a G-function so that h(ξ) ∈ G ⊂ S ⊂ V. If s 6= 0 then h(z|s|) ∈ NGA{z}ε(s),
where ε(s) ∈ {−1, 1} is the sign of s (see Proposition 1.4.1 of [4]). Using Theorem 2
if s > 0, we obtain also h(ξ) ∈ V. This proves that V contains all values at algebraic
points of holonomic Nilsson-Gevrey series of any order of arithmetical type with algebraic
coefficients λα,j,k (up to 1-summation in any direction in the case of divergent series), and
yields Э ⊂ V. To deduce Theorem 3, we denote by V′ the S-module generated by the
numbers eρχ, with ρ ∈ Q and χ ∈ Э. Since Э ⊂ V and eρ ∈ E ⊂ V for any ρ ∈ Q,
we have V′ ⊂ V. On the other hand, given ξ ∈ Q and an E-function F (x) there exist

A ≥ 1, $1, . . . , $A ∈ S, ρ1, . . . , ρA ∈ Q and f1(1/x), . . . , fA(1/x) ∈ NGA{1/x}Q1 such that∑A
a=1 $ae

ρaxfa(1/x) is the asymptotic expansion of F (x) as |x| → ∞ in a large sector
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bisected by θ = arg ξ if it is not anti-Stokes, by θ + ε otherwise (see [11]). Applying
1-summation in this direction and evaluating at ξ, we obtain E ⊂ V′; this concludes the
proof of Theorem 3.

Remark 7. In the definition of Э we could have considered A−1
θ−εf instead of A−1

θ+εf if θ is
anti-Stokes. This defines also a ring Э’, and all properties of Э stated in this paper hold
also with Э’. However we have not been able to prove that Э’ = Э.

To conclude this discussion, we observe that Γ(r) (with r ∈ Q \ Z≤0) and Euler’s
constant γ = −

∫∞
0

log(t)e−tdt are exponential periods. Therefore the conjectural inclusion
G ⊂ P [1/π] implies S ⊂ Pe[1/π]. Now Bombieri-Dwork conjecture predicts that G-
functions come from geometry, so that Eq. (4.3) and Theorem 3 suggest the inclusion
V ⊂ Pe[1/π]. In view of André’s results (see [2] and [3]), it seems reasonable to believe
that V could be equal to Pe[1/π].

4.4 An example related to Gompertz’ s constant

In this section we work out a specific example involving Gompertz’ s constant
∫ +∞

0
e−t

1+t
dt.

The notation is not always recalled, but it is the same as in the rest of the paper. Unless
otherwise stated, all properties can be proved as special cases of results given in the present
paper. Other references on this example include [14] and Proposition 1 of [21].

Let D = z(1 − z) d
dz
− z and g1(z) = 1

1−z . Then D ∈ Q[z, d
dz

] is of minimal order
µ = 1 among the differential operators such that Dg1 = 0. Since g1 is rational, it is a
G-function and D is a G-operator. The set Σ of finite singularities of D is {0, 1}. We
fix θ such that −π < θ < π and θ 6= 0, and work in the simply connected open set Ωθ

defined by −θ − π < arg z < −θ + π and −θ − π < arg(z − 1) < −θ + π. Each finite
singularity has multiplicity 1, so that the associated spaces S0 and S1 of microsolutions are
one-dimensional. We choose ḡ0 and ḡ1 as respective bases of S0 and S1, where the overline
denotes the image in a quotient group and g0(z) = log z

1−z ; we observe that Dg0 = 1 ∈ C[z]<N ,
with N = 1 in this example. Choosing (ḡ0, ḡ1) as a basis of S∞, the matrix of κ is the
identity matrix.

The associated E-operator is FD = x( d
dx

)2+(1−x) d
dx
−1. Letting E(x) =

∑∞
n=1

(−1)nxn

n·n!
,

a basis of S [θ] is given by the functions ex(E(x)+log x) and ex. Both have generalized Taylor

expansions at 0 in NGA{x}Q−1; indeed exE(x) is an E-function. The Laplace transforms of
g0 and g1 can be written as follows (since κ is given by the identity matrix):

L−1
0

( log z

1− z
mod O0

)
= L−1

∞

( log z

1− z
mod C[z]

)
= −

∫ +∞

0

e−t

x+ t
dt = ex(E(x)+log(x)+γ),

L−1
1

( 1

1− z
mod O1

)
= L−1

∞

( 1

1− z
mod C[z]

)
= −ex.
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Letting y(x) = −ex(E(x) + log(x) + γ), we obtain another basis (y(x), ex) of S [θ], with

y(x) ∈ S0

[θ] and ex ∈ S1

[θ]. Moreover y(x) admits the asymptotic expansion ŷ(x) =∑∞
n=0(−1)nn!x−n−1 as |x| // ∞ in a large sector bisected by θ, so that ŷ(x) is a ba-

sis of S0

∞ contained in NGA{x}Q1 . On the other hand, ex is a basis of S1

∞ contained in

exNGA{x}Q1 . In the bases we have chosen, namely (ex(E(x) + log(x)), ex) and (ŷ(x), ex),

the matrix of Aθ studied in Theorem 6 is

(
−1 0
−γ 1

)
. Gompertz’s constant appears as the

value at x = 1 of the Э-function ŷ(x).

Remark 8. We have D = zD′ where D′ = (1−z) d
dz
−1 is also a G-operator. Even though D

and D′ have the same solutions, they do not have the same microsolutions at 0. Applying
our results to D′ does not yield anything related to Gompertz’s constant.
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tion”, Ensaios Matemáticos 1 (1989), 5–39.
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