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Abstract
Given any non-polynomial G-function F(z) = Y 32, Axz* of radius of conver-
gence R, we consider the G-functions F\(z) = k=0 (kfiz)szmm for any integers

s > 0 and n > 1. For any fixed algebraic number « such that 0 < |o| < R and
any number field K containing « and the Ag’s, we define ®, s as the K-vector
space generated by the values F#}(a), n>1and 0 < s < S. We prove that
uk,rlog(S) < dimg(Pq,s) < vpS for any S, with effective constants ug p > 0 and
vp > 0, and that the family (F}[{ﬂ(oz))1 <n<up 530 contains infinitely many irrational
numbers. This theorem applies in particular when F' is an hypergeometric series
with rational parameters or a multiple polylogarithm, and it encompasses a previous
result by the second author and Marcovecchio in the case of polylogarithms. The
proof relies on an explicit construction of Padé-type approximants. It makes use of
results of André, Chudnovsky and Katz on G-operators, of a new linear independence
criterion a la Nesterenko over number fields, of singularity analysis as well as of the
saddle point method.

1 Introduction

The class of G-functions was defined by Siegel [33] to generalize the Diophantine properties
of the logarithmic function, by opposition to the exponential function which he generalized
with the class of E-functions. A series F(z) = Y oo, Arz* € Q[[2]] is a G-function if the
following three conditions are met (we fix an embedding of Q into C):

1. There exists C' > 0 such that for any o € Gal(Q/Q) and any k > 0, |o(Az)| < C*F*L.

2. Define D,, as the smallest positive integer such that D, A; is an algebraic integer for
any k < n. There exists D > 0 such that for any n > 0, D, < D*%,

3. F(z) is a solution of a linear differential equation with coefficients in Q(z).
The first property implies that the radius of convergence of F' is positive. In the second
property, the existence of D is enough for the purpose of this paper, but we mention that
a famous conjecture of Bombieri implies that D,, always divides ¢"™1d® = for some integers
a,b>0,c> 1, where d,, :=lem{1,2,...,n} = """ (see [20]). The third property shows
that there is a number field containing all the coefficients Ay. In the case where they are



all rational numbers, the three conditions become |A;| < C*¥*1 D, A, € Z for k < n and
D,, < D" and F(z) is in fact a solution of a linear differential equation with coefficients

in Q(z).

G-functions can be either algebraic over Q(z), like
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or transcendental over C(z), like
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Transcendental G-functions also include the polylogarithms Lis(z) = > 7, z—}: for s > 1.
All the above examples are special cases of the generalized hypergeometric series with
rational parameters, which is a G-function:

A1,09,...,0p41 & (CLl)k(aQ)k"'(ap-H)k k
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Where (@) =1and (a)y = a(a+1)--- (o + k —1) for k£ > 1; we assume that —b; ¢
= {0,1,2,...} for any j. Not all G-functions are hypergeometric, for instance the
algebralc functlon \/7 = > (Zk (k) (*#7))2* or the transcendental functions

1-6z+z2 J
2 k=0 (Zj:o (];) (k;r]) )%, $log(1-2)% = Y02 (3 Zk ! ;)z and more generally multiple
polylogarithms Lig, 4, . (2) = #k with sy, 89,...,5; € Z.
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In this paper, we are interested in the Diophantine properties of the values of G-
functions at algebraic points. We first recall that there is no definitive theorem about
the irrationality or transcendance of values of G-functions, like the Siegel-Shidlovsky The-
orem for values of E-functions: transcendental G-functions may take rational values or
algebraic values at some non-zero algebraic points, see [6, 10, 36] for examples related to
Gauss oF) hypergeometric function. Moreover, very few values of classical G-functions
are known to be irrational: apart from logarithms of algebraic numbers (proved to be
transcendental by other methods, namely the Hermite-Lindemann theorem), we may cite

Apéry’s Theorem [5] that ((3) = Liz(1) ¢ Q, and the Chudnovsky-André Theorem [3] on



the algebraic independence over Q of the values o Fi[%, 3;1;a] and 2 Fi[—3, 1;1; o] for any

a€Q0<|al<1(h).
Up to now, known results on values of G-functions can be divided into two families.
The first one gathers theorems on F'(«), where v € Q C C is sufficiently close to 0 in terms

of F (and, often, of other parameters including the degree and height of «). One of the
most general results of this family is the following.

Theorem 1 (Chudnovsky [13, 14]). Let Y (z) = “(Fi(2),...,Fs(2)) be a vector of G-

functions solution of a differential system Y'(z) = A(2)Y(z), where A(z) € Ms(Q(2)).

Assume that 1, Fy(z), ..., Fs(z) are Q(2)-algebraically independent. Then for any integer
d > 1, there exists C' = C(Y,d) > 0 such that, for any algebraic number o # 0 of degree d

with |a| < exp(—C'log (H(a))%), there does not exist a polynomial relation of degree d
and coefficients in Q(«) between the values 1, Fy(a), ..., Fs(a).

Here, H(«) is the naive height of «, i.e. the maximum of the modulus of the integer
coefficients of the (normalized) minimal polynomial of o over Q. See [1] for a general
strategy recently obtained to prove algebraic independence of G-functions. Chudnovsky’s
theorem refines the works of Bombieri [12] and Galochkin [22]. André [2] generalized
Chudnovsky’s theorem to the case of an inhomogenous system Y'(z) = A(2)Y (2) + B(z).
Thus, if we consider the case where « = a/b € Q and d = 1, the values 1, Fi(«), ..., Fs(a)
are Q-linearly independent provided b > (c1]al)® > 0, for some constants ¢; > 0 and
cs > 1 depending on the vector Y. The best value known so far for ¢y is quadratic in
S; see [21, 38] for related results. When (1, Fi(2),..., Fs(z)) = (1,Liy(2), ..., Lig(z)), we
refer to [23, 28] for the best linear independence results, where ¢y is “only” linear in S.

The second family consists in more recent results where « is a fixed algebraic point in
the disk of convergence: lower bounds are obtained for the dimension of the vector space
generated over a given number field by F'(a), where F' ranges through a suitable set of
G-functions. In general, this lower bound is not large enough to imply that all these values
F(«) are irrational. In this family, we quote the theorem that infinitely many odd zeta
values ((2n + 1) = Lig,41(1), n > 1, are irrational (see [7, 30]). Let us also quote the
following result, first proved in [31] when « is real.

Theorem 2 (Marcovecchio [25]). Let a € Q, 0 < |a| < 1. The dimension of the Q(«a)-

vector space spanned by 1, Lij(a), ..., Lig(«) is larger than W log(S) as S — +oo.

It seems that all known results in this second family concern only specific G-functions,
essentially polylogarithms. This is not the case of our main result, Theorem 3 below, which
is very general. Starting from a G-function F(z) = > -, Axz* with radius of convergence
R, we define for any integers n > 1 and s > 0 the G-functions

00 Ak

F(z) = it ny

ZFtn (1.4)
k=0

!This result was first proved by G. Chudnovsky in the 70’s by an indirect method not related to
G-functions, and it was reproved by André in the 90’s by a method designed for certain G-functions
(simultaneous adelic uniformization), but which has been applied so far only to these o F functions.
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which all have R as radius of convergence.

Let K be a number field that contains all the Taylor coefficients A, of F'. For any integer
S > 0 and any « € K such that 0 < |a| < R, let ®, s denote the K-vector space spanned
by the numbers FT[f](a) forn > 1 and 0 < s < 5; of course ®, ¢ depends also implicitly on
F and K. If Fis a polynomial, then ®, ¢ C K for any S. We shall obtain lower and upper
bounds on dimg(®, s) when F' is not a polynomial. To state them precisely, we need to
introduce some notations.

We consider a differential operator L = 3/ Pi(z)(£)7 € Q[z, -] such that LF(z) = 0
and L is of minimal order for F'; then L is a G-operator and in particular it is fuchsian by a
result of Chudnovsky [13, 14]. We denote by 0 the degree of L and by w > 0 the multiplicity
of 0 as a singularity of L, i.e. the order of vanishing of P, at 0. We have § = deg(P )
because oo is a regular singularity of L. We let ¢ = § — w, and fy = max(/, fl, . fn)
where fl, R f77 are the integer exponents of L at oo (so that £y = ¢ if no exponent at oo
is an integer). We refer to [24] for the definitions and properties of these classical notions,
and to [4, §3] for those of G-operators.

Theorem 3. If F' is not a polynomial, then there exists an effective constant C(F) > 0
such that for any a € K, 0 < |a| < R, we have

1+ 0(1)
K : QIC(F)

The second inequality holds for all S > 0 while in the first one, o(1) is for S — +o0.

10g(S) S dimK(CI)%S) S goS + M. (15)

The upper bound in (1.5) depends only on F. The constant C'(F) is independent from
the number field K, which is assumed to contain « and all the Taylor coefficients A of F’;
its expression involves certain quantities introduced in Proposition 1 in §5.1.

We have the following corollary, in a case where {5 = 1. The proof is given in §2,
together with many examples and other applications of Theorem 3.

Corollary 1. Let us fiz some rational numbers ai, ..., api1 and by, ..., b, such that a; ¢
Z\A{1} and b; ¢ —N for any i, j. Then for any o € Q such that 0 < |a| < 1, infinitely
many of the hypergeometric values

- (%H)k o
Z@ S e 270 (16)

are linearly independent over Q(«).
The numbers in (1.6) are hypergeometric because they are equal to

1F al,ag,...,apﬂ,l,...,l‘a
pts+1+ p+s )
bi, by, ... by 2, ..., 2



where 1 and 2 are both repeated s times. It seems to be the first general Diophantine result
of this type for values of hypergeometric functions. Of course the conclusion of Corollary 1
can be stated more precisely as

 (a)r(@2)i - (apsn)e o 1+0(1)
timan S 25 e 05> g g )

where C' > 0 depends on ai,...,ap41 and by,...,b,. The special case p = 0, a; = 1
corresponds to Theorem 2 stated above, except that log(2e) is replaced with C. An ad hoc
analysis in this special case would give C' = log(2e¢), thereby providing Theorem 2 again
(with a new proof, see below).

The strategy to prove Theorem 3 is as follows. First, we construct certain algebraic
numbers kj;s, € K and polynomials Kj;,(z) € K[z] such that for any s,n > 1:

s —1

R = 303 a1 + 5 Kol (-2) F ), (17)

t=1 j=1

=
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with geometric bounds on denominators and moduli of Galois conjugates (see Proposition 1
in §5.1 for a precise statement). Eq. (1.7) is a far reaching generalization of a property
trivially satisfied by polylogarithms: for any n > 1,

3

o] k4n -1

Zm = Liy(2) —Zk—.

k=0 k=1
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To obtain this result we study linear recurrences associated with G-operators, and make use
in a crucial way of the results of André, Chudnovsky and Katz [4, 19]. With z = «, (1.7)
proves the inequality on the right-hand side of (1.5). This part of the proof of Theorem 3
uses only methods with an algebraic flavor.

To prove the inequality on the left-hand side of (1.5), we use methods with a more
Diophantine flavor. We consider the series

- k(k—1)---(k—rn+1) _
Tsrn = !ST§ *
sra(2) =n = (k+1)5(k+2)% - (k+n+1) t

where |z| > 1/R, r and n are integer parameters such that r < S and n — +oo. If A, =1
for any k, this is essentially the series used in [31] and [25] to prove Theorem 2. Using

(1.7) again, we prove that T, ,(1/a) is a K-linear combination of the numbers F}t](a)
(1<t<8,1<j<4)and (2£)F(a) (0 < j < p—1). In fact, the series TSM( ) can
be interpreted has an explicit Padé-type approximant at z = oo for the functions F (1 /2)
and (z-L)F(1/z).

We apply singularity analysis and the saddle point method to prove that

Q

Ts,n(l/a) = a™n” log(n)’\(ZCqC: + 0(1)> as n — oo, (1.8)

q=1

bt



for some integers () > 1 and A > 0, real numbers a > 0 and k, non-zero complex numbers
c1,. .., ¢ and pairwise distinct complex numbers (i, ..., (g such that |(,| = 1 for any g¢.
These parameters are effectively computed in terms of the finite singularities of F'.

