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Abstract

In this paper we study the set G of values at algebraic points of analytic contin-
uations of G-functions (in the sense of Siegel). This subring of C contains values of
elliptic integrals, multiple zeta values, and values at algebraic points of generalized
hypergeometric functions p+1Fp with rational coefficients. Its group of units contains
non-zero algebraic numbers, π, Γ(a/b)b and B(x, y) (with a, b ∈ Z such that a/b 6∈ Z,
and x, y ∈ Q such that B(x, y) exists and is non-zero). We prove that for any ξ ∈ G,
both Re ξ and Im ξ can be written as f(1), where f is a G-function with rational
coefficients of which the radius of convergence can be made arbitrarily large. As an
application, we prove that quotients of elements of G ∩ R are exactly the numbers
which can be written as limits of sequences an/bn, where

∑∞
n=0 anz

n and
∑∞

n=0 bnz
n

are G-functions with rational coefficients. This result provides a general setting for
irrationality proofs in the style of Apéry for ζ(3), and gives answers to questions asked
by T. Rivoal in [Approximations rationnelles des valeurs de la fonction Gamma aux
rationnels : le cas des puissances, Acta Arith. 142 (2010), no. 4, 347–365].

1 Introduction

The purpose of this text is to study the set of values of G-functions at algebraic numbers.
Let us recall the following definition, which essentially goes back to Siegel [30].

Definition 1. A G-function f is a formal power series f(z) =
∑∞

n=0 anz
n such that the

coefficients an are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of an is ≤ Cn.

(ii) there exists a sequence of integers dn, with |dn| ≤ Cn, such that dnam is an algebraic
integer for all m ≤ n.

(iii) f(z) satisfies a homogeneous linear differential equation with coefficients in Q(z). (1)

1All differential equations considered in this text are homogeneous and consequently we will no longer
mention the term “homogeneous”.
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Throughout this paper we fix an embedding of Q into C; all algebraic numbers and all
convergents series are considered in C.

G-functions occur frequently in analysis, number theory, geometry and physics: for ex-
ample, algebraic functions over Q(z) which are holomorphic at 0, polylogarithms, Gauss’
hypergeometric function with rational parameters, are G-functions. The exponential func-
tion is not a G-function but an E-function (that is, it satisfies the requirements of Defini-
tion 1 if an is replaced with an/n! in the expansion of f(z)).

In Definition 1, condition (i) ensures that any non-polynomial G-function has finite non-
zero radius of convergence at z = 0. Condition (iii) implies that in fact the coefficients
an, n ≥ 0, all belong to a same number field. Classical references on G-functions are the
books [1] and [17].

Siegel’s goal was to find conditions ensuring that E and G-functions take irrational
or transcendental values at algebraic points: the picture is very well understood for E-
functions but largely unknown for G-functions. The main tool to study the nature of values
of G-functions is inexplicit Padé-type approximation (see [3, 12, 14, 22]). In an explicit
form, Padé approximation is also behind Apéry’s celebrated proof [7] of the irrationality
of ζ(3), and similar results in specific cases (see for instance [9, 19]).

In this paper, we study the following set.

Definition 2. Let G denote the set of all values f(α), where f is a G-function and α ∈ Q.
More precisely, all values at α of analytic continuations of f are considered, as soon as
they are finite.

This subset of C is a subring (this can be seen as a consequence of Theorem 1 below). It
contains Q, and also (see §2.2 for proofs) multiple zeta values, elliptic integrals, and values
at algebraic points of generalized hypergeometric functions p+1Fp with rational coefficients.
André proved in [1, p. 123] that the units of the ring of G-functions are exactly the algebraic
functions which are holomorphic and don’t vanish at the origin. The description of the
units of G is an interesting open problem whose solution is not as simple as for functions,
for we show in §2.2 that the group of units of G contains not only the non-zero algebraic
numbers but also π, the values of the Gamma function Γ(a/b)b and that of Euler’s Beta
function B(x, y) (with a, b ∈ Z such that a/b 6∈ Z, and x, y ∈ Q such that B(x, y) exists
and is non-zero). On the other hand, there is no explicit interesting number for which we
are able to prove that it is not in G (2); it is likely that e, Euler’s constant γ, Γ(a/b) (with
a, b integers such that a/b 6∈ Z) or Liouville numbers do not belong to G.

A conjecture of Bombieri and Dwork predicts a strong relationship between differential
equations satisfied by G-functions and Picard-Fuchs equations satisfied by periods of fam-
ilies of algebraic varieties defined over Q. See the precise formulation given by André in [1,
p. 7], who proved half of the conjecture in [1, pp. 110-111]. Christol [13] also conjectured
that globally bounded G-functions are diagonals of rational functions, which are known to

2Since the set G is countable, there are complex numbers outside G but the real difficulty is to exhibit
such a number by an effective process leading to an analytic expression like a series or an integral for
example.
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satisfy Picard-Fuchs equations. This raises the question of a connection between the set
G and the set P of periods considered by Kontsevich and Zagier [26]; all elements of P we
have thought of belong also to G. However 1/π is conjectured not to belong to P , so that
G is presumably distinct from P . However, a natural problem is the determination of the
link between G and P [1/π] (see the discussion at the end of § 2.2).

Our main result is the following.

Theorem 1. A complex number ξ belongs to G if, and only if, its real and imaginary
parts can be written as f(1), where f is a G-function with rational coefficients of which the
radius of convergence can be made arbitrarily large.

One of the consequences of this theorem is that the set of values of G-functions∑∞
n=0 anz

n with an ∈ Q at points z ∈ Q inside the disk of convergence (respectively
at points where this series is absolutely convergent, respectively convergent) is equal to
G ∩ R.

The main tool in the proof of Theorem 1 is André-Chudnovski-Katz’s theorem (stated
as Theorem 6 in §4.1 below), which provides for any G-function f and any ζ ∈ Q a
local basis (g1, . . . , gµ) of solutions around ζ of a minimal differential equation satisfied
by f . Expanding an analytic continuation of f in this basis yields connection constants
$1, . . . , $µ ∈ C such that f(z) =

∑µ
j=1$jgj(z). As a step towards Theorem 1, we prove

the following result which is of independent interest:

Theorem 2. The connection constants $1, . . . , $µ belong to G.

We would like to emphasize that analytic continuation (and its properties encompassed
in André-Chudnovski-Katz’s theorem) is the main tool in our approach. As the referee
pointed out to us, it would be interesting to find a connection with other methods used in
similar contexts, including Dèbes-Zannier’s [15] or Euler’s for accelerating convergent series;
however we did not find any. For instance, Euler’s binomial transform

∑
n≥0(−1)nan =∑

n≥0

(∑n
k=0(−1)k

(
k
n

)
ak
)

2−n−1 is involutive and therefore it cannot be used to obtain series
with arbitrarily large radius of convergence.

As an application of Theorem 1, we answer questions asked in [28, p. 351], where
the second author introduced the notion of rational G-approximations to a real number.
This corresponds to assertion (ii) in the next result, which provides a characterization of
numbers admitting rational G-approximations.

Given a subring A of C, we denote by Frac(A) the field of fractions of A, namely the
subfield of C consisting in all elements ξ/ξ′ with ξ, ξ′ ∈ A, ξ′ 6= 0.

Theorem 3. Let ξ ∈ R?. The following statements are equivalent:

(i) We have ξ ∈ Frac(G) ∩ R = Frac(G ∩ R).
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(ii) There exist two sequences (an)n≥0 and (bn)n≥0 of rational numbers such that the
series

∑∞
n=0 anz

n and
∑∞

n=0 bnz
n are G-functions, bn 6= 0 for any n large enough and

lim
n→+∞

an/bn = ξ.

(iii) For any R ≥ 1 there exist two G-functions A(z) =
∑∞

n=0 anz
n and B(z) =

∑∞
n=0 bnz

n,
with rational coefficients and radius of convergence = 1, such that A(z)− ξB(z) has
radius of convergence > R.

Remark. When ξ ∈ G, we can take bn = 1 in (ii). However, it is not clear to us if this is
also the case for other elements ξ ∈ Frac(G), in particular because it is doubtful that G
itself is a field.

Apéry has proved [7] that ζ(3) 6∈ Q by constructing sequences (an)n≥0 and (bn)n≥0

essentially as in (iii), such that bn ∈ Z and lcm(1, 2, . . . , n)3an ∈ Z. Since ζ(3) = Li3(1)
(where the polylogarithms defined by Lis(z) =

∑∞
n=1

1
ns
zn, s ≥ 1, are G-functions), we

have ζ(3) ∈ G. Theorem 3 provides a general setting for such irrationality proofs and
one may wonder if, given a real irrational number ξ ∈ Frac(G), there exists a proof à la
Apéry that ξ is irrational. In particular, this would be a strategy to prove the following
conjecture (see §7.2 below):

Conjecture 1. No ξ ∈ Frac(G) can be a Liouville number.

Our approach does not yield (at least for now) any actual result towards this conjecture,
because the denominators of the coefficients of the G-functions we construct grow too fast.
It would be interesting to control them in some way.

The paper is organized as follows. We introduce some notation in §2.1, and state slight
generalizations of Theorems 1 and 3, namely Theorems 4 and 5. We prove in §2.2 that
the numbers mentioned above actually belong to G. Then we start proving Theorems 4
and 5 by gathering some lemmas in §§2.3 and 2.4. In §3, we prove that the conclusion
of Theorem 1 holds for algebraic numbers and their logarithms. In §4, we review some
classical results concerning the properties of differential equations satisfied by G-functions
(namely Theorem 6, due to André, Chudnovski and Katz). We also prove in this section
that connection constants belong to G, and the conclusion of Theorem 1 holds for them (see
Theorem 7). This result, along with the analytic continuation properties of G-functions
deduced from Theorem 6, is used to prove Theorem 4 in §5. In §6, we present the proof of
Theorem 5: the main tool is the results of Singularity Analysis due to Flajolet and Odlyzko
[21], described in details in the book [20]. Finally, we mention in §7 a few problems
suggested by our results: what can be said about the case of E-functions and about
Diophantine perspectives.

