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A NOTE ON G-OPERATORS OF ORDER 2

BY

S. FISCHLER (Orsay) and T. RIVOAL (Grenoble)

Abstract. It is known that G-functions solving a linear differential equation of or-
der 1 with coefficients in Q(z) are algebraic (and of a very precise form). No general result
is known when the order is 2. In this paper, we determine the form of a G-function solv-
ing an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a
G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically
dependent over C(z). Our results apply more generally to holonomic Nilsson–Gevrey arith-
metic series of order 0 that encompass G-functions.

1. Introduction. We fix an embedding of Q into C. A G-function is a
power series

f(z) =
∞∑
n=0

anz
n ∈ Q[[z]]

such that:

• f(z) satisfies a non-zero linear differential equation with coefficients
in Q(z);

• there exists C>0 such that for any σ∈Gal(Q/Q), we have |σ(an)|≤Cn+1;
• there exists a sequence of positive integers dn such that dn ≤ Cn+1 and
dnam is an algebraic integer for all m ≤ n.

This class of arithmetic power series was defined by Siegel [22]. Given some
subfield L of C, throughout the paper, “solution of a differential operator
L ∈ L(z)

[
d
dz

]
” means “solution of the homogeneous linear differential equa-

tion Ly(z) = 0”. We say that a non-zero solution of a differential operator in
L(z)

[
d
dz

]
of order µ is of order µ over L(z) if it is not a solution of a differen-

tial operator in L(z)
[
d
dz

]
\{0} of order ≤ µ−1. (Note that y(z) = z+π is of

order 1 over C(z) but of order 2 over Q(z), because (z+π)y′(z)−y(z) = 0 and
y′′(z) = 0.) Amongst differential operators in Q(z)

[
d
dz

]
of which G-functions
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can be solutions, we distinguish G-operators (precisely defined in §2); in
fact, any G-function f(z) is always a solution of a G-operator, and this
highly non-trivial fact implies many special properties of the minimal linear
differential equation satisfied by f(z) over Q(z) (fuchsianity, rationality of
exponents, etc.). It is also conjectured that the class of G-operators and the
class of globally nilpotent operators in Q(z)

[
d
dz

]
coincide (see [2] for more

on this).
Standard examples of G-functions are algebraic functions over Q(z) reg-

ular at the origin, as well as the generalized hypergeometric series

p+1Fp[a1, . . . , ap+1; b1, . . . , bp; z]

with rational parameters aj and bj (algebraic parameters are also possible
in certain circumstances). It is not known if there is a way to algebraically
express any G-function in terms of these two classes of functions only, al-
though this has been the subject of some speculations and conjectures. For
instance, Dwork conjectured in [7] that any globally nilpotent operator in
Q(z)

[
d
dz

]
of order 2 (hence conjecturally any G-operator of order 2) yields a

linear differential equation satisfied by an algebraic function over Q(z) or an
algebraic pullback of Gauss’ hypergeometric differential equation satisfied by
2F1[a, b; c; z] for some a, b, c ∈ Q (1). Dwork’s conjecture has been disproved
by Krammer [15], further counter-examples being given later on in [5].

On a related note, Theorem 5 in [8, §7] shows that it is very unlikely that
any G-function could be written as a polynomial with coefficients in Q of
G-functions of the form

µ(z) · p+1Fp[a1, . . . , ap+1; b1, . . . , bp; zλ(z)]

with p ≥ 0, aj ∈ Q, bj ∈ Q \ Z≤0, and µ(z), λ(z) algebraic over Q(z)
and regular at z = 0. On the other hand, a folklore assertion is that G-
functions can be obtained as suitable specializations of the parameters and
variables of multivariate series known as A-hypergeometric functions (de-
fined by Gelfand–Kapranov–Zelevinsky; see [10] and references there). This
is already known to be true for algebraic functions over Q(z); see [24] for
instance.

To state our results, we first present a few results on solutions of G-
operators. André introduced in [2] the class of Nilsson–Gevrey arithmetic
series of order 0, denoted by NGA{0}C0 (see §4 for the definition). In this
paper we consider only holonomic Nilsson–Gevrey arithmetic series of or-
der 0, and we prove the following result (which is often used implicitly in the

(1) According to this conjecture, a solution of a globally nilpotent operator of order 2
could then be expressed as a C-linear combination of functions of the form µ(z)F [zλ(z)]
where µ(z), λ(z) ∈ Q(z) are regular at z = 0, and F (z) is a solution of Gauss’ hypergeo-
metric equation.
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literature but for which we have found no complete proof). By “holonomic”
we mean “solving a linear differential equation over C(z)”.

Proposition 1.1. Holonomic Nilsson–Gevrey arithmetic series of or-
der 0 are exactly the functions of the form

(1.1)
∑

(α,j,k)∈S

λα,j,kz
α log(z)jfα,j,k(z)

where S is a finite subset of Q × N × N, λα,j,k ∈ C and each fα,j,k(z) is a
G-function.

In the above formula, the determination of log(z) is arbitrary. Nilsson–
Gevrey arithmetic series could be also considered at another point of C∪{∞}
with obvious changes. It is known that any solution of a G-operator is in
NGA{0}C0 (see §2), and conversely André proved that any holonomic element
of NGA{0}C0 is a solution of a G-operator (see [2, p. 720]). We shall also
consider the subclass NGA{0}Q0 of NGA{0}C0 where the coefficients λα,j,k
in (1.1) are in Q. Algebraic functions over C(z), respectively Q(z), are in
NGA{0}C0 , respectively NGA{0}Q0 .

The goal of this paper is to describe the holonomic elements of NGA{0}C0
of order 2 over Q(z) and subject to certain restrictions (Proposition 1.2 and
Theorem 1.4 below). They are in agreement with the “conjecture” recalled
above that G-functions should be specializations of A-hypergeometric func-
tions. The structure of the general holonomic elements of NGA{0}C0 of order 2
over Q(z) remains unknown. Throughout the paper,

	
u(z) dz denotes an an-

tiderivative of a function u(z) where the arbitrary complex constant is not
specified, while the definite integral

	z
z0
u(x) dx denotes the antiderivative of

u(z) that vanishes at z = z0.
To begin, let us consider the case of solutions of homogeneous operators

of degree 1. We explain in §2 why the non-zero elements of NGA{0}C0 which
are solutions of an operator in Q(z)

[
d
dz

]
of order 1 are exactly the functions

of the form

(1.2) δ
∏
j∈J

(λj − z)sj

where δ ∈ C, J is a finite set, λj ∈ Q and sj ∈ Q for every j ∈ J . In partic-
ular, up to a multiplicative constant, these solutions are algebraic functions
over Q(z).