To conclude the proof we apply a linear independence criterion, as for all results of the
second family mentioned above. Such a criterion enables one to deduce a lower bound on
the dimension of the K-vector space spanned by complex numbers vy, ..., ¥; from the
existence of linear forms 7T,, = Z‘jjzl pjn¥; with coefficients p;,, € Ok. This lower bound
is non-trivial if |7},| is very small, and p,,, is not too large. However one more assumption
is needed. In Siegel-type criteria this assumption is the non-vanishing of a determinant;
Theorem 2 is proved in this way in [25], by constructing several sequences (Ték)). On the
opposite, Nesterenko’s criterion [26] (and its generalizations [35, 9] to number fields) enables
one to construct only one sequence (73,), but it requires a lower bound on |T},|*/™; this is how
Theorem 2 is proved in [31] if « is real. If liminf,, |T},|*/™ is smaller than lim sup,, |T,,|"/",
this lower bound is weaker. In fact, in our situation, namely with the asymptotics (1.8),
it is not even clear that liminf, |T},|"/™ is positive so that these criteria do not apply. We
solve this problem by generalizing Nesterenko’s criterion (over any number field) to linear
forms (T,,) with asymptotics given by (1.8); our lower bound is best possible (see §3 for
precise statements). In the special case of polylogarithms, this provides a new proof of
Theorem 2 when « is not real.

The structure of this paper is as follows. In §2 we deduce Corollary 1 from Theorem
3, and give applications of these results. In §3 we state and prove the generalization of
Nesterenko’s linear independence criterion to linear forms with asymptotics given by (1.8).
Then in §4 we prove a general result, of independent interest, on linear recurrences related
to G-operators (using in a crucial way the André-Chudnovsky-Katz theorem). This result
allows us to prove (1.7) in §5, with geometric bounds on denominators and moduli of Galois
conjugates. We conclude the proof of Theorem 3 in §6, except for the asymptotic estimate
(1.8) that we obtain in §7 using singularity analysis and the saddle point method. At last,
we mention in §8 how to simplify the proof in the special case where A; > 0 for any k, and
a > 0.

2 Examples

The generalized hypergeometric series defined by (1.3), if b; ¢ —N for any j, is solution of
the differential equation Lpy(z) = 0 where

d

Lh:0(0—|—bl—1)(9—|—bp—1)—z(9—|—a1)(9+ap+1), 9:’2%

It is a G-function if and only if the a;’s and b;’s are rational numbers, in which case Ly, is
a G-operator. Assuming a; ¢ —N, it is not a polynomial. We now compute the quantities
defined before Theorem 3, especially ¢y. The degree § of Lj is p+ 2 and the multiplicity w
of 0 as a singularity of Lj is p+ 1. Hence, { = § —w = 1 (consistently with the expression



of L, and Lemma 1 below). Moreover, the exponents of L, at 0 are 0,1 —by,...,1 — b,

while those at oo are as,...,a,+1, so that ¢, = max(1,ay,...,a,) where the a; are the
integer parameters amongst ay, ..., a,y1. If none of the a;’s is an integer greater than 1

then ¢y = 1. This proves Corollary 1.
We now list the hypergeometric parameters of the examples stated in the Introduction:
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In these eight cases, we have £y = 1 so that Corollary 1 applies (separately) to them.

Let us now compute £, for non-hypergeometric examples. The function ——— =

i~ ko (kY (ki ok : . . : Vi=6zts?
> he0(Xi—0 (j)( ; ))2" is solution of the differential equation

(22 =62+ 1)y (2) +(z = 3)y(z) =0

which is mlnlmal for this function; its exponent at co is 1. Hence ¢y = ¢ = 2 and Theorem 3

provides lﬂz (5] & log(S) K-linearly independent numbers amongst the numbers

S0 e w0 GO0 Patz 0z=s

k=0 j=0

The function log(1—2) log(142) = >, (3 Z% L ].1) )22 is solution of the differential
equation

22 = 1%y (2) + (2° = 1)(72° + D)y (2) + 22(52° — D)y (z) + 2(z° + Dy (2) =0

which is minimal for this function; its exponents at co are 0,0,0,1, and ¢, = ¢ = 4.

The function Liy;(2) = 3log(1 — 2)? = >3 (75 Z] 15 1)2k+1 s solution of the differ-
ential equation

(z = 1)%"(2) +3(z = 1)y"(2) +4/(2) = 0

which is minimal for this function; its exponents at oo are 0,0,0. Hence {5 = ¢ = 2 and
Theorem 3 applies to the numbers

[eS) k—1 00 k—1

Z(Zl);‘il and Z( %) koikl s> 0.

=1 =1 k=1  j=1




More generally, the multiple polylogarithm function Li,, 4, s, (%), with s; > 1, is solution
of the differential equation <4, ---d,,y(z) = 0, where §, = 1=26*. This equation is a
G-operator (being a product of G-operators) of order 1 + Z?Zl s;j. Its leading coefficient
is (1 — z)"z%++~" and its indicial polynomial at oo is z** 7T +1 g0 that {y = n.

The generating function of the Apéry numbers EZO:O(Z?:O (’;)Z(k;" )2)z’g is solution of
the minimal differential equation

22(1 =34z + 28" (2) + 2(3 — 1532 + 622)y"(2) + (1 — 1122 + 72°)y/(2) + (2 — 5)y(2) = 0.

Its exponents at oo are 1,1,1. Hence {5 = ¢ = 2 and Theorem 3 applies again to the
numbers

,i;(zk:() (kﬂ) ><kik1)8 nd gé(ﬁ(k?y)(ﬁk@ 520

7=0

We conclude this section with the case of the series Gy(z) = > o, %zk where b

is any fixed p081t1ve integer and y is the unique non-principal character mod 4. Since

Gy(z) = > ey 2ki)1 5221 it is a G-function. Moreover, §((1 4 2%)8°)Gy(z) = 0, which is
of minimal order for G,(z). Hence §((1+ 2%)6) is a G-operator: it is such that p=1b+1,
0 =b+3, w=>b+2,¢ =1 and its exponents at infinity are 0,0, ...,0, 2, where 0 is repeated
b times. Hence ¢y = 2 and Theorem 3 applies to the numbers

o X(F) o x(k) 4
Z b+s and ;m@, s> 0.

k=1

o

More generally, Theorem 3 applies to any G-function of the form » -, A( ))z where x is

a Dirichlet character and A(X) € Q[X] is split over Q and such that A(k) # 0 for any
positive integer k.

3 Generalization of Nesterenko’s linear independence
criterion

The following version of Nesterenko’s linear independence criterion will be used in the proof
of Theorem 3.

Let K be a number field embedded in C. We let L. = R if K C R, and . = C otherwise.
We denote by o(1) any sequence that tends to 0 as n — oo.

Theorem 4. Let (Q,) be an increasing sequence of positive real numbers, with limit +00,

such that Q.11 = QHO(D LetT > 1, cq,..., cr be non-zero complex numbers, and (y, ...,
Cr be pairwise distinct complex numbers such that |(;| = 1 for any t.



Consider N numbers ¥1,...,9y € L. Assume that for some T > 0 there exist N se-
quences (Pjn)n>0, J = 1,..., N, such that for any j and n, p;, € Ok, all Galois conjugates

14+o0(1)

of pjn have modulus less thcm Qn , and

T

me = Q. (S ag +ol1)). (3.1)

t=1

Then
T+1
[K:QJ
Given 0 < a < 1 < f and Kk, A € R, this theorem can be applied when all Galois
conjugates of p;,, have modulus less than gm1+°1) and

dimg Spang (¢4, ..., 0n) >

T

> bty = a"n(logm)* (D e +o(1) ) (3:2)

j=1 t=1

then the conclusion reads

_ 1 log(a)
dimg Spang (¢4, ...,0y) > K- O (1 — log(ﬁ))'

Nesterenko’s original linear independence criterion [26] is a general quantitative result,
of which Theorem 4 is a special case if K =Q, T"=1, (; = £1. The case where K = Q,
T =2, (, = and ¢; = ¢ follows using either lower bounds for linear forms in logarithms
(if c1,¢1 € Q, see [34] or [17, §2.2]) or Kronecker-Weyl’s equidistribution theorem [17].

Nesterenko’s criterion has been extended to any number field K by Tépfer [35] and
Bedulev [9]; their results are similar, but different in several aspects. The case T' = 1 of
Theorem 4 follows from Tépfer’s Korollar 2 [35], but does not seem to follow directly from
Bedulev’s result since he uses the exponential Weil height relative to K instead of the house
of p;, (i.e., the maximum of the moduli of all Galois conjugates of p;,,).

We shall deduce the general case of Theorem 4 from Tépfer’s result using Vandermonde
determinants (as in the proof of [19, Lemma 6]). This provides also a new and simpler
proof of the above-mentioned case K=Q, T =2, (, = (; and ¢, = ¢7.

Even in the special case where T'= 1 and K = Q, the lower bound in Theorem 4 is best
possible (see [18]). We have the following corollary, which we shall not use in this paper
but which can be useful in other contexts.

Corollary 2. Let a, 5 € R be such that 0 < o < 1 < . Consider N numbers 91, ...,0y5 €
L. Assume that there exist N sequences (pjn)n>0, J = 1,..., N, such that for any j and
n, pin € Ok, all Galois conjugates of p;, have modulus less than pr+e@) - and

lim sup ‘ ij n

l/n
< a.




Assume also that Zj.vzlpj,nﬂj # 0 for infinitely many n, and that for any j the function
Yoo o Din2" is solution of a homogeneous linear differential equation with coefficients in

Q(z). Then

1 log(«)
e Toas)

The point in Corollary 2 is that no lower bound is needed on |Z;V:1 pjn¥j|. This re-
sult fits in the context of G-functions, since its assumptions imply that > 7 p;,z" is a
G-function for any j. To deduce Corollary 2 from Theorem 4, it is enough to notice that
> Zjvzl pintz" = Zjvzl ;Y pinz" is solution of a homogeneous linear differen-

dimg Spang (¢4, ...,0y) >

tial equation with coefficients in Q(z). We can then apply classical transfer results from
Singularity Analysis: an asymptotic estimate like (3.2) holds.

Proof of Theorem 4. For any n > 0 we consider the following determinant:

G . G
Ap=| :

n+1T-—1 n+1T-—1
1 DY T

We have |A,| =[] ... A = |Ag| # 0 since Ag is the Vandermonde determinant built
on the pairwise distinct complex numbers (i, ..., (. We claim that for any n > 0 there
exists 0, € {0,...,T — 1} such that

T
n-+on
‘ E Ct Ct
t=1

Indeed if this equation holds for no integer §,, € {0,...,T—1} then upon replacing C ,, with
é Zthl cCtn, (where Cy,, is the t-th column of the matrix of which A,, is the determinant)
we obtain:

lc1 A

>
- T

(3.3)

T |1 A
C1 T!
since all minors of size T'— 1 have modulus less than or equal to (7'—1)!. This contradiction
proves the claim (3.3) for some 6,, € {0,...,T — 1}.

Now let p;m = Djnts,- oince Qni1 = }fo(l) and 0 < 0, < T — 1 (where T'— 1 does
14+o0(1)

[Ao| = 4| < (T =D = [Aol,

not depend on n), all Galois conjugates of p;,, have modulus less than @ . Moreover
(3.3) yields \Zjvzl Pyl = Qn W Therefore Topfer’s Korollar 2 [35] applies to the
sequences (pj,,): this concludes the proof of Theorem 4. ]

Remark 1. In the proof of Theorem 4 the sequences (pj,) may be such that p}, = p} .
for some n < n' even if this does not happen with p;,,. This is not a problem since in this
case n' —n <T — 1, where T is independent from n.
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4 Linear recurrences associated with G-operators

In this section we apply some results of André, Chudnovsky and Katz to prove a few
general properties of G-operators (stated in §4.1). We recall that for any G-function F,
any non-zero differential operator L € Qlz, d%] of minimal order such that LF = 0 is a
G-operator. We refer to [4, §3| for the definition and properties of G-operators.