Acknowledgements: We warmly thank Yves André, Daniel Bertrand, Frits Beukers,
Gilles Christol, Julien Roques and Michel Waldschmidt for their constructive remarks. We
are also indebted to the referee for his pertinent comments that helped us to improve this
work, in particular those we present in §7.1. Both authors have been supported by the
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project HAMOT, and the second author partially by the project Q-DIFF, of the Agence
Nationale de la Recherche.

2 Background of the proofs

2.1 Notation and results

In this section we introduce some notation that will be used throughout this text. We also
state Theorems 4 and 5, which are slight generalizations of Theorems 1 and 3 respectively.

The letter K will always stand for a (finite or infinite) algebraic extension of Q, embed-
ded into Q ⊂ C.

Definition 3. Given an algebraic extension K of Q, we denote by Ga.c.
K the set of all values,

at points in K, of multivalued analytic continuations of G-functions with Taylor coefficients
at 0 in K.

For any G-function f with coefficients in K and any α ∈ K, we consider all values
of f(α) obtained by analytic continuation, as in the definition of G in the introduction;
obviously G = Ga.c.

Q . If α is a singularity of f , then we consider also these values if they are

finite. Of course f(αz) is also a G-function with coefficients in K so that we may restrict
ourselves to values at the point 1. By Abel’s theorem, Ga.c.

K contains all convergent series∑∞
n=0 anα

n where f(z) =
∑∞

n=0 anz
n is a G-function with coefficients in K and α ∈ K.

Definition 4. Given an algebraic extension K of Q, we denote by Gcv
K the set of all ξ ∈ C

such that, for any R ≥ 1, there exists a G-function f with Taylor coefficients at 0 in K
and radius of convergence > R such that ξ = f(1).

For any R ≥ 1, we denote by Gcv
R,K the set of all ξ = f(1) where f is a G-function

with Taylor coefficients at 0 in K and radius of convergence > R. In this way we have
Gcv

K = ∩R≥1G
cv
R,K, and also Gcv

R,K ⊂ Ga.c.
K for any R ≥ 1.

With this notation, Theorem 1 reads Ga.c.
Q = Gcv

Q + iGcv
Q = Gcv

Q(i). Actually we prove

that Ga.c.
K is independent from K, so that it is always equal to G = Ga.c.

Q . Concerning Gcv
K ,

there is an obvious remark: if K ⊂ R then Gcv
K ⊂ R. Apart from this, Gcv

K is independent
from K, and equal (up to taking real parts) to G. Our result reads as follows.

Theorem 4. Let K be an algebraic extension of Q. Then:

• We have Ga.c.
K = G = Gcv

Q + iGcv
Q .

• If K 6⊂ R then Gcv
K = G = Gcv

Q + iGcv
Q ; if K ⊂ R then Gcv

K = G ∩ R = Gcv
Q .
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In particular this result contains the fact that Q ∩ R ⊂ Gcv
Q and Q ⊂ Gcv

Q + iGcv
Q ;

this will be proved in §3.1. Another consequence of this theorem is that the set of values
of G-functions

∑∞
n=0 anz

n with an ∈ K at points z ∈ K inside the disk of convergence
(respectively at points where this series is absolutely convergent, respectively convergent)
is equal to Gcv

K (so that it is equal to either G or G ∩ R).

We also generalize Theorem 3 as follows.

Theorem 5. Let K be an algebraic extension of Q, and ξ ∈ C?. Then the following
statements are equivalent:

(i) We have ξ ∈ Frac(Gcv
K ).

(ii) There exist two sequences (an)n≥0 and (bn)n≥0 of elements of K such that
∑∞

n=0 anz
n

and
∑∞

n=0 bnz
n are G-functions, bn 6= 0 for infinitely many n and an − ξbn = o(bn).

(iii) For any R ≥ 1 there exist two G-functions A(z) =
∑∞

n=0 anz
n and B(z) =

∑∞
n=0 bnz

n,
with coefficients an, bn ∈ K and radius of convergence = 1, such that A(z) − ξB(z)
has radius of convergence > R and an, bn 6= 0 for any n sufficiently large.

When K = Q, this is a refinement of Theorem 3 because assumption (ii) of Theorem 3
implies assumption (ii) of Theorem 5, and (iii) of Theorem 5 implies (iii) of Theorem 3
(see also Lemma 2 below). The point in assertion (ii) of Theorem 5 is that bn may vanish
for infinitely many n; by asking an − ξbn = o(bn) we require that an = 0 as soon as bn = 0
and n is sufficiently large.

2.2 Examples and connection to periods

In this section, we prove that the numbers mentioned in the introduction belong to G, and
give some hints on the connection with periods. This section is independent from the rest
of the paper, except that we assume here that G is a ring.

Many examples of G-functions are provided by the generalized hypergeometric series

∞∑
n=0

(α1)n(α2)n · · · (αk)n
(1)n(β1)n · · · (βk−1)n

zn

with rational coefficients α’s and β’s, and (x)n = x(x+ 1) · · · (x+n− 1). Special cases are
the polylogarithmic functions Lik(z) =

∑
n≥1

zn

nk
(k ≥ 1) and arctan(z) =

∑
n≥0(−1)n zn

2n+1
.

We deduce in particular that π = 4 arctan(1) and the values of the Riemann zeta function

ζ(k) = Lik(1) are in G for any integer k ≥ 2. Catalan’s constant
∑

n≥0
(−1)n

(2n+1)2
is also in G.

Other examples of G-functions are the multiple polylogarithms
∑

n1>···>ns≥1
zn1

n
k1
1 ···n

ks
s

where the k’s are positive integers. This is a consequence of the fact that for s = 1, we have
a polylogarithm from which we obtain the multiple series by a succession of integrations
and multiplications by 1/z or 1/(1− z); this process does not leave the set of G-functions.
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As a consequence, multiple zeta values ζ(k1, . . . , ks) =
∑

n1>···>ns≥1
1

n
k1
1 ···n

ks
s

(with k1 ≥ 2)

are in G.
It could seem more surprising that 1/π is also in G, a fact proved by each one of the

following identities:

1

π
=
∞∑
n=0

(
2n
n

)2

(1− 2n)24n+1
,

1

π
=
∞∑
n=0

(
2n
n

)3
(42n+ 5)

212n+4
.

The first identity is a direct translation of the identity E(1) = 1 where E(k) =
∫ 1

0

√
1−k2t2
1−t2 dt

is Legendre’s complete elliptic function of the second kind. The second identity is due to
Ramanujan and it also has an elliptico-modular interpretation. Both series are in fact
values of generalized hypergeometric series, hence 1/π ∈ G.

In particular, π and the non-zero algebraic numbers are units of G. These numbers do
not span the whole group of units, as we now proceed to prove. Euler’s Beta function is
defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

for Re(x),Re(y) > 0. It is well-known that B(x, y) = Γ(x)Γ(y)
Γ(x+y)

, which provides the mero-

morphic continuation of B to C2; we recall that π = B(1
2
, 1

2
).

Proposition 1. (i) For all rational numbers x, y such that B(x, y) is defined and non-zero,
the number B(x, y) is a unit of G.

(ii) For any integers a, b ≥ 1, we have Γ
(a
b

)b
= (a− 1)!

b−1∏
j=1

B
(a
b
,
ja

b

)
and Γ

(
a
b

)b
is a

unit of G.

Remark. a) To sum up, the group of units of G contains the algebraic numbers and the
numbers B(x, y) where x, y ∈ Q (as soon as they are defined and non-zero). We don’t
know if this provides a complete list of generators of this group.

b) Chudnovski proved in 1974 that Γ(1/3), respectively Γ(1/4), and π are algebraically
independent over Q. Hence one needs other transcendental generators than π in the group
of units of G.

c) This proposition is a transposition in our context of a discussion in André’s book [6,
pp. 211–212], where he shows that the numbers Γ(a/b)b are periods (in the geometric
sense).

Proof. (i) We first show that B(x, y) ∈ G for all rational numbers 0 < x, y ≤ 1. Clearly,
B(x, y) is well defined in this case and

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =

∫ 1

0

∞∑
n=0

(−1)n
(
y − 1

n

)
tn+x−1dt

=
∞∑
n=0

(−1)n
(
y − 1

n

)∫ 1

0

tn+x−1dt =
∞∑
n=0

(−1)n
(
y−1
n

)
n+ x

.
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Since (−1)n
(
y−1
n

)
is positive, permuting the series and integral is licit. Moreover,

(y−1
n )

n+x
=

O(1/ny+1) so that the final series converges absolutely and is the value at z = 1 of a
G-function. This proves that B(x, y) ∈ G in this case.

From now on, we let x, y ∈ Q and we assume that x, y, x + y 6∈ Z (otherwise the
conclusion is easier to prove). Then B(x, y) is defined and non-zero. There exist two
integers M,N such that 0 < x+M, y +N ≤ 1, and the functional equations

B(x, y) =
x+ y

x
B(x+ 1, y), B(x, y) =

x+ y

y
B(x, y + 1)

yield B(x, y) = RM,N(x, y)B(x+M, y+N) with RM,N(x, y) ∈ Q(x, y). Since B(x+M, y+
N) is in G by the previous case, it follows that B(x, y) ∈ G.

To prove that 1/B(x, y) is also in G, we use the reflection formula Γ(x)Γ(1−x) = π
sin(πx)

to get
1

B(x, y)
=

sin(πx) sin(πy)

sin π(x+ y)
· 1− x− y

π
·B(1− x, 1− y).

Now B(1 − x, 1 − y) ∈ G by the case above, (1−x−y) sin(πx) sin(πy)
sinπ(x+y)

is an algebraic number

(hence in G) and 1/π ∈ G, so that 1
B(x,y)

∈ G.

