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VALUES OF E-FUNCTIONS ARE NOT

LIOUVILLE NUMBERS

by Stéphane Fischler & Tanguy Rivoal

Abstract. — Shidlovskii has given a linear independence measure of values of E-functions with
rational Taylor coefficients at a rational point, not a singularity of the underlying differential
system satisfied by these E-functions. Recently, Beukers has proved a qualitative linear inde-
pendence theorem for the values at an algebraic point of E-functions with arbitrary algebraic
Taylor coefficients. In this paper, we obtain an analogue of Shidlovskii’s measure for values
of arbitrary E-functions at algebraic points. This enables us to solve a long standing problem
by proving that the value of an E-function at an algebraic point is never a Liouville number.
We also prove that values at rational points of E-functions with rational Taylor coefficients are
linearly independent over Q if and only if they are linearly independent over Q. Our methods
rest upon improvements of results obtained by André and Beukers in the theory of E-operators.

Résumé (Les valeurs des E-fonctions ne sont pas des nombres de Liouville)
Shidlovskii a donné une mesure d’indépendance linéaire de valeurs de E-fonctions à coef-

ficients de Taylor rationnels en un point rationnel qui n’est pas une singularité du système
différentiel sous-jacent vérifié par ces E-fonctions. Récemment, Beukers a prouvé un théorème
d’indépendance linéaire qualitatif pour les valeurs en un point algébrique de E-fonctions à
coefficients de Taylor algébriques arbitraires. Dans cet article, nous obtenons un analogue de
la mesure de Shidlovskii pour des valeurs de E-fonctions arbitraires en des points algébriques.
Cela nous permet de résoudre un problème longtemps ouvert : la valeur d’une E-fonction en un
point algébrique n’est jamais un nombre de Liouville. Nous prouvons également que des valeurs
aux points rationnels de E-fonctions à coefficients de Taylor rationnels sont linéairement indé-
pendantes sur Q si et seulement si elles sont linéairement indépendantes sur Q. Nos méthodes
reposent sur des améliorations de résultats obtenus par André et Beukers concernant la théorie
des E-opérateurs.
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2 S. Fischler & T. Rivoal

1. Introduction

Siegel [25] defined in 1929 the class of E-functions in order to generalize
the Diophantine properties of the exponential function (namely the Lindemann-
Weierstrass Theorem) to other special functions such as Bessel’s function J0(z) :=∑∞

n=0(−1)n(z/2)2n/n!2 or hypergeometric series pFp with rational parameters.
A power series

∑∞
n=0 anz

n/n! ∈ Q[[z]] is said to be an E-function when it is solution
of a linear differential equation over Q(z) (i.e., holonomic), and |σ(an)| (for any
σ ∈ Gal(Q/Q)) and the least common denominator of a0, a1, . . . , an all grow at
most exponentially in n. Note that Siegel’s original definition of E-functions is more
general: see the end of this introduction. Throughout this paper we fix an embedding
of Q in C.

A lot of important qualitative results are known on the arithmetic nature of the
values taken by E-functions at algebraic points, amongst which we cite the celebrated
Siegel-Shidlovskii Theorem (see [24] for instance). This result is not always strong
enough, in particular to deduce linear independence of values of E-functions. It has
been improved in [22] and [10] (see Theorem B below for the linear case), but some
assumptions still have to be checked (for instance the functions should not be evalu-
ated at a singular point).

Quantitative versions of the Siegel-Shidlovskii Theorem have been proved, such as
the measure of algebraic independence of Lang-Galochkin (see [14, p. 238, Th. 5.29 &
remarks] and [24, Ch. 11]), but they hold only under certain assumptions on algebraic
independence or rationality of the coefficients of the E-functions. In the linear setting,
the main result is the following one, due to Shidlovskii [24, p. 358, Th. 1, Eq. (32)].

Theorem A (Shidlovskii). — Let f = t(f1, . . . , fN ) ∈ Q[[z]]N be a vector of E-func-
tions which is solution of a differential system f ′ = Af for some A ∈ MN (Q(z)).
Assume that f1, . . . , fN are linearly independent over Q(z) and that z0 ∈ Q∗ is not a
pole of an entry of A. Then for any ε > 0, there exists c = c(ε, z0, f1, . . . , fN ) > 0

such that for all λ1, . . . , λN ∈ Z not all zero, we have∣∣∣∣ N∑
j=1

λjfj(z0)

∣∣∣∣ > cH−N+1−ε where H := max
1⩽j⩽N

|λj |.

This theorem holds verbatim with Q replaced by an imaginary quadratic number
field and Z replaced by its ring of integers. However, no such result is known for
other number fields K. The point is that all known quantitative results are based on
the Siegel-Shidlovskii method only, which provides linear independence of the full set
of the values of E-functions in Theorem A only when K is either Q or imaginary
quadratic. Even the qualitative part of Theorem A (namely,

∑N
j=1 λjfj(z0) ̸= 0) has

been proved only recently by Beukers [10, Cor. 1.4] for arbitrary number fields, using
André’s theory of E-operators [4].

Theorem B (Beukers). — Let f = t(f1, . . . , fN ) ∈ Q[[z]]N be a vector of E-functions
which is solution of a differential system f ′ = Af for some A ∈ MN (Q(z)). Assume
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Values of E-functions are not Liouville numbers 3

f1, . . . , fN are linearly independent over Q(z) and that z0 ∈ Q∗ is not a pole of an
entry of A. Then the numbers f1(z0), . . . , fN (z0) are linearly independent over Q.

The purpose of this paper is to prove new Diophantine results using this approach
of André and Beukers. Our first main result is the following theorem, where we remove
the rationality assumption on the coefficients and also the non-singularity assumption
on z0. We recall that for a non-zero algebraic number α, its house α is the maximum
of the moduli of α and of all its Galois conjugates over Q. We also denote by OK the
ring of integers of a number field K.

Theorem 1. — Let K be a number field of degree d over Q, z0 ∈ K, and f =
t(f1, . . . , fN ) be a vector of E-functions with coefficients in K such that f ′ = Af for
some A ∈ MN (K(z)). Then for any ε > 0, there exists c = c(ε,K, z0, f1, . . . , fN ) > 0

with the following property.
For any λ1, . . . , λN ∈ OK, if Λ := λ1f1(z0) + · · ·+ λNfN (z0) is non-zero, then

|Λ| > cH−dNd+1−ε where H := max
1⩽j⩽N

λj .