4.1 Setting and statements

Lemma 1. Let K be a number field, and L = 37", P;(z) (d%)j a G-operator with P; €
K[X] and P, # 0; denote by ¢ the degree of L, and by w > 0 the multiplicity of 0 as a
singularity of L; let { = — w.
Then there exist some polynomials Q;(X) € Ok[X] and a positive rational integer o
such that
- d
=l = 1Q;(0 + 7) where § = z—.
az ;z Q;(0+ j) where e
Moreover letting d; = deg((Q);) we have
dj < p forany 0 <7< anddy=d; = p.

At last, Qo(X) =0 and Qu(—X + ) =0 are (up to a multiplicative constant) the indicial
equations of L at 0 and oo, respectively.

This lemma belongs to folklore (see for instance [8, §4.1] for a part of it) but for the
sake of completeness we provide a proof in §4.2 below.
In what follows we keep the notation and assumptions of Lemma 1. We denote by e,
.., e, and fi, ..., f, the integer exponents of L at 0 and oo, respectively; they are the
integer roots of the indicial equations at 0 and oo, namely Qy(X) = 0 and Q,(—X +¢) = 0.
We let m > 1 be such that

m>—€iandm>j?;~—€f0rall1§z’§/§,1§j§n;

of course the condition on €; (resp. f;) is always satisfied if kK = 0 (resp. n = 0). Then
Qo(—n) # 0 and Q,(—n) # 0 for any integer n > m, so that the linear recurrence relation

¢
Z Q;i(—n)U(n+j)=0, n>m (4.1)

(satisfied by the Taylor coefficients of any power series in 1/z annihilated by L, see Step 1 in
the proof of Lemma 2) has a C-basis of solutions (u1(n))n>m. - - -, (w(n))n>m with u;(n) € K
for any 1 < j < /¢ and any n > m. The determinant

wn+0—1) -+ wn+£-1)
W(n) = taln+€-2) - wlpti-2) (4.2)
u(n) ue(n)

11



is called a wronskian (or casoratian) of the recurrence.
Now let us consider an inhomogeneous linear recurrence relation

14

> Qi(=n)V(n+j)=gn), n>m (4.3)
=0
where g(n) is defined for any n > m. We let A;(n) = D;(n) 55?1__173) for n > m + 1, where
wmn+€—2) - ui(n+0—-2) upy(n+€—-2) -+ wn+0-2)
Dym)= (17| : - : - '
wm) e ) ) e u)
(4.4)
Lemma 2. The general solution of the recurrence (4.3) is
~ A;(k)
V(n):Z(Xj+ Z M/J'(k)>uj(n>a n>m,
j=1 k=m+1
where x1, ..., Xe¢ are arbitrary complex numbers. Moreover we have W(n) # 0 for any

n > m, and the power series y #2), Yo ()2 and Y507 Q?{l(z) 2" (with
1 <j <) are G-functions.

The first part of this lemma (namely, the expression of V(n)) is valid as soon as
Qo(—n)Q¢(—n) # 0 for any n > m: it does not rely on the assumption that L is a
G-operator.

4.2 Proofs

Proof of Lemma 1. Since oo is a regular singularity of L we have deg(P) < 6 — (1 — k)
for any k and deg(P,) = J; since 0 is a regular singularity the order of vanishing of each
Py at 0 is at least max(0,w — (u — k)). Therefore we may write

o—p+k

Pi(2) = Z pkvizi.

i=max(0,w—p+k)
Now observe that for any n > 1,
(D) 2S¢ with depp =1
z (E> = ch,n with ¢;,, € Q and ¢, ,, = 1.
j=1
Then we let po; =01if 7 < —1, and
“w k
Sk(X) = Pog—pn + Z ( Z piJrufk,iCj,iJr,ufk)X]
1

Jj= i=max(0,k+j—p)

12



for w < k <4, so that deg(S,) = deg(Ss) = p and

0
L= 2""8.(0).
k=w

Let a > 1 denote a common denominator of the (algebraic) coefficients of all polynomials
Sk, and put Q;(X) = aSj1(X — j). Then we have

‘
azt YL = Z 2Q;(0 + 7).
=0
At last, since 0zP = pzP for any p € Z we have

J4
1 it
Ll == Qjlp+g)a"tt.
j=0

Since Qg and @y have degree 1, they are non-zero and (up to the multiplicative constant i)
the indicial equations at 0 and infinity are respectively Qo(p) = 0 and Q,(—p+¢) =0. O

Proof of Lemma 2. We split the proof into four steps. Step 3 and a part of Step 2 are some-
what classical, and do not rely on the assumption that L is a G-operator (see for instance
29, pp. 5 and 22]). However we provide a complete proof for the reader’s convenience.

Step 1: Proof that > 2 w;(n)z" is a G-function.
For any power series U(z) = > > wu,z"", Lemma 1 yields

n=m

aztYLU(2) = jf ( i ukHQj(—k))fk.

j=max(0,m—k)

Therefore (uy,)p>m is a solution of (4.1) if, and only if, az*"*LU(z) = 2'"™Uy(z) where
Uy is a polynomial of degree at most ¢ — 1. In this case (d%)gz“*“*mfll/ is a G-operator
that annihilates U(z); notice that 2*“L € K[z, ] even if w > y, since 0 is a regular
singularity of L. Applying the André-Chudnovsky-Katz theorem (see [4, p. 719] or [19,

§4.1]), we deduce that if u,, € K for any n then U(z) is a G-function in 1/z.

Step 2: Computation of the wronskian W (n).

First of all, if W (ng) = 0 for some ny > m then we obtain Ay, ..., A\, € C, not all zero,
such that A\ui(n) + ...+ Aug(n) = 0 for any ng < n < ng + ¢ — 1; by induction this
equality holds for any n > m, which is a contradiction. Therefore we have W (n) # 0 for
any n > m. Moreover W (n) is solution of the linear recurrence of order 1

Qu(=m)W(n+1) = (=1)"Qo(~n)W (n), (4.5)

13



since the left hand side is equal to

SIS Q w4 g) .~ S Qs (s + j)
u(n+0—1) ue(n+{—1)
u1(n:+ 1) T W(n:—i_ D

By Lemma 1 we have

2 Iz

Q(X) = ][(X —e) and QuX)=7][(X+ £ -0,

i=1 i=1

where 79,7, are non-zero elements of K and ey, ..., e, (resp. fi, ..., f,) are the exponents
of L at 0 (resp. at 0o). By Katz’ theorem [4, p. 719], these exponents are rational numbers.
The recurrence (4.5) is easily solved: for n > m, we have

£(n—m) Qo(1 —n)---Qo(—m)
Qe(1=n) - Qe(=m )

o (n—1+¢e) - (m+e)
W (m) ((=1)"70/) H —1— 40 (m—f+0)

(m + ei)n—m

W(n) = (~1)

W(m)

= W(m)((—l)g%/W)n_m H (

Therefore " W is a 441Fy hypergeometric series with rational parameters, and ac-

cordingly a G-function.

Step 3: Computation of the solutions of (4.3).
Since W(n) # 0 for any n > m, given any sequence (v(n)),>m there exist sequences
(¢;(n))n>m, 1 < j < £, such that

~

vin+k)=> ¢nu(n+k), k=0, (-1 (4.6)

j=1
This equation with n + 1 and k£ — 1 reads

v(n+k):ch(n+1)uj(n+k), k=1,...,0—1,

j=1

so that
l
> (Aci(m)uy(n+k)=0, k=1, (-1, (4.7)
J=1

where we define as usual the difference operator Az, := x,11 — .

14



Now let us assume that (v(n)),>m is a solution of the inhomogeneous linear recurrence
relation (4.3). Since (4.6) with n 4 1 and ¢ — 1 yields

¢ ¢
vin+0) = ZACJ Juj(n+0) —i—Zc] Juj(n+£),
7j=1 7=1

we obtain using also (4.6) and the fact that (u;(n)),>n is a solution of (4.1) for any j:

14

> (@cmun+ ) = G4 (48)

Jj=1

The ¢ equations given by (4.7) and (4.8) form a system of linear equations which enables
us to find Ac;j(n) by Cramér’s rule because the determinant of the system is the wronskian

W(n + 1) defined by (4.2). We have W(n + 1) # 0 (by Step 2) so that Ac;j(n) = ﬁ}((gill))

since A;(n) = D;(n)A%=2L is equal to the following determinant:

Qe(1—n)
u(n+L—=1) - wan+l—1) Fok i+ l—1) - w(n+—1)
wmn+l—2) - uj(n+l—2) 0 ujp(n+0—2) - w(n+0—2)
uy (n) e uj-1(n) 0 ujr1(n) . ug(n)

Therefore we obtain

oin) = s(m) + 3 Ae() = sfm) + Y- Lz m

and finally

= EZ (Cj( Gl ) n).
, W (k)
7=1 k=m+1
Conversely, the same computations prove that any sequence defined in this way (with

arbitrary constants c;(m), 1 < j < /) is a solution of the inhomogeneous linear recurrence
relation (4.3).

Step 4: Proof that > > ., QD{(H))Z” is a G-function.
Expanding the determinant in (4.4) we see that > . D;(n)z" is a Z-linear combi-
nation of Hadamard (i.e., coefficientwise) products of G- functlons Yot Un(n +1)2", s0

that it is a G-function. On the other hand 7 ., m is a G-function because @) is
Di(n) _n

split over the rationals (see Step 2) so that finally > > ., O -m~" 1s a G-function for
any j. O]
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5 Properties of Fk](z)

Throughout this section, let K be a number field, and L = > " P;(2) (£)’ a G-operator
with P; € K[X] and P, # 0. We denote by § the degree of L (i.e., 6 = deg(P,) since oo
is a regular singularity of L), by w > 0 the multiplicity of 0 as a singularity of L (i.e., the
order of vanishing of P, at 0), and we let { =0 — w.

Let F(z) = > "2, Akz", with Ay € K, be such that LF = 0; then F is a G-function. Of
course, starting with such a G-function F', one may choose for L a differential operator, of
minimal order, such that LF = 0; then L is a G-operator.

Recall that we let 8 = zdd and that

z

P rE——
c~ (k+mn)
5.1 The main proposition

As in the introduction, we denote by fl, ey ]?n the integer exponents of L at oo, with
1 = 0 if there isn’t any.

Proposition 1. Let m > 1 be such that
m>]?j—€ forall1 <j<mn. (5.1)

Then for any s,n > 1:
(i) There exist some algebraic numbers rk;; ., € K, and some polynomials K, (z) €
K[z] of degree at most n+ s(¢ — 1), such that

s fl+m—1 n—1
FI =3 kjranF(2) + ) Kjan(2)(07F)(2). (5.2)
t=1 j=1 j=0

(17) All Galois conjugates of all the numbers kjisn (7 < l+m—1,1t <s), and all Galois
conjugates of all the coefficients of the polynomials K s, (2) (j < pp—1), have modulus less
than H(F,s,n) > 0 with

lim sup H(F, s,n)"/" < Cy(F)*
n—-+00
for some constant Cy(F') > 1 independent of s.

(1ii) Let D(F,s,n) > 0 denote the least common denominator of the algebraic numbers
Kitsm (J <l+m—1,1t<s,n <n)and of the coefficients of the polynomials K; s,/ ()
(G <p—1,n" <n); then

limsup D(F, s,n)"/™ < Cy(F)?

n—-+o0o

for some constant Co(F') > 1 independent of s.
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The constants C(F) and Cy(F) are effective and could be computed in principle.
However, their values are complicated to write down and do not add much value.
Of course the most interesting case of Proposition 1 is when m = max(1, f; + 1 —

o J?n +1—7), that is m = o — £+ 1 where £y was defined in the introduction: we obtain
in this way (1.7). However, in the proof we shall use greater values of m (see §5.3 below).