(ii) We have

b−1∏
j=1

B
(a
b
,
ja

b

)
=

b−1∏
j=1

Γ
(
a
b

)
Γ
(
aj
b

)
Γ
(a(j+1)

b

) = Γ
(a
b

)b−1 Γ
(
a
b

)
Γ(a)

,

from which we obtain the claimed identity. Moreover, for any integer j ≥ 1, B
(
a
b
, ja
b

)
is

obviously defined and non-zero, hence is a unit of G by (i). Thus, this is also the case of

Γ
(
a
b

)b
.

To conclude this section, we mention some remarks (due to the referee) towards the
determination of the link between G and P [1/π], where P is the ring of periods (in Kont-
sevich and Zagier’s sense [26]); in particular a natural question is whether G = P [1/π] or
not.

Bombieri-Dwork’s conjecture suggests that G might be contained in P [1/π]. Indeed,
this conjecture predicts that any G-function is solution of an extension of sub-quotients
of Picard-Fuchs equations. It is not clear that such an extension is motivic, but for a
Picard-Fuchs equation the G-matrix solution Y (z) is the quotient P (z)P (0)−1 of two period
matrices. Since the determinant of P (0) is an algebraic number times a power of π (see
[2]), the inclusion G ⊂ P [1/π] would follow.

Towards the converse inclusion, it is possible to prove that if a one-parameter Picard-
Fuchs equation doesn’t have 0 as a singularity then the special values of its solutions can
be expressed in terms of G-functions which are solutions of the same equation.

In view of this discussion, it would be very interesting to refine Theorem 1 by ensur-
ing that 0 isn’t a singularity of the minimal differential equation of the G-function f we
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construct (such that f(1) is a given ξ ∈ G). However our proof does not provide this
refinement directly and new ideas are necessary to do that.

2.3 General properties of the ring Gcv
K

The set of G-functions satisfies a number of structural properties. It is a ring and even a
Q[z]-algebra; it is stable by differentiation and the Hadamard product of two G-functions
(obtained by pointwise multiplication of the coefficients) is again a G-function. These
properties will be used throughout the text, as well as the fact that algebraic functions
over Q(z) which are holomorphic at z = 0 are G-functions: this is a consequence of
Eisenstein’s theorem (3) and the fact that an algebraic function over Q(z) satisfies a linear
differential equation with coefficients in Q[z].

The following property is useful too:

Lemma 1. Consider a G-function
∑∞

n=0 anz
n. Then the series

∑∞
n=0 anz

n,
∑∞

n=0 Re(an)zn

and
∑∞

n=0 Im(an)zn are also G-functions.

Proof. The series
∑∞

n=0 anz
n satisfies a linear differential equation Ly = 0 with coefficients

in Q[z], hence
∑∞

n=0 anz
n satisfies the linear differential equation Ly = 0 where L is

obtained from L by replacing each coefficient
∑d

k=0 pkz
k with

∑d
k=0 pkz

k. Furthermore,
the moduli of the conjugates of an and their common denominators obviously grow at
most geometrically. Hence,

∑∞
n=0 anz

n is a G-function.
For

∑∞
n=0 Re(an)zn and

∑∞
n=0 Im(an)zn, we write 2Re(an) = an+an, 2iIm(an) = an−an

and use the fact that the sum of two G-functions is also a G-function.

The following lemma includes the easiest properties of Gcv
K ; especially (i) will be used

very often without explicit reference.

Lemma 2. Let K be an algebraic extension of Q.

(i) Gcv
K is a ring and it contains K.

(ii) If K is invariant under complex conjugation then:

• Gcv
K is invariant under complex conjugation.

• Gcv
K∩R = Gcv

K ∩ R.

• R ∩ Frac(Gcv
K ) = Frac(Gcv

K∩R) = Frac(Gcv
K ∩ R).

(iii) Gcv
Q(i) = Gcv

Q [i] = Gcv
Q + iGcv

Q , and more generally if K ⊂ R then Gcv
K(i) = Gcv

K [i] =
Gcv

K + iGcv
K .

3which states that for any power series
∑∞

n=0 anz
n algebraic over Q(z), there exists a positive integer

D such that Dnan is an algebraic integer for any n.
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Proof. (i) The properties of G-functions ensure that the sum and product of two G-
functions with coefficients in K and radii of convergence > R ≥ 1 are G-functions with co-
efficients in K and radii of convergence > R. Moreover algebraic constants are G-functions
with infinite radius of convergence.

(ii) Using Lemma 1 and the fact that K is invariant under complex conjugation, if∑∞
n=0 anz

n is a G-function with coefficients in K and radii of convergence > R ≥ 1 then so
is
∑∞

n=0 anz
n: this proves that Gcv

K is invariant under complex conjugation.
The inclusion Gcv

K∩R ⊂ Gcv
K ∩ R is obvious. Conversely, if ξ ∈ R ∩ Gcv

K then for any
R ≥ 1 we have ξ =

∑∞
n=0 an where

∑∞
n=0 anz

n is a G-function with coefficients in K and
radius of convergence > R. Then

∑∞
n=0 Re(an)zn is also a G-function (by Lemma 1); it

has coefficients in K ∩ R (because Re(an) = 1
2
(an + an)) and radius of convergence > R.

Therefore ξ =
∑∞

n=0 Re(an) ∈ Gcv
K∩R.

Finally, the inclusion Frac(Gcv
K ∩ R) ⊂ R ∩ Frac(Gcv

K ) is trivial. The converse is trivial
too if K ⊂ R; otherwise let ξ, ξ′ ∈ Gcv

K be such that ξ′ 6= 0 and ξ/ξ′ ∈ R. Multiplying if
necessary by a non-real element of K, we may assume ξ, ξ′ 6∈ iR. Then we have ξ/ξ′ =
(ξ + ξ)/(ξ′ + ξ′) ∈ Frac(Gcv

K ∩ R).

(iii) Assume K ⊂ R. Since Gcv
K is a ring and i2 = −1 ∈ Gcv

K , we have Gcv
K [i] =

Gcv
K +iGcv

K . This is obviously a subset of Gcv
K(i). Conversely, K(i) is invariant under complex

conjugation (because K ⊂ R) so that for any ξ ∈ Gcv
K(i) we have Re(ξ) = 1

2
(ξ+ ξ) ∈ Gcv

K(i)∩
R = Gcv

K by (ii). Since i ∈ K(i) ⊂ Gcv
K(i) we have Im(ξ) = −i(ξ−Re(ξ)) ∈ Gcv

K(i)∩R = Gcv
K ,

using (ii) again. Finally ξ = Re(ξ) + iIm(ξ) ∈ Gcv
K + iGcv

K .

The following lemma is a consequence of Lemma 7 proved in §3 below; of course the
proof of Lemma 7 does not use Lemma 3, hence there is no circularity.

Lemma 3. Let K be an algebraic extension of Q.

(i) We have Q ∩ R ⊂ Gcv
Q ⊂ Gcv

K , and Gcv
K is a (Q ∩ R)-algebra.

(ii) If K 6⊂ R then Q ⊂ Gcv
Q(i) ⊂ Gcv

K , and Gcv
K is a Q-algebra.

Proof. (i) By Lemma 7, we have Q∩R ⊂ Gcv
Q(i)∩R; this is equal to Gcv

Q by Lemma 2. The
inclusion Gcv

Q ⊂ Gcv
K is trivial since Q ⊂ K.

(ii) Since K 6⊂ R, there exist α, β ∈ R such that α + iβ ∈ K and β 6= 0; since α − iβ
is also algebraic, we have α, β ∈ Q. Therefore we can write i = 1

β
((α + iβ) − α) with

1
β
, α ∈ Q∩R ⊂ Gcv

K (by (i)). Since Gcv
K is a ring which contains α+ iβ, this yields i ∈ Gcv

K ,

so that (using Lemma 2 and the trivial inclusion Gcv
Q ⊂ Gcv

K ) Gcv
Q(i) = Gcv

Q + iGcv
Q ⊂ Gcv

K .

Using the inclusion Q ⊂ Gcv
Q(i) proved in Lemma 7, this concludes the proof of (ii).

To conclude this section, we state and prove the following lemma, which is very useful
for constructing elements of Gcv

R,K. Recall that Gcv
R,K is the set of all ξ = f(1) where f is a

G-function with coefficients in K and radius of convergence > R.
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Lemma 4. Let K be an algebraic extension of Q. Let ζ ∈ K, and g(z) be a G-function
in the variable ζ − z, with coefficients in K and radius of convergence ≥ r > 0. Then
g(z0) ∈ Gcv

R,K for any R ≥ 1 and any z0 ∈ K such that |z0 − ζ| < r/R.

Proof. Letting f(z) = g
(
ζ + z(z0 − ζ)

)
, we have f(1) = g(z0) and f is a G-function with

coefficients in K and radius of convergence > R.

2.4 Miscellaneous lemmas

We gather in this section two lemmas which are neither difficult nor specific to G-functions,
but very useful.

Lemma 5. Let A be a subring of C. Let S ⊂ N and T ⊂ Q be finite subsets. For any
(s, t) ∈ S × T , let fs,t(z) =

∑∞
n=0 as,t,nz

n ∈ A[[z]] be a function holomorphic at 0, with
Taylor coefficients in A. Let Ω denote an open subset of C, with 0 in its boundary, on
which a continuous determination of the logarithm is chosen. Then there exist c ∈ A,
σ ∈ N and τ ∈ Q such that, as z → 0 with z ∈ Ω:∑

s∈S

∑
t∈T

(log z)sztfs,t(z) = c (log z)σzτ (1 + o(1)). (2.1)

Proof. Let T + N = {t + n, t ∈ T, n ∈ N}. For any s ∈ S and any θ ∈ T + N, let
cs,θ =

∑
t∈T as,t,θ−t where we let as,t,θ−t = 0 if θ − t 6∈ N. Then the left handside of

(2.1) can be written, for z ∈ Ω sufficiently close to 0, as an absolutely converging series∑
θ∈T+N

∑
s∈S cs,θ(log z)szθ. If cs,θ = 0 for any (s, θ) then (2.1) holds with c = 0. Otherwise

we denote by τ the minimal value of θ for which there exists s ∈ S with cs,θ 6= 0, and by
σ the largest s ∈ S such that cs,τ 6= 0. Then (2.1) holds with c = cσ,τ ∈ A.

