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Rational approximations to values of E-functions

S. Fischler and T. Rivoal
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Abstract

We solve a long standing problem in the theory of Siegel’s E-functions, initiated
by Lang for Bessel’s function J0 in the 60’s and considered in full generality by
G. Chudnovsky in the 80’s: we prove that irrational values taken at rational points
by E-functions with rational Taylor coefficients have irrationality exponent equal
to 2. This result had been obtained before by Zudilin under stronger assumptions on
algebraic independence of E-functions, satisfied by J0 but not by all hypergeometric
E-functions for instance.

1 Introduction

In rational approximation, a landmark result is Roth’s theorem [28], proved in 1955: if
ξ ∈ R \Q is an algebraic number, then

∀ε > 0 ∃c > 0 ∀(p, q) ∈ Z× N∗
∣∣∣∣ξ −

p

q

∣∣∣∣ ≥
c

q2+ε
. (1.1)

This measure of irrationality is optimal in the following sense: it would be false with
ε = 0 and c = 1, as can be proved using continued fractions or Dirichlet’s pigeonhole
principle. With respect to Lebesgue measure, almost all ξ ∈ R \ Q satisfy (1.1). A
folklore belief is that classical transcendental constants coming from analysis should satisfy
(1.1); but this is known for very few of them, even amongst the most important ones. For
instance, (1.1) is known for ξ = π only in a weaker form, with 2 in the exponent of q
replaced with 7.1033 (Zeilberger-Zudilin [32]); in other words, the irrationality exponent
of π is at most 7.1033. For log(2) the situation is analogous: its irrationality exponent is
at most 3.5746 (Marcovecchio [25]). In both cases, this exponent is currently best known
and it comes after many successive improvements.

The situation is different for the values of the exponential function: it is well known
that (1.1) holds with ξ = er for any r ∈ Q∗ (see the introduction of [4] or [22]). This result
opens the way to a possible generalization to E-functions, a class of functions defined by
Siegel [30] in 1929 to extend Diophantine properties of the exponential function. In this
paper Q is seen as a subset of C.
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Definition 1. A power series F (z) =
∑∞

n=0 anz
n/n! ∈ Q[[z]] is an E-function if

(i) F is solution of a non-zero linear differential equation with coefficients in Q(z),

and there exists C > 0 such that:

(ii) for any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ Cn+1.

(iii) there exists a sequence of integers (dn)n≥0, with 1 ≤ dn ≤ Cn+1 for any n ≥ 0, such
that dnam are algebraic integers for all 0 ≤ m ≤ n.

Siegel’s original definition is more general: in (ii) and (iii), he required bounds of the
form “for all ε > 0, . . . ≤ n!ε for any n ≥ N(ε)” instead of “. . . ≤ Cn+1 for any n ≥ 0”.
E-functions in the sense of Definition 1 shall be called E-functions in the strict sense. Note
that (i) implies that the an’s all lie in a certain number field K. An E-function is an entire
function; it is transcendental unless it is a polynomial.

Amongst the simplest examples of E-functions, we mention exp(z) =
∑∞

n=0 z
n/n! and

Bessel’s function J0(z) :=
∑∞

n=0(iz/2)
2n/n!2. Both are specializations of the generalized

hypergeometric function

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑

n=0

(a1)n · · · (ap)n
(1)n(b1)n · · · (bq)n

zn

where q ≥ p ≥ 0 and we define the Pochhammer symbol (a)n := a(a + 1) · · · (a + n − 1)
for n ≥ 1, (a)0 := 1. Siegel has proved that when q ≥ p ≥ 0, the parameters aj and bj
are in Q (with the restriction that bj /∈ Z≤0 so that (bj)n 6= 0 for all n ≥ 0) and c ∈ Q,
then pFq[a1, . . . , ap; b1, . . . bq; cz

q−p+1] is an E-function. However, the Q-algebra generated
by such hypergeometric E-functions is not large enough to contain all E-functions, as
recently shown by Fresán-Jossen [18]. We also point out that values of E-functions at
algebraic points are closely related to exponential periods, see [19].

The Diophantine theory of the values taken at algebraic points by E-functions has a long
history with classical results due, in chronological order, to Siegel, Shidlovskii, Nesterenko,
André and Beukers in particular. We refer to their original works [30, 29, 26, 2, 8] as well
as to [9, 16, 33] for precise statements of these results and others.

Our purpose is to prove the following result, namely: (1.1) holds for all irrational values
of E-functions with rational Taylor coefficients at rational points.

Theorem 1. Let f ∈ Q[[z]] be an E-function and let r ∈ Q. Then either f(r) ∈ Q, or for
any ε > 0, there exists a constant c > 0 depending on f, r, ε such that for any p ∈ Z and
any q ∈ N∗, we have ∣∣∣∣f(r)−

p

q

∣∣∣∣ ≥
c

q2+ε
. (1.2)

We shall first give the proof of Theorem 1 for E-functions in the strict sense, using in
particular various lemmas in Zudilin’s paper [33] and results by André and Beukers in the
theory of E-operators for E-functions in the strict sense. Then we shall explain in §3.4 the
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changes that must be made to the proof to obtain Theorem 1 for E-functions in Siegel’s
sense.