Our main tool will be a linear recurrence relation satisfied by F#](z).

5.2 A linear recurrence relation satisfied by F#](z)
Let Qo, ..., Q; and d; = deg(Q),) be as in Lemma 1.

Lemma 3. For any fixed integer s > 1, the sequence of functions (F#’](z))m 15 solution
of the inhomogeneous recurrence relation -

L

/ s—1
STQi-nEL(2) =33 BinasFi;(2) +Zz"+me F(z), n>1 (53)
j=0

j=0 t=1

where B 15 € Ox and each polynomial B;,, (X) € Ox[X] has degree < d; — s.

Moreover, letting B;,, s(X) = ZZLBS bjnsqX? the coefficients Bjnts and b, s, are poly-
nomials in n, with coefficients in Ok (depending on j, t, s, q), such that

deg(Bjnts) < d;+t—s and deg(bjnsq) < dj —q—s.

In particular:

o If s>y =max(dy,...,ds), then Bj, s(X) =0.

o [ft<s—d; then Bjn.s=0.

Proof. We prove (5.3) by induction on s > 1, and this will provide expressions for the
various involved quantities. In the case s = 1, we write Q;(z) = S pjmx™ with
pim € Ok for any j, m. For any integer n > 1, we have

0:/ "Lz dx—ZZp]m/ "G + j)"F (x)da

7=0 m=0
¢ dj

-y ; ( ) jmep /0 LG (2 da

j=0m

because (6 + j)™ = Z;nzo (p) jm_pgp. After successive integrations by parts (with respect

to 6; all the integrated parts vanish at x = 0 because n > 1), we see that

/ 2" P (x)da
0



Since [} 2" F(z)de = i

ntj(2) we deduce that

0= KL mez( )vrta s

7=0
d; m m p—1
+ Z Y pim ) ( )jm—p S (1P 4 )P GOE ().
7=0 m=0 p=0 p q=0
We now set for 0 < ¢ <d; —1
d; m
mY . _ N
bra == o 3 ( >J P14 4 ), (5.4)
m=0 p=q+1 p

which is a polynomial in n with coefficients in Ok and degree at most d; —q —1. Therefore
Bjn1(X) = ZZLBl bjn1,4X? has degree < d; — 1 and coefficients in Ok. Since

d; o d;
S oy (p) Pt 3 = 3 pym(n)™ = @),

we then deduce that

for any integer n > 1: this proves (5.3) for s = 1.

Let us assume that Lemma 3 holds for some s > 1. Then, since [, - iFEH( )dx =

F,[L‘f]”( ), we have
Y, ? 4 z
S Q) = 35 s P 43 | 4 B 0)F (o)
=0 j=0 t=1 j=0v0
Now recall from the case s = 1 that
z q—1
/0 "I (a)de = 2 ;HW 4+ )TN (2) + (D) (04 §)TF (2).
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5=0
¢ s ¢ dj—s
t 1
:Z 5jnt718 r[L_}y_](Z)_'_ZFr[H}—](Z)( ( 1) (n+j) bJ”SQ)
7j=0 t=2 7=0 q=0
L dj—s q—1
+ Z Zn+] Z bj7n75 q ( ]')q_h 1(n + ])q h 19hF( )
j=0 q=0 h=0
Eq. (5.3) follows for s +1 > 2 with
dj—s
> (D n+ )by for t=
ﬁj,n,t,s—l—l - =0
Bjmt—1,s  for 2<t<s
and
dj—s—1
Binen(X) = 3 ( T i s e W) X"
g=h+1
In particular,
dj—s
bj,n,s+17h = Z (—1)q*h*1(n +j)q7h71bj,n’s7q, 0 S h S d]’ —s—1.
q=h+1
This completes the proof of Lemma 3, with explicit formulas. ]

5.3 Proof of Proposition 1

Let K, F', L be as in the statement of Proposition 1, and @, ..., @), be as in Lemma 1.
To begin with, we claim that if m satisfies (5.1) and Proposition 1 holds for m +1, then

Proposition 1 holds for m. Indeed Lemma 1 asserts that the integer roots of Qi(—X +7)

are fl, el f77 so that (5.1) yields Q,(— ) # 0. By induction on s > 0, Lemma 3 implies

that FT[H]M( ) is a linear combination of Fm+]( 2) (0<j<l—-1,1<t<s, with coefficients

in K) and ¢/F(z) (0 < j < pu — 1, with coefficients in K[z] of degree at most m + £).
Then for any n > 1 we may replace all F[S] ,(2) with this expression in the expansion (5.2)
provided by Proposition 1 with m + 1. ThlS gives an expansion of the form (5.2) with m,
and the new values of ks, and Kj,,(z) are easily proved to satisfy also (i7) and (ii7).
This concludes the proof of the claim.
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We denote by ey, .. X@,i the integer exponents of L at 0; we have x > 1 because
LF(z) = 0. Recall that fi, ..., f, are the integer exponents of L at oo, with n = 0 if there
isn’t any. The claim shows that in proving Proposition 1 we may assume that m is large;
we shall assume from now on that

m>—’e}andm>fAj—€ forall 1<i<k, 1<j<n. (5.5)

Then we are in the setting of §4.1; in particular, Qo(—n) # 0 and Q,(—n) # 0 for any
integer n > m. As in §4.1 we denote by (u1(n))n>m, - -, (we(n))n>m a basis of the space
of solutions of the homogeneous recurrence relation Z?:o Q;j(—n)U(n+j) =0, n > m,
such that u;(n) € K for any j and any n. We also define W(n) and D;(n) as in §4.1 (see

(4.2) and (4.4)). Lemma 2 shows that )" W( 7 Yo ui(n)z™ and Y00 %z"

(with 1 < j < ¢) are G-functions. Therefore letting ¢,, > 0 denote a common denominator
of the algebraic numbers ﬁ, QLZ(J'T% m+1<k<n, 1<j<4¥),ujk)(m<k<n,
1 <j <¥{), we have

lim sup 65" < Cy(F) (5.6)

n—oo

where Cy(F) is a constant that depends only on F'. Since §,, > 1, we have Cy(F') > 1. For
the same reason we have

1 |1 D; (k)]
W(E)" [Qe(1 — k)l

as n — oo, for any j < ¢, where C(F") is a constant that depends only on F'. Increasing
C1(F) if necessary, we may assume that C;(F) > 1.

By induction on s > 1 we shall construct algebraic numbers x;, ,, € K and polynomials
K;sn(2) € K[z] of degree at most £+ n — 1 such that for any n > 1,

) Oy (F)r(i+o(1) (5.7)

mggi(<nmax (‘U]( )‘ |

s l+m—1
FP() =30 3 minant +2Km )P F(2) (5.8)
t=1 ] 1 ] =0

with the additional properties
dsagi_s(é_l)/‘ij’t’s’n/ € Ok and d° (5;}0‘15 Kj,syn/(z) € Ok|z] for any n' <n (5.9)

where d > 1 depends only on F' but neither on n nor on s. Together with (5.6) this implies
assertion (ii7) of Proposition 1; our construction (in which all formulas are explicit) yields
also assertion (i7) using (5.7).

The construction of ;¢ s, and K s () is trivial if n < /+m—1: it is enough to choose
K, ;n(2) =0 for any s,j, and Kj; s, equal to 1 if j = n and t = s, equal to 0 otherwise.
Therefore we may restrict now to the case n > ¢ + m.

We shall prove at the same time the initial step (s = 1) and the inductive step. With
this aim in mind we let s > 0 and we shall prove the property with s+ 1 (i.e., construct
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explicitly Kjss+1,, and Kji1,(2) such that (5.8) and (5.9) hold); if s = 0 the proof is
unconditional, whereas if s > 1 the property with s will be used.

By Lemma 3, the sequence of functions (ELSH] (z))n>1 is solution of the inhomogeneous
recurrence relation -

ZQJ Fiirgl] (2) = gs41(n), n>1, (5.10)

with
Gea (n ZZBWHF,JL Z Bjns11(0)F () (5.11)
7=0 t=1

where (j,:s+1 € Ok and each polynomial Bj,n,sﬂ( ) € Ok[X] has degree < d; —s — 1.
Lemma 2 shows that there exist some functions x,4+1,(2) such that for all n > m,

PO = S s + 32 (3 S Jue. e

7=1  k=m+1
with (using (5.11))

s

Ay (K ¢
W—;l(,k() ! B W( <q:Zot:1 By,k— 1ts+1Fk 1+q Z kta= B K 1S+1(0)F( ))

(5.13)
The point here is that F, SH]( )s gs+1(n), Ay (k) depend on z, whereas @);(—n) does not:
the homogeneous recurrence relation (4.1) and w;(n), W(k), D;(k) do not depend on z.
The functions x441,,(2) can be determined as follows. We use (5.12) forn =m, ..., m+{—1
so that the linear system of ¢ equations

J4 n
2 : +1 2 : } : s+1, k
XS+1] uj F[S ] h=1 (k m—+1 I/;—/(Z() ))Uh(n)

is solved by Cramér’s rule. Indeed, the determinant of the system is W (m) and accordingly
a non-zero element of K by Lemma 2. Therefore, for any j there exist some «,; € K
(independent of s) such that

4+m—1 4 P
Xs+1,5(2 Z ap]< ps+1 Z( Z %ng)uh(po (5.14)

Using this equality and (5.13) into (5.12) yields, for any n > m:

FE) =ci 4+ e+ cs+ea+cs, (5.15)
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where

- Di(k
co = — Zluj Z Qyp,j Zuh Z Z Z W(lg)élé((l)_ k)ﬁq,k—l,t,s+1Fl~£tl1+q(Z)’

3 = — Z u;(n) Z Q. j Z un(p) W Qu(1l — ) Z z Byk-15+1(0)F(2),
Jj=1 p=m h=1 k=m+1 q=0

J4 s

l
D, (k) ’
c ;% Z ZZWk)ée( —y ekt Ficial®)

k=m+1 ¢=0 t=1

n

Z Di(k) N~ hreg
s = ]Zluj(n) Z W00 =) ;z Byi-15+1(0)F(2).

k=m+1

If s =0 then ¢y and ¢4 vanish; otherwise we apply (5.8) with each ¢ € {1,...,s} and get

l+m—1

¢
Cy = —Z;uj(n) Z hz; Z ZZ k)ﬁq,k—l,t,sﬂ

km—i—lq 0 t=1

t {+m—1

Q:Zﬁwmmt]+ZK%HAWﬂD

=1 j'=1 3’=0

D; (k)
Cyq ]Zl Z ZZ W) Qu(1 — k)ﬂq,k—u,sﬂ

k=m+1 ¢=0 t=1

t f{+m—1

(X X wrwsrat)! 9+ S Kpopcrea " FL2).

=1 j'=1 3'=0

We shall now define the coefficients kpp 511, and Kjrs41,(2) in such a way that (5.15)

reads
s+1 f+m—1

F[S‘H Z Z "f]’t’s—f—ln t] Z s+1n 9] F( )

=1 j'=1

Taking ¢; into account we let

[ 0if1<p<m—1,
Kp,s+1,s+1,n = Zﬁ:l ap7juj(n) ifm<p</l+m-—1.

If s > 1 then considering c; and ¢4 we let, for any ', j/ such that 1 < ¢ < s and
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1<y <l+m-—1:

Rt ¢ s+1n =
l4+m—1 )

¢
_Zuj(”) Z Z Z ZZ (1= k)Bq,k—l,t,sﬂlijf,t/,t,k—uq
j=1

p=m h k=m+1 q=0 t=t’

=1
¢
E E E E k)quk—l,t,sﬂ’fj’7t’,t,k—1+q'
7j=1

k=m+1 ¢=0 t= t/

Now recall that we assume n > ¢ + m. Then in each term of the sum we have k — 1+ ¢ <
n+ ¢ —1 so that (5.9) yields d* 53+(5+1)(£ Wy th—14q € Ok. By definition of 6,4 (s11)(e-1)
we obtain in both cases (s = 0 and s > 1) that

s+1 c3(s+1)
d 5n+ (s+1) (1)

Kirp stin € Ok for any n' <n, any 1 < j' </+m—1and any 1 <t < s+1,
where d > 1 is chosen (in terms of F' only, independently from n and s) such that
day, jup(p) € Ok forany m <p <{+m —1and any 1 < j, h < /.