The following result will be used in the proof of Theorem 5.

Lemma 6. Let ω1, . . . , ωt be pairwise distinct complex numbers, with |ω1| = · · · = |ωt| = 1.
Let κ1, . . . , κt ∈ C be such that lim

n→+∞
κ1ω

n
1 + · · ·+ κtω

n
t = 0. Then κ1 = · · · = κt = 0.

Proof. For any n ≥ 0, let δn = detMn where

Mn =


ωn1 ωn2 . . . ωnt
ωn+1

1 ωn+1
2 . . . ωn+1

t
...

...
...

ωn+t−1
1 ωn+t−1

2 . . . ωn+t−1
t

 .

Let Ci,n denote the i-th column of Mn. Since Ci,n = ωni Ci,0 we have |δn| = |ωn1 . . . ωnt δ0| =
|δ0| 6= 0 because δ0 is the Vandermonde determinant built on the pairwise distinct numbers
ω1, . . . , ωt. Now assume that κj 6= 0 for some j. Then for computing δn we can replace
Cj,n with 1

κj

∑t
i=1 κiCi,n; this implies lim

n→+∞
δn = 0, in contradiction with the fact that

|δn| = |δ0| 6= 0.
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3 Algebraic numbers and logarithms as values of G-

functions

An important step for us is to show that algebraic numbers are values of G-functions with
coefficients in Q(i) (and, more precisely, that they satisfy the conclusion of Theorem 1).
Despite quite general results in related directions, this fact does not seem to have been
proved in the literature in the full form we need. Eisenstein [31] showed that the G-function
(of hypergeometric type)

∞∑
n=0

(−1)n
(

5n
n

)
4n+ 1

a4n+1

is a solution of the quintic equation x5 + x = a, provided that |a| ≤ 5−5/4 (to ensure the
convergence of the series). Eisenstein’s formula can be proved using Lagrange inversion
formula. More generally, given a polynomial P (x) ∈ C[x], it is known that multivariate
series can be used to find expressions of the roots of P in terms of its coefficients pj. For
example in [32], it is shown that these roots can be formally expressed as A-hypergeometric
series evaluated at rational powers of the pj’s. (A-hypergeometric series are an example of
multivariate G-functions.) It is not clear how such a representation could be used to prove
Lemma 7 below: beside the multivariate aspect, the convergence of the series imposes some
conditions on the pj’s and their exponents are not integers in general. Our proof is more
in Eisenstein’s spirit.

Lemma 7. Let α ∈ Q, and Q(X) ∈ Q[X] be a non-zero polynomial of which α is a simple
root. For any u ∈ Q(i) such that Q′(u) 6= 0, the series

Φu(z) = u+
∞∑
n=1

(−1)n
Q(u)n

n!

∂n−1

∂xn−1

(( x− u
Q(x)−Q(u)

)n)
|x=u

zn

is a G-function with coefficients in Q(i); it satisfies the equation Q(Φu(z)) = (1− z)Q(u).
For any R ≥ 1, if u is close enough to α then the radius of convergence of Φu is > R

and α = Φu(1) ∈ Gcv
R,Q(i).

Accordingly we have Q ⊂ Gcv
Q(i).

Remarks. a) The proof can be made effective, i.e., given α, Q and R, we can compute
ε(α,Q,R) such that for any u ∈ Q(i) with |α − u| < ε(α,Q,R), we have Φu(1) = α and
the radius of convergence of Φu is > R.

b) Using Lemma 2(ii), we deduce that any real algebraic number is in Gcv
Q .

We also need a similar property for values of the logarithm.

Lemma 8. Let α ∈ Q?
. For any determination of the logarithm, the number log(α) belongs

to Gcv
Q(i).
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3.1 Algebraic numbers

Proof of Lemma 7. If degQ = 1 then Φu(z) = u+(α−u)z so that Lemma 7 holds trivially.

From now on we assume degQ ≥ 2. Then Q(X)−Q(u)
X−u is a non-constant polynomial with

coefficients in Q(i); its value at X = u is Q′(u) 6= 0 so that the coefficients of Φu(z) are
well-defined and belong to Q(i). If Q(u) = 0 then Φu(z) = u and the result is trivial, so
that we may assume Q(u) 6= 0 and define the polynomial function

zu(t) = 1− Q(t+ u)

Q(u)
∈ Q(i)[t]

so that zu(0) = 0 and z′u(0) = −Q′(u)
Q(u)

6= 0. Hence zu(t) can be locally inverted around t = 0

and its inverse tu(z) =
∑

n≥1 φn(u)zn is holomorphic at z = 0.
The Taylor coefficients of tu can be computed by means of Lagrange inversion for-

mula [20, p. 732] which in this case gives Φu(z) = u + tu(z). By definition of tu(z),
this implies Q(Φu(z)) = (1 − z)Q(u). Therefore Φu is an algebraic function hence it is a
G-function.

Now let

φn(u) =
(−Q(u))n

n!

∂n−1

∂xn−1

(( x− u
Q(x)−Q(u)

)n)
|x=u

denote, for n ≥ 1, the coefficient of zn in Φu(z). Then for any n ≥ 1 we have

φn(u) =
Q(u)n

2iπ

∫
C

dz

(Q(u)−Q(z))n
(3.1)

where C is a closed path surrounding u but no other roots of the polynomial Q(X)−Q(u).
This enables us to get an upper bound on the growth of the coefficients φn(u). Let us
denote by β1(u) = u, β2(u), . . . , βd(u) the roots (repeated according to their multiplicities)
of the polynomial Q(X) − Q(u), with d = degQ ≥ 2. We take u close enough to α so
that β2(u), . . . , βd(u) are also close to the other roots α2, . . . , αd of the polynomial Q(X).
Since α is a simple root of Q(X), we have α 6∈ {α2, . . . , αd}. We can then choose the
smooth curve C in (3.1) independent from u such that the distance from C to any one of
u, β2(u), . . . , βd(u) is ≥ ε > 0 with ε also independent from u, in such a way that u lies
inside C and β2(u), . . . , βd(u) outside C . (4) It follows in particular that, for any z ∈ C ,

|Q(u) − Q(z)| ≥ ρ for some ρ > 0 independent from u. Hence max
z∈C

∣∣∣ 1

Q(u)−Q(z)

∣∣∣ ≤ 1

ρ
.

From the Cauchy integral in (3.1), we deduce that

|φn(u)| ≤ |C |
2π
· |Q(u)|n

ρn
, (3.2)

where |C | is the length of C . Let R ≥ 1. Since Q(u) → Q(α) = 0 as u → α, we deduce
that the radius of convergence of Φu(z) is > R provided that u is sufficiently close to α

4We do so because we want to use a curve C that does not depend of u, whereas the poles of the
integrand move with u.
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(namely as soon as R|Q(u)| < ρ). Then the series Φu(1) is absolutely convergent and we
have

|Φu(1)− u| =
∣∣∣∣ ∞∑
n=1

φn(u)

∣∣∣∣ ≤ |C |2π

∞∑
n=1

|Q(u)|n

ρn
= O

(
|Q(u)|

)
. (3.3)

Therefore Φu(1) can be made arbitrarily close to u, and accordingly arbitrarily close to α.
Now for any z inside the disk of convergence of Φu we have Q(Φu(z)) = (1 − z)Q(u), so
that Φu(1) is a root of Q(X). If it is sufficiently close to α, it has to be α. This completes
the proof of Lemma 7.

3.2 Logarithms of algebraic numbers

Proof of Lemma 8. Throughout this proof, we will always consider the determination of
log z of which the imaginary part belongs to (−π, π] (but the result holds for any determi-
nation because iπ = log(−1) ∈ Gcv

Q(i)).

Using the formula log(α) = n log(α1/n) with n sufficiently large, we may assume that α
is arbitrarily close to 1; in particular the imaginary part of logα gets arbitrarily close to 0.

Letting Q(X) denote the minimal polynomial of α, we keep the notation in the proof of
Lemma 7, and write α = Φu(1) = u + uΨu(1) where u ∈ Q(i) is close enough to α, Ψu(1)
is in Gcv

Q(i) and Ψu(0) = 0. By Equation (3.2), the radius of convergence at z = 0 of the

G-function Ψu(z) can be taken arbitrarily large provided that u ∈ Q(i) is close enough to
α. We have

log(α) = log(α/u) + log(u) = log
(
1 + Ψu(1)

)
+ log(u),

because all logarithms in this equality have imaginary parts arbitrarily close to 0. Let
R ≥ 1; we shall prove, if u is close enough to 1, that both log(1 + Ψu(1)) and log(u) belong
to Gcv

R,Q(i).

a) Provided that u is close enough to α, reasoning as in Equation (3.3) we get |Ψu(z)| < 1
for all z in a disk of center 0 and radius > R. Hence for such a u, the radius of convergence
of the Taylor series of log(1 + Ψu(z)) at z = 0 is > R ≥ 1. To see that it is a G-function

with coefficients in Q(i), we observe that d
dz

log
(
1 + Ψu(z)

)
= Ψ′u(z)

1+Ψu(z)
is an algebraic

function holomorphic at the origin: its Taylor series is a G-function
∑∞

n=0 anz
n ∈ Q(i)[[z]].