Now we move to solutions of inhomogeneous operators of degree 1 (see
[26, pp. 398–399] for similar considerations in a particular case).

Proposition 1.2. Let f(z) /∈ Q(z) be an element of NGA{0}C0 and a
solution of an inhomogeneous differential equation f ′(z) = a(z)f(z) + b(z)
with a(z) ∈ Q(z) and b(z) ∈ Q(z)∗. Then d

dz − a(z) is a G-operator and,



4 S. FISCHLER AND T. RIVOAL

letting g(z) 6= 0 be one of its solutions, we have

(1.3) f(z) = g(z)
� b(z)
g(z)

dz.

Remark 1.3. The assumptions on f(z) ensure that it is of order 2 over
Q(z) (see the details in the proof).

The important fact in Proposition 1.2 is that d
dz − a(z) is a G-operator,

which was not obvious a priori.
A partial converse of Proposition 1.2 holds. With g(z) 6= 0 a solution

of a G-operator d
dz − a(z) and b(z) ∈ Q(z)∗, the right-hand side of (1.3) is

a solution of the inhomogeneous equation y′(z) = a(z)y(z) + b(z), and its
generalized expansion at z = 0 is in NGA{0}C0 . But it is not guaranteed that
it is not in Q(z).

The assumption b(z) 6= 0 is important for the proof but not really re-
strictive because (1.2) gives the form of those elements of NGA{0}C0 that are
solutions of an operator d

dz − a(z) ∈ Q(z)
[
d
dz

]
.

Let us now state our main result, which deals with solutions of homoge-
neous operators of degree 2 (with an additional assumption, namely that f
and f ′ are algebraically dependent over C(z)).

Theorem 1.4. Let f(z) 6= 0 be an element of NGA{0}C0 , holonomic of
order 2 over Q(z) and such that f(z) and f ′(z) are algebraically dependent
over C(z). Let L ∈ Q(z)

[
d
dz

]
of order 2 be such that Lf(z) = 0. Then at

least one of the following assertions holds:

(i) f(z) is algebraic over C(z). More precisely, the differential equation
Ly(z) = 0 has a basis of solutions made up of algebraic functions
over Q(z).

(ii) There exist two solutions g(z) 6= 0, h(z) 6= 0 of (possibly distinct) G-
operators of order 1 such that

(1.4) f(z) = g(z)
�
h(z) dz.

The functions f(z) and g(z) form a basis of solutions of the differential
equation Ly(z) = 0.

Remark 1.5. Assertions (i) and (ii) can hold simultaneously. The func-
tion f(z) = π

√
z − e (with its principal branch) is of order 2 over Q(z)

with L = 2z d2

dz2
+ d

dz (and 1,
√
z as a basis), and we can take g(z) = 1 and

h(z) = π/(2
√
z) in (ii). On the other hand, a function f(z) as in (1.4) can be

transcendental over C(z) with f(z), f ′(z) algebraically dependent over C(z):
take g(z) = 1 and h(z) = 1/z for instance.

A partial converse of Theorem 1.4 holds. Concerning (i): Any function
f(z) algebraic over C(z) is in NGA{0}C0 and obviously such that f(z) and
f ′(z) are algebraically dependent over C(z). Concerning (ii): Let f(z) be as
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in (1.4) with g(z) 6= 0, h(z) 6= 0 being solutions of G-operators of order 1
(hence both algebraic over C(z)). Then its generalized expansion at z = 0
is in NGA{0}C0 . Moreover, f(z) satisfies f ′(z) − a(z)f(z) = h(z)g(z) where
a(z) ∈ Q(z) (such that g′(z) = a(z)g(z)) and h(z)g(z) is algebraic over C(z)
and of order 1 over Q(z). Hence, f(z) and f ′(z) are algebraically dependent
over C(z), and f(z) is of order ≤ 2 over Q(z).

Under the assumptions of Theorem 1.4, f(z) turns out to be a Liouvillian
solution of the G-operator L. Conversely, the proof of the theorem (based on
Kovacic’s classification) shows that any Liouvillian solution of a G-operator
L of order 2 is either algebraic over C(z) or of the form (1.4).

It is not easy to state simple necessary and sufficient conditions ensuring
that the right-hand side of (1.4) is a G-function, not merely a holonomic
element of NGA{0}C0 , because there are many possible situations. We can
write g(z) = δzαg̃(z) and h(z) = ωzβh̃(z) where δ, ω ∈ C∗, α, β ∈ Q and
g̃(z), h̃(z) are G-functions such that g̃(0)h̃(0) 6= 0. Let h̃(z) =

∑∞
n=0 anz

n.
If we assume for instance that β > −1, then a necessary and sufficient
condition for g(z)

	z
0 h(x) dx to be a G-function is that α + β ∈ Z≥−1 and

δω ∈ Q. Indeed, we have g(z)
	z
0 h(x) dx = δωzα+β+1g̃(z)

∑∞
n=0

anzn

β+n+1 with
g̃(0)a0
β+1 6= 0.

To conclude, we mention that similar questions have already been ad-
dressed for E-functions in Siegel’s original sense. E-functions of order 1 over
Q(z) have been determined by Shidlovskii [23, p. 184]. Building upon a
remark in [2, p. 724, §4.5], E-functions solving inhomogeneous differential
equations of order 1 over Q(z) have been classified by Gorelov [11], a result
re-proved in [19] for E-functions in the restricted sense. Gorelov eventually
classified E-functions of order 2 over Q(z) in [12], and a different proof was
also given in [20] for E-functions in the restricted sense. This classification
involves only 1F1 hypergeometric series with rational parameters. We also
emphasize that the above Theorem 1.4 is an analogue of [19, Theorem 3], and
we drew inspiration of the proof of the latter (based on Kovacic’s theorem
[14] adapted to Q(z)) to prove the former; the main difference is that in the
proof of Theorem 1.4 in §3 below, Cases 1, 2 and 3 can happen in Kovacic’s
classification, while in the proof of [19, Theorem 3] only Case 1 can happen.
It does not seem that the methods of [12] or [20] can be easily adapted to
classify G-functions of order 2 over Q(z).