Remarks
– Given arbitrary E-functions f1, . . . , fN and any z0 ∈ Q, this theorem applies

because there exists a number field K containing z0 and all coefficients of f1, . . . , fN ,
and the family (f1, . . . , fN ) can always be enlarged to satisfy a first-order differential
system. This shows, without any assumption on f1, . . . , fN and z0, the existence of
κ, c > 0 such that |Λ| > cH−κ provided Λ ̸= 0.

– To our knowledge, Theorem 1 provides the first quantitative version of Beukers’
Theorem B, when it is further assumed in Theorem 1 that f1, . . . , fN are linearly
independent over K(z) and that z0 ∈ K∗ is not a pole of A, ensuring that Λ ̸= 0.

– The constants c in Theorems A and 1, and their equivalents in other results
of the paper, are in principle effective by a remark of André [3, footnote on p. 129]
and by the multiplicity estimate of Bertrand-Beukers [8] made completely explicit by
Bertrand-Chirskii-Yebbou [9]. However, we did not try to compute them because they
would certainly be far from best possible and because we do not see any immediate
application.

An important consequence of Theorem 1 is the following result, which completely
settles the problem of deciding whether (real) values of E-functions can be Liouville
numbers or not. We recall that a Liouville number is a real number ξ such that there
exist two sequences of rational integers pn, qn such that qn ⩾ 2 and 0 < |qnξ − pn| <
1/qnn for all sufficiently large integers n (a fortiori pnqn ̸= 0).

Corollary 1. — Let f be an E-function, and z0 be an algebraic number. Then f(z0)

is not a Liouville number.

The proof of Corollary 1 runs as follows: in Theorem 1, let z0 ∈ Q, take f1 := 1,
f2 := f and consider a vector t(f1, f2 . . . , fN ) of E-functions with coefficients in a
number field K such that f ′ = Af for some A ∈ MN (K(z)), where K is large enough

J.É.P. — M., 2024, tome 11



4 S. Fischler & T. Rivoal

to contain z0. If f(z0) ∈ Q, then f(z0) is not a Liouville number. If f(z0) /∈ Q,
then λ1 + λ2f(z0) ̸= 0 for all λ1, λ2 ∈ Z not both zero, so that Theorem 1 yields
|λ1 + λ2f(z0)| > cmax(|λ1|, |λ2|)−κ for some c, κ > 0. This rules out the possibility
that f(z0) is a Liouville number.

Of course, Corollary 1 is interesting only when f(z0) ∈ R. If we do not assume this,
note however that the real and imaginary parts of f(z0) are values of E-functions (see
the remark in Section 2.1 below), so that none of them is a Liouville number.

Amongst other families of classical real numbers already proved not to be Liou-
ville numbers, we find automatic numbers (Adamczewski-Cassaigne [1]) and Mahler
numbers, i.e. the values of Mahler series in Q[[z]] at the inverse of rational integers
(Bell-Bugeaud-Coons [7]). It is interesting to observe that the theories of E-functions
and of Mahler series share many common properties, see also [2].

Let us also mention another interesting corollary, which is a consequence of Theo-
rem 1 with N = 2 and N = 3 respectively (recall that J0(z) is solution of zy′′(z) +
y′(z) + zy(z) = 0).

Corollary 2. — For any algebraic number α ∈ Q∗ of degree d over Q and any ε > 0,
there exists c = c(α, ε) such that, for all (p, q) ∈ Z× N with q ̸= 0,∣∣∣eα − p

q

∣∣∣ > c

qd2d+ε
, respectively

∣∣∣J0(α)− p

q

∣∣∣ > c

qd3d+ε
.

The above mentioned general transcendence measure for E-functions due to Lang
and Galochkin [14, p. 238, Th. 5.29 & remarks], refined by Kappe [18] for eα in the
special case of irrationality measures, gives 4d2 − 2d instead of d2d, and 16d3 + 1

instead of d3d; see also [24, p. 404]. This is of course much better than Corollary 2
for large d but our bounds turn out to be smaller for d ∈ {2, 3} and d ∈ {2, 3, 4, 5}
respectively. Note that Zudilin [26] has obtained the optimal exponent 2 for J0(α)

when α ∈ Q∗.
A less classical example is the following: for any α ∈ Q∗ and any integers p, q ⩾ 1,

the value at z = α of Ap,q(z) :=
∑∞

n=0(
∑n

k=0

(
n
k

)p(n+k
n

)q
)zn/n! is not a Liouville

number; Ap,q(α) is proved to be a transcendental number in [11, §4.6] when (p, q) ∈
{1, 2, 3, 4}2, the situation in general being unknown. More specifically, it is also proved
in [11, §4.6, Table 1] that when (p, q) = (2, 2), the minimal inhomogeneous differential
equation over Q(z) satisfied by A2,2 is of order 4 and 0 is its only singularity. Hence,
the following holds by Theorem 1 with N = 5: for all α ∈ Q∗ of degree d over Q and
all ε > 0, there exists c = c(ε, α) > 0 such that for all λj ∈ Z not all 0, we have∣∣∣λ4 +

3∑
j=0

λjA
(j)
2,2(α)

∣∣∣ > c max
0⩽j⩽4

|λj |−d5d+1−ε.

In particular, for any α ∈ Q∗ of degree d and ε > 0, there exists c = c(ε, α) > 0 such
that for any (p, q) ∈ Z× N with q ̸= 0,

(1.1)
∣∣∣A2,2(α)−

p

q

∣∣∣ > c

qd5d+ε
.
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Values of E-functions are not Liouville numbers 5

It seems reasonable to make the following conjecture, which probably belongs to
folklore. This conjecture is Roth’s Theorem if f(z0) is algebraic.

Conjecture 1. — Let f be an E-function and z0 ∈ Q. For any ε > 0, there exists
c > 0 such that for any (p, q) ∈ Z× N with q ̸= 0, either qf(z0)− p = 0 or∣∣∣f(z0)− p

q

∣∣∣ > c

q2+ε
.