Theorem 1 was announced in 1984 by Chudnovsky [10, p. 1926, Theorem 1 and Corol-
lary] for E-functions in Q[[z]] in Siegel’s original sense and in a stronger form, namely a
measure of linear independence. However, as explained in [11, p. 245], the proof contains a
gap in the zero estimate. Zudilin [33] succeeded in filling this gap, thereby proving Theo-
rem 1 (in an even more precise form, namely with a decreasing function of q instead of ε),
but under additional assumptions on f and r and for E-functions in the strict sense. Pre-
cisely, let m be the minimal order of a non-trivial inhomogeneous differential equation with
coefficients in Q(z) satisfied by f . Then Zudilin assumes that either m ≤ 2 (Corollary 1
on page 583) or that f, f ′, . . . , f (m−1) are algebraically independent over Q(z) (Corollary 1
on page 557). In both cases, he also assumes that r is not a singularity of the equation. In
the present paper, we use a different approach to zero estimates (see below), which enables
us to prove Theorem 1 without any additional assumption on f .

As just explained, the interest of Theorem 1 is that it applies to all E-functions with
rational coefficients, for instance to all generalized hypergeometric E-functions of the form

pFq[a1, . . . , ap; b1, . . . bq; cz
q−p+1] with q ≥ p ≥ 0, c ∈ Q and rational parameters aj and bj ,

whereas Zudilin applies his results to them only under some assumptions on the parameters,
in particular to J0(z) = 1F2[1; 1, 1; (iz/2)

2]. The E-function g(z) := 1F2[1/2; 1/3, 2/3; z
2]

does not fall under the scope of Zudilin’s results because a minimal inhomogeneous differ-
ential equation satisfied by g is 9z2g′′′(z)+9zg′′(z)− (36z2+1)g′(z)−36zg(z) = 0 of order
m = 3 while g(z)2 − g′(z)2/4 + 9z2(4g(z)− g′′(z))2/4 = 1; on the other hand, g(r) /∈ Q for
all r ∈ Q∗ (see [17, §7] for details) so that (1.2) holds for all these values. See below for
non-trivial examples of transcendental 1F1 series with rational parameters taking a rational
value at a non-zero rational point, showing that it is not possible to exclude a priori the
“f(r) ∈ Q” possibility even in the hypergeometric case.

Another interesting example is the generating E-function of Apéry numbers A2,2(z) :=∑∞
n=0(

∑n
k=0

(
n
k

)2(n+k
n

)2
)zn/n!. We proved in [16] that for any r ∈ Q∗, A2,2(r) has irrational-

ity exponent at most 5 (because we are not able to check that the additional conditions of
Zudilin’s result are met). Using Theorem 1 we deduce the optimal measure (1.2) immedi-
ately for A2,2(r).

A different problem, very interesting but not studied in this paper, is to know in the
setting of Theorem 1 whether f(r) is rational or not when f ∈ Q[[z]] is transcendental (if f
is a polynomial, obviously f(r) ∈ Q for all r ∈ Q). Beukers’ linear independence theorem
[8, Corollary 1.4] provides a sufficient condition: given

∑m
j=0 pj(z)f

(j)(z) = q(z) a non-
trivial inhomogeneous equation satisfied by f transcendental of minimal order m ≥ 1 with
polynomial coefficients, if r ∈ Q∗ is such that pm(r) 6= 0 then f(r) /∈ Q. If pm(r) = 0, it can
be decided algorithmically whether f(r) ∈ Q or not, see [1, 9]. Of course there are trivial
examples of transcendental E-functions such that f(r) ∈ Q for some r ∈ Q∗, for instance
(z − 1)ez at z = 1. But there are also non-trivial examples such as 1F1[5; 7/3;−2/3] =
5/27 and 1F1[6;−2/5;−12/5] = 1309/625; see [9, §4.2] for more “exotic” evaluations of
hypergeometric E-functions at rational points.
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As a consequence of [14, Theorem 4], if f is an E-fonction with rational Taylor coef-
ficients such that f(1) = eα for some α ∈ Q, then α ∈ Q. (The proof of this result is
an immediate adaptation of that of [13, Proposition 2], which is due to the referee of that

paper.) In particular, Theorem 1 does not apply directly to numbers such as e
√
2, for which

(1.2) is conjectural. (1)
It would be very interesting to generalize Theorem 1 to any E-function f in K[[z]]

evaluated at any α ∈ K∗, where K is a given fixed number field of degree d over Q. To
our knowledge, as a consequence of [16, Theorem 1], the current best upper bound in
this generality for the irrationality exponent of f(α) (when it is irrational) is d(m + 1)d

where m ≥ 1 is the minimal order of a non-trivial inhomogeneous differential equation with
coefficients in Q(z) satisfied by f . Note however that if K is an imaginary quadratic number
field, this exponent is 2 because all our arguments go through using the modulus of complex
numbers instead of the absolute value of real numbers in the Diophantine construction in
§§3.2, 3.3 and 3.4. Moreover, under further assumptions on f and α (similar to Zudilin’s),
this bound can be largely improved using the Lang-Galochkin transcendence measure; see
[11, Theorem 5.29 and remarks]. Even more specifically, Kappe [22] has obtained the upper
bound 4d2 − 2d for the irrationality exponent of eα for all α ∈ Q

∗
of degree d.