The structure of this paper is as follows. In §2 we recall the results we
shall use onG-operators, and study the solutions in NGA{0}C0 ofG-operators
of order 1, and those of G-operators of order 2 reducible over Q(z). We prove
Proposition 1.2, and also that any L ∈ Q(z)

[
d
dz

]
is of minimal order over

Q(z) for one of its solutions (viewed as an element of a Picard–Vessiot exten-
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sion of Ly(z) = 0 over C(z))—a result that does not hold with Q(z) replaced
by C(z). In §3 we prove Theorem 1.4. Finally, in §4 we prove Proposition
1.1, and in §5 an independent result that we have not found in the litera-
ture: any function algebraic over C(z) and holonomic over Q(z) is a C-linear
combination of functions algebraic over Q(z).

2. Some results on G-operators. Consider a differential system Y ′(z)
=A(z)Y (z) with A(z)∈Ms×s(Q(z)). It is immediate that Y (n)=An(z)Y (z)
where the sequence of matrices (An)n≥1 is defined by An+1=AnA1 + A′n,
A1 :=A.

Let T (z) ∈ Q[z] \ {0} (of minimal degree) be such that T (z)A(z) has en-
tries inQ[z]. It is easy to check by induction that, for every n, T (z)nAn(z) has
entries in Q[z]. Let Dk ≥ 1 denote the least integer such that DkT (z)

n

n! An(z),
n = 1, . . . , k, all have entries in OQ[z]. We say that A(z) satisfies Galochkin’s
condition if Dk has at most geometric growth (see [9]). We say that the dif-
ferential system Y ′(z) = A(z)Y (z) is a G-operator when A(z) satisfies Ga-
lochkin’s condition. By extension, a differential operator in C(z)

[
d
dz

]
is said

to be a G-operator when its companion differential system is a G-operator;
in particular there exists p(z) ∈ C(z) such that p(z)L ∈ Q(z)

[
d
dz

]
, and there

is no loss of generality in considering that G-operators are in Q(z)
[
d
dz

]
.

If L1, L2 ∈ Q(z)
[
d
dz

]
are G-operators, then L1L2 is a G-operator. Con-

versely, if L ∈ Q(z)
[
d
dz

]
is a G-operator that can be factorized as L = L1L2

with L1, L2 ∈ Q(z)
[
d
dz

]
, then L1 and L2 are G-operators. See [1] or [16,

Corollary 2] for a proof.
André [1] proved that Galochkin’s condition is equivalent to another one

introduced by Bombieri [3]. Bombieri’s condition and a result of Katz imply
that a G-operator is fuchsian with rational exponents. Moreover, various
estimates from the theory of p-adic differential equations imply that at any
point of Q ∪ {∞}, a G-operator has a local basis of solutions (essentially)
made up of G-functions. In particular and more precisely, local solutions at
z = 0 of a G-operator are in NGA{0}C0 . The converse is true by a theorem
of André quoted below.

It is difficult to prove that a differential operator is a G-operator be-
cause Galochkin’s condition can be hard to verify. Chudnovsky [6] proved
the following sufficient condition: if L ∈ Q(z)

[
d
dz

]
\ {0} is of minimal order

over Q(z) for some G-function, then L is a G-operator. In [2, p. 720], An-
dré extended Chudnovsky’s theorem: any holonomic element of NGA{0}C0
is a solution of a G-operator. Therefore, if L ∈ Q(z)

[
d
dz

]
\ {0} is of mini-

mal order over Q(z) for some element in NGA{0}C0 , it is a G-operator. We
will refer to this result as André’s minimality theorem in the rest of the
paper.
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A complete characterization of G-operators of order ≥ 2 is not known,
but it can be given when the order is 1.

Proposition 2.1.

(i) If a non-zero element y(z) of NGA{0}C0 is a solution of L ∈ Q(z)
[
d
dz

]
of order 1, then L is a G-operator and we have y(z) = δ

∏
j∈J(λj − z)sj

where δ ∈ C∗, J is a finite set, λj ∈ Q and sj ∈ Q for every j ∈ J .
(ii) G-operators of order 1 are exactly the differential operators in Q(z)

[
d
dz

]
of order 1 which are fuchsian and with rational exponents.

Proof. First of all, if y(z) is a non-zero element of NGA{0}C0 and L ∈
Q(z)

[
d
dz

]
is a differential operator of order 1 such that Ly(z) = 0, then L is

clearly of minimal order over Q(z) for y(z). By André’s minimality theorem
(see also Remark 2.2 below), L is a G-operator.

Now consider L ∈ Q(z)
[
d
dz

]
of order 1 and fuchsian with rational expo-

nents. Without loss of generality, we assume that L is monic, i.e.

L =
d

dz
−
∑
j∈J

sj
λj − z

with λj ∈ Q (pairwise distinct) and sj ∈ Q for all j ∈ J (see [25, p. 174,
Lemma 6.11]). Hence, the solutions of L are of the form

δ
∏
j∈J

(λj − z)sj ∈ NGA{0}C0

where δ ∈ C, J is a finite set, λj ∈ Q and sj ∈ Q for every j ∈ J . (If
J = ∅, the value of the product is 1.) Since L is minimal over Q(z) for the
non-zero solution with δ = 1, as above we deduce that L is a G-operator.
Since every G-operator is fuchsian with rational exponents, this concludes
the proof.

Remark 2.2. André’s minimality theorem is a general result for differ-
ential operators of arbitrary orders, and it can be avoided in this partic-
ular situation. Let us prove directly that Galochkin’s condition holds for
the operator d

dz − A1(z) with A1(z) :=
∑

j∈J
sj

λj−z . Recall that we define
a sequence (An)n≥1 of matrices by y(n)(z) = An(z)y(z) where y(z) is any
solution of d

dz − A1(z) (the sequence is independent of the solution). Let
J = {1, . . . , p}. Taking y(z) =

∏p
j=1(λj− z)sj and using the Leibniz formula

shows that

An(z) = n!
∑

n1+···+np=n

( p∏
j=1

(−sj)nj
nj !