Therefore log(1+Ψu(z)) =
∑∞

n=0
an
n+1

zn+1 ∈ Q(i)[[z]]; this is a G-function because the set of

G-functions is stable under Hadamard product and both
∑∞

n=0 anz
n+1 and

∑∞
n=0

1
n+1

zn+1

are G-functions. Whence, log(1 + Ψu(1)) ∈ Gcv
R,Q(i).

b) It remains to prove that log(u) ∈ Gcv
R,Q(i) for any u ∈ Q(i) sufficiently close to 1. Let

a, b ∈ Q be such that u = a+ ib. Then we have

log(u) =
1

2
log(a2 + b2) + i arctan

( b
a

)
.

Now log(1 + z) =
∑∞

n=1
(−1)n−1

n
zn and arctan(z) =

∑∞
n=0

(−1)n

2n+1
z2n+1 are G-functions with

rational coefficients and radius of convergence = 1, and we may assume that |a2 + b2−1| <
1/R and |b/a| < 1/R. Then log(u) ∈ Gcv

R,Q(i) (see Lemma 4).
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4 Analytic continuation and connection constants

4.1 Properties of differential equations of G-functions

Let K be an algebraic extension of Q, and f(z) =
∑∞

n=0 anz
n ∈ K[[z]] be a G-function with

coefficients an ∈ K. Let L be a minimal differential equation with coefficients in K[z] of
which f(z) is a solution. We denote by ξ1, . . . , ξp ∈ C the singularities of L (throughout
this paper, we will consider only points at finite distance). For any i ∈ {1, . . . , p}, let ∆i

be a closed broken line from ξi to the point at infinity; we assume ∆i ∩ ∆j = ∅ for any
i 6= j, and let D = C \ (∆1 ∪ . . . ∪ ∆p): this is a simply connected open subset of C. In
most cases we shall take for ∆i a closed half-line starting at ξi.

The differential equation Ly = 0 has holomorphic solutions on D , and these solutions
make up a C-vector space of dimension equal to the order of L; a basis of this vector space
will be referred to as a basis of solutions of L.

Let ζ be a singularity of L. Then for any sufficiently small open disk D centered at ζ,
the intersection D ∩ D is equal to D with a ray removed; let us choose a determination
of the logarithm of ζ − z, denoted by log(ζ − z), for z ∈ D ∩ D (in such a way that it is
holomorphic in z). If ζ ∈ D is not a singularity of L, the function log(ζ − z) will cancel
out in what follows.

We shall use the following theorem (see [4, p. 719] for a discussion).

Theorem 6 (André, Chudnovski, Katz). Let K denote an algebraic extension of Q. Con-
sider a minimal differential equation L of order µ, with coefficients in K[z] and admit-
ting a solution at z = 0 which is a G-function in K[[z]]. Let D , ξ1,. . . , ξp be as above.
Then L is fuchsian with rational exponents at each of its singularities, and for each point
ζ ∈ D ∪ {ξ1, . . . , ξp} there is a basis of solutions (g1(z), . . . , gµ(z)) of L, holomorphic on
D , with the following properties:

• There exists an open disk D centered at ζ and functions Fs,t,j(z), holomorphic at 0,
such that for any j ∈ {1, . . . , µ} and any z ∈ D ∩D :

gj(z) =
∑
s∈Sj

∑
t∈Tj

(
log(ζ − z)

)s
(ζ − z)tFs,t,j(ζ − z)

where Sj ⊂ N and Tj ⊂ Q are finite subsets.

• If ζ ∈ K then the functions Fs,t,j(z) are G-functions with coefficients in K.

• If ζ is not a singularity of L then Sj = Tj = {0} for any j, so that g1(z), . . . , gµ(z)
are holomorphic at z = ζ.

This theorem is usually stated in a more precise form, namely

(g1(z), . . . , gµ(z)) =
(
f1(ζ − z), f2(ζ − z), . . . , fµ(ζ − z)

)
·
(
ζ − z

)Cζ
where the functions fj(z) are holomorphic at 0 and Cζ is an upper triangular matrix, and
a similar formulation holds for the singularity at infinity, where one replaces ζ − z by 1/z.
However this precise version won’t be used in this paper.
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4.2 Statement of the theorem on connection constants

Let K, f , L and D be as in §4.1. Let (g1, . . . , gµ) denote a basis of the C-vector space of
holomorphic solutions on D of the differential equation Ly = 0; here µ is the order of L.
Since f ∈ K[[z]] satisfies Lf = 0 and is holomorphic on a small open disk centered at 0, it
can be analytically continued to D and expanded in the basis (g1, . . . , gµ):

f(z) =

µ∑
j=1

$jgj(z) (4.1)

for any z ∈ D , where $1, . . . , $µ ∈ C are called connection constants.
The following theorem is an important ingredient in the proof of Theorems 4 and 5.

Theorem 7. Let K denote an algebraic extension of Q. Consider a minimal differential
equation L of order µ, with coefficients in K[z] and admitting a solution at z = 0 which
is a G-function f ∈ K[[z]]. Let D , ξ1, . . . , ξp be as above, ζ ∈ K ∩ (D ∪ {ξ1, . . . , ξp})
and (g1, . . . , gµ) be a basis of solutions given by Theorem 6. Then the connection constants
$1, . . . , $µ defined by Equation (4.1) belong to Gcv

K(i).

The following corollary is a consequence of Theorem 7 and Lemma 5 (applied with
A = Gcv

K(i)). It is used in the proof of Theorem 5.

Corollary 1. Let K, f , D , ζ be as in Theorem 7. Then there exist c ∈ Gcv
K(i), σ ∈ N and

τ ∈ Q such that, as z → ζ with z ∈ D :

f(z) = c
(

log(ζ − z)
)σ

(ζ − z)τ (1 + o(1)).

4.3 Wronskian of fuchsian equations

Given a linear differential equation L with coefficients in Q(z), of order µ and with a basis
of solutions f1, f2, . . . , fµ, the wronskian W = W (f1, . . . , fµ) is the determinant

W (z) =

∣∣∣∣∣∣∣∣∣
f1(z) f2(z) · · · fµ(z)

f
(1)
1 (z) f

(1)
2 (z) · · · f

(1)
µ (z)

...
... · · · ...

f
(µ−1)
1 (z) f

(µ−1)
2 (z) · · · f

(µ−1)
µ (z)

∣∣∣∣∣∣∣∣∣ .
The wronskian can be defined in a more intrinsic way as follows. We write L as

y(µ)(z) + aµ−1(z)y(µ−1)(z) + · · ·+ a1(z)y(z) = 0

where aj(z) ∈ Q(z), j = 1, . . . , µ− 1. Then W (z) is a solution of the linear equation

y′(z) = −aµ−1(z)y(z), (4.2)

hence W (z) = ν0 exp
(
−
∫
aµ−1(z)dz

)
. The value of the constant ν0 is determined by the

solutions f1, f2, . . . , fµ.
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Lemma 9. Let K, f , L, D , ζ, g1, . . . , gµ be as in Theorem 7. Then the wronskian
W (z) = W (g1, . . . , gµ)(z) is an algebraic function over Q(z), and its zeros and singularities
lie among the poles of aµ−1(z).

Proof. Since the differential equation (4.2) is fuchsian, Equation (5.1.16) in [24, p. 148]
yields W (z) = ν

∏J
j=1(z − pj)

−rj where p1, . . . , pJ ∈ Q are the poles of aµ−1(z) (which
are simple because L is fuschian), r1, . . . , rj ∈ Q (because L has rational exponents at its
singularities), and ν ∈ C?. It remains to prove that ν is algebraic.

With this aim in view, we compute the determinant W (z) for z ∈ D sufficiently close
to ζ by means of the expansions of g1,. . . , gµ and their derivatives. This yields

W (z) =
∑
s∈S

∑
t∈T

(
log(ζ − z)

)s
(ζ − z)tFs,t(ζ − z)

where S ⊂ N and T ⊂ Q are finite subsets, and the Fs,t(z) are G-functions with coefficients
in K. Now Lemma 5 provides c ∈ K, σ ∈ N and τ ∈ Q such that, as z → ζ with z ∈ D :

W (z) = c
(

log(ζ − z)
)σ

(ζ − z)τ (1 + o(1)).

On the other hand we also have
∏J

j=1(z− pj)−rj = c̃(ζ − z)τ̃ (1 + o(1)) for some c̃ ∈ Q?
and

τ̃ ∈ Q. Since the quotient is a constant, namely ν, taking limits as z → ζ yields σ = 0,
τ = τ̃ and ν = c/c̃ ∈ Q. This concludes the proof of Lemma 9.

4.4 Proof of Theorem 7

Let R ≥ 1. For any ξ ∈ (D \ {0, ζ}) ∩ K(i), let rξ > 0 be the distance of ξ to the border
∆1 ∪ . . . ∪ ∆p of D (with the notation of §4.1), and Dξ be the open disk centered at ξ
of radius rξ/R. Since ξ is not a singularity of L, there is a basis g1,ξ(z), . . . , gµ,ξ(z) of
solutions of Ly = 0 consisting in G-functions in the variable ξ− z with coefficients in K(i)
(by Theorem 6); these G-functions have radii of convergence ≥ rξ, so that gj,ξ(z) ∈ Gcv

R,K(i)

for any z ∈ Dξ ∩K(i) and any j (see Lemma 4).
Let r0 > 0 be the radius of convergence of the G-function f(z), and D0 denote the open

disk centered at 0 with radius r0/R. Finally, for any j ∈ {1, . . . , µ} we let gj,ζ(z) = gj(z);
by assumption there exists rζ > 0 such that

gj,ζ(z) =
∑
s∈Sj

∑
t∈Tj

(
log(ζ − z)

)s
(ζ − z)tFs,t,j(ζ − z)

for any z ∈ D such that |z − ζ| < rζ , where Sj ⊂ N and Tj ⊂ Q are finite subsets and the
Fs,t,j are G-functions with coefficients in K and radii of convergence ≥ rζ . Then we let Dζ

be the open disk centered at ζ with radius rζ/R, so that for any z ∈ Dζ ∩K(i) and any j
we have gj,ζ(z) ∈ Gcv

R,K(i) by Lemmas 4, 7 and 8.