Zudilin has proved this conjecture in [26] in a stronger form but under addi-
tional assumptions (which even imply f(z0) /∈ Q), namely: f is an E-function with
rational coefficients, z0 ∈ Q∗ is not a singularity of a differential system satisfied
by 1, f, f2, . . . , fN over Q(z) for some N ⩾ 2 and f, f2, . . . , fN are algebraically inde-
pendent over Q(z). It would be interesting to know if A2,2,A

′
2,2,A

′′
2,2,A

′′′
2,2 are alge-

braically independent over Q(z), in which case the exponent 5 could be improved to 2

in (1.1) when α ∈ Q∗.
With the notation of Theorem 1, for any D ⩾ 1 one may consider the

(
N+D−1
N−1

)
functions f i1

1 . . . f iN
N , with non-negative integers i1, . . . , iN such that i1+ · · ·+iN = D.

They make up a vector solution of a first order differential system, to which Theorem 1
applies. Taking f1 = 1 and f2 = f , this provides the following transcendence measure,
valid for any value of an E-function at an algebraic point.

Corollary 3. — Let f be an E-function, with coefficients in a number field K of
degree d, solution of an inhomogeneous linear differential equation of order N − 1.
Let z0 ∈ K. Then for any D ⩾ 1, any ε > 0, and any a0, . . . , aD ∈ Z, either∑D

j=0 ajf(z0)
j = 0 or∣∣∣∣ D∑

j=0

ajf(z0)
j

∣∣∣∣ ⩾ c
(
max(|a0|, . . . , |aD|)

)−κ−ε
,

where c depends only on f , z0, D and ε, and κ = d
(
N+D−1
N−1

)d − 1.

With our notations, the transcendence measure of Lang-Galochkin provides the ex-
ponent 2N (N−1)N−1

(N−1)! dNDN−1: for fixed N , it is smaller than κ when d and D are large
but it is sometimes larger for small values of d or D as mentioned after Corollary 2,
and moreover it holds under an algebraic independence assumption on the E-functions
in the differential system. No such assumption is necessary in Corollary 3, which adds
value to this result. Both results can be applied when f is the exponential function
(with N = 2): we obtain a transcendence measure of ez0 for any z0 ∈ Q∗ of degree d

with κ = d(D+1)d−1 whereas Lang-Galochkin’s result yields 4d2D. Note that when
d = 1 and N = 2 as for the exponential, we obtain κ = D which is best possible.
However this is not a new result for the exponential at rational points (see [6, Ch. 10],
and [20, p. 135, Satz 3] when z0 = 1).

Corollary 3 shows that no value of an E-function at an algebraic point can be a
U -number, in Mahler’s classification (see for instance [13, Ch. 3]). It seems reasonable
to conjecture that it can neither be a T -number, so that values of E-functions at
algebraic points would be either algebraic numbers or S-numbers.

J.É.P. — M., 2024, tome 11



6 S. Fischler & T. Rivoal

The second goal of this paper is to understand the structure of the ring E of all
values at algebraic points of E-functions; this algebraic point can always be assumed
to be 1 because if f(z) is an E-function, so is f(αz) for any α ∈ Q. Elements of E are
related to exponential periods (see [17, §4.3]).

For any subfield K of Q, we shall also consider the subring EK of E which consists
of the evaluations f(1) where f is an E-function with coefficients in K (the number 1

could be replaced by any non-zero element of K without changing EK). Note that E is
the union of all EK, where K is a number field, since for any E-function f the holonomy
property implies the existence of a number field that contains all coefficients of f .

We have defined and studied [15] analogous rings GK with G-functions instead of
E-functions; it turns out that GK is nearly independent from K (precisely, GK = GQ if
K ⊂ R, and GK = GQ(i) otherwise). The situation is completely different for E-func-
tions. A first hint in this direction was given in [16, Th. 4] (stated as Lemma 1 in §4
below). The way EK depends on K is completely described by the following result.

Theorem 2. — Let K be a subfield of Q. Elements of EK are linearly independent
over Q if, and only if, they are linearly independent over K.

We refer to [2, Th. 1.7] for a similar result concerning Mahler functions. Theorem 2
means that the K-algebras EK and Q are linearly disjoint, and the natural map
EK ⊗K Q → E (sending ξ ⊗ z to ξz) is a K-algebra isomorphism. The definition and
properties of linearly disjoint algebras can be found in [12, Ch. V, §2, No. 5]; using
Theorem 2 with K = Q they imply the following.

Corollary 4. — Let K be a number field, and (ω1, . . . , ωd) be a basis of the Q-vector
space K. Then

EK = ω1EQ ⊕ · · · ⊕ ωdEQ.

In other words, for any ξ ∈ EK there exists a unique d-tuple (ξ1, . . . , ξd) ∈ Ed
Q such

that ξ = ω1ξ1 + · · ·+ ωdξd.

The original definition of E-functions, given by Siegel [25], is slightly less restrictive:
instead of geometric bounds, he allowed growths bounded by n!ε (for any given ε > 0,
provided n is large enough with respect to ε). Shidlovskii’s Theorem A holds for
E-functions in Siegel’s sense, and Beukers’ Theorem B was later proved by André [5]
in this general setting, by a different method. All other results in Beukers’ paper [10]
have been adapted by Lepetit [19]. Therefore all the results of the present paper also
hold for E-functions in Siegel’s sense.

The structure of this paper is as follows. In §2 we prove Proposition 1, which
is crucial in the proof of both Theorems 1 and 2. We also derive from it a version
of Beukers’ desingularization process over a number field. This enables us to prove
Theorem 1 in §3, and also to obtain in §4 a decomposition of an E-function over a
number field, involving an E-function that takes only transcendental values at non-
zero algebraic points. At last we apply the previous results in §5 to study the structure
of EK and prove Theorem 2. The final section is devoted to an action of Gal(Q/Q)

J.É.P. — M., 2024, tome 11



Values of E-functions are not Liouville numbers 7

on the set of values of E-functions; it is not used in the paper but it illustrates how
our method presents similarities with Liouville’s theorem.

Acknowledgements. — We warmly thank the referees for their very constructive com-
ments.

2. Main tools

2.1. Conjugates of E-functions. — Let f(z) =
∑∞

n=0 anz
n/n! be an E-function

with coefficients an ∈ Q. For any σ ∈ Gal(Q/Q) we let fσ(z) =
∑∞

n=0 σ(an)z
n/n!.