1

(λj − z)nj

)
.

Since for any t ∈ Q, the common denominator of the numbers (t)n
n! , n =

0, . . . , k, has at most geometric growth in k (Siegel), it follows that Ga-
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lochkin’s condition is satisfied by the matrices T (z)n

n! An(z), n = 1, . . . , k,
with T (z) =

∏p
j=1(λj − z).

Proposition 2.3. Let f(z) ∈ NGA{0}C0 be a non-zero solution of a
G-operator L ∈ Q(z)

[
d
dz

]
of order 2 which is reducible over Q(z). Then, for

any factorization L =MN with M,N ∈ Q(z)
[
d
dz

]
of order 1,

(i) M and N are both G-operators,
(ii) there exist a solution g(z) 6= 0 of N (and thus of L) and a solution k(z)

of M such that

(2.1) f(z) = g(z)
� k(z)
g(z)

dz.

Proof. Since L is of order 2 and reducible over Q(z), it follows that there
exist η(z), $(z), ν(z) ∈ Q(z), ν(z) 6= 0, such that

L = ν(z)

(
d

dz
− η(z)

)(
d

dz
−$(z)

)
.

Since L is a G-operator, this is also the case of M := ν(z)
(
d
dz − η(z)

)
and

N := d
dz −$(z).

We set k(z) := f ′(z)−$(z)f(z), so that Mk(z) = 0 (2).
We now have to solve the inhomogeneous equation f ′ = $f + k for

f(z). This is a well-known exercise. Let g(z) be a non-zero solution of the
homogeneous equation y′ = $y. Then the general solution of y′ = $y+ k is
of the form

y(z) = g(z)
� k(z)
g(z)

dz.

In particular, f(z) is of this form and the proof is complete.

Remark 2.4. The converse of Proposition 2.3 holds: if g, k are G-
functions such that Ng(z) = Mk(z) = 0, where M,N ∈ Q(z)

[
d
dz

]
are of

order 1, then we may assume that N = d
dz − a and M = d

dz − b, and
any function f defined by (1.4) satisfies f ′(z) − a(z)f(z) = k(z) so that
MNf(z) = 0, and the generalized expansion of f at z = 0 is in NGA{0}C0 .

The operatorsM andN are not unique (even in the class of G-operators),
as the classical factorization d2

dz2
=
(
d
dz −

1
z+λ

)(
d
dz +

1
z+λ

)
, λ ∈ C arbitrary,

shows; all these operators are G-operators when λ ∈ Q. Hence the represen-
tation of f(z) as in (2.1) is not unique.

Using Proposition 2.3, we are now able to deduce Proposition 1.2.

(2) Notice that if f(z) is a G-function, then both f(z) and f ′(z) are regular at z = 0,
and $(z) ∈ Q(z), so that if k(z) has a singularity at z = 0, then it is a pole.
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We have f ′(z) = a(z)f(z) + b(z). Since b(z) 6= 0, f(z) is then trivially a
solution of the (reducible) differential operator

L :=

(
d

dz
− b′(z)

b(z)

)(
d

dz
− a(z)

)
∈ Q(z)

[ d
dz

]
\ {0}.

Because f(z) 6= 0, f(z) is not of order 0 over Q(z), and because b(z) 6= 0
and f(z) /∈ Q(z), f(z) is not of order 1 over Q(z) either. To prove the
latter, assume on the contrary that f ′(z) = c(z)f(z) for some c(z) ∈ Q(z);
we then have a(z)f(z) + b(z) = c(z)f(z), so that either f(z) ∈ Q(z) or
b(z) = 0, which is impossible. Hence, Lf(z) = 0 is of minimal order for f(z)
over Q(z). By André’s minimality theorem, it follows that L is a G-operator,
of which f(z) ∈ NGA{0}C0 is a solution. We are thus in the situation of
Proposition 2.3. More precisely, in the proof of that proposition, we may take
$(z) := a(z), η(z) := b′(z)/b(z), and ν(z) := 1; the function k(z) defined
there by k(z) := f ′(z) −$(z)f(z) is thus equal to b(z). This concludes the
proof of Proposition 1.2.

We end this section with a simple but interesting result which can be
viewed as a converse to André’s minimality theorem when applied to a G-
operator. We recall that Q is treated as a subfield of C.

Proposition 2.5. Any given L ∈ Q(z)
[
d
dz

]
admits a solution for which

L is of minimal order over Q(z).

Remark 2.6. This is false if Q(z) is replaced by C(z). Consider for in-
stance again L = d2

dz2
∈ C(z)

[
d
dz

]
. The solutions of L are az+b, a, b ∈ C, and

any particular function az+b is a solution of (az+b) ddz−a ∈ C(z)
[
d
dz

]
. This is

of course another point of view on the above-mentioned factorization of d2

dz2
.

Proof of Proposition 2.5. We can assume that L 6= 0; we let m ≥ 1 be
the order of L. Let α ∈ Q be an ordinary point of L and let f1(z), . . . , fm(z)
denote a local C-basis of solutions of L at z = α where each fj(z) is in
Q[[z − α]]. Let ω1, . . . , ωm be complex numbers linearly independent over Q
(for instance ωj = πj) and consider the solution h(z) =

∑m
j=1 ωjfj(z) 6= 0

of L. Let M ∈ Q(z)
[
d
dz

]
be of minimal order for h(z). We have

(2.2) Mh =

m∑
j=1

ωjMfj = 0.

Consider the Laurent series expansions Mfj(z) =
∑∞

k=−K φk,j(z − α)k,
j = 1, . . . ,m, φk,j ∈ Q (where K ≥ 0 can be chosen the same for all j).
From (2.2), we deduce the relations

m∑
j=1

φk,jωj = 0, ∀k ≥ −K.
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The assumption on the ωj ’s implies that φk,j = 0 for all k ≥ −K and
all j ∈ {1, . . . ,m}. In other words, Mfj(z) = 0 for every j. By C-linear
independence of the fj ’s, we deduce that the order of M is m. Thus M = L,
up to multiplication by a non-zero element of Q(z).