Following a smooth injective compact path from 0 to ζ inside D ∪ {0, ζ}, we can find
s − 2 points ξ2, . . . , ξs−1 ∈ (D \ {0, ζ}) ∩ K(i) (with s ≥ 3) such that Dk−1 ∩ Dk 6= ∅ for
any k ∈ {2, . . . , s}, where we let Dk = Dξk and ξ1 = 0, ξs = ζ.
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As in the beginning of §4.2, we have connection constants $j,2 ∈ C such that

f(z) =

µ∑
j=1

$j,2 gj,ξ2(z) (4.3)

for any z ∈ D . In the same way, for any z ∈ D , any k ∈ {3, . . . , s} and any j ∈ {1, . . . , µ}
we have

gj,ξk−1
(z) =

µ∑
`=1

$j,k,` g`,ξk(z). (4.4)

Obviously the connection constants $j ∈ C in Theorem 7 are obtained by making products
of the vector ($j,2)1≤j≤µ and the matrices ($j,k,`)1≤j,`≤µ (for k ∈ {3, . . . , s}), because
gj,ξs(z) = gj(z). Since Gcv

R,K(i) is a ring and R ≥ 1 can be any real number, Theorem 7

follows from the fact that all constants $j,2 and $j,k,` in (4.3) and (4.4) belong to Gcv
R,K(i).

We will prove it now for (4.4); the proof is similar for (4.3).
Let k ∈ {3, . . . , s} and j ∈ {1, . . . , µ}. We differentiate µ− 1 times Equation (4.4), so

that we get the µ equations

g
(s)
j,ξk−1

(z) =

µ∑
`=1

$j,k,` g
(s)
`,ξk

(z), s = 0, . . . , µ− 1.

We choose z = ρk ∈ Dk−1∩Dk∩K(i) outside the poles of aµ−1(z) (with the notation of §4.3).
Doing so yields a system of µ linear equations in the µ unknowns $j,k,`, ` = 1, . . . , µ, which
can be solved using Cramer’s rule because the determinant of the system (namely W (ρk),
where W (z) is the wronskian of L built on the basis of solutions g1,ξk(z), . . . , gµ,ξk(z)) does

not vanish, by Lemma 9. Using again Lemma 9, we have W (ρk) ∈ Q?
and therefore

1
W (ρk)

∈ Q ⊂ Gcv
Q(i) ⊂ Gcv

K(i) by Lemma 7. Now Cramer’s rule yields

$j,k,` =
1

W (ρk)

∣∣∣∣∣∣∣∣∣
g1,ξk(ρk) · · · g`−1,ξk(ρk) gj,ξk−1

(ρk) g`+1,ξk(ρk) · · · gµ,ξk(ρk)

g
(1)
1,ξk

(ρk) · · · g
(1)
`−1,ξk

(ρk) g
(1)
j,ξk−1

(ρk) g
(1)
`+1,ξk

(ρk) · · · g
(1)
µ,ξk

(ρk)
... · · · ...

...
... · · · ...

g
(µ−1)
1,ξk

(ρk) · · · g
(µ−1)
`−1,ξk

(ρk) g
(µ−1)
j,ξk−1

(ρk) g
(µ−1)
`+1,ξk

(ρk) · · · g
(µ−1)
µ,ξk

(ρk)

∣∣∣∣∣∣∣∣∣ .
Since ρk ∈ Dk−1∩Dk, the entries in this determinant belong to the ring Gcv

R,K(i) (as noticed

above), so that $j,k,` ∈ Gcv
R,K(i). This concludes the proof of Theorem 7.

5 Proof of Theorem 4

The main part in the proof of Theorem 4 is to prove that Ga.c.
Q ⊂ Gcv

Q(i); this will be done

below. We deduce Theorem 4 from this inclusion as follows, by Lemmas 2 and 3. If K 6⊂ R,
we have:

Ga.c.
K ⊂ Ga.c.

Q ⊂ Gcv
Q(i) ⊂ Gcv

K ⊂ Ga.c.
K
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and Theorem 4 follows. If K ⊂ R, we have:

Gcv
K ⊂ Ga.c.

Q ∩ R ⊂ Gcv
Q(i) ∩ R = Gcv

Q ⊂ Gcv
K

so that Gcv
K = Gcv

Q . The inclusion Ga.c.
K ⊂ Ga.c.

Q = Gcv
Q + iGcv

Q is trivial; let us prove that

Gcv
Q + iGcv

Q ⊂ Ga.c.
K . Let ξ1, ξ2 ∈ Gcv

Q , and f , g, h be G-functions with rational coefficients

and radii of convergence > 2 such that f(1) = ξ1, g(1) = ξ2, and h(1) = 4
√

2. Then
k(z) = f(z) + g(z)h(z) 4

√
1− z

2
is a G-function with coefficients in Q ⊂ K, and ξ1 + iξ2 is

the value at 1 of an analytic continuation of k (obtained after a small loop around z = 2).
This concludes the proof that Ga.c.

K = Gcv
Q + iGcv

Q if K ⊂ R.

The rest of the section is devoted to the proof that Ga.c.
Q ⊂ Gcv

Q(i). Let ξ ∈ Ga.c.
Q ; we

may assume ξ 6= 0. There exists a G-function f(z) =
∑∞

n=0 anz
n with coefficients an ∈ Q,

and z0 ∈ Q, such that ξ is one of the values at z0 of the multivalued analytic continuation
of f . Replacing f(z) with f(z0z), we may assume z0 = 1. Let L denote the minimal
differential equation satisified by f , and ξ1, . . . , ξp be the singularities of L. To keep the
notation simple (and because the general case can be proved along the same lines), we
shall assume that there is an open subset D ⊂ C (as in §4.1) such that 1 ∈ D ∪{ξ1, . . . , ξp}
and ξ = f(1), where f denotes the analytic continuation of the G-function

∑
anz

n to D .
If 1 is a singularity of L then f(1) is the (necessarily finite) limit of f(z) as z → 1, z ∈ D .

The coefficients an (n ≥ 0) belong to a number field K = Q(β) for some primitive
element β of degree d say. We can assume without loss of generality that K is a Galois
extension of Q, i.e, that all Galois conjugates of β are in K. There exist d sequences of
rational numbers (uj,n)n≥0, j = 0, . . . , d− 1, such that, for all n ≥ 0, an =

∑d−1
j=0 uj,nβ

j and
thus (at least formally)

f(z) =
∞∑
n=0

anz
n =

d−1∑
j=0

βj
∞∑
n=0

uj,nz
n. (5.1)

The power series Uj(z) =
∑∞

n=0 uj,nz
n are G-functions (see [17], Proposition VIII.1.4,

p. 266), so that Equation (5.1) holds as soon as |z| is sufficiently small. Moreover Uj has
rational coefficients, so that it satisfies a differential equation with coefficients in Q[z] (see
for instance [17], Proposition VIII.2.1 (iv), p. 268). We let Lj denote a minimal one, of
order µj. Let Sj denote the set of singularities of Lj, and S = S0 ∪ · · · ∪Sd−1. Let Γ
denote a compact broken line without multiple points from 0 to 1 inside D ∪ {0, 1}. Since
S is a finite set, we may assume that Γ∩S ⊂ {0, 1} and find a (small) simply connected
open subset Ω ⊂ C such that Γ \ {0, 1} ⊂ Ω ⊂ D \ {1} and Ω ∩S = ∅. If Γ and Ω are
chosen appropriately, it is possible to construct D0, . . . , Dd−1 as in §4.1 (with respect to
L0, . . . , Ld−1) such that Ω ⊂ D0 ∩ · · · ∩Dd−1. Since Ω is simply connected and 1 6∈ Ω, we
choose a continuous determination of log(1− z) for z ∈ Ω. Now Equation (5.1) holds in a
neighborhood of 0, and 0 lies in the closure of Ω so that, by analytic continuation,

f(z) =
d−1∑
j=0

βjUj(z) for any z ∈ Ω. (5.2)
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We shall now expand this equality around the point 1, which lies also in the closure
of Ω. For any j ∈ {0, . . . , d − 1}, let (gj,1, . . . , gj,µj) denote a basis of solutions of the
differential equation Ljy = 0 provided by Theorem 6 with ζ = 1. Then Theorem 7 gives
$j,1, . . . , $j,µj ∈ Gcv

Q(i) such that Uj(z) = $j,1gj,1(z) + · · · + $j,µjgj,µj(z) for any z ∈ Ω.

Since βj ∈ Gcv
Q(i) by 7, Equation (5.2) yields finite subsets S ⊂ N and T ⊂ Q such that,

for z ∈ Ω sufficiently close to 1:

f(z) =
∑
s∈S

∑
t∈T

(
log(1− z)

)s
(1− z)tFs,t(1− z)

where the functions Fs,t(z) are holomorphic at 0 and have Taylor coefficients at 0 in Gcv
Q(i).

Then Lemma 5 gives c ∈ Gcv
Q(i), σ ∈ N and τ ∈ Q such that f(z) = c

(
log(1 − z)

)σ
(1 −

z)τ (1 + o(1)) as z → 1 with z ∈ Ω. Since lim
z→1

f(z) = ξ 6= 0, we have σ = τ = 0 and

ξ = c ∈ Gcv
Q(i). This concludes the proof of Theorem 4.

6 Rational approximations to quotients of values of

G-functions

This section is devoted to the proof of Theorem 5: in §6.1 we prove that (i) ⇒ (iii), and
in §6.2 that (ii)⇒ (i). Since (iii) obviously implies (ii), this will conclude the proof.