The proof of Theorem 1 is based on Chudnovsky’s construction, i.e. on graded Padé
approximation. Actually Zudilin used the same construction as Chudnovsky (and he pro-
vided all necessary details); so do we. The first new feature of Theorem 1 is that we have
do not have to exclude the case where r is a singularity of a differential system, because we
use (variants of) results of André and Beukers on E-operators and E-functions. The sec-
ond, and main, new feature is that no assumption is needed on f in Theorem 1. Actually
Zudilin had to make very strong assumptions in order to prove the zero estimate (namely,
that a matrix consisting of values of polynomials has maximal rank – see Proposition 3
in §3.2 below). In the present paper, we prove this result using the multiplicity estimate
of [15], which relies on the approach of Bertrand-Beukers [6] and Bertrand [5], generalized
in [12]. The important feature of this multiplicity estimate is that it takes into account
the possibility that some exceptional solutions of the underlying differential system have
identically zero remainders. Since we make no assumption on f in Theorem 1, this could a
priori happen and it would make it impossible to prove that the matrix we are interested
in has maximal rank. We prove in §3.6 that there is no such exceptional solution, using
both the multiplicity estimate of [15] and an independent technical result (see §4 below).
Let us also mention that all the non-explicit constants in the proofs of these intermediate
results are effective and could in principle be computed, and consequently the same can
be said of the constant c in Theorem 1.

The structure of this paper is as follows. We gather in §2 the auxiliary results we shall
need: a property of the minimal inhomogeneous differential equation of an E-function and

1Note however that Zudilin’s theorem can be applied to the E-function f(x) := e
√
2x + e−

√
2x ∈ Q[[x]]:

the number f(1) has irrationality exponent 2, so that e
√
2 has irrationality exponent at most 4, which seems

to be the best known upper bound (see [22] and [16] for proofs of the upper bounds 12 and 8 respectively).
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a desingularization lemma, adapted from results of André and Beukers respectively. We
also state in §2.3 the multiplicity estimate proved in [15]. Then §3 is devoted to the proof
of Theorem 1, using a technical result stated and proved in §4. The case of E-functions in
Siegel’s sense is dealt with in §3.3.

2 Prerequisites

To begin with, we recall that the Nilsson class at 0 is the set of finite sums

f(z) =
∑

e∈C

∑

i∈N
λi,e hi,e(z)z

e(log z)i

where λi,e ∈ C, and hi,e is holomorphic at 0. If such a function f(z) is not identically zero,
we may assume that hi,e(0) 6= 0 for any i, e; then the generalized order of f at 0, denoted
by ord0f , is the minimal real part of an exponent e such that λi,e 6= 0 for some i. When
Y : C → Cq is a vector-valued fonction, it is said to be Nilsson at 0 if its q coordinates are.

Thoughout the paper, we shall denote by Mn(F ) andMn,m(F ) the sets of n×n matrices
and of n×m matrices over a given field F , typically C or C(z).

2.1 Inhomogeneous differential equation of minimal order satis-

fied by an E-function

Let f be a transcendental E-function with coefficients in a number field K. Consider
fj(z) = f (j−1)(z) for any j ≥ 1, and denote by m ≥ 1 the largest integer such that 1,
f1(z), . . . , fm(z) are linearly independent over K(z). Then fm+1(z) = f (m)(z) is a K(z)-
linear combination of these functions: f is solution of a inhomogeneous linear differential
equation of order m. This equation has minimal order amongst all inhomogeneous linear
differential equations satisfied by f . Note that we consider homogeneous equations to be
special cases of inhomogeneous equations for which the constant term is equal to 0, and it
may happen that an inhomogeneous equation of minimal order for one of its solutions is
in fact homogeneous.

Proposition 1. The point 0 is either a regular point, or a regular singularity, of any
inhomogeneous linear differential equation of minimal order satisfied by a transcendental
E-function.

André has proved this result for the homogeneous linear differential equation of min-
imal order (and even a more precise one, see [2, Théorème de pureté, p. 706]). In this
proposition, it is understood that an inhomogeneous equation is regular or regular singular
at 0 if the companion differential system Y ′ = AY with solution t(1, f, f ′, . . . , f (m−1)) is.

Proof. Let f be a transcendental E-function solution of a non-trivial homogeneous dif-
ferential equation Ly = 0 of minimal order r ≥ 1, where L ∈ C(z)[d/dz]. A minimality
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argument implies that a non-trivial minimal inhomogeneous equation satisfied by f has
order r or r − 1 (see [1, §4]).

In the former case, this inhomogeneous equation is then simply equal to L up a non-
zero rational function factor, and the claim follows because, by André’s above-mentioned
theorem, 0 is a regular point or a regular singularity of L.

We now deal with the case of order r− 1 which is more complicated. In this situation,
there exists R ∈ C(z) \ {0} such that L∗R = 0, where L∗ is the adjoint of L (2) and a
minimal inhomogeneous equation satisfied by f is of the form

r−1∑

j=0

pj(z)f
(j)(z) = c (2.1)

where
d

dz

(
r−1∑

j=0

pj(z)
dj

dzj

)
= RL. (2.2)

The rational function R can be explicitly determined from L, and then Eq. (2.2) enables
to determine suitable pj ∈ C(z) from R and L (first pr−1, then pr−2, etc). Finally, the
constant c is computed by determining the constant term in the Laurent series expansion
of the left-hand side of (2.1). See [9, §2.4] for more details. By minimality of L, c 6= 0 and
without loss of generality we can assume that c = 1. Since f is transcendental, we have
r ≥ 2. Let f2, . . . , fr be other local solutions of Ly = 0 at z = 0 such that f1 := f, f2, . . . , fr
make up a C-basis of the vector space of solutions of Ly = 0: by André’s theorem, each
fk is in the Nilsson class at z = 0 because 0 is at worst a regular singularity of L. From
Eq. (2.2), we observe that

d

dz

(
r−1∑

j=0

pj(z)f
(j)
k (z)