3. Proof of Theorem 1.4. Let f(z) 6= 0 be an element of NGA{0}C0 ,
holonomic of order 2 over Q(z). Let L ∈ Q(z)

[
d
dz

]
of order 2 be such that

Lf(z) = 0; it is a G-operator by André’s minimality theorem. The differen-
tial Galois groups of L over C(z) and Q(z) respectively are “equal” in the
sense that they are defined by the same algebraic relations, i.e. the former
is obtained from the latter by extension of scalars from Q to C; see [13,
p. 19, Proposition 1.3.2] (due to Gabber) for the precise statement of this
fact. Moreover, assuming that f(z) and f ′(z) are algebraically dependent
over C(z), the differential Galois group of L over C(z) does not contain
SL2(C). Therefore the differential Galois group of L over Q(z) does not
contain SL2(Q). Kovacic’s classification [14, §1.2, Theorem] (adapted to the
case where the field of constants is Q; see [21]) then implies that one of the
following cases holds:

Case 1. L has a non-zero solution g(z) such that g′(z) = a(z)g(z) for
some a(z) ∈ Q(z).

Case 2. L has a basis of solutions g(z)k(z) and h(z)k(z) such that g(z)
and h(z) are algebraic over Q(z) and k′(z) = a(z)k(z) for some a(z) ∈ Q(z).

Case 3. L has a basis of solutions g(z) and h(z) such that g′(z) =
a(z)g(z) and h′(z) = b(z)h(z) where a(z) and b(z) are distinct quadratic
functions solving the same quadratic equation over Q(z).

Before going on, we give some details on bases of solutions. In Cases 2
and 3, Kovacic’s analysis provides a priori Q-bases of solutions with the
stated properties. We have to explain why these solutions also form C-bases.
This is in fact an immediate application of [25, p. 10, Corollary 1.13] but
let us explain this in our situation. By [25, p. 9, Lemma 1.12], two elements
u, v of a differential field with field of constants C (of characteristic 0) are
linearly independent over C if and only if their wronskian uv′ − u′v is non-
zero. Consider now a differential operator M ∈ Q(z)

[
d
dz

]
of order 2 with a

Q-basis of solutions f, g in a Picard–Vessiot extension of My(z) = 0 over
Q(z). Notice that f and g are also elements of a Picard–Vessiot extension
of My(z) = 0 over C(z); since their wronskian is non-zero, f and g remain
linearly independent over C. Hence, f and g also form a C-basis of M . This
explains why in Cases 2 and 3, the bases of solutions of L are also bases
over C, a fact that will be used in the discussions below.
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3.1. Discussion of Case 1. The differential operator N := d
dz −a(z) ∈

Q(z)
[
d
dz

]
is a right-factor of the G-operator L ∈ Q(z)

[
d
dz

]
. Hence L is re-

ducible over Q(z) and we have L = MN with M,N ∈ Q(z)
[
d
dz

]
both of

order 1. We can apply Proposition 2.3: we have f(z) = g(z)
	
(k(z)/g(z)) dz

where g(z) 6= 0 and k(z) are solutions of the G-operators N and M respec-
tively. Now, the expressions of g(z) and k(z) given by Proposition 2.1 show
that h(z) := k(z)/g(z) is also a solution of a G-operator of order 1. More-
over, the functions f(z) and g(z) are linearly independent over C. Indeed,
if on the contrary c1f(z) + c2g(z) = 0 for some c1, c2 ∈ C not both 0, then
necessarily c1 6= 0 and thus f(z) would be of order ≤ 1 over Q(z), which is
excluded. This also implies that h(z) cannot be zero. We are thus exactly in
the situation (ii) of Theorem 1.4.

3.2. Discussion of Case 2. We work in a suitable simply connected
cut plane where all functions under consideration are analytic. The function
G := gk is a solution of L, hence it is in NGA{0}C0 . It follows that k = G/g
has moderate growth at its finite singularities and at ∞. Hence, d

dz − a(z) ∈
Q(z)

[
d
dz

]
is fuchsian by Fuchs’ criterion (see [18, p. 55]), and we denote its

finite singularities by λj , j ∈ J ; they are all in Q. We have

k(z) = δ
∏
j∈J

(λj − z)sj

with δ ∈ C∗ and sj ∈ C for all j. We now prove that sj ∈ Q. Indeed, in the
local generalized expansion (around any β ∈ C)

G(z)

g(z)
=

∑
(α,j,k)∈S

λα,j,k(z − β)α log(z − β)jGα,j,k(z − β)

obtained from those of G and g, with Gα,j,k(z−β) ∈ C[[z−β]], the exponents
α are in Q because g is an algebraic function and G is a solution of the G-
operator L with rational exponents. Therefore sj ∈ Q for any j, and δ−1k(z)
is algebraic over Q(z).

In conclusion, δ−1g(z)k(z) and δ−1h(z)k(z) are algebraic functions over
Q(z) and they form a basis of L, in accordance with (i) of Theorem 1.4.

3.3. Discussion of Case 3. This case is more complicated. We work in
a suitable simply connected cut plane where all functions under consideration
are analytic, and fix an arbitrary determination of the square root function.
The quadraticity assumption on a and b ensures the existence of r, s ∈ Q(z)
such that

√
s /∈ Q(z), a = r +

√
s and b = r −

√
s. Since g and h are

solutions of the G-operator L, they are in NGA{0}C0 . From now on, we
limit our discussion to the case of g because the results can be transferred
immediately to h.



12 S. FISCHLER AND T. RIVOAL

From the equation g′ = (r +
√
s)g, we deduce that

g(z) = c exp
(�
r(z) dz

)
exp
(�√

s(z) dz
)

for some c ∈ C∗, where
	
denotes arbitrary but fixed antiderivatives of the

functions involved. The value of the constant c 6= 0 is in fact arbitrary
because we can of course replace g by any of its non-zero constant multiples in
the above discussion. We now explain how to assign a specific value to c that
will suit our goals. Notice that the function g̃(z) := exp(−

	
r(z)dz) g(z) =

c exp(
	√

s(z) dz) satisfies g̃′ =
√
s g̃ and that the local expansion at z = 0

of
	√

s(z) dz can be written as α + β log(z) + R(z) for some α ∈ C, β ∈ Q
and R ∈ Q((z1/2)) with no constant term. We set c := exp(−α) (which
now completely defines g(z)) so that the local expansion at z = 0 of g̃(z)
is in zβ · exp(P (z−1/2)) · Q[[z1/2]] for some P ∈ Q[z] such that P (0) = 0.
We shall prove below that exp(−

	
r(z) dz) is algebraic over Q(z) (up to a

mutiplicative constant), from which we shall deduce that g̃(z) ∈ NGA{0}Q0 .
We will then prove that g̃(z) is algebraic over Q(z).