The definition shows that fσ is also an E-function, and if g is an E-function then for
any σ, τ we have (f + g)σ = fσ + gσ, (fg)σ = fσgσ and (fσ)τ = fτ◦σ. Moreover if f
has coefficients in a number field K, then fσ has coefficients in the number field σ(K).

Remark. — Denoting by σ the complex conjugation, for any E-function f we can
consider 1

2 (f + fσ) and 1
2i (f − fσ). These E-functions have real coefficients, which

are respectively the real and imaginary parts of those of f . In particular, the real and
imaginary parts of any element of E belong to E.

The following result is central in the present paper; we refer to [11, Prop. 3.5] for a
similar result. We agree that minimal polynomials of algebraic elements have leading
coefficient 1.

Proposition 1. — Let f be an E-function with coefficients in a number field K, and
z0 ∈ Q∗. Then the following assertions are equivalent:

(i) f vanishes at z0.
(ii) There exists σ ∈ Gal(Q/Q) such that fσ vanishes at σ(z0).
(iii) For any σ ∈ Gal(Q/Q), fσ vanishes at σ(z0).
(iv) There exists an E-function g with coefficients in K such that

f(z) = D(z)g(z) where D is the minimal polynomial of z0 over K.

In particular, if z0 is rational and f vanishes at z0, then all conjugates fσ of f

also vanish at z0. Also, if an E-function f with rational coefficients vanishes at some
z0 ∈ Q∗, then it vanishes at all Galois conjugates of z0.

We remark that with z0 = 1, the implication (i) ⇒ (iii) is used already in the
proof of [10, Prop. 4.1], which is the main result Proposition 1 is based on.

Proof of Proposition 1
(iv) ⇒ (iii) Let σ ∈ Gal(Q/Q). Then fσ(z) = Dσ(z)gσ(z), and Dσ(σ(z0)) =

σ(D(z0)) = 0. Therefore fσ(σ(z0)) = 0.
(iii) ⇒ (ii) is trivial.
(ii) ⇒ (i) Enlarging K if necessary, we may assume the extension K/Q to be Galois

and to contain z0. Then fσ has coefficients in K, and σ(z0) ∈ K∗. Using [10, Prop. 4.1]
there exists an E-function g such that fσ(z) = (z−σ(z0))g(z). Then g has coefficients
in K; applying σ−1 yields f(z) = (z − z0)g

σ−1

(z) so that f(z0) = 0.

J.É.P. — M., 2024, tome 11



8 S. Fischler & T. Rivoal

(i) ⇒ (iv) By using [10, Prop. 4.1], one shows that there exists an E-function h such
that f(z) = (z − z0)h(z). Let σ ∈ Gal(Q/K), that is: σ is a field automorphism of Q
such that σ(x) = x for any x ∈ K. Then f(z) = fσ(z) = (z − σ(z0))h

σ(z), so that f

vanishes at σ(z0). Let z1 := z0, z2, . . . , zℓ denote the (pairwise distinct) Galois conju-
gates of z0 over K, i.e. the elements of the form σ(z0) with σ ∈ Gal(Q/K); we have
proved that f vanishes at z1, . . . , zℓ. Applying [10, Prop. 4.1] yields, by induction on
j ∈ {1, . . . , ℓ}, the existence of an E-function gj such that f(z) = gj(z)

∏j
i=1(z − zi).

Since D(z) =
∏ℓ

i=1(z−zi), we have f(z) = D(z)gℓ(z). Now, D(z) ∈ K[z]∖{0}, so that
all coefficients of gℓ belong to K. This concludes the proof of Proposition 1. □

2.2. Beukers’ desingularization process. — In the proof of Theorem 1 we shall use
the following version of Beukers’ desingularization theorem [10, Th. 1.5].

Proposition 2. — Let K be a number field, and f1, . . . , fN be E-functions with coeffi-
cients in K, linearly independent over C(z). Assume that the vector f = t(f1, . . . , fN )

satisfies a first-order differential system f ′ = Af with A ∈ MN (K(z)).
Then there exist E-functions e1, . . . , eN with coefficients in K, linearly independent

over C(z), a matrix B ∈ MN (K[z, 1/z]) and a matrix M ∈ MN (K[z]), such that with
e = t(e1, . . . , eN ):

e′ = Be and f = Me.

The new point is that e1, . . . , eN and the coefficients of B and M have coefficients
in the number field K (whereas in [10, Th. 1.5] these are simply algebraic numbers).

The proof of Proposition 2 follows [10, p. 378], using also the additional details
given in [11]. Actually Proposition 2 is already proved implicitly (for K = Q) by the
implementation described in [11].

In what follows we only mention the parts of the proof where special attention has
to be paid. Let α be a singularity of the differential system Y ′ = AY , and Q ∈ K[X]

denote the minimal polynomial of α over K. Let k ⩾ 1 be the maximal order of α as a
pole of a coefficient of A, and (i0, j0) be such that Ai0,j0 has a pole of order exactly k

at α. Then QkAf = Qkf ′ vanishes at α; the i0-th coordinate of this vector provides
a linear relation

N∑
j=1

(QkAi0,j)(α)fj(α) = 0.

Note that for any j, the rational function Q(z)kAi0,j(z) ∈ K(z) is holomorphic at α,
and for j = j0 it does not vanish at that point. Multiplying by the least common
denominator of the rational functions Q(z)kAi0,j(z) we obtain coprime polynomials
P1, . . . , PN ∈ K[z] such that

Pj0(α) ̸= 0 and
N∑
j=1

Pj(α)fj(α) = 0.

If N = 1 we let P1,1 = 1; otherwise there exist polynomials Pi,j ∈ K[z], for 2 ⩽ i ⩽ N

and 1 ⩽ j ⩽ N , such that letting P1,j = Pj , the matrix S = (Pi,j)1⩽i,j⩽N ∈ MN (K[z])
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Values of E-functions are not Liouville numbers 9

has determinant 1. Then Sf is a vector of E-functions, with coefficients in K, of which
the first coordinate

∑N
j=1 Pj(z)fj(z) vanishes at α. Using Proposition 1, we deduce

that
∑N

j=1 Pj(z)fj(z) vanishes at σ(α) for any σ ∈ Gal(Q/K). This concludes the
proof as in [10].