)
= R(z)Lfk(z) = 0 for any k ∈ J1, rK

so that
r−1∑

j=0

pj(z)f
(j)
k (z) = ck

for some ck ∈ C (and c1 = 1). Up to reordering the basis f1, f2, . . . , fr and multiplying
each fk by a non-zero constant, we can and shall assume without loss of generality that
f1, . . . , fs are such that ck = 1 for k = 1, . . . , s and fs+1, . . . , fr are such that ck = 0
for k = s + 1, . . . , r, for some s ∈ J1, rK. We now write the inhomogeneous equation∑r−1

j=0 pj(z)y
(j)(z) = 1 satisfied by f as a companion differential system Y ′ = AY where

A ∈ Mr(C(z)), with the vector solution t(1, f, . . . , f (r−2)). From what precedes, it turns

2Given a differential operator L =
∑r

j=0 qj(d/dz)
j ∈ C(z)[d/dz], its adjoint L∗ ∈ C(z)[d/dz] is defined

by L∗y =
∑r

j=0(−1)j(qjy)
(j); see [27, p. 38].
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out that in fact

U :=




1 · · · 1 0 · · · 0
f1 · · · fs fs+1 · · · fr
... · · ·

... · · ·
... · · ·

f
(r−2)
1 · · · f

(r−2)
s f

(r−2)
s+1 · · · f

(r−2)
r




is a fundamental matrix solution of Y ′ = AY . (By definition, if s = r, there are only 1’s
on the first line of U). Indeed, the columns of U are solutions of Y ′ = AY and they are
C-linearly independent because on the second line f1, . . . , fr are C-linearly independent,
so that U is invertible. Since the entries of U are in the Nilsson class at z = 0, it follows
from [31, p. 81] that 0 is a regular point or a regular singular point of Y ′ = AY .

2.2 A version of Beukers’ desingularization lemma

Beukers’ desingularization lemma [8, Theorem 1.5] is very useful when dealing with E-
functions, since it enables one to get rid of all non-zero singularities of the underlying
(homogeneous) differential equation. In this section we state and prove a non-homogeneous
version of this result that incorporates several additional features: the coefficients lie in a
fixed number field (as in [16, Proposition 2]), and two useful properties are preserved (the
value at 1 of the first E-function, and the property that 0 is a regular singularity). These
properties will be very important in the proof of Theorem 1.

Proposition 2. Let g1, . . . , gm be E-functions with coefficients in a number field K,
such that 1, g1, . . . , gm are linearly independent over C(z). Assume that the column
vector (1, g1, . . . , gm) is solution of a first-order differential system Y ′ = SY with S ∈
Mm+1(K(z)).

Then there exist E-functions f1, . . . , fm with coefficients in K such that:

• The functions 1, f1, . . . , fm are linearly independent over C(z).

• There exist polynomials Qj,l(z) ∈ K[z] such that gj(z) =
∑m

l=0Qj,l(z)fl(z) for any
j ∈ J1, mK, where we let f0(z) = 1.

• The column vector (1, f1, . . . , fm) is solution of a first-order differential system Y ′ =

S̃Y with S̃ ∈ Mm+1(K[z, 1/z]).

• If g1(1) is transcendental then g1(1) = f1(1).

• If 0 is a regular singularity of the system Y ′ = SY , then it is also a regular singularity
of the system Y ′ = S̃Y .

Proof. It follows closely that of Beukers, or more precisely the version over a number
field K given in [16, Proposition 2] (see also [9]). This approach consists in finitely many
steps. At each step, one obtains a K-linear combination of 1, g1, . . . , gm that vanishes
at some non-zero algebraic point α; then one replaces one of the functions by this linear
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combination, and divides by z − α if α ∈ K (by the minimal polynomial of α over K in
the general case). The point is that the above-mentioned linear combination is never just
the function 1, since 1 does not vanish at α. Therefore the function 1 can be preserved
at each step. Moreover it is clear from the proof that 0 being a regular singularity holds
throughout the procedure. This proves Proposition 2, except for the property g1(1) = f1(1).
However, if g1(1) =

∑m
l=0Q1,l(1)fl(1) is transcendental then there exists l0 ∈ J1, mK such

that Q1,l0(1) 6= 0. Replacing fl0(z) with
∑m

l=0Q1,l(1)fl(z) does not change the other
properties of the functions f1, . . . , fm, and provides g1(1) = fl0(1). Up to a permutation
of f1, . . . , fm this concludes the proof of Proposition 2.

2.3 A multiplicity estimate with possibly zero remainders

In this section we state the multiplicity estimate our proof relies on, namely Theorem A.
It is a special case of [15, Theorem 3] because the vanishing orders are considered at only
one point (namely 0), and the polynomials are evaluated at some α 6= 0 which is not a
singularity of the differential system Y ′ = AY .

Let q ≥ 1, A ∈ Mq(C(z)), n ≥ 0, and P1, . . . , Pq ∈ C[z] be such that degPi ≤ n for
any i. We identify tuples in Cq with column matrices in Mq,1(C). Then with any solution
Y = (y1, . . . , yq) of the differential system Y ′ = AY is associated a remainder R(Y ) defined
by

R(Y )(z) =

q∑

i=1

Pi(z)yi(z).

The derivatives of such a remainder can be written as [29, Chapter 3, §4]

R(Y )(k−1)(z) =

q∑

i=1

Pk,i(z)yi(z), (2.3)

where the rational functions Pk,i ∈ C(z) are defined for k ≥ 1 and 1 ≤ i ≤ q by




Pk,1
...

Pk,q


 =

(
d

dz
+ tA

)k−1




P1
...
Pq


 . (2.4)

We consider the matrix M(z) = (Pk,i(z))1≤i,k≤q ∈ Mq(C(z)); obviously the poles of the
coefficients Pk,i of M are amongst those of A.