Using g′ = (r+
√
s)g and g′′ = ((r+

√
s)′ + (r+

√
s)2)g, it is immediate

to check that g(z) is a solution of the operator

(3.1) M :=
d2

dz2
−
(
2r +

s′

2s

)
d

dz
+ r2 − r′ + rs′

2s
− s ∈ Q(z)

[
d

dz

]
.

(Another solution of M is h(z).) Let us perform the euclidean right-division
of L by M : there exist P ∈ Q(z) \ {0} and R ∈ Q(z)

[
d
dz

]
such that L =

PM + R where the order of R is 0 or 1. Because Lg(z) = Mg(z) = 0, we
have Rg(z) = 0. Comparing with g′ = (r+

√
s)g, we deduce that necessarily

R = 0. Consequently, L = PM and thus M is also a G-operator for these
particular r(z) and s(z).

Therefore M is fuchsian with rational exponents: denoting by z1, . . . , zm
∈ Q its (pairwise distinct) finite singularities, we have

(3.2) −2r(z)− s′(z)

2s(z)
=

m∑
j=1

1− ρ1,j − ρ2,j
z − zj

where for each j, ρ1,j ∈ Q and ρ2,j ∈ Q are the local exponents of M at zj
(see [18, p. 77, eqs. (20) and (21)]). Writing s(z) = δ

∏k
j=1(z − wj)sj where

δ ∈ Q∗ and wj ∈ Q, sj ∈ Z \ {0} for each j, we have

(3.3)
s′(z)

s(z)
=

k∑
j=1

sj
z − wj

.
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Using (3.3) in (3.2), we deduce that

(3.4) r(z) =
∑̀
j=1

tj
z − αj

for some αj ∈ Q and tj ∈ Q for every j. From (3.4), it follows as claimed
that there exists d ∈ C∗ such that

exp
( �
r(z) dz

)
= d

∏̀
j=1

(z − αj)tj ,

i.e. exp(
	
r(z)dz) is algebraic over Q(z) up to a multiplicative constant.

Hence, g̃(z) = d−1
∏`
j=1(z − αj)

−tjg(z) ∈ NGA{0}C0 . Now we have also
proved that the local expansion at z = 0 of g̃(z) belongs to zβ ·exp(P (z−1/2))·
Q[[z1/2]] for some β ∈ Q and P ∈ Q[z] such that P (0) = 0; it follows that
g̃(z) ∈ NGA{0}Q0 .

Now, the function g̃(z) is solution of the operator N := d2

dz2
− s′(z)

2s(z)
d
dz −

s(z). (This is formally the operator obtained fromM in (3.1) with r(z) = 0.)
Notice that g̃(z) is of order 2 over Q(z) because it is not 0 and g̃′ =

√
s g̃

rules out the possibility that it is of order 1 over Q(z). Therefore, N is a G-
operator by André’s minimality theorem. A key remark is that 1/g̃(z) is also
a solution of N . Therefore, 1/g̃(z) ∈ NGA{0}C0 . Since the local expansion at
z = 0 of 1/g̃(z) belongs to z−β · exp(−P (z−1/2)) · Q[[z1/2]] for some β ∈ Q
and P ∈ Q[z] such that P (0) = 0, we deduce that 1/g̃(z) is in NGA{0}Q0 . By
[1, Scholium, p. 123] (the proof of which encompasses our case), we conclude
that g̃(z) is algebraic over Q(z). Therefore, up to a multiplicative constant
in C, g(z) is also algebraic over Q(z).

The same arguments show that h(z) is algebraic over Q(z), up to a
multiplicative constant in C. In other words, there exist u, v ∈ C∗ such
that ug(z) and vh(z) are algebraic over Q(z), and form a basis of L. This is
in accordance with (i) of Theorem 1.4, the proof of which is now complete.

4. Holonomic Nilsson–Gevrey arithmetic series. André [2] intro-
duced the class of Nilsson–Gevrey arithmetic series of order 0, defined as
functions of the form

(4.1)
∑

(α,j,k)∈S

λα,j,kz
α log(z)jfα,j,k(z)

where S is a finite subset of Q × N × N, λα,j,k ∈ C and each fα,j,k(z) is a
power series

∑∞
n=0 anz

n with algebraic coefficients an (which depend also on
α, j, k) such that:
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• there exists C > 0 such that for any σ ∈ Gal(Q/Q) and any n ≥ 0, we
have |σ(an)| ≤ Cn+1;

• there exists a sequence of positive integers dn such that dn ≤ Cn+1 and
dnam is an algebraic integer for all m ≤ n.

In other words, fα,j,k(z) satisfies the requirements to be a G-function, except
that it is not assumed to be holonomic. In this section we prove Proposi-
tion 1.1 stated in the introduction, namely: a Nilsson–Gevrey arithmetic
series of order 0 is holonomic if, and only if, it can be written as (4.1) with
G-functions fα,j,k(z). Indeed, we shall prove the following more precise result.

Proposition 4.1. Let J ≥ 0, and A ⊂ C be a finite subset such that
α − α′ ∈ Z with α, α′ ∈ A implies α = α′. For any pair (α, j) ∈ A ×
{0, . . . , J} let K(α, j) be a non-negative integer, (fα,j,k)1≤k≤K(α,j) be a family
of K(α, j) functions holomorphic at 0 with algebraic Taylor coefficients, and
(λα,j,k)1≤k≤K(α,j) be complex numbers linearly independent over Q. Then the
function

f(z) =
∑
α∈A

J∑
j=0

K(α,j)∑
k=1

λα,j,kz
α log(z)jfα,j,k(z)

is holonomic if, and only if, all functions fα,j,k(z) are holonomic.

This result shows that Proposition 1.1 can be adapted easily to Nilsson–
Gevrey arithmetic series of negative order (for instance with E-functions
instead of G-functions). More generally, the assumptions on the growth and
denominators of the Taylor coefficients of the power series fα,j,k(z) are not
necessary here.