On the other hand, writing Bjj s41(X) = ZZ;& bik.st1,4X? (so that bjj i1, = 0 if
deg Bjrst1 < ¢ <yt — 1) and considering the coefficients of 67 in c3, C5, Co and ¢4 we let
for any 7' with 0 < 5/ < p —1:

V4 l+m—1 l P 4
Dy, (k) _
Kjsyin(2) = — Z u;(n) Qp,j Z un(p) Z Qg(l yy Z 2 U s
7j=1 p=m h=1 k=m+ q=0
Z'u, Z _D](k) i Zk*1+qb b1 5147
J q,kx— 1,8 sJ
W WR)Qe(1 - k) =

Z+m 1

— U Z « Z U - Koo s
S

4 n y4 D. k)
+ Z; u;(n) Z Z Z W(k‘)ég(l ) Bak—1,t,5+1 5Kt o—144(2).-
j—

k=m+1 ¢=0 t=1

Then we have

d5+152(jtil)(€ K s+ (2) € Ox[X] for any n' <nand deg(Kj s11n) <n+(s+1)(f—1)

for any j'.
At last assertion (iz) of Proposition 1 follows also from these formulas, using Lemma 3
and (5.7).
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6 Proof of Theorem 3

In this section, we introduce a power series that will play the usual role of an auxiliary
function in transcendance theory. We denote by R > 0 the radius of convergence of
F(z) =00, Arzt.

Let 7, S > 0 be integers such that » < S. Let us define the following auxiliary series,
for n > 0:

= k(k—1)---(k—rn+1) _
sran(2) =n Zk < (k+1)5(k+2)5--- (k+n+1)5 ke

o= (k—n + 1) _
— n!S r § : ( rn Ak P k

It converges for any z such that |z| > 1/R. If Ay =1 for all k > 0, we recover the series
N, (z) in [31], up to a factor of z.
As in §5 we let 6 = z%, and as in the introduction we let ¢y = max(¢, fi, ..., f,) where

~

fiy ey ﬁ? are the integer exponents of L at oo and /¢ is defined as in Lemma 1.

6.1 A linear form

We now make the connection between Ts,.,(z) and the functions Fﬂf}(z).

Lemma 4. Let us assume that n > {y. There exist some polynomials Cys,(X) € K[X]
and Cy,(X) € K[X] of respective degrees < n+1 and < n+ 1+ Sl — 1) such that, for
any z such that |z| > 1/R, we have

Lo S pn—1
Tsrn(2) =D Y Cusn(2)F(1/2) + ) Cun(2)z 5004 F)(1/2).
u=1 s=1 u=0

Remark 2. Since the Taylor expansion of T, ,(z) has order > rn + 1 at z = oo, this
lemma shows that T, ,(2) can be interpreted has an explicit Padé-type approximant at
z = oo for the functions Fqgs](l/z) and (0“F)(1/z). We do not know if it is possible to
find an explicit Padé approximation problem of which T, ,(2) is the unique solution up
to proportionality.

Proof. We have the partial fractions expansion in k:

(k+1)%(k+2)% - (k+n+1) (k+j)°

ntl S
ST k(k—1)---(k—rn+1) ZZ Cisn 6.1)

for some ¢; 5, € Q, which also depend on r and S. It follows that

n+l S

Tsrn(z —chgan]F[] (1/z).

j=1 s=1
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Since n > {y, by Proposition 1 (with m = ¢y — ¢ + 1) we have

n+1

Tsrn(z chjanJF (1/2) + Z chan]Fs] 1/2)
7j=1 s=1 j=l+m s=1
6 S
= Z Z cj,smszj[s](l/z)
j=1 s=1
n+1 s pn—1
+ > Zcmz (szuw (1/2) + ZKu,s,ju/z)(euF)u/z))
j=l+m s=1 t=1 u=1 u=0
pn—1
_ZZC’US” VER(1/2) 43 Cun(2)2 3D (04 F) (1) 2)
u=1 s=1 u=0
where
n+1
Cu,s,n( ) Cusnz + Z Zz Cjonku,s,o,j (62)
j=l+m o=s
and
" n+1
Con®) = S S e DK, (1)), (6.3)
j=lo+1 s=1

The assertion on the degree of these polynomials is clear from their expressions since
K, ;,;(1/%) is a polynomial in 1/z of degree at most j + s(¢ — 1). O

6.2 Analytic and arithmetic bounds for C, ;,(2) and 5’un(z)

In this section, we prove two lemmas concerning the coefficients of the polynomials C,, 5 ,,(2)

and 5un(z) Given ¢ € Q we denote by [€] the house of ¢, i.e. the maximum modulus of
the Galois conjugates of &.

Lemma 5. For any z € Q, we have

lim sup (max |Cy s, (2 ))l/n < Cy(F) 25T max(1, 12)

n—-+oo u,S
and _ )
lim sup ( max |Cy,n(2)|) "< o (F) 25t max (1, 121).

n—-+00 u

Proof. In [31, Lemma 4], it is proved that the coefficients ¢;,,, in (6.1) satisfy
|Ciom| < (rn+1)25(pr25trth)n

for all j,s,n. (Our ¢j,, are noted ¢, _1, in [31]). To conclude the proof, we simply use
this bound in (6.2) and (6.3) together with Proposition 1(i7). O
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Lemma 6. Let z € K and q € N* be such that qz € Og. Then there exists a sequence
(An)n>1 of positive rational integers such that for any u, s:

A, Cysn(2) € Ok, Anéun(z) € Og, and lim Al/" = qCy(F ) ed.

n—-+0o00

Proof. Let d,, = lem{1,2,...,n}. The proof of [31, Lemme 5] shows that d5c;, € Z for
all j, s, n; we recall that hmn di™ = e. On the other hand, in Proposition 1(iii) we may
assume that D(F, S, n) > Cy(F)"/2, upon multiplying D(F, S,n) with a suitable positive
integer if necessary, so that lim, D(F,S,n)"/" = Cy(F)%. Then the result follows again
from (6.2) and (6.3). O

6.3 Asymptotic estimate of the linear form

The following lemma will be proved in §7 (see §7.3) using singularity analysis and the
saddle point method.

Lemma 7. Let o € C be such that 0 < |a|] < R. Assume that S is sufficiently large
(with respect to F' and «), and that r is the integer part of ﬁ. Then there exist some
integers Q > 1 and N\ > 0, real numbers a and K, non-zero complex numbers ci,. .., cg,
and pairwise distinct complex numbers (i, ..., Cg, such that |(,| =1 for any q,

Tsrn(l/a) = a™n"log(n (Zch" + of ) as n — 0o,

and

O<a§TS_T.

6.4 Completion of the proof of Theorem 3

Let a be a non-zero element of K such that |a| < R; choose ¢ € N* such that ¢/a € Ok.
By Lemmas 5 and 6, py s, := ApCusn(l/a) and py, = A,Cyun(1/a) belong to Ok and
for any u, s we have

lim sup max(|pu.sn| " [Punl*™) < b:= qC (F)SCo( F)* 525 max(1, [1/al).

n—-+o0o

Using Lemma 4 we consider

——Z& jz?rn 1/Qf jg::j{:]%Lsn +‘2£:]%any =) euly)( )

u=1 s=1

Choosing r = [S/(log S)?], Lemmas 6 and 7 yield as n — oo:

Q S_S
n(1+o ) Cy(F
T, = aO(H (1))( 5 gy + 0(1)) with 0 < qp < L) € 2(F)"e )

q=1

TS—T
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Let ¥, s denote the K-vector space spanned by the numbers Fq[f](oz) and (0"F)(«),
1<u<ly,1<s<85 0<v<pu—1. It follows from Theorem 4 that

dimK(\Pms) Z

log(ap)
[K?Q] (1 a logg(b) )

Now, as S — +o0,
log(b) = log(2eCy(F)C2(F))S 4 o(S) and log(ag) < —Slog(S) + o(Slog S)

so that

14 o1
dimy (W, 6) > +o(l)

” K 0l loa O (F)Ca(F)) ) (6.4)

as S — +00.

We recall that ®, ¢ is the K-vector space spanned by the numbers Fu[s](a) foru >1
and 0 < s < S. Now, taking z = « in Eq. (5.2) of Proposition 1 with m = ¢y — ¢+ 1 (i.e.
(1.7)) shows that in fact ®, g is a K-subspace of ¥, s. In particular, for any S > 0,

dimK(CI)a,s) S diIIlK(\I/a,5> S goS + M,
which proves the right-hand side of (1.5) in Theorem 3. On the other hand, we also have
dimg (V,,¢) < dimg (D) + 1

so that the lower bound (6.4) holds as well with ®, ¢ instead of ¥, ¢ because p is in-
dependent from S. This proves the left hand side of (1.5) in Theorem 3 with C(F') =
log(2eCy(F)Csy(F)).

7 Asymptotic behavior of Ty, ,(1/«a)

In this long section, we determine the precise asymptotic behavior of Ts, ,(1/a) as n —
+00, under certain conditions on r and S. The result is presented as Proposition 2 at the
very end of the section, and then we deduce from it Lemma 7 stated in §6.3. Before that,
we state and prove many preliminary results.

7.1 Analytic representation of T, ,(1/«)
Let a € C be such that 0 < |o| < R. We start with

o= (B —rn 4+ Dpn %
Tsrn(l/a) = n!S=r A o
,; (k+1)74
o= (k—=rn+ 1), (1 /F(Z) )
_ !S r ( o d k
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Figure 1: The contour C

where C is any direct closed path surrounding 0 and enclosing none of the singularities of
F(z). We want to define a suitable analytic function A(z) such that A(k) = A for any
large enough integer k.

Let &1, ..., &, denote the finite singularities of F'(z). We exclude from this list possible
removable singularities which contribute 0 to (7.1) below; then &; # 0 for any j. We
have p > 1 because F'(z) is not a polynomial. Amongst these singularities, we will not
distinguish poles from branch points.

Let ¥ € (2, m) be such that arg(¢;) # ¢ mod 2r for any j. We choose also ¢; €
(%, %) such that the half-lines L; = &; + ;e iR, are pairwise disjoint, and disjoint from
Ly = €”Ry; note that /8 (and 37w/4 above) do not play a special role here. Then
D=C\(LyULyU---UL,) is simply connected; using analytic continuation F' is well-
defined on D. Moreover for z € C\ Ly we choose the value of arg(z) between 9 — 2r and
¥ so that log(z) = In|z| + iarg(z) is also well-defined on D. Unless otherwise stated, we
shall use this choice everywhere until the end of the proof of Lemma 9.

Since F'(z) is fuchsian, it has moderate growth at oo, i.e there exists u > 0 such that

|F(z)] < |z|* as z = 00,z € D. Hence if k > u, we can “send” C to oo, see Figure 1. We

then have )
1 F(x) 1 F(x)
— dx = — d
2im Jo whtl v ]Zl 20w /Zj ot

where for each j, Zj is a Hankel contour: from oo to &; on one bank of the cut L; (namely
with arg(z — ¢;) slightly less than arg(;) + ;) and back to co on the other bank, and
always at a (constant) positive distance of L;. We thus have the representation

p
1 F(z)
A =S4 , 1
: ;m /fj it (7.1)
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Note that if £; is a pole of F(z), then

! F(x)d:c = Res(F(x) xr = §j>.

2T i, rk+1 rk+1’

PYRTLEY JEC PRy P

- ; z+1 ; ~ z+1
2ir Ji, @ 2ir Ji, @

We define

where L; = 53-_1@; recall that —% < ¢; < I so that arg(§;x) = arg(¢;) + arg(z) when
lies on L;. Each function B;(z) is analytic in Re(z) > u (at least). Note that L; is again a
Hankel contour: from oo to 1 on the bank of the cut 1+ ¢®/R, where arg(z — 1) is slightly
less than ¢;, and back to oo on the other bank, always at a (constant) positive distance of

the cut.
Lemma 8. (i) The function A(z) := ) 7_, Bj(2) is analytic in Re(z) > u and A(k) = Ay
for any integer k > u.