The main new feature of the multiplicity estimate proved in [15] is that it takes into
account the possibility that R(Y )(z) is identically zero for some non-zero solutions Y (z)
of the differential system Y ′ = AY . To state this result, we denote by ̺ ≥ 0 the dimension
of the C-vector space of solutions Y such that R(Y )(z) is identically zero.

8



Theorem A. There exists a positive constant c1, which depends only on A, with the
following property. Let (Yj)j∈J be a family of solutions of Y ′ = AY such that the functions
R(Yj), j ∈ J , are C-linearly independent and belong to the Nilsson class at 0. Assume that

∑

j∈J
ord0(R(Yj)) ≥ (n+ 1)(q − ̺)− τ (2.5)

for some τ ∈ Z. Then:

• We have τ ≥ −c1.

• If 0 ≤ τ ≤ n − c1 then for any α ∈ C∗ which is not a singularity of the differential
system Y ′ = AY , the matrix (Pk,i(α))1≤i≤q,1≤k<τ+c1 ∈ Mq,τ+c1−1(C) has rank at least
q − ̺.

In this setting, under the assumptions of (ii), the matrix (Pk,i(α)) has rank equal to
q−̺. Indeed, there exist ̺ C-linearly independent solutions Y such that R(Y ) is identically
zero. For each of them, we have

∑q
i=1 Pk,i(α)yi(α) = R(Y )k−1(α) = 0 for any k ≥ 1: since

α is not a singularity, this provides ̺ linearly independent linear relations between the
columns of the matrix (Pk,i(α)).

We remark that Theorem A would not hold if the linear independence assumption
were on the Yj rather than on the R(Yj). Indeed, for instance if R(Yj) were identically
zero for some j ∈ J , then ord0(R(Yj)) would be infinite and Eq. (2.5) would hold for any
τ ∈ Z. Moreover, solutions Y such that R(Y ) is identically zero are taken advantage of in
Theorem A: each such solution (in a linearly independent family) provides the same benefit
in Eq. (2.5) as an additional function Yj such that R(Yj) would vanish to order n+1. This
property will be used in a crucial way in the proof of Theorem 1 (see §3.6).

Remark 1. Following the proof [15] of Theorem A and using the results of [7] shows that
c1 can be effectively computed in terms of A.

3 Proof of the main result

This section is devoted to the proof of Theorem 1, using a technical result that will proved
later in §4.

In §3.1 we introduce the notation and setting of the proof, applying the results of §§2.1
and 2.2. Then in §3.2 we give construction and properties of graded Padé approximants,
including the zero estimate (namely Proposition 3). Admitting this result, we prove Theo-
rem 1 stated in the introduction in §3.3, and its generalization to an E-function in Siegel’s
orginal sense, with arbitrary Taylor coefficients in Q, in §3.4 (namely Theorem ?? stated
where).

The rest of the paper is devoted to the proof of Proposition 3, carried out in §3.6 using
the differential system considered in §3.5 and the technical result proved in §4.
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3.1 Setting, notations and parameters

In this section we describe the setting of the proof of Theorem 1. We use the results of
§§2.1 and 2.2 to obtain a family of linearly independent E-functions, solution of a first order
differential system with no non-zero finite singularity. Then we introduce (essentially) the
same notation and parameters as in Zudilin’s proof.

To prove Theorem 1 we start with an E-function g(z) with coefficients in Q, and
r ∈ Q∗. We assume that g(r) is irrational; then g(r) is transcendental by [14, Theorem 4].
Considering g(rz) instead of g, we may assume that r = 1.

As in §2.1 we consider a (possibly) inhomogeneous linear differential equation of minimal
order satisfied by the transcendental E-function g. Proposition 1 asserts that 0 is (at worst)
a regular singularity of this equation. Viewing this equation as a differential system of order
one satisfied by the column vector (1, g, g′, . . . , g(m−1)), we apply Proposition 2 and obtain
E-functions 1, f1, . . . , fm with coefficients in Q, linearly independent over C(z), such that
f1(1) = g(1) is the number we are interested in to prove Theorem 1. The important point
is that (f1, . . . , fm) is a solution of a first-order inhomogeneous differential system

f ′
l (z) = Sl,0(z) +

m∑

j=1

Sl,j(z)fj(z) for any l ∈ J1, mK (3.1)

with Sl,j(z) ∈ Q[z, 1/z]: the only possible finite singularity of this system is zero, and it is
regular (in case it is a singularity).

We consider multi-indices κ ∈ Nm and sums over such multi-indices. In such a
sum, whenever an index κ belongs to Zm but not to Nm (i.e., has at least one neg-
ative component), the term corresponding to this index will be considered as 0. For
κ = (κ1, . . . , κm) ∈ Nm, we write |κ| = κ1 + . . .+ κm.

We denote by (e1, . . . , em) the canonical basis of Zm, i.e. ei = (0, . . . , 0, 1, 0, . . . , 0)
where the i-th coordinate is equal to 1. We let

Ω = {κ ∈ Nm, N − 1 ≤ |κ| ≤ N}, Θ = {κ ∈ Nm, |κ| = N},

and

ω = CardΩ =

(
N +m− 2

m− 1

)
+

(
N +m− 1

m− 1

)
, θ = CardΘ =

(
N +m− 1

m− 1

)
.

We remark, for future reference, that

ω

θ
= 2−

m− 1

N +m− 1
= 1 +

N

N +m− 1
.