6.1 Construction of rational approximants

Assume that assertion (i) holds. Let ξ1, ξ2 ∈ Gcv
K \ {0} be such that ξ = ξ1/ξ2. Let R ≥ 1,

and U(z) =
∑∞

n=0 unz
n, V (z) =

∑∞
n=0 vnz

n be G-functions with coefficients in K and radii
of convergence > R, such that U(1) =

∑∞
n=0 un = ξ1 and V (1) =

∑∞
n=0 vn = ξ2.

For any n ≥ 0, let an =
∑n

k=0 uk and bn =
∑n

k=0 vk, A(z) =
∑∞

n=0 anz
n and B(z) =∑∞

n=0 bnz
n. Then A(z) = U(z)

∑∞
n=0 z

n = U(z)
1−z and B(z) = V (z)

1−z are G-functions with
coefficients in K and radii of convergence = 1. Moreover lim

n→+∞
an = ξ1 and lim

n→+∞
bn = ξ2

so that an, bn 6= 0 for any n sufficiently large, and

∣∣an − ξbn∣∣ =
∣∣(an − ξ1)− ξ(bn − ξ2)

∣∣ ≤ ∞∑
k=n+1

|uk|+ |ξ|
∞∑

k=n+1

|vk| = O
(
R−n

)
because un, vn = O(R−n) as n→ +∞ and we may assume R ≥ 2. Therefore A(z)− ξB(z)
has radius of convergence ≥ R, thereby concluding the proof that (i)⇒ (iii).

6.2 Application of Singularity Analysis

Let us prove that (ii)⇒ (i) in Theorem 5.
Let A(z) =

∑∞
n=0 anz

n and B(z) =
∑∞

n=0 bnz
n be G-functions with coefficients in K,

such that bn 6= 0 for infinitely many n and an − ξbn = o(bn). Since ξ 6= 0, we have an 6= 0
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for infinitely many n: none of A(z) and B(z) is a polynomial. Therefore these G-functions
have finite positive radii of convergence, say ρ and ρ̃ respectively.

Let us denote by L the minimal differential equation over K[z] satisfied by A(z), and
by ρζ1, . . . , ρζq the pairwise distinct singularities of A(z) of modulus ρ (so that |ζ1| = . . . =
|ζq| = 1). Then we have q ≥ 1, and all ρζi are singularities of L and are algebraic numbers.

Let θ0 ∈ (−π/2, π/2) and ∆0 = {z ∈ C, z = 1 or arg(z − 1) ≡ θ0 mod 2π}. For any
i ∈ {1, . . . , q}, let ∆i = ρζi∆0 = {ρζiz, z ∈ ∆0}. Denoting by ξ1 = ρζ1, . . . , ξq = ρζq, ξq+1,
. . . , ξp the singularities of L, we may assume (by choosing θ0 properly) that ∆1, . . . , ∆q and
some appropriate half-lines ∆q+1, . . . , ∆p satisfy the assumptions made at the beginning
of §4.1, so that we can take D = C \ (∆1 ∪ · · · ∪∆p). Choosing arbitrary determinations
for log(ρζi) (i = 1, . . . , q), and also a continuous one for log z when z ∈ C \ ∆0, we may
define log(ρζi − z) to be log(ρζi) + log

(
1− z

ρζi

)
for z ∈ D sufficiently close to ρζi (because

1
ρζi

∆i = ∆0). For any i ∈ {1, . . . , q}, Corollary 1 yields ci ∈ Gcv
K(i) \ {0}, σi ∈ N and τi ∈ Q

such that

A(z) = ci
(

log(ρζi − z)
)σi(ρζi − z)τi(1 + o(1))

= ci(ρζi)
τi

(
log
(

1− z

ρζi

))σi(
1− z

ρζi

)τi
(1 + o(1))

as z → ρζi with z ∈ D . Replacing A(z) and B(z) with their `-th derivatives from the
beginning, where ` is a sufficiently large integer, we may assume τ1 < 0 (because ρζ1 is a
singularity of A(z)). Let τ = min(τ1, . . . , τq) < 0, and σ denote the maximal value of σi
among those indices i such that τi = τ . Let g(z) = (log(1 − z))σ(1 − z)τ for z ∈ C \∆0,
and di = ci(ρζi)

τi if (σi, τi) = (σ, τ), di = 0 otherwise. Then (d1, . . . , dq) 6= (0, . . . , 0) and,
for any i ∈ {1, . . . , q}, we have di ∈ Gcv

K(i) (by Lemma 7, because ρζi ∈ Q). Finally,

A(z) = dig
( z

ρζi

)
+ o

(
g
( z

ρζi

))
(6.1)

as z → ρζi with z ∈ D . We have checked all assumptions of Theorem VI.5 (§VI.5, p. 398)
of [20] (see also [21]). This result enables one to transfer this estimate (6.1) around the
singularities on the circle of convergence into an asymptotic estimate for the coefficients of
A(z), namely:

an =
(−1)σ

Γ(−τ)
· (log n)σ

ρnnτ+1
·
(
χn + o(1)

)
, with χn =

q∑
i=1

diζ
−n
i . (6.2)

Remark. Equation (6.2), the proof of which is based on Singularity Analysis, seems to be
interesting for itself (and not only as a step in the proof of Theorem 5).

The same arguments with B(z) provide ρ̃, σ̃, τ̃ , ζ̃1, . . . , ζ̃q̃, d̃1, . . . , d̃q̃ such that

bn =
(−1)σ̃

Γ(−τ̃)
· (log n)σ̃

ρ̃nnτ̃+1
·
(
χ̃n + o(1)

)
, with χ̃n =

q̃∑
i=1

d̃iζ̃
−n
i . (6.3)
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Let N0 = {n ∈ N, bn = 0} and N = N \N0. By assumption N is infinite, and an = 0
for any n ∈ N0 sufficiently large. In what follows, we assume implicitly that N0 is infinite
(otherwise the proof is the same, and even easier since everything works as if N0 = ∅ and
N = N).

By Equations (6.2) and (6.3), we have as n→ +∞ with n ∈ N :

an
bn

= (−1)σ−σ̃
Γ(−τ̃)

Γ(−τ)
· χn + o(1)

χ̃n + o(1)
·
( ρ̃
ρ

)n
nτ̃−τ (log n)σ−σ̃. (6.4)

Now the left handside tends to ξ 6= 0 as n → +∞ with n ∈ N . If (ρ, σ, τ) 6= (ρ̃, σ̃, τ̃)

then
∣∣χn+o(1)
χ̃n+o(1)

∣∣ tends to 0 or +∞ as n → +∞ with n ∈ N . Since both χn and χ̃n are

bounded, this implies that χn or χ̃n tends to 0 as n→ +∞ with n ∈ N . Since χn = o(1)
and χ̃n = o(1) as n → ∞ with n ∈ N0 (using (6.2) and (6.3), because an = bn = 0 for
n ∈ N0 sufficiently large), we have lim

n→+∞
χn = 0 or lim

n→+∞
χ̃n = 0. By Lemma 6 this implies

d1 = · · · = dq = 0 or d̃1 = · · · = d̃q̃ = 0, which is a contradiction.

Therefore we have (ρ, σ, τ) = (ρ̃, σ̃, τ̃) in Equation (6.4), so that an
bn

= χn+o(1)
χ̃n+o(1)

as n →
+∞ with n ∈ N . Therefore χn−ξχ̃n+o(1)

χ̃n+o(1)
= an

bn
− ξ tends to 0 as n → +∞ with n ∈ N .

Since χ̃n is bounded, we deduce lim
n→+∞

χn − ξχ̃n = 0 (using the fact that χn = o(1) and

χ̃n = o(1) as n→∞ with n ∈ N0). Writing χn − ξχ̃n =
∑t

j=1 κjω
n
j where {ω1, . . . , ωt} =

{ζ−1
1 , . . . , ζ−1

q , ζ̃−1
1 , . . . , ζ̃−1

q̃ } with ω1, . . . , ωt pairwise distinct, Lemma 6 yields κ1 = · · · =
κt = 0. Reordering the ζj’s and the ωk’s if necessary, we may assume that d1 6= 0 and

ω1 = ζ−1
1 . Then κ1 = d1 − ξd̃i if there is a (necessarily unique) i such that ω1 = ζ̃−1

i ,

and κ1 = d1 otherwise. Since κ1 = 0 6= d1, there is such an i and it satisfies d̃i 6= 0 and
ξ = d1/d̃i ∈ Frac(Gcv

K(i)). If K 6⊂ R then Gcv
K = Gcv

K(i) by Theorem 4; otherwise we have

ξ ∈ R∩Frac(Gcv
Q ) = Frac(Gcv

Q∩R) = Frac(Gcv
K ) by Theorem 4 and Lemma 2. In both cases,

this concludes the proof of Theorem 5.

7 Perspectives

7.1 Other classes of arithmetic power series

It is natural to wonder if the results presented in this paper can be adapted to other classes
of arithmetic power series. The most natural class is that of E-functions, also introduced
by Siegel in [30]. The definition of these functions (see the Introduction) is formally similar
to that of G-functions, but of course the presence of n! at the denominator of the Taylor
coefficients changes drastically the properties of E-functions. An E-function is entire and
André proved in [4, Theorem 4.3] that any E-function is solution of a linear differential
equation with polynomial coefficients (not necessarily minimal) whose singularities are 0
(a regular singularity with rational exponents) and infinity (an irregular singularity in gen-
eral). Like the set of G-functions, the set of E-functions enjoys certain stability properties;
for instance, it is a ring.
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Let us denote by E as the set of all values of E-functions at algebraic points. This is
the analogue of G and it is a ring; it would be interesting to prove a result on E analogous
to Theorem 1. However we do not even know what a reasonable conjecture would be in
this respect; what is clear is that the situation is really different, as the following result
shows (we are indebted to the referee for suggesting its proof to us).