(it) For each j, there exist s; € N, 8; € Q and r; € C\ {0} such that for any t such
that Re(t) > 0,

log(n)%
B,(tn) = F@-%@ + O(@)) (7.2)

as n — 4o0o0. The implicit constant is uniform in any half-plane Re(t) > d where d is a
fixed positive constant.

Proof. Ttem (i) is clear. Ttem (i) is standard but we sketch the argument for the reader’s
convenience; it is essentially the same one as in the proof of [32, Theorem 3]. We fix
jedl,...;p}. Given z € C\ Zj we choose the value of arg(l — =) between ¢; — 7 and
g; + m; then log(1 — ) and (1 — x)" are well-defined (for any ¢ € C). To make things more
precise we shall write log; when we refer to this choice, and log when the previous one is

used. By the André-Chudnovsky-Katz Theorem, in a neighborhood of z =1, = ¢ Zj, we

have

F(&r) =YY rjsilog;(1—2)*(1 — 2)'Fj (1 — x) (7.3)

s€S; teT;

where k;, € C, S; C N, T; C Q and Fy, j(x) are G-functions. (In fact, the full strength of
the André-Chudnovsky-Katz Theorem is not needed here: the theory of fuchsian equations
ensures that (7.3) holds a priori with T; C Q and Fj,:(x) holomorphic at z = 0, which
is enough.) Each function Fy, ;(x) can be analytically continued but we would like to use
only its Taylor series around x = 0. To do that, we now use a classical trick that goes back
to Norlund [29] at least. We set x = 1/(1 —y)“, where w > 0 is a parameter to be specified
below, so that

§° [ F(g
) = e [ S
W& & -
Bz MjF<<1——y>w) o T
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where M is a closed loop around N;, with negative orientation, passing through 1; here
Nj is the set of all y = 1 — (1 + € R)~Y* with R € R,. It is a cut going from 1 to 0, and
if £; = 0 (which is a suitable choice if arg(;) # arg(¢;) mod 27 whenever i, j € {1,...,p}
are distinct) then NN is the real interval [0,1]. We may assume that Re(y) < 1 for any
y € M; so that log(1 —y) is well-defined for any y € M, \ {1}, and also (1 —y)*~!. On the
other hand, in the integral (7.4) we have y ¢ N; so that (1 —y)™ & Zj: we have defined
log;(1 — (1 —y)™*) and we use it in what follows.
We have

F(8) ST (- ) me (- 55))

We now choose w small enough such that Nj; is strictly inside the disk of convergence of
each of the series

1 )t—l-e ( 1 ) >
1 — — Fjj’sﬂt 1— T Wl = yHE Z ¢j,s,t,m(€7 w)ym

for any € > 0, where the coefficients ¢; (¢, w) are infinitely differentiable at ¢ = 0.
Here log(y) is defined with a cut along N; U (1 4+ Ry ); if y does not lie on this cut then
g; < arg(y) < g; + 2m. Since we may also ensure that M, is strictly inside these disks, we
can exchange summation and integral and we obtain

2) = w” ZZ%Z 9es <¢mm gw)g— 1 /M yrrE( —y)zw‘ldy) .
J e=0

s€S; teT;
Now this integral can be computed in terms of Euler’s Beta function B(zq, z5) = %
as follows. Using the residue theorem we may assume that ¢; = 0, i.e. N; = [0,1]. If

t > —1 then M, can be taken as the succession of a path from 1 to 0 along this segment
(in which arg(y) = 27) and a path from 0 to 1 along the same segment (but in which
arg(y) = 0); in both paths we have arg(1 — y) = 0. Therefore we obtain:

m+t+8(1 . )zw—ld - (1= 2im(m-+t+e) F(m +t+e+ 1)F(wz)
) Y Y e .
M Nwz+m+t+e+1)

j
Using analytic continuation with respect to t, we see that this equality holds for any ¢ € C.
Hence, using the reflection formula we obtain

B . 00 o* ¢j,s7t,m(€7 w)ez’w(m+t+e)r(wz)
2= Z Z ﬁj’s’tmz::() Des (F(wz +m+t+e+1)I(-m—t—e))__,’ (7.5)

s€S; teT;

where all the involved series are absolutely convergent; they are called “séries de facultés”
n [29]. Note that of course the result does not depend on the chosen value of w (but
convergence holds only if w is small enough).
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Convergent “Séries de facultés” play a role similar to asymptotic expansions (except
that usually the latter are divergent): roughly speaking, instead of asymptotic expansions
with terms of the form 1/z™, we obtain convergent expansions with terms of the form
1/(2)m. The asymptotic expansion (7.2) follows by classical arguments because we can
easily get the asymptotic expansion of a “série de facultés” as z — oo: if we differentiate s
times 1/(z), = ['(2)/T'(z +m) with respect to m, we obtain a finite sum of terms involving
(derivatives of) the Digamma function W(z) = I''(2)/I'(z), which are asymptotically of the
form log(z)!/2™ with 0 < ¢ < s. See [32] for details when s = 0 and [29, pp. 42-45] for the
general case, especially Théoreme 1 there.

Moreover, the constant x; in (7.2) is non-zero. Indeed since ¢; is a non-removable
singularity of F'(z), the overall asymptotic expansion of B;(tn) obtained from (7.5) cannot
be identically 0 as n — +o0. ]

In what follows we let

i !5~ T((r — t)n)L(tn + 1)+ n
BS,r,nJ’(Oé) = / Bj(lfn) IE(((t n )1)7)1_’(_2): ) (—a)™ dt

for 1 < j < p, where c is such that 0 < ¢ < r; the residue theorem shows that Bg,., () is
independent from the choice of c.

Lemma 9. If0 < |o| < R and r > u then for n large enough, we have

T"I’L

p
Tsrn(l/a) = Z L B i@, (7.6)

Jj=1

Proof. Let Ry, denote the positively oriented rectangular contour with vertices cn £ iN
and N + % + ¢N, where u < ¢ < r and the integer N is such that N > rn. Then by the
residue theorem

N -r
ST Z (k—rn+ 1)T"Akak _ n!s / e (t—rn+1), (—a)idt
= (k+1)7., 2im IRy (t+1)7., sin(mt)

P .
_ n!S— / t —rn+1), =« (—a)idt.
— 2im IRy, (t+1)7., sin(mt)

Here we take log(—a) such that —m < arg(—a) — arg(§;) < m, where arg(¢;) has been
chosen at the beginning of §7. Now, if 0 < |a| < R then

N

, _ k—rn+1)
1 !S " ( A b =Ts,n(1
N—lg-loon E : (/f—i— )n+1 K S, ( /CO

=rn
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while

15-r t— L)rn
lim / B\t U T gy
N—too 20T Jp . (t+1)5,, sin(nt)

cn—100

n]Sfr

(t—m+1),,

~ 2ir / Bi(®) (t+1)5,, sin(rt)

cn+100

(—a)'dt

cn—100

Gl | B (HW T (—a)dt

2im t+1)5,, sin(mt)

cn+-100
cn—100

= [ BRSO Do

ey T D((r— ) £ S
D / B =S oy

c—100

This concludes the proof of Lemma 9. ]

7.2 Asymptotic expansion of Bg,., ()

We want to estimate these integrals using the saddle point method. We first recall Stirling’s

formula 1
['(z) = 2271/2672\/27T(1 + O(;)), z — 00,

valid if |arg(z)| < m — & with & > 0; here the constant implied in O(1) depends on ¢ but
not on z. By Lemma 8, we have

c+1i00

_ log(n)® o/t 1
, — (S—r+2)/2,. o\ " () ene(—a/gjt)
Bsrang(a) = (27) ) L <1+@(10g<n)))dt

c—100

where the constant in O is uniform in ¢, and
gi(8) = S/ 4 1) 82 )12

o(z,t) =tlog(z) + (S + 1)tlog(t) + (r — t) log(r —t) — S(t + 1) log(t + 1).

We shall be interested only in the case where z = —a/¢;, but from now on we consider
any non-zero complex number z such that |z| < 1 and —7 < arg(z) < 7. Indeed we have
0 <|—a/| <1 because 0 < |a| < R the radius of convergence of F, which is equal to
the minimal value of |¢;], 7 = 1,...,p, and letting log(—a/&;) = log(—a) — log(&;) yields
arg(—a/&;) € (—m, 7] (recall that arg(—«) has been chosen in the proof of Lemma 9).
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If —7 < arg(z) < m, we work in the cut plane Q = C\ ((—o0, 0] U [r, +00)), so that any
t € Q is such that arg(t), arg(t + 1) and arg(r — t) belong to (—m, 7). On the other hand,
if 2 is real and negative (i.e., arg(z) = 1), we work in Q = C\ ((—o0,0] U (r 4+ ¢™/*R_)); if
t is real and 0 < t < r we take arg(t) = arg(t + 1) = arg(r — t) = 0, and we use analytic
continuation to define arg(t), arg(t + 1) and arg(r — t) for any t € Q.

In both cases, the function t — ¢(z,t) is analytic on the cut plane . In what follows,
¢'(z,t) and ¢"(z,t) denote the first and second derivatives of (z,t) with respect to t. We
denote by 7s,.(2) the unique solution (in t) of the equation 2t°t1 = (r — ¢)(¢ 4+ 1)® which
is such that Re(7s,(2)) > 0. (A more precise localization is given below.) For simplicity,
we set 7; = Ts,(—a /&), o = p(=a/§;, 1), ¥y = ¢ (=a/E;, 1) and v = g;(7;).

Lemma 10. Let us assume that r = r(S) is an increasing function of S such that r = o(S)
and Se=5/" = o(1) as S — 4o00. Then if S is large enough (with respect to the choice of the
function S+ r(S)), the following estimate holds: for any j =1,...,p, we have k;v;1; # 0
and, as n — +00,

- 1 55 PN
BS,r,n,j<Oé) — (27T>(S—r+3)/2 RiTvs Og(n) e .(1+0(1)).

—; nGTD

Any choice of the form r(5) = [W] with ¢ > 0 satisfies 7 = o(S) and Se™/" = o(1)

(but not with € = 0); in Lemma 7, we take € = 1.
Note that we have three trivially equivalent expressions for e#:
r NS+ T
ePi — (r—m) _ ((a/§)m) __&r=7) H. (7.7)

(Tj + 1)5 o (Tj + 1)S(T+1) O{Tf+1

Proof. We split the proof in several steps. The assumptions made on r and S are not
always necessary at each step. We will write 7 for 7g,(z) when there will no ambiguity.

Step 1. We want to begin localizing the solutions of the equation ¢'(z,t) = 0 (for any
fixed z such that 0 < |z| < 1 and —7 < arg(z) < 7), i.e. of

log(z) + (S + 1)log(t) — log(r — t) — Slog(t + 1) = 0.

These solutions are obviously amongst the solutions of the polynomial equation P(t) = 0
where

P(t) = 2t — (r — t)(t + 1)5.

In this step, we prove the following facts: For any 1 < r < S, the polynomial P(t) has
exactly S roots in the half-plane Re(t) < —5 and one root in the half-plane Re(t) > %
Let us prove that there is no root in the strip —% < Re(t) < % We set t =z + iy and

assume that —% <z< % We have

[t+1]=/(z+1)2+92>/1/4 + 2
r—tl=Vr—2)?+12>V(r—1/22+ 4> > /1/4+ 2

it = a2 +y2 < /1/4+ 42
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Since |z| < 1, it follows that |z|[t[5*t < \/1/4 + yQSJrl < |r —t||t + 1|° for any ¢ in the
strip, which proves the claim.