We also fix a bijective map J1, ωK → Ω so that indices κ ∈ Ω can be seen as integers
between 1 and ω; for instance a family (xω)ω∈Ω ∈ CΩ can also be seen as a tuple in Cω, or
as a column matrix in Mω,1(C).
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Let us introduce now the parameters that will be used in the construction. Let N be
sufficiently large with respect to f1, . . . , fm, and let η > 0 be a real number such that

η ≤
1

3(N +m− 1)
. (3.2)

This number η plays the role of the real denoted by ε in [33]. Let M be sufficiently large
with respect to f1, . . . , fm, N , and η; consider

K =
⌊(ω − η)M

θ

⌋
. (3.3)

Remark 2. These parameters are the same as the ones used by Zudilin, except that he
assumes that equality holds in Eq. (3.2), and gives an explicit value for M in terms of N .
The reason for this difference is that we have not computed explicitly the constant C4 in
Proposition 3 (which depends on N). This is useless for our purpose but it could be done
(see Remark 3); it would lead to explicit values of η and M , and then to an explicit value
of the constant c in Theorem 1.

3.2 Construction and properties of graded Padé approximants

In this section, we state the construction and properties of graded Padé approximants,
sketched by Chudnovsky [10] and proved in detail by Zudilin [33]. Apart from the zero
estimate (namely Proposition 3 below), the results are exactly the same as in Zudilin’s
paper.

To motivate this construction, let us explain it with different notations in the case
m = 2. We shall construct polynomials A0, . . . , AN , B0, . . . , BN−1 such that Ai(z) +
Bi−1(z)f1(z) + Bi(z)f2(z) vanishes with high multiplicity at 0, for any i ∈ J0, NK. The
point here is that B−1 and BN are considered to be identically zero, so that for i = N the
function AN (z) + BN−1(z)f1(z) vanishes to high order at 0, and is therefore presumably
small at z = 1.

Let us come back to our general setting now. Recall that the parameters are given by
Eqs. (3.2) and (3.3); they are the same as in [33], except that η and M are not fixed in
terms of N . The following construction is exactly [33, Lemma 1.1].

Lemma 1. There exist polynomials Pκ(z) of degree less than M , for κ ∈ Ω, not all zero,
such that

ord0

(
Pκ(z) +

m∑

j=1

Pκ−ej(z)fj(z)
)
≥ K for any κ ∈ Θ

and
πκ,ν ∈ Z, |πκ,ν | ≤ C

ωM/η
0

for any κ ∈ Ω and any ν ∈ J0,M − 1K, where the coefficients πκ,ν are defined by

Pκ(z) =
M−1∑

ν=0

πκ,ν

ν!
zν for any κ ∈ Ω.
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Here and below, we denote by C0, C1, . . . , C4 positive constants that depend only on
f1, . . . , fm (except that C4 depends also on N).

Now recall that all coefficients Sl,j(z) of the differential system (3.1) belong to Q[z, 1/z],
i.e. that this system has no non-zero finite singularity. Therefore denoting by T (z) the
least common denominator of the Sl,j(z), we have

T (z) = zi for some i ∈ N, and T (z)Sl,j(z) ∈ Q[z] for any l, j. (3.4)

As in [33, Eq. (1.8)] we define recursively polynomials P
[k]
κ (z), for k ≥ 1 and κ ∈ Ω, by

letting P
[1]
κ (z) = Pκ(z) and for any k ≥ 1 and any κ ∈ Ω,

P [k+1]
κ (z) = T (z)

( d

dz
P [k]
κ (z) + (|κ|+ 1−N)

m∑

l=1

Sl,0(z)P
[k]
κ−el(z) (3.5)

−
m∑

l=1

m∑

j=1

(κj − δl,j + 1)Sl,j(z)P
[k]
κ−el+ej(z)

)
.

We recall that δl,j is Kronecker’s symbol, and whenever κ − el ∈ Zm (resp. κ − el + ej)
has a negative coefficient, the corresponding term is omitted. The only difference with
[33, Eq. (1.8)] is a shift in the index k: our P

[k]
κ (z) is denoted by P

[k−1]
κ (z) in [33]. The

connection of this definition of P
[k]
κ (z) with a differential system will be explained in §3.5

below.
The following result is part (a) of [33, Lemma 1.3], with coefficients πk,κ,ν defined by

P [k]
κ (z) =

M+t(k−1)−1∑

ν=0

πk,κ,ν

ν!
zν for any κ ∈ Ω and any k ≥ 1,

and
t = max

(
deg T (z), max

1≤l≤m
max
0≤j≤m

deg(T (z)Sl,j(z))
)
.

Lemma 2. For any κ ∈ Ω, any k ≥ 1 and any ν ∈ J0,M+t(k−1)−1K, we have πk,κ,ν ∈ Z,
and

|πk,κ,ν| ≤ C
ωM/η
0 MC2ηM if k < C1ηM.

The following result is the special case l∗ = 1 and α = 1 of part (b) of [33, Lemma 1.3].

Lemma 3. For any k ≥ 1 such that k < C1ηM , we have

∣∣∣P [k]
(N,0,0,...,0)(1) + P

[k]
(N−1,0,0,...,0)(1)f1(1)

∣∣∣ ≤ C
ωM/η
0 MC2ηMCM

3 M−K .

The main point of the present paper is the following result. It is proved in [33,
Lemma 3.5] with an explicit value of C4, namely ω, under the assumption that f1, . . . , fm
are algebraically independent.
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Proposition 3. There exists a constant C4, which depends on f1, . . . , fm and on N (but

not on M or η), such that the matrix (P
[k]
κ (1))κ∈Ω,1≤k≤⌊2ηM⌋+C4

has rank ω.