Proposition 2. Let f be an E-function with coefficients in Q(i), and α ∈ Q be such that
f(1) = α or f(1) = eα. Then α ∈ Q(i).

Proof. Let φ(z) denote either α or eαz, with α ∈ Q; assume there exists an E-function f
with coefficients in Q(i) such that f(1) = φ(1). Replacing f(z) with f(z)− β or f(z)e−βz

for a suitable β ∈ Q(i), we may assume that α has zero trace over Q(i). Now there
exist Q(z)-linearly independent E-functions f1, . . . , fn with coefficients in Q(i) such that
f1(1) = φ(1) and the vector f = t(f1, . . . , fn) is a solution of the differential system y′ = Ay
where A is an n × n matrix with entries in Q(i)(z). Modifying f1, . . . , fn if necessary as
in the proof of Theorem 1.5 of [11], we may assume that 1 is not a pole of an entry of
A. Using Beukers’ version of Siegel-Shidlovskii’s theorem (namely Theorem 1.3 of [11]),
the relation f1(1) = φ(1) can be lifted to P1(z)f1(z) + · · · + Pn(z)fn(z) = P0(z)φ(z) with
P0, . . . , Pn ∈ Q[z] such that P0(1) = P1(1) = 1 and P2(1) = · · · = Pn(1) = 0.

If φ(z) = α, taking the trace over Q(i) yieldsQ0, . . . , Qn ∈ Q(i)[z] such thatQ1(z)f1(z)+
· · · + Qn(z)fn(z) = Q0(z) with Q1(1) = 1, Q2(1) = · · · = Qn(1) = 0, and Q0(1) = 0 since
α has zero trace. Therefore f1(1) = 0, and α = 0.

If φ(z) = eαz, we take the norm over Q(i) of the relation P1(z)f1(z)+ · · ·+Pn(z)fn(z) =
P0(z)eαz. Letting d denote the degree of a finite Galois extension of Q(i) which con-
tains α and all coefficients of P0, . . . , Pn, this provides (since α has zero trace) a rela-
tion

∑
κQκ(z)fκ(z) = Q0(z) where Q0 ∈ Q(i)[z], κ = (κ1, . . . , κn) ∈ Nn is such that

κ1 + · · ·+ κn = d, fκ(z) = f1(z)κ1 · · · fn(z)κn , and Qκ(z) ∈ Q[z] is such that Qκ(1) = 0 for
κ 6= (d, 0, . . . , 0) and Q(d,0,...,0)(1) = 1. Taking z = 1 yields f1(1)d = Q0(1) ∈ Q(i) hence

eα ∈ Q, so that α = 0.
This concludes the proof of Proposition 2.

The possibility of a result analogous to Theorem 3 is also uncertain. It is easy to
describe the limits of sequences An/Bn where An, Bn ∈ Q, Bn 6= 0 for all large enough
n and

∑∞
n=0Anz

n and
∑∞

n=0 Bnz
n are E-functions. This is simply Frac(G), because the

series
∑∞

n=0 n!Anz
n and

∑∞
n=0 n!Bnz

n are G-functions, and conversely if
∑∞

n=0 anz
n is a

G-function, then
∑∞

n=0
an
n!
zn is an E-function. This can hardly be the analogue we seek.

We now observe that given an E-function f(z) =
∑∞

n=0Anz
n, the sequence pn/qn, with

pn =
∑n

k=0Ak and qn = 1, tends to f(1), but
∑∞

n=0 pnz
n = f(z)

1−z is not an E-function and∑∞
n=0 z

n = 1
1−z is a G-function. Hence a result analogous to Theorem 3 and involving E

might be achieved by considering simultaneously E and G-functions. It is also possible
that similar questions might be easier to answer in the larger class of arithmetic Gevrey
series introduced by André in [4, 5].

23



7.2 Possible applications to irrationality questions

The Diophantine theory of E-functions is well understood after the works of many authors,
among which we may cite Siegel [30] and Shidlovskii [29], and more recently André [5] and
Beukers [11]. An E-function essentially takes transcendental values at all non-zero algebraic
points, and the algebraic points where it may take an algebraic value are fully controlled
a priori.

This is far from true for a non-algebraic G-function. There are many examples in
the literature of G-functions taking algebraic values at some algebraic points without an
obvious reason, see for example [10]. After the pioneering works of Galochkin [22] and
Bombieri [12], it is known that, given a transcendental G-function f , if α is a non-zero
algebraic number of modulus ≤ c, then f(α) cannot be an algebraic number of degree ≤ d.
Here, c > 0 and d ≥ 1 are explicit quantities that depend on f and on the degree and
height of α. A typical example is that if α = 1/q is the inverse of an integer, then f(α) is
an irrational number provided that |q| ≥ Q is sufficiently large in terms of f . An important
issue is that the constant c is usually much smaller than the radius of convergence of f :
the point where the value is taken has to be very close to 0.

On the contrary, a few results are known in which such a restriction is not necessary.
One of them is Wolfart’s theorem [33] on transcendence of values of Gauss’ hypergeometric
function at algebraic points. Another, more related to the present paper, is Apéry’s proof
of the irrationality of ζ(3); it involves evaluating a G-function on the border of its disk
of convergence. The starting point of his method is given by Theorem 5: he constructs
two sequences (an)n≥0 and (bn)n≥0 of rational numbers, whose generating functions are
G-functions (5), such that an/bn tends to ζ(3). To prove irrationality, more is needed,
i.e., one also has to find a suitable common denominator Dn of an and bn, and then prove
that the linear form Dnan + Dnbnζ(3) ∈ Z + Zζ(3) tends to 0 without being equal to 0.
(In this case, Dn = lcm(1, 2, . . . , n)3.) The growth of Dn is usually the main problem in
attempts at proving irrationality in Apéry’s style. Indeed, there exist many examples of
values f(α) of a G-function f at an algebraic point α having approximations in the sense
of Theorem 3(iii) (see [28] for references), but the growth of the relevant denominators
Dn prevents one to prove irrationality when the modulus of α is too close to the radius of
convergence of f . For instance, this approach has failed so far to establish the irrationality
of ζ(5) or of Catalan’s constant G =

∑∞
n=0

(−1)n

(2n+1)2
.

In the following proposition, we explain in details how the growth of Dn, the radii of
convergence and the irrationality exponent µ(ξ) of ξ are connected. Recall that µ(ξ) is
the supremum of the set of real numbers µ such that, for infinitely many fractions p/q,
|ξ − p/q| < q−µ. In particular ξ is said to be a Liouville number if µ(ξ) = +∞.

Proposition 3. Let ξ ∈ G ∩ R. Let A(z) =
∑∞

n=0 anz
n and B(z) =

∑∞
n=0 bnz

n be G-
functions, with rational coefficients and radii of convergence = r > 0, such that A(z) −
ξB(z) has a finite radius of convergence, which is ≥ R > r. Let C ≥ 1 be such that an and
bn have a common denominator ≤ Cn(1+o(1)) (as n→ +∞). Then:

5This was apparently first observed by Dwork in [16]; see also [18, §1.10] for references.
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• If C < R then ξ 6∈ Q and µ(ξ) ≤ 1− log(C/r)
log(C/R)

.

• Necessarily C ≥
√
Rr.

This proposition is analogous to the other ones used to bound µ(ξ) from above when
small linear forms anξ− bn are available; the main difference here is that we do not assume
limn→∞ |anξ− bn|1/n to exist. We hope this proposition can be used to make some progress
towards Conjecture 1 stated in the introduction; of course the difficult point is to construct
the G-functions with a control upon the denominators of an and bn (so that C is not too
large).

We have considered here only the case of one number ξ, but G-functions also arise in
proofs of linear independence, in the same way as in Apéry’s, for instance concerning the
irrationality [8, 27] of ζ(s) for infinitely many odd s ≥ 3.

Proof of Proposition 3. The second assertion follows from the first one since µ(ξ) ≥ 2 for
any ξ ∈ R \Q. Let us prove the first one.

Let pn = Dnan ∈ Z and qn = Dnbn ∈ Z, where n is sufficiently large and Dn ∈ Z is such
that 1 ≤ Dn ≤ Cn (increasing C slightly if necessary). Decreasing R slightly if necessary,
we may assume that the radius of convergence of A(z)− ξB(z) is > R, so that |qnξ−pn| ≤
(C/R)n for any n sufficiently large. Since C < R and qnξ − pn 6= 0 for infinitely many n
(because A(z) − ξB(z) has a finite radius of convergence), this implies ξ 6∈ Q. Moreover
there exists a non-trivial linear recurrence relation P0(n)un+P1(n)un+1 + . . .+Pr(n)un+r =
0, with coefficients Pj(n) ∈ Z[n], satisfied by both sequences (an)n≥0 and (bn)n≥0. We claim
that for any n sufficiently large, the vectors (pn, qn), (pn+1, qn+1), . . . , (pn+r, qn+r) span the

Q-vector space Q2. Using Lemma 3.2 in [23], this implies µ(ξ) ≤ 1 − log(C/r′)
log(C/R)

for any

r′ < r, because |pn|, |qn| ≤ (C/r′)n for any n sufficiently large. To prove the claim we argue
by contradiction, and assume (permuting (pn)n≥0 and (qn)n≥0 if necessary) that for some
λ ∈ Q we have qk = λpk for any k ∈ {n, n+ 1, . . . , n+ r}. Then the sequence (bi− λai)i≥n
satisfies the above-mentioned recurrence relation, and its first r + 1 terms vanish. If n is
sufficiently large then Pr(i) 6= 0 for any i ≥ n + r + 1 (because we may assume Pr to be
non-zero), so that qi−λpi = bi−λai = 0 for any i ≥ n. Since lim

i→+∞
qiξ− pi = 0 and pi 6= 0

for infinitely many n, we deduce λξ = 1, in contradiction with the fact that ξ 6∈ Q.
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