Let us now prove that there are exactly S roots in Re(t) < —%. With v = 1/¢, this
amounts to prove that the equation z = (ru — 1)(u + 1)° has exactly S solutions in the

open disk |u 4+ 1] < 1. Let us define
) =2 —ru+ DS 4 (r+ D+ DS, glu) = 2+ (04 Du+ DS,
We have f(u) — g(u) = —r(u+ 1)*! so that on the circle |u + 1| = 1 we have

[f(w) = gu)] =7 <r+1—]z[ <g(u)].

Hence, by Rouché’s theorem, the equation f(u) = 0 has the same number of solutions as
g(u) = 0 inside the disk |u 4 1| < 1. There are S such solutions because the solutions of
g(u) =0 are —1 + (—z/(r + 1))/5e2*/S |k =0,...,8 — 1, which are all inside the disk.

It follows that P(t) has exactly one root in the half-plane Re(t) > 3. (We can be more
precise. Let us define the functions P(t) = 2t°*! — (r—t)(t+1)% and Q(t) = —(r—1t)(t+1)%.
On the circle |r —t| = S’"jr, we have |P(t) — Q(t)| = [2t5*Y < |Q(t)|. Hence, P(t) has a
root inside the disk |r — ST-ir' This estimate holds for any r, .S, but we will prove and
use a more precise one under a more restrictive condition on r.)

Step 2. We need a more precise estimate for 7 = 7g,.(2) that the mere fact that |7 —r| <

5o+ hamely
_ ( r )S 1+ 0(1)) (7.8)
Tsr(2) =1 —1rZ ] (1+0(1)). :
To prove this, we consider the power series
(S+1)m 1) TSm—l

USr = % Z

m:l

1(r + 1)E+Dm-1 (=2)™.

We shall prove that it has radius of convergence % > 1, with equality only for

r = S, and that if r is an increasing function of S such that r = o(S) as n — 400 then,
provided S is large enough (with respect to the choice of r(5)), we have 1/vg,(2) = 75, (2),
the unique root of P(t) in the half-plane Re(t) > 2

As in the first step, we solve the equation z = V(u), with V(u) = (ru — 1)(u + 1)%,
and then get the solutions of P(t) = 0 by ¢ = 1/u. By Lagrange’s inversion formula [15,
p. 250], a solution of the equation z = V'(u) is

RN | wu—1/r \m\"D 1 S pm 1 (m-1)
;T m; ml ((V(u) - V(1/7~)) )u:w et mz::l ml ((u n 1)Sm>u-1//
1 — io: ((S+117)’Lm_1) Tsmil (_Z)m
Cor — (S+1)m—1(r+1)E+)m-1
= vg,(2).
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Since

i (- sy
mostoo \(S + L) — 1 (r + 1)1 SS(r+ 1)5+1 =

with equality only for r = S, the assertion on the radius of convergence follows.

Since ((Sﬂn)lm_l) < S(%)m_l and W < L for any z such that [z] < 1

(inside the circle of convergence), we have

((S+1)m—1) T,Smfl 1/m B T’S(S + 1>S+1
ym 1)

(r—{—l)SS =1 (7‘5(5+1)S+1| |>m
(S +1)5 £ SS(r+ )5+ "

) )bg( et

SS(T + 1)S+1

<!I(
- r+1

Hence, for any |z| < 1,1 <r < S,

ruga(2) = 1+ z(r i 1)5 (1 +9’ log (1 -~ %\z!) D

for some 6 (depending on S, 7, z) such that || < 1.
We now choose r as any fixed increasing function of .S such that r = o(S) as S — +o0.

Then (S+—1|z] tends to 0 as S — o0, so that

S (r+1)S+1
1 z/ r \%
() =-+ 72 1+ 0(1)).
vs(2) = -+ 2 () (L4 o(1)
Therefore,

1 (=) 1+ o(n)
=r—-rz o .

vgr(2) r+1

Since |z| < 1, the real part of 1/vg,(z) is positive for any S sufficiently large (with respect
to the choice of r(5)) and thus 1/vg, (%) coincides with 7g,(z). This concludes the proof
of (7.8).

Step 3. We now prove that 7 = 75,.(2) belongs to the cut plane  and is indeed a solution
of the equation ¢'(z,t) = 0, provided r is any fixed increasing function of S such that
r = 0(S) and Se™¥/" = o(1) as n — +00, and S is large enough (with respect to the choice

of 7(9)). Since exp(¢/(z,7)) = ( L sS4

eis = L we have ¢/(z,7) € 2in’Z and

%gp’(z, T) =arg(z) + (S + 1) arg(r) — arg(r — 7) — Sarg(r + 1).

Since r = o(S) and Se™*/" = o(1), we have r — rz(H_l) (1+0(1)) = r(1 + O(e~*/")) and
(7.8) yields:

(S +1) arg(r) = (S + 1) axg(r) + O(Se~5/") = o(1),
Sarg(t +1) = Sarg(r + 1) + O(Se /") = o(1).
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Moreover -

S
T 1) > +o(1) = arg(z) + o(1)
since the cut we have made on arg(r —t) is not for arg(r —t) = arg(z) mod 27 (here we use
the alternative definition of Q when arg(z) = , intended to have = < arg(r —t) < % in
this case). Therefore 7 €  provided S is large enough. Moreover %gp’ (z,7) tends to 0 as
S — 00, and belongs to 27Z: it is 0 if S is large enough with respect to the choice of r(S).

arg(r — 7) = arg (rz(

Step 4. We now prove that ¢;(7s,(2)) # 0 and ¢"(z,75,(2)) # 0 provided r is any fixed
increasing function of S such that r = o(S) as n — 400, and S is large enough (with
respect to the choice of r(.5)).

Since (==)% = o(1), (7.8) yields

r+1
1 1+o0(1)
9i(7) = FBASTOR(r + 1)352(r — 1)1/2 2128750 (p 1 1)8 (7.9)
and S g ( )5
., +11 rt1
= — = 1 1 7.10
#(z7) T +7"—7' T+1 rStlz (1+0(1)) (7.10)

provided Se=¥/" = o(1) for (7.10). The right-hand sides of (7.9) and (7.10) are both

non-zero if S is large enough with respect to the choice of 7(.5).

Step 5. In this step we choose 7(S) as in the statement of the lemma, so that all the
previous steps are simultaneously valid provided S is large enough with respect to the
choice of 7(S). We want to determine an admissible path passing through 7g,(2), i.e. a
path along which ¢ — Re(p(z,t)) has a unique global maximum at ¢ = 7g,(z). This
determination process is rather lengthy as we have to consider three cases: Re(z) > 0,
Re(z) < 0 and Im(z) # 0, and Re(z) < 0 and Im(z) = 0. Note that similar computations
are done in [27, 37] for the same kind of purpose. In particular, analogues of the contours
Lo, L and L constructed below are also considered in these papers. Throughout the
computations we always assume S to be sufficiently large.

e Case Re(z) > 0. Eq. (7.8) yields 0 < Re(7) < r so that the vertical line £, passing
through 7 is inside the strip 0 < Re(t) < r and we are going to prove that it is admissible.
See Figure 2.

We set v = Re(7), Lo = {v +iy,y € R} and wo(y) = Re(p(z, v + iy)). We have

wy(y) = —Im(¢'(z,v+iy)) = — arg(z)—(S+1) arg(v+iy) +arg(r—v—iy)+S arg(1-+v+iy).

Hence
lim wy(y) =7 — arg(z) > 0, lirf wy(y) = —m — arg(z) < 0. (7.11)
y——00 y——+o0
Moreover Re(r — v — iy) = r(:25)°Re(2)(1 + o(1)) > 0, Re(v +iy) = r(1 + o(1)) > 0,
Re(v+1+iy) = (r+1)(1 +o(1)) > 0 so that
wy(y) = —arg(z) — (S + 1) arctan (%) — arctan <7" g v> + Sarctan (1 j/_ v>
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Figure 2: The path £,

and
woy o (S+1w r—u (1+v)
woly) = v? + (r—v)2+y2+ (14 v)% 492
—N(y?)

(02 +y*)((r —0)? +y*)((1 +0)* +?)
upon letting N(z) = ax? + bx + ¢ where
a=r—8<0, b=—-Sr*+r*w+2Srv+2rv+ Sv+r,

c=v(l+v)(r—v)(Sr+rv—Sv+r)>0.

The equation N(x) = 0 as a negative root (because ac < 0) and another one asymptotically
equal to r?(1 + o(1)). This root is > Im(7)? because (7.8) yields Im() = o(1). Hence
w((y) = 0 has exactly two solutions: a positive and negative one, with Im(7) strictly in
between. Since w((Im(7)) =0, (7.11) ensures that w((y) vanishes at Im(7), is positive for
y < Im(7) and negative for y > Im(7). Hence wy(y) is maximal at Im(7); this completes
the proof of this case.

e Case Re(z) < 0 and Im(z) # 0. In this case, the vertical line passing through 7 is no
longer inside the strip 0 < Re(t) < r and we have to deform it. We assume that Im(z) < 0,
the other case being delt with similarly; then Im(7) > 0.

We first want to determine a segment passing through 7 along which t — Re(p(z,t))
admits a local maximum at t = 7. Let 8 = arg(¢”(z,7)) € (=, 7] and z = pe®® with p > 0
and § € (—m,—m/2) because Re(z) < 0 and Im(z) < 0. Then, from (7.10) in Step 4, we

have
1

e = L

rp

r+1
r

) e (1 +0(1))
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so that 5 = —0 + o(1). Therefore any 6 € R such that cos(20 — §) < 0 satisfies also
cos(20 + B) < 0 provided S is large enough (in terms of #); then 6 is said to be admissible.
Obviously § = 0 and any 6 sufficiently close to ™ + § are admissible. By the theory of
steepest paths of analytic functions (see [11, pp. 255-258]), for any admissible 6 there
exists 7 > 0 such that the function ¢ — Re(p(z,t)) admits a unique global maximum at
t = 7 where t is on the segment {7 + ey, |y| < n}.

This suggests to define a polygonal path L as the union £ = £; U L5 U L3 where
Ly ={r—iy,y >0}, Loy =[r,7] and L3 = {7+ y,y > 0}: L, is a vertical half-line, L, is a
segment and L3 is an horizontal half-line. We claim that ¢ — Re(g(2,t)) admits a unique
global maximum at ¢ = 7 when ¢ varies in EN; this function is continuous on £ and can be
differentiated on £\ {r,7}.

First, w1 (y) = Re(p(z,r —iy)) is decreasing on [0, +00) since for any y > 0:

wi(y) = Im(go’(z, r— zy)) = arg(z) + (S + 1) arg(r — iy) — arg(iy) — Sarg(l +r — iy)

= arg(z) — (S + 1) arctan (%) - g + S arctan (r j{ 1> <0

s

because arg(z) < —7.

Let us now prove that ws(y) = Re(p(z, 7 + y)) is decreasing on [0, +00). We have

2(1 +y)oH
ws(y) = Re(¢' (2,7 + =lo 0
for any y > 0 using Step 1: the only ¢ in Re(t) > 0 such that % =1list=r.

Therefore w3 is monotonic; since # = 0 is admissible it is decreasing.