3. Proof of Theorem 1

To prove Theorem 1 we assume z0 ̸= 0 since otherwise, f1(z0), . . . , fN (z0) are
algebraic numbers and the conclusion follows from Schmidt’s subspace theorem (see
for instance [14, Ch. 1, §8.2, Th. 1.37]). Considering the E-functions fj(z0z) instead
of fj(z), we may even assume z0 = 1. We also suppose that Λ ̸= 0.

The proof of Theorem 1 falls into 2 steps.

Step 1. — Let us prove Theorem 1 in the special case where K = Q (i.e., d = 1).
In other words, we assume that z0 = 1 ∈ Q, λ1, . . . , λN ∈ Z, and f1, . . . , fN have
coefficients in Q.

Recall that we do not assume that f1(1), . . . , fN (1) are linearly independent over Q.
Let N ′ be the maximal number of linearly independent numbers among them. We may
assume (up to a permutation of the indices) that f1(1), . . . , fN ′(1) are linearly inde-
pendent over Q, and fN ′+1(1), . . . , fN (1) belong to the Q-vector space they span.
There exist rational numbers ϱi,j such that fj(1) =

∑N ′

i=1 ϱi,jfi(1) for any 1 ⩽ j ⩽ N ,
so that

(3.1) Λ :=

N∑
j=1

λjfj(1) =

N ′∑
i=1

µifi(1) with µi :=

N∑
j=1

λjϱi,j ∈ Q.

Observe that the E-functions f1, . . . , fN ′ are linearly independent over C(z). Indeed,
otherwise they would be linearly dependent over Q(z) (since they have coefficients
in Q), and a relation

∑N ′

j=1 Sj(z)fj(z) = 0 would exist with S1, . . . , SN ′ ∈ Q(z) not
all zero. Upon multiplying by (z − 1)k for a suitable k ∈ Z, we may assume that
none of the Sj has a pole at 1, and that at least one of them does not vanish at 1.
This provides a non-trivial linear relation

∑N ′

j=1 Sj(1)fj(1) = 0, which contradicts the
definition of N ′.

Therefore f1, . . . , fN ′ are linearly independent over C(z). Denote by N ′′ the dimen-
sion of the vector space generated over C(z) by f1, . . . , fN ; we have N ′ ⩽ N ′′ ⩽ N .
Notice that it could happen that N ′′ > N ′, for instance if fN ′+1(1) = 0. Up to a
permutation of the indices, we may assume that f1, . . . , fN ′′ are linearly independent
over C(z), and that fN ′′+1, . . . , fN belong to the vector space they span over C(z).

Since f1, . . . , fN ′′ are linearly independent over C(z), and satisfy a linear differential
system of order 1 by definition of N ′′, Proposition 2 (applied with K = Q) provides
E-functions e1, . . . , eN ′′ with rational coefficients and matrices B ∈ MN ′′(Q[z, 1/z])

and M = (Pi,j) ∈ MN ′′(Q[z]) such that e′ = Be and fi(z) =
∑N ′′

j=1 Pi,j(z)ej(z).
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Since N ′ ⩽ N ′′, Equation (3.1) yields

(3.2) Λ =

N ′′∑
j=1

νjej(1) with νj :=

N ′∑
i=1

µiPi,j(1) ∈ Q.

Now, Shidlovskii’s lower bound stated as Theorem A in the introduction applies to
the E-functions e1, . . . , eN ′′ with rational coefficients, which are linearly independent
over C(z) and solution of a linear differential system of order 1 of which 1 is not a
singularity. Denoting by δ a common denominator of the rational numbers Pi,j(1)

and ϱi,j (appearing in Equations (3.1) and (3.2)), we obtain that δ2Λ is a Z-linear
combination of e1(1), . . . , eN ′′(1) with coefficients bounded (in absolute value) by
cH, where c > 0 and δ depend only on f1, . . . , fN . For any ε > 0, Theorem A
yields |δ2Λ| > c0H

−N ′′+1−ε ⩾ c0H
−N+1−ε for some c0 > 0 which depends only on

f1, . . . , fN and ε. This concludes the proof of Theorem 1 in the case where K = Q.

Step 2. — Let us prove Theorem 1 for any number field K. For simplicity of the
exposition, we assume K to be a Galois extension of Q; see the end of Step 2 for the
general case. We denote by G the Galois group of K/Q, and consider the complex
number

(3.3) ϖ :=
∏
σ∈G

( N∑
j=1

σ(λj)f
σ
j (1)

)
.

To begin with, let us prove that ϖ ̸= 0. Indeed, consider the E-function g(z) =∑N
j=1 λjfj(z); it has coefficients in K (because f1, . . . , fN do), and g(1) = Λ ̸= 0. For

any σ ∈ G, Proposition 1 yields gσ(1) ̸= 0. Now, gσ(1) =
∑N

j=1 σ(λj)f
σ
j (1), so that

ϖ =
∏

σ∈G gσ(1) ̸= 0.
Denote by I the set of all tuples of integers i = (iσ)σ∈G such that 1 ⩽ iσ ⩽ N for

any σ ∈ G. Expanding the product in the definition (3.3) of ϖ yields

(3.4) ϖ =
∑
i∈I

∏
σ∈G

σ(λiσ )f
σ
iσ (1) =

∑
i∈I

( ∏
σ∈G

σ(λiσ )
)
gi(1),

where

(3.5) gi(z) :=
∏
σ∈G

fσ
iσ (z)

is an E-function with coefficients in K.
The normal basis theorem (see for instance [21, Th. 5.18]) provides an element

α ∈ K such that the σ(α), for σ ∈ G, make up a basis of the Q-vector space K. Upon
multiplying α by a suitable positive integer, we may assume that α ∈ OK (so that
σ(α) ∈ OK for any σ ∈ G). Expanding all coefficients of gi(z) in this basis yields
(using [24, Ch. 3, Lem. 12]) E-functions gi,σ(z) with coefficients in Q, for σ ∈ G, such
that

(3.6) gi(z) =
∑
σ∈G

σ(α)gi,σ(z) for any i ∈ I.

J.É.P. — M., 2024, tome 11



Values of E-functions are not Liouville numbers 11

In the sequel, it is important to observe that these E-functions gi,σ(z) are uniquely
determined by gi(z), since for each n their coefficients of zn are given by the expansion
in the basis (σ(α))σ∈G of the corresponding coefficient of gi(z).