Since each fα,j,k(z) has algebraic Taylor coefficients at 0, it is holonomic
(i.e., solves a differential equation with coefficients in C(z)) if, and only if, it
solves a differential equation with coefficients in Q(z). Proposition 4.1 shows
that the same property holds with f(z).

Proof of Proposition 4.1. If all fα,j,k(z) are holonomic, then so is f . To
prove the converse, we assume that f is holonomic and for each (α, j) ∈
A× {0, . . . , J} we consider

(4.2) fα,j(z) =

K(α,j)∑
k=1

λα,j,kfα,j,k(z) ∈ C[[z]]

so that

(4.3) f(z) =
∑
α∈A

J∑
j=0

zα log(z)jfα,j(z).

Our first step is to prove that fα,j is holonomic for any pair (α, j). With
this aim in view, for each α ∈ A we denote by Jα the largest integer j
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such that fα,j is not identically zero; shrinking A if necessary we assume
that for each α there exists such a j. Then we shall prove by induction on
S :=

∑
α∈A(1 + Jα) that if f is holonomic in (4.3) then all fα,j are.

This property holds trivially if S = 0, because A = ∅ in this case. Let
us assume that S > 0, and that it holds for S − 1. Since S > 0, we have
A 6= ∅; we choose α0 ∈ A. Upon dividing by zα0 we may assume that α0 = 0.
We denote by T the monodromy around the origin. Then (4.3) provides an
expression of the form

(4.4) (Tf − f)(z) =
∑
α∈A′

J ′
α∑

j=0

zα log(z)jgα,j(z)

with functions gα,j(z) holomorphic at 0, where A \ {0} ⊂ A′ ⊂ A and
J ′α = Jα for any α ∈ A \ {0}. Moreover, if J0 = 0 then 0 6∈ A′; otherwise
0 ∈ A′ and J ′0 = J0 − 1. In both cases equation (4.4) corresponds to S′ =∑

α∈A′(1 + J ′α) = S − 1. Using the induction hypothesis we deduce that all
gα,j are holonomic. Now since the fα,j and gα,j are holomorphic at 0, it is
not difficult to express all functions gα′,j′ as linear combinations of the fα,j
(and f0,0 does not appear in this computation since Tf0,0 − f0,0 = 0). The
underlying matrix is invertible (since it is blockwise triangular with non-
zero diagonal coefficients) so that any fα,j (with (α, j) 6= (0, 0)) is a C-linear
combination of the holonomic functions gα′,j′ , and therefore is holonomic.
From (4.3) it follows that f0,0 is holonomic too; this concludes the inductive
proof.

Let us move now to the second part of the proof of Proposition 4.1. Recall
from (4.2) that

(4.5) fα,j(z) =

K(α,j)∑
k=1

λα,j,kfα,j,k(z).

For simplicity we write h(z) = fα,j(z), hk(z) = fα,j,k(z), and λk = λα,j,k;
then h =

∑K
k=1 λkhk with K = K(α, j) is holonomic, the complex numbers

λk are Q-linearly independent, and hk ∈ Q[[z]]. Our aim is to prove that all
hk are holonomic.

We consider the subspace F of CK consisting of all a = (a1, . . . , aK)

such that
∑K

k=1 akhk is holonomic. We are going to prove that F is defined
over Q, i.e. there exists a basis of F consisting of elements of QK (this is
equivalent to the existence of a system of linear equations with algebraic
coefficients that defines F : see [4]). Since (λ1, . . . , λK) ∈ F and the λk are
Q-linearly independent, this implies F = CK so that all hk are holonomic.

Since F is finite-dimensional, there exists a non-zero differential operator
L ∈ C

[
z, ddz

]
such that L(

∑K
k=1 akhk) = 0 for any a ∈ F . Let µ and δ denote,
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respectively, the order and the degree of L. We consider the subspace V of
C[[z]] spanned by the power series zi

(
d
dz

)j
hk with 0 ≤ i ≤ δ, 0 ≤ j ≤ µ,

1 ≤ k ≤ K. Since hk ∈ Q[[z]] for any k, this subspace V is defined over Q:
there exists a basis (v1, . . . , vN ) of V such that v` ∈ Q[[z]] for all `. For any
a ∈ CK we denote by M(a) ∈ MN,(µ+1)(δ+1)(C) the matrix whose columns
are given by the coordinates of zi

(
d
dz

)j
(
∑K

k=1 akhk) in the basis (v1, . . . , vN );
then each coefficient of M(a) is a Q-linear combination of a1, . . . , aK (with
coefficients independent of a). Now for a ∈ CK the following assertions are
equivalent:

• a ∈ F ;
•
∑K

k=1 akhk is annihilated by a non-zero differential operator of degree at
most δ and order at most µ;

• the columns of M(a) are linearly dependent (over C);
• M(a) has rank less than (µ+ 1)(δ + 1);
• all minors of size (µ+ 1)(δ + 1) of M(a) are equal to 0.

Now each minor ofM(a) is a polynomial in a1, . . . , aK with algebraic coeffi-
cients. Therefore F is the zero locus in CM of a finite family of polynomials
with algebraic coefficients. Since F is also a vector subspace of CM , it is
defined over Q. This concludes the proof of Proposition 4.1.

5. A result on algebraic functions. While searching for a proof of
Theorem 1.4, we proved a result of independent interest which is not used in
the paper. We have not seen it in the literature. M. Singer could not find it
either and he sent us his own proof based on differential Galois theory. Our
approach presented below is different.

Proposition 5.1. Let f(z) be a function algebraic over C(z), solving
a differential equation Ly(z) = 0 with L ∈ Q(z)

[
d
dz

]
\ {0}. Then there ex-

ist complex numbers λ1, . . . , λp and functions f1(z), . . . , fp(z) algebraic over
Q(z) such that Lfi(z) = 0 for each i and

f(z) =

p∑
i=1

λifi(z).