Remark 3. We shall prove that C4 can (in principle) be computed effectively in terms of
f1, . . . , fm and N .

Proposition 3 will be proved in §3.6, using the differential system considered in §3.5
and Theorem 2 proved in §4. In the next two sections, we admit Proposition 3 and deduce
from it the results announced in the introduction.

3.3 Proof of Theorem 1 for E-functions in the strict sense

Let us now prove Theorem 1 for E-functions in the strict sense, following [33, pp. 581–583]
but without explicit expressions for η and M .

Starting wih an E-function g ∈ Q[[z]] and r ∈ Q such that g(r) 6∈ Q, we construct f1,
. . . , fm as in §3.1 so that f1(1) = g(r). Let ε > 0; we may assume that ε is sufficiently
small in terms of f1, . . . , fm. We choose N = ⌊m/ε⌋+ 1 so that

N ≥ m/ε

and N can be made sufficiently large in terms of f1, . . . , fm. We recall that ω/θ =
1 + N

N+m−1
, so that (

1 +
m

N

)(
1−

ω

θ

)
< −1.

Using this bound and the fact that C2, t, ω and θ depend only on N and f1, . . . , fm, we
may choose η > 0 sufficiently small (with respect to N , f1, . . . , fm) so that Eq. (3.2) holds
and (

1 +
m

N

)(
1 + 2tη + C2η −

ω − η

θ

)
< −(1 + 2tη + C2η). (3.6)

In what follows, we assume M to be sufficiently large in terms on η, N , f1, . . . , fm; we
shall denote by Cj(η,N) positive constants that depend on η, N , f1, . . . , fm.

Since the matrix (P
[k]
κ (1))κ∈Ω,1≤k≤⌊2ηM⌋+C4

of Proposition 3 has rank ω, the submatrix
consisting in the columns indexed by κ = (N, 0, . . . , 0) and κ = (N−1, 0, . . . , 0) has rank 2.
This provides positive integers k1, k2 < 2ηM + C4 such that

det

(
P

[k1]
(N,0,0,...,0)(1) P

[k1]
(N−1,0,0,...,0)(1)

P
[k2]
(N,0,0,...,0)(1) P

[k2]
(N−1,0,0,...,0)(1)

)
6= 0. (3.7)

For any j ∈ {1, 2}, let

pj = −(M + tkj)!P
[kj]

(N,0,0,...,0)(1) and qj = (M + tkj)!P
[kj]

(N−1,0,0,...,0)(1).
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Lemma 2 yields pj, qj ∈ Z, and also

|qj| ≤ (M + t(2ηM + C4))! eC
ωM/η
0 MC2ηM

≤ (M(1 + 2tη) + tC4))
tC4 (M(1 + 2tη))! eC

ωM/η
0 MC2ηM

≤ C5(η,N)M M (1+2tη+C2η)M (3.8)

provided M ≥ C6(η,N), and Lemma 3 yields in the same way (using Eq. (3.3))

|qjf1(1)− pj| ≤ (M + t(2ηM + C4))!C
ωM/η
0 MC2ηMCM

3 M−K

≤ C7(η,N)M M (1+2tη+C2η−ω−η
θ

)M (3.9)

if M ≥ C8(η,N).

Now let p ∈ Z and q ∈ N∗; upon changing the constant c in Theorem 1 (since f1(1) 6∈ Q),
we may assume that |p| and q are sufficiently large (with respect to η, N , f1, . . . , fm, since
these quantities have been chosen in terms of f1(1) and ε only). We choose for M the least
integer such that

C7(η,N)M M (1+2tη+C2η−ω−η
θ

)M ≤
1

2q
. (3.10)

This integer exists because we have assumed η > 0 sufficiently small in terms of N , f1, . . . ,
fm, so that 1 + 2tη + C2η −

ω−η
θ

< 0; moreover M can be made large enough (in terms of
η, N , f1, . . . , fm) by assuming that q is. Then Eq. (3.9) yields

q |qjf1(1)− pj| ≤ 1/2 for any j ∈ {1, 2}.

Now Eq. (3.7) yields det

(
p1 q1
p2 q2

)
6= 0, so that (p, q) is non-collinear to at least one of the

(pj, qj), j ∈ {1, 2}. For this index j we have

det

(
p pj
q qj

)
∈ Z \ {0}. (3.11)

This determinant is also equal to

det

(
p− qf1(1) pj − qjf1(1)

q qj

)
,

so that

|qj| |qf1(1)− p| =
∣∣∣ det

(
p pj
q qj

)
− q (qjf1(1)− pj)

∣∣∣

≥ 1− q |qjf1(1)− pj| ≥ 1− 1/2 = 1/2

14



and, using Eqs. (3.8) and (3.6):

|qf1(1)− p| ≥
1

2|qj|
≥

1

2
C5(η,N)−M M−(1+2tη+C2η)M

≥
[
C7(η,N)M−1 (M − 1)(1+2tη+C2η−ω−η

θ
)(M−1)

]1+m/N

provided M ≥ C9(η,N). Since M is the least integer such that Eq. (3.10) holds, we deduce
that

|qf1(1)− p| >
( 1

2q

)1+m/N

.

Since m/N ≤ ε this concludes the proof of Theorem 1 for E-functions in the strict sense.

3.4 Proof of Theorem 1 for E-functions in Siegel’s sense

In this section, we explain the changes that must be done to obtain Theorem 1 to any
E-function f in Siegel’s original sense.