For i ∈ I and σ ∈ G, we denote by σ(i) the tuple j ∈ I defined by jτ = iσ◦τ for
any τ ∈ G. Let us prove that

(3.7) gi,σ(z) = gσ(i),Id(z) for any i ∈ I and any σ ∈ G.

Indeed we have:∑
τ∈G

τ(α)gσ(i),τ (z) = gσ(i)(z) using Equation (3.6)

=
∏
τ∈G

fτ
iσ◦τ

(z) by definition of gσ(i)(z)

=
∏
τ ′∈G

fσ−1◦τ ′

iτ′ (z) by letting τ ′ = σ ◦ τ

=
( ∏

τ ′∈G

fτ ′

iτ′

)σ−1

(z)

= gσ
−1

i (z)

=
∑
τ∈G

σ−1(τ(α))gi,τ (z) since gi,τ has coefficients in Q.

Comparing the coefficient of α on both sides yields Equation (3.7) since an expansion
for gσ(i)(z) like the one of Equation (3.6) is unique.

Let us prove now that the vector of E-functions gi,Id(z), for i ∈ I, is solu-
tion of a first-order linear differential system. By assumption we have f ′

i(z) =∑N
j=1 Ai,j(z)fj(z) with Ai,j ∈ K(z), so that

(fσ
i )

′(z) = (f ′
i)

σ(z) =

N∑
j=1

σ(Ai,j)(z)f
σ
j (z)

and

g′i(z) =
∑
σ∈G

(fσ
iσ )

′(z)
∏
τ ̸=σ

fτ
iτ (z)

=
∑
σ∈G

N∑
j=1

σ(Aiσ,j)(z)f
σ
j (z)

∏
τ ̸=σ

fτ
iτ (z)

=
∑
i′∈I

Bi,i′(z)gi′(z) for some Bi,i′(z) ∈ K(z)

=
∑
i′∈I

Bi,i′(z)
∑
σ∈G

σ(α)gσ(i′),Id(z) using Equations (3.6) and (3.7)

=
∑
i′′∈I

Ci,i′′(z)gi′′,Id(z) for some Ci,i′′(z) ∈ K(z).
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Each Ci,i′′(z) ∈ K(z) can be written as Ni,i′′(z)/Di,i′′(z) with Di,i′′(z) ∈ Q[z] ∖ {0}
and Ni,i′′(z) ∈ K[z]. Writing Ni,i′′(z) as a Q[z]-linear combination of the σ(α), σ ∈ G,
yields an expression

(3.8) g′i(z) =
∑
σ∈G

σ(α)
∑
i′′∈I

Ri,i′′,σ(z)gi′′,Id(z)

with Ri,i′′,σ(z) ∈ Q(z). On the other hand, Equation (3.6) yields

(3.9) g′i(z) =
∑
σ∈G

σ(α)g′i,σ(z).

Comparing the components on α of Equations (3.8) and (3.9), unicity of such an
expression yields

g′i,Id(z) =
∑
i′′∈I

Ri,i′′,Id(z)gi′′,Id(z).

This concludes the proof that the vector of E-functions gi,Id(z), i ∈ I, satisfies a
first-order linear differential system with coefficients in Q(z).

Now, we come back to ϖ: combining Equations (3.4), (3.6) and (3.7) yields

(3.10) ϖ =
∑
i∈I

( ∏
σ∈G

σ(λiσ )
)∑

τ∈G

τ(α)gτ(i),Id(1) =
∑
i′∈I

κi′gi′,Id(1)

upon letting
κi′ =

∑
τ∈G

τ(α)
∏
σ∈G

σ(λi′
τ−1◦σ

) ∈ K.

Let us prove that κi ∈ Z for any i ∈ I. Indeed for any γ ∈ G, we have:

γ(κi) =
∑
τ∈G

γ(τ(α))
∏
σ∈G

γ(σ(λiτ−1◦σ
)) =

∑
τ ′∈G

τ ′(α)
∏
σ′∈G

σ′(λiτ′−1◦σ′ ) = κi

by letting τ ′ = γ ◦ τ and σ′ = γ ◦ σ, since τ ′−1 ◦ σ′ = τ−1 ◦ σ. Using the fact that all
τ(α) and all λj belong to OK, we deduce that κi ∈ OK ∩Q = Z.

To sum up, Equation (3.10) shows that ϖ is a Z-linear combination of the values
at 1 of a family of cardinality Card(I) = Nd of E-functions with coefficients in Q,
solution of a first order differential system. Therefore Step 1 applies with H ′ :=

Hd
∑

τ∈G |τ(α)|, since |κi| ⩽ H ′ for any i. We obtain |ϖ| > cH−dNd+d−ε for any
ε > 0, where c > 0 depends on ε. Now, Equation (3.3) yields |ϖ| ⩽ c′Hd−1|Λ|
by bounding trivially the factors corresponding to all σ ̸= Id; here c′ is a positive
constant that depends only on f1, . . . , fN and K. Combining these estimates yields
|Λ| > c′′H−dNd+1−ε for some constant c′′; this concludes Step 2 in the case where K
is a Galois extension of Q.

If K/Q (of degree d) is not assumed to be Galois, we consider a finite Galois exten-
sion L of Q such that K ⊂ L. We now explain the changes that must be made to the
above construction. We let G0 = Gal(L/Q) and H = Gal(L/K). In the definition of ϖ,
namely Equation (3.3), the product is now taken over the d cosets σ ∈ G0/H; indeed
σ(λj) and fσ

j are the same for all σ in a given coset, because λj and the coefficients of
fj belong to K. In the products of Equations (3.4) and (3.5), σ ranges through G0/H,
and I = {1, . . . , N}G0/H . However the normal basis theorem is applied to the Galois
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extension L/Q, so that α ∈ OL and σ ranges through G0 in Equations (3.6) to (3.9).
In Equation (3.10), the product is over σ ∈ G0/H and the sum over τ ∈ G0. We have
κi ∈ L, and deduce that κi ∈ Q since γ(κi) = κi for any γ ∈ G0. We conclude the
proof in the same way since Card(I) = Nd.