Proof. Let us fix a simply connected cut plane which does not contain
any singularity of L, and on which a determination of log(z) is fixed. We
choose a non-singular point z0 ∈ Q in this cut plane. A solution of Ly = 0
will be considered as a function on this cut plane, and identified with its
Taylor expansion at z0. Notice that if such a solution has algebraic Taylor
coefficients at z0, then it is algebraic over C(z) if, and only if, it is algebraic
over Q(z).
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Let p denote the order of L, and (f1, . . . , fp) be a basis of solutions of
Ly = 0, with algebraic Taylor coefficients at z0. Denote by A the Q-vector
space of all functions algebraic over Q(z), and let

V = A ∩ SpanQ(f1, . . . , fp)

denote the set of solutions of L that are algebraic over Q(z) and have al-
gebraic Taylor coefficients at z0. Let (g1, . . . , gr) be a basis of this Q-vector
space, and h1, . . . , hq be such that (g1, . . . , gr, h1, . . . , hq) is a Q-basis of the
space SpanQ(f1, . . . , fp) of solutions of Ly = 0 with algebraic Taylor coeffi-
cients at z0. We have 0 ≤ r, q ≤ p and r + q = p. If q = 0 then r = p and
SpanQ(f1, . . . , fp) = V ⊂ A; all functions f1, . . . , fp are algebraic over Q(z),
and Proposition 5.1 is proved.

Therefore we may assume that q ≥ 1. There exist κ1, . . . , κp ∈ C such
that

f = κ1h1 + · · ·+ κqhq + κq+1g1 + · · ·+ κpgr.

Since g1, . . . , gr and f are algebraic over C(z), so is κ1h1 + · · · + κqhq =
f − κq+1g1 − · · · − κpgr. Let I denote the set of all I ⊂ {1, . . . , q} for which
there exist complex numbers µi, i ∈ I, not all zero, such that

∑
i∈I µihi(z) is

algebraic over C(z). If κi = 0 for any i ∈ {1, . . . , q} then f = κq+1g1 + · · ·+
κpgr and Proposition 5.1 is proved. Otherwise we have {1, . . . , q} ∈ I by
taking µi = κi for any i, and we shall deduce a contradiction by considering
an element I of I with minimal cardinality.

If I = {i} for some i, then hi is algebraic over C(z); since hi has alge-
braic Taylor coefficients at z0, it is algebraic over Q(z), so that hi ∈ V =
SpanQ(g1, . . . , gr); this contradicts the definition of h1, . . . , hq.

Therefore Card I ≥ 2. Let us choose i0 ∈ I; by minimality of I we have
µi0 6= 0. Let us prove that µi/µi0 is transcendental for at least one i ∈ I.
Indeed, if all these numbers were algebraic, then µ−1i0

∑
i∈I µihi(z) would have

algebraic Taylor coefficients at z0 while being algebraic over C(z). Therefore
it would be algebraic over Q(z), and belong to V = A ∩ SpanQ(f1, . . . , fp).
Since it is a non-zero element of SpanQ(h1, . . . , hq), this would contradict
the definition of h1, . . . , hq.

We have proved that there exists i1 ∈ I such that µi1/µi0 is transcenden-
tal. Moreover, there exists P (z,X) =

∑t
k=0 Pk(z)X

k ∈ C[z,X] \ {0} such
that P (z,

∑
i∈I µihi(z)) = 0. In other words, all Taylor coefficients at z0 of

this function of z are zero. Notice that each such coefficient is a polynomial
with algebraic coefficients in the µi, i ∈ I, and the coefficients of the Pk(z).
Let K denote a subfield of C, of finite transcendence degree over Q, that
contains the µi, i ∈ I, and the coefficients of the Pk(z). Denote by d the tran-
scendence degree of K over Q. Since µi1/µi0 is transcendental and belongs
to K, we have d ≥ 1. Let θ1, . . . , θd denote a transcendence basis of K over Q
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(see for instance [17, p. 109, Definition 9.8]). Since C is not countable, there
exist α1, . . . , αd ∈ C such that θ1, . . . , θd, α1, . . . , αd are algebraically inde-
pendent over Q. Denote by σ : Q(θ1, . . . , θd)→ Q(α1, . . . , αd) the morphism
of Q-algebras defined by σ(θj) = αj for any j ∈ {1, . . . , d}; in other words, we
have σ(R(θ1, . . . , θd)) = R(α1, . . . , αd) for any R ∈ Q(X1, . . . , Xd). Since K
is an algebraic extension of Q(θ1, . . . , θd), σ can be extended to a morphism
K→ L, still denoted by σ, where L is an algebraic extension of Q(α1, . . . , αd)
(see [17, Proposition 2.2 and Theorem 6.8]). If σ(µi1/µi0) = µi1/µi0 , then
this element belongs to both K and L, so that it is algebraic over both
Q(θ1, . . . , θd) and Q(α1, . . . , αd). Since θ1, . . . , θd, α1, . . . , αd are algebraically
independent over Q, this implies µi1/µi0 ∈ Q, which is a contradiction.
Therefore we have σ(µi1/µi0) 6= µi1/µi0 .

Now recall that all Taylor coefficients at z0 of P (z,
∑

i∈I µihi(z)) are
zero, and that P (z,X) ∈ K[z,X] \ {0} by construction of K. Denote by
P σ(z,X) ∈ L[z,X] \ {0} the polynomial obtained from P (z,X) by applying
σ to all coefficients. Recall that all Taylor coefficients at z0 of the func-
tions hi are algebraic, and accordingly invariant under σ. Therefore any
Taylor coefficient at z0 of P σ(z,

∑
i∈I σ(µi)hi(z)) is the image under σ of

the corresponding coefficient of P (z,
∑

i∈I µihi(z)), which is zero. In other
words, we have P σ(z,

∑
i∈I σ(µi)hi(z)) = 0; the function

∑
i∈I σ(µi)hi(z) is

algebraic over C(z). Therefore the function

h(z) =
1

µi0

∑
i∈I

µihi(z)−
1

σ(µi0)

∑
i∈I

σ(µi)hi(z)

is also algebraic over C(z). It is a linear combination of the hi, i ∈ I \ {i0};
by minimality of I, it has to be 0. Since h1, . . . , hq are linearly independent
over C (because they are over Q and they have algebraic Taylor coefficients
at z0), we deduce that all coefficients are 0, so that µi1

µi0
=

σ(µi1 )

σ(µi0 )
, which is a

contradiction. This concludes the proof of Proposition 5.1.
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