• Firstly, in the proof of Theorem 1 for E-functions in the strict sense, we use various
results of André and Beukers that they have proved only for E-functions in the strict sense
(using the theory of E-operators due to the former). Since then, all these results have been
proved to hold verbatim for E-functions in Siegel’s sense by Lepetit [24], completing the
results already given in [3, pp. 746–747].

• Secondly, in §3.2 we use verbatim Zudilin’s estimates that he has also proved only for
E-functions in Q[[z]] in the strict sense. Let us mention the changes that must be made to
his lemmas to deal with Siegel’s E-functions in Q[[z]]. We recall that the archimedean and
non-archimedean bounds on the Taylor coefficients of Siegel’s E-functions are of the form
“for all ε′ > 0, . . . ≤ nε′n for all n ≥ N(ε′)”. In Lemma 1, this changes the quantity C

ωM/η
0

by Mωε′M/η, where ε′ > 0 is fixed and independent of the other parameters but arbitrarily
small, and M ≥ M0(ε

′). The same remark applies in Lemma 2, where C
ωM/η
0 MC2ηM

becomes Mωε′M/η+C2ηM , and in Lemma 3, where M−K reads M−K(1−ε′) and the constant
C3 is also possibly changed but it still does not depend on M . With these estimates, we
conclude the proof as that of Theorem 1 for E-functions in the strict sense because ε′

can be taken arbitrarily small provided M is assumed to be large enough, which can be
assumed as in §3.3.

The rest of the present paper is devoted to a proof of Proposition 3, which has been
admitted in §§3.3 and 3.4.

3.5 Differential system

In this section we define a matrix A ∈ Mω(Q(z)) and consider the differential system
Y ′ = AY , of which solutions will be constructed in Proposition 4. As stated in §3.1 a
bijective map J1, ωK → Ω is fixed, so that a solution Y is a vector (yκ(z)) indexed by
κ ∈ Ω. Here and below, we identify tuples in Cq with column matrices in Mq,1(C).
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We shall also relate the notation P
[k]
κ of §3.2 to the Pk,κ of §2.3; in what follows we will

use mostly the notation of §2.3, including

R(Y )(z) =
∑

κ∈Ω
Pκ(z)yκ(z) (3.12)

when Y = (yκ(z)) is a solution of the differential system Y ′ = AY .

The matrix A = (Aλ,κ(z))λ,κ∈Ω ∈ Mω(Q(z)) that we consider is defined (in terms of the
coefficients Sl,j(z) of the differential system (3.1)) by

Aλ,κ(z) =






−λjSl,j(z) if κ = λ− ej + el for some j, l ∈ J1, mK with j 6= l,

−
∑m

j=1 λjSj,j(z) if κ = λ,

Sj,0(z) if κ = λ+ ej and |λ| = N − 1,

0 otherwise,

(3.13)

as in [33, Eq. (3.2)]. We recall from §3.1 that all rational functions Sl,j(z), and therefore
all coefficients of A, belong to Q[z, 1/z]. With this definition, Eq. (3.5) reads




P
[k+1]
1 (z)

...

P
[k+1]
ω (z)


 = T (z)

(
d

dz
+ tA(z)

)



P
[k]
1 (z)
...

P
[k]
ω (z)


 .

Except for the multiplicative factor T (z) (used to ensure that all P
[k]
κ (z) are polynomials),

this is the same recurrence relation as the one used in §2.3 to define the rational functions
Pk,κ(z) (see Eq. (2.4)); notice that Pk,κ(z) ∈ Q[z, 1/z] since A ∈ Mω(Q[z, 1/z]). Using the

fact that P1,κ = P
[1]
κ = Pκ by definition, we obtain by induction that




P
[k]
1 (z)
...

P
[k]
ω (z)


 = T (z)k−1




Pk,1(z)
...

Pk,ω(z)


+

k−1∑

k′=1

Uk,k′(z)




Pk′,1(z)
...

Pk′,ω(z)




with rational functions Uk,k′(z) ∈ Q[z, 1/z], since T (z) and all coefficients of A(z) belong
to Q[z, 1/z]. Now recall from Eq. (3.4) that T (z) = zi for some i ∈ N, so that T (1) = 1
and

rk(P [k]
κ (1))κ∈Ω,1≤k≤k0 = rk(Pk,κ(1))κ∈Ω,1≤k≤k0 (3.14)

for any k0 ≥ 1. This equality will be used at the end of §3.6 to prove Proposition 3, since
Theorem A yields a lower bound on rk(Pk,κ(1))κ∈Ω,1≤k≤k0.

The end of this section is devoted to the proof of the following result; notice that
parts (i) and (ii) are essentially proved in [33, pp. 575–576]. For κ ∈ Θ we define
Zκ = (zκ,λ)λ∈Ω ∈ Cω by

zκ,λ =






1 if λ = κ,
fj(1) if λ = κ− ej for some j ∈ J1, mK,
0 otherwise.
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Proposition 4. There exist solutions Yκ(z) of the differential system Y ′ = AY , for κ ∈ Θ,
such that:

(i) For any κ ∈ Θ, Yκ(1) = Zκ.

(ii) The functions Yκ(z), κ ∈ Θ, are linearly independent over C.

(iii) For any κ ∈ Θ, we have R(Yκ)(z) = O(zK−cN) as z → 0, where c > 0 is a constant
that depends only on f1, . . . , fm.

(iv) For any κ ∈ Θ, the function R(Yκ)(z) belongs to the Nilsson class at