Alternative proof of Step 2 if λj ∈ Z for any j. — For the reader’s convenience we give
now a slightly different proof in this special case. It is based on the same idea of
considering ϖ, but its expansion and the way Step 1 is applied are not the same.
As in Step 2, we assume K/Q to be Galois (the general case is dealt with as explained
at the end of Step 2), let G = Gal(K/Q) and consider

(3.11) ϖ =
∏
σ∈G

( N∑
j=1

λjf
σ
j (1)

)
since we have σ(λj) = λj now; we still have ϖ ̸= 0. To expand the product in the
definition of ϖ, we denote by N the set of all tuples n = (n1, . . . , nN ) of non-negative
integers such that n1 + · · · + nN = d. For any n ∈ N, we denote by I(n) the set
of all tuples i = (iσ)σ∈G consisting of integers iσ ∈ {1, . . . , N} such that for any
j ∈ {1, . . . , N} we have:

Card{σ ∈ G, iσ = j} = nj .

Then Equation (3.11) yields

(3.12) ϖ =
∑
n∈N

λn1
1 · · · · · λnN

N φn(1) upon letting φn(z) :=
∑

i∈I(n)

∏
σ∈G

fσ
iσ (z).

Let us prove that φn(z), which is an E-function with coefficients in K, actually has
coefficients in Q for any n ∈ N. For any τ ∈ G we have:

φτ
n =

∑
i∈I(n)

∏
σ∈G

(
fσ
iσ

)τ

=
∑

i∈I(n)

∏
σ∈G

fτ◦σ
iσ

=
∑

i∈I(n)

∏
σ′∈G

fσ′

iτ−1◦σ′ by letting σ′ = τ ◦ σ

=
∑

i′∈I(n)

∏
σ′∈G

fσ′

i′
σ′
,

where the last equality comes from letting i′σ = iτ−1◦σ for any σ ∈ G; indeed this
defines a bijective map I(n) → I(n). Therefore φτ

n = φn for any τ ∈ G, and the
E-function φn(z) has coefficients in Q.

We denote by E the vector space spanned over Q(z) by the functions
∏

σ∈G fσ
iσ

for all tuples i = (iσ)σ∈G consisting of integers iσ ∈ {1, . . . , N}. There are Nd such
tuples, so dim(E) ⩽ Nd. Moreover we have g′ ∈ E for any g ∈ E.

Let δ denote the dimension of the vector space spanned over Q(z) by the func-
tions φn for n ∈ N. We can choose δ functions h1, . . . , hδ among the φn which are
linearly independent, and span the same Q(z)-vector space. Choosing among the

J.É.P. — M., 2024, tome 11



14 S. Fischler & T. Rivoal

successive derivatives of h1, . . . , hδ it is possible to find an integer δ′ ⩾ δ and func-
tions hi, for δ + 1 ⩽ i ⩽ δ′, such that h1, . . . , hδ′ are linearly independent over Q(z)

and satisfy a linear differential system of order 1. Since they have rational coefficients,
they are also linearly independent over Q(z); now they all belong to E, so we have
δ′ ⩽ dim(E) ⩽ Nd.

Proposition 2 with K = Q yields a vector of E-functions e1, . . . , eδ′ with rational
coefficients, solution of a first-order differential system with no finite non-zero singu-
larity, such that each hi is a linear combination of e1, . . . , eδ′ with coefficients in Q[z].
There exist Rn,i, Sn,i ∈ Q(z) for n ∈ N and 1 ⩽ i ⩽ δ′ such that, for any n,

φn(z) =

δ′∑
i=1

Rn,i(z)hi(z) =

δ′∑
i=1

Sn,i(z)ei(z).

If no Sn,i has a pole at z = 1, we can take z = 1 in this equation. To deal with the
general case, we expand the right hand side as a polynomial in 1/(z − 1), up to an
additive term which is holomorphic and vanishes at z = 1. Since φn(z) is holomorphic
at 1, all polar contributions cancel out and the value at z = 1 is given by the constant
term of the above-mentioned polynomial. This provides an expression of the form

φn(1) =

δ′∑
i=1

J∑
j=0

an,i,je
(j)
i (1)

with an,i,j ∈ Q. Since t(e1, . . . , eδ′) is solution of a first-order differential system with
coefficients in Q[z, 1/z], hence with no finite non-zero singularity, we obtain finally

(3.13) φn(1) =

δ′∑
i=1

bn,iei(1)

with bn,i ∈ Q (where simply bn,i := Sn,i(1) in the “no pole at z = 1” case considered
above). Using Equation (3.13) into Equation (3.12) yields

ϖ =

δ′∑
i=1

µiei(1) with µi =
∑
n∈N

λn1
1 · · · · · λnN

N bn,i ∈ Q.

This enables us to apply the special case of Theorem 1 where K = Q, proved in
Step 1, with N replaced with δ′ ⩽ Nd. Indeed we denote by α ∈ Z a common positive
denominator of the rational numbers bn,i; then we have αµ1, . . . , αµδ′ ∈ Z. Since
ϖ ̸= 0 we obtain |αϖ| > cH ′−Nd+1−ε with

H ′ = max
1⩽i⩽δ

|αµi| ⩽ βmax
n∈N

λn1
1 · · · · · λnN

N ⩽ βHd,

where β > 0 depends only on f1, . . . , fN and K. Then we conclude the proof as in
Step 2.
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4. Decomposition of E-functions over a number field

In the same spirit as Proposition 1, it is possible to prove the following result. The
weaker version with K replaced by Q was first proved in the unpublished note [23],
and the special case K = Q in [11].

Proposition 3. — Let f be an E-function with coefficients in a number field K. Then
there exist polynomials P,Q ∈ K[z], and an E-function g with coefficients in K, such
that

f(z) = P (z) +Q(z)g(z) and g(z0) is transcendental for all z0 ∈ Q∗.

In this setting, the non-zero algebraic numbers z at which a transcendental f takes
an algebraic value are exactly the roots of Q. Moreover, replacing P with its remainder
in its Euclidean division by Q, we may assume degP < degQ provided Q ̸= 0 (i.e.,
when f is not a polynomial) and unicity then holds if Q is monic such that Q(0) ̸= 0

(properties which can both be assumed without loss of generality); see [11, Prop. 3.3].
Proposition 3 is a generalization of the following result, which will be used in the

proof. It is stated as [16, Th. 4] and its proof is due to the referee of [15].