It remains to prove that ¢ — Re(¢(z,t)) admits a unique global maximum at ¢t = 7 when
t varies in Ly. We parametrize £y as {7 +ye”,y € [0, |U|]} with (by definition) U =r — 7
and v = arg(U) = d+o(1) using (7.8); then y € (—m, —7/2). Let wo(y) = Re(p(z, 7+ye)).
Then

wh(y) = cos(7)Re(¢'(z,7 + ye)) — sin(y)Im (¢’ (2, 7 + ye)).
The function ¢(y) = Re((p'(Z,T + yeiv)) = log ‘ (T_T_Zg#(’fj:iiyems satisfies £(0) = 0 and

l(y) # 0 for any y € [0, |U]) (using Step 1 again); moreover lim,_, ;7| £(y) = +oo. Therefore
we have ((y) > 0 for any y € [0, |U]). We now analyse the term a(y) = Im(¢'(z, 7 + ye™));
we have

a(y) = arg(z) + (S + 1) arg(T + ye”) — Sarg(t+ 1+ ye”) —arg(r — 7 — ye”)
=04+ (S+1)(y +arg(re™ +y)) — S(y + arg((1 + 1)e ™ +y)) — arg(|U]e" — ye)

) ) . rsin(y) sretan (r + 1) sin(vy)

Im (€)
Re (¢

since for ¢ = Te™ + y we have arg(¢) = 7 + arctan( ). This function is decreasing on

~
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Figure 3: The path L

0, |U[] because

rsin(y)
r2sin®(y) + (rcos(y) +y — |UJ)?
(r 4 1) sin(7y)
(r+1)?sin*(y) + ((r + 1) cos(y) +y — [U])?
< (S+ Drsiny  S(r+1)siny
o (rF|U))? (r+1)?

d(y) = (9+1)

<0

since —gmz > —7 because |U| < § (using Step 2). In Step 3, we proved that a(0) = 0, so

that a(y) <0 for any y € [0, |U|]. It follows that

wy(y) = cos(y)l(y) — sin(y)a(y) <0

for any y € [0, |U]].

We have thus proved that ¢ — Re(p(z,t)) admits a unique global maximum at ¢t = 7
when ¢ varies in £. We cannot integrate directly over L because r is a singularity of g;(t).
Hence, we slightly deform £ around the “corner” of the path at r: we replace that corner
with an arc of circle of center r and small positive radius &, in which arg(r — t) varies in
[v,7/2]. We connect this arc with the remaining parts of £; and £, and with L3, to get a
new path c. By continuity of ¢t — Re(p(z,t)) in this region, we can take x small enough
so that it still admits a unique global maximum at ¢t = 7 when ¢ varies in L'. See Figure 3.

e Case Re(z) < 0 and Im(z) = 0. In this case, 7 is a real number greater than r. As
in the previous case we obtain arg(¢”(z,7)) = —m + o(1) mod 27: the angles 6 such that
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Figure 4: The path C

005(20 — m) < 0 are admissible, for instance # = 0. This suggests to define a polygonal
path £ as the union £ = £, U L5 where L4 = {r+iy,y >0} and L5 = {r +y,y > 0}.
Since Q = C\ ((—00,0) U (r + €™/®R,)) in the present case, £, and L5 are contained in
QU {r}. We claim that ¢ — Re(y(z,t)) admits a unique global maximum at t = 7 > r
when ¢ varies in L.

Letting w;(y) = ¢(z,y) we obtain (as for ws in the previous case) that wj(y) vanishes
at y = 7, is positive for r < y < 7 and negative for y > 7. Hence, y — Re(y(z,y)) admits
a unique maximum on [r,+00) achieved at y = 7. Thus to prove the claim, it remains to
prove that wy(y) = Re(p(z,r + iy)) is decreasing on [0, 4+00). Now, as for wy in the case
Re (z) > 0 we have for any y > 0:

wy(y) = —arg(z) — (S + 1) arg(r + iy) + arg(—iy) + Sarg(l +r + iy)

3
- (S + 1) arctan (y) +Sarctan< Y ) <0
2 r r+1

and the claim is completely proved. Again, we cannot integrate directly over L because
r is a singularity of g;(¢). Hence, we slightly deform £ around the “corner” of the path
at r: we replace that corner with an arc of circle of center r and small positive radius k,
contained in the cut plane 2. We connect this arc with the remaining parts of £4 and L;
to get a new path £'. By continuity of ¢t — Re(¢(z,t)) in this region, we can take s small
enough and ensure that it still admits a unique global maximum at ¢ = 7 when ¢ varies in
L'. See Figure 4.

Step 6. We are now in position to conclude the proof of Lemma 10. We recall that

B log(n)si c+ioo B . 1
A — (S—r+2)/2,. OV () e (—a/Eit)
BS,T#’L»] (CY) - (271-) Kj n(5+7»)/2+5j / gj (t)€ ! 1 + O<10g( )) dt

c—100
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where the constant in O is uniform in ¢. Depending on the location of —a/¢; in the open
unit disk (with respect to the three cases in Step 5), we move the integration path from
the vertical line Re () = ¢ to the path £, £ or L where the orientation is from Im(t) <0
to Im(¢) > 0. In the previous steps, we have done everything to ensure that the saddle
point method (see [15, Chapitre IX] or [19, Proposition 7]) can be applied to this path and
we get

c+i00

s (o) - B

Yy

c—100

provided 7(S) is chosen as in the statement of Lemma 10 and S is large enough. This
concludes the proof of Lemma 10, since x; # 0 (using Lemma 8). [

7.3 Asymptotic behavior of 7%, ,(1/a)

We now state our final resut, the first part of which immediately comes from combining
Lemmas 9 and 10. Recall that s;, 8;, x; have been defined in Lemma 8, and v;, ¢;, ¥;
just before Lemma 10.

Proposition 2. Let us assume that 0 < |a| < R, and r = r(S) is an increasing function
of S such that v = o(S) and Se™5/" = o(1) as S — +oo. Then if S is large enough
(with respect to the choice of the function r(S)), the following estimate holds: for any
Jj=1,...,p, we have r;y;v; # 0 and as n — +00

o (S—r+1) /2 r K . -
Ty (/) = 0 2t Z( 1B log()e - (L4 o(D)).  (7.12)
Moreover, if 7e~%/" = o(1) for any w > 0 then the numbers e®i (for j = 1,...,p) are

pairwise distinct.

The only new property in Proposition 2 is that the numbers e¥i are pairwise distinct;
we shall prove it below. All the conditions on 7 are satisfied if r = [S/log(S5)'*¢] for
any fixed € > 0. Let us now deduce Lemma 7 (stated in §6.3) from Proposition 2. Let
a = max(Re (¢1),...,Re(¢,)), and denote by J the non-empty set of all j € {1,...,p} such
that Re (¢;) = a. Let (k, A) denote the maximal value of (—3;—3(S+r—1),s;), j € J, with
respect to lexicographical order. Denote by ji, ..., jo (with () > 1) the pairwise distinct
elements j € J such that (—8; — 1(S +r —1),s;) = (k,A). Then in the sum (7.12) we
may restrict to j € {j1,...,70}. The numbers ¢, = (—1)"exp(ilm (¢;,)), 1 < ¢ < Q, are

pairwise distinct because ¢, ..., p;, are; and the nllmbers cqg = (2m) IV 2, o /5
are non-zero. At last, we have 0 < a := [e¥a| < 5 if S is large enough, using the first

expression in (7.7) and the fact that 7;, tends to r as S — oo. This concludes the proof of
Lemma 7.
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Proof. We only need to prove the assertion on the numbers e¥i. There is nothing to prove if
p = 1 and we now assume that p > 2. Letting z; = —a/¢;, (7.8) and the second expression
of (7.7) yield

o z;rr(s“) <’7’j>7“(5+1) (Tj + 1>—S(T+1)
© = (r 4+ 1)St+D \p r+1
.7 (S+1) S
= e (0 ra() )
= e L=rz( = (14 0(1)) (7.13)

where the error term o(1) depends on j (and tends to 0 as S — oo). Now assume that
e¥i = e?t with j # ( (so that z; # z). Taking the limit of |e%i(r + 1)Sr+Dp=r(S+|1/r
yields |z;| = |z¢| (provided S is large enough). Considering the next term in the expansion
given by (7.13), the equality |e¥/| = |e®| then yields Re(z;) = Re(z), so that z, = Z.
This implies 7, = 75, and e¥* = e%i using (7.7), so that ¥ = e¥¢ is real. Let 0; = arg(z;);
then (7.13) yields 76; — kr = O(re™/") for some k € Z. By assumption this implies
rf; — km = o(r~*) for any w > 0. However z; is algebraic, and the theory of linear forms
in logarithms shows that 6,/ is not a Liouville number (see for instance [16, Chapter 4]).
Therefore 6,/ is rational, and rf; — km = 0. Using (7.13) again we obtain that z; is real,
so that 2, = Z; = z;. This contradiction completes the proof of Proposition 2. [

8 Remark on the case of non-negative coefficients

We conclude this paper with a methodological remark. The saddle point method is a very
powerful and general method, but its effective implementation can be long and difficult.
This is undoubtedly the case in our situation as §7 shows. Hence, it is useful to have
alternative methods that can be applied at least in special (and still important) cases.
Such a method exists when Ay > 0 for all large enough k: the conclusion of Theorem 3 can
then be obtained faster, at least if a is also assumed to be a positive algebraic number. For
this, we use a representation of T, ,(2) as a real integral instead of the complex integral
representation of Lemma 9. In (8.1) and (8.2) below, we make no assumption on the A’s.

Proposition 3. Let z be such that |z| > 1/R. We have

S
ZTN . tl e tS " n
TQA@:7W‘/F%%—7—Jiju—md% n >0, (8.1)
0.1) =
and 1
lim sup | T, (2) V™ < - (8.2)
n—-+o0o ror

Moreover, if F is not a polynomial, z > 1/R, and Ay > 0 for all k large enough, then

1 r\" 1
liminf Ty, (2)"/™ > >0 8.3
oo S (2)7" 2 Drzr (r + 1) (r+1)5- (8.3)
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with D such that D,, < D™ for any n, where D,, is the smallest positive integer such that
D, Ay is an algebraic integer for any k < n.

Remark 3. If Ay = 1 for all k > 0, we have F("™)(z) = % and (8.1) coincides with
(1) of [31, Lemme 1] (up to a factor of z).

Proof. For any x such that |z| < R, we have

oo

F(T” Z —rn A4 1) Agzt ™™ (8.4)

k=0

and the series converges absolutely. Since |t; ---tg/z| < R, we can thus exchange integral
and summation below:

—rn S o 1
? (rn) ty---ts ™M1 _ 4+ \N s, (k —m+ 1)7”" —k k(1 _ p\n
— / F ( - >Htj (1 —ty)"dt; = > o Apz 0 t*(1 —t)"dt

0,1} =t h=0

S

(b —rn+1),n5kS
S ot
— n"(n+k+ 1)

This series is nothing but 7%, (%), which proves the first part.

As in the proof of [31, Lemme 3|, we now observe that, for any k > rn,

5o k(k—1)...(k—rn+1)
(k+1)%k+2)5 - (E+n+1)°5

kS — T(S’—r)n kS’

(S—rm_ K™ <n>(5—r>n 1 _ 1 1

=N ESn+1) = 1 1.5

Therefore,

1 o Az 1 < Lk
’TS,T,H(ZN < r(S—r)mn E LS < r(S—r)n § Ak|Z’ )
k=0

k=rn

where the series converges because |z| > 1/R, and (8.2) follows as claimed.

We now assume that Ap > 0 for all k£ large enough, and Ay # 0 for infinitely many k.
We also assume that z > 1/R. We start from (8.4) with 0 < z < R:

1 (k—rn+1)., _ (k+1)m
F(Tn) = A :Ek ™= A rm K >_ A ™ k'
(rn)! ) ;;1 (rn)! ¢ kzzo (rn)! Ht kZ:O e

Now the sequence (Ay) satisfies (for k large enough) a linear recurrence of order ¢ (as in
the proof of Step 1 of Lemma 2, but expanding at 0 rather than oo) and it is non-zero
infinitely often. Hence, in fact, for any n sufficiently large, there exists k,, € {0,...,¢—1}
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such that A, ., # 0. In particular, Dy, Arnir, > 1. It follows that — F0™(z) >

(rn)!

Apy oz > %. We use this lower bound in (8.1) with x = ¢ ---tg/2:

Toralz) 2 1 = Lymren(y t)”dt>s

— DUrrzrmmax(1, 2)1 nlr
_ 1 (rn)!In!5="(rn + € — 1)1
~ Dfrzrnmax(1, z)l (r+n+015

We then deduce (8.3) by Stirling’s formula. O

With r = [S/log(5)?], these upper and lower bounds for Ts..,,(2) are essentially identi-
cal when S — +o0. With z = 1/a for some algebraic number « in (0, R), we can conclude
directly in §6.4 with an application of Topfer’s criterion instead of Theorem 4.
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