Lemma 1. — Let f be an E-function with coefficients in a number field K, and α ∈ Q
be such that f(α) is algebraic. Then f(α) ∈ K(α).

This lemma asserts that EK(α) ∩Q = K(α); it is a consequence of Theorem 2.
For the convenience of the reader, let us deduce Lemma 1 from Proposition 1. Let

β = f(α), and L be a finite Galois extension of K(α) such that β ∈ L. Since f(z)− β

vanishes at α, Proposition 1 shows that for any σ ∈ Gal(L/K(α)) the E-function
f(z) − σ(β) = fσ(z) − σ(β) vanishes at σ(α) = α, so that σ(β) = f(α) = β. This
concludes the proof of Lemma 1.

Proof of Proposition 3. — To prove Proposition 3, we first remark that the result is
obvious if f is algebraic, hence a polynomial: we simply take P = f and Q = 0. Let
us now assume that f is transcendental and argue by induction on the number of
non-zero algebraic numbers α such that f(α) ∈ Q. By Beukers’ theorem this number
is finite, indeed, since f is transcendental any such α must be one of the finitely many
singularities of an appropriate differential equation of which f is a solution.

If this number is 0, one may choose P = 0 and Q = 1. Now, if f(α) ∈ Q, Lemma 1
proves that f(α) belongs to K(α): there exists P0 ∈ K[X] such that f(α) = P0(α).
Therefore the E-function f − P0, with coefficients in K, vanishes at α. Proposition 1
yields an E-function g0 with coefficients in K such that f = P0 +Dg0 where D is the
minimal polynomial of α over K. If g0(α) ∈ Q, the same procedure can be carried out
with g0, leading to P1 ∈ K[z] and an E-function g1 with coefficients in K such that
g0 = P1 +Dg1. After finitely many steps, this procedure terminates and provides gℓ
such that gℓ(α) ̸∈ Q (see the proof of [11, Th. 3.4]). This concludes the proof of
Proposition 3. □
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5. Structure of EK

In this section we prove Theorem 2 stated in the introduction. Let K be a subfield
of Q. Recall that EK is the ring of all values f(1) where f is an E-function with
coefficients in K; in particular EQ = E.

Let f1, . . . , fN be E-functions with coefficients in K. If f1(1), . . . , fN (1) are linearly
independent over Q, then obviously they are linearly independent over K. Conversely,
let us assume that they are linearly independent over K. Let λ1, . . . , λN be algebraic
numbers, not all zero, such that λ1f1(1) + · · · + λNfN (1) = 0. Up to a permutation
of the indices we may assume that λ1 ̸= 0; then dividing by λ1 we assume that
λ1 = 1. Let us consider a finite Galois extension L of K that contains λ2, . . . , λN . Then
g(z) =

∑N
i=1 λifi(z) is an E-function with coefficients in L, and it vanishes at z = 1.

For any σ ∈ Gal(L/K), Proposition 1 yields gσ(1) = 0, that is
∑N

i=1 σ(λi)fi(1) = 0

since all fi have coefficients in K. Summing these relations, as σ varies, yields
N∑
i=1

TrL/K(λi)fi(1) = 0

with TrL/K(λi) =
∑

σ∈Gal(L/K) σ(λi) ∈ K and TrL/K(λ1) = TrL/K(1) = [L : K] ̸= 0.
This is a non-trivial linear relation, with coefficients in K, between f1(1), . . . , fN (1).
This contradiction concludes the proof that elements of EK are linearly independent
over Q if, and only if, they are linearly independent over K.

6. A Galois action on values of E-functions

In this section, we define an action of Gal(Q/Q) on the set E of values of E-func-
tions. This action is not used in the paper but it sheds a different light on the proof
of Theorem 1: it presents similarities with Liouville’s proof that irrational algebraic
numbers are not too well approximated by rationals (i.e., are not Liouville numbers).

Given σ ∈ Gal(Q/Q) and ξ ∈ E, there exists an E-function f such that ξ = f(1);
then we let σ(ξ) := fσ(1). The crucial point is to prove that σ(ξ) depends only on σ

and ξ, not on the choice of f . Indeed if g is another E-function such that ξ = g(1),
then f − g vanishes at the point 1. Proposition 1 shows that fσ − gσ vanishes at 1
too, so that gσ(1) = fσ(1): this concludes the proof.

Theorem 2 shows that as a Galois representation, E is isomorphic to EQ ⊗ Q,
where EQ is a Q-vector space with trivial Galois action. Therefore this does not
provide a way to understand the absolute Galois group of Q better. However, it sheds
a new light on the proof of Theorem 1 (see §3): Step 2 is very similar to Liouville’s
proof that irrational algebraic numbers are not too well approximated by rationals
(i.e., are not Liouville numbers). Indeed let us recall briefly Liouville’s proof, stated
in terms of Galois action. Let ξ be an algebraic number of degree d ⩾ 2, and assume
(for simplicity) that the extension Q(ξ)/Q is Galois. To bound from below |qξ − p|
for (p, q) ∈ Z2 ∖ {(0, 0)}, consider

ϖ :=
∏

σ∈Gal(Q(ξ)/Q)

(
qσ(ξ)− p

)
.
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Then ϖ ̸= 0 (since σ(ξ) is irrational for any σ), and ϖ ∈ Q (since it is the norm of
qξ− p with respect to the extension Q(ξ)/Q). Letting δ ∈ Z denote a positive integer
such that δξ is an algebraic integer, we have δdϖ ∈ Z ∖ {0} since OQ(ξ) ∩ Q = Z.
Therefore |δdϖ| ⩾ 1 so that

δ−d ⩽ |ϖ| ⩽ |qξ − p|( ξ + 1)d−1Hd−1

by bounding |qσ(ξ) − p| trivially for σ ̸= Id, where H = max(|p|, |q|). Dividing by q

yields |ξ − p/q| ⩾ cH−d where c > 0 depends only on ξ.
Step 2 of the proof of Theorem 1 presents similarities, except that elements of

K ⊂ Q are replaced with values of E-functions in EK; the lower bound used by
Liouville (namely, δdϖ ∈ Z ∖ {0} implies |δdϖ| ⩾ 1) is replaced accordingly by
Shidlovskii’s lower bound recalled in Theorem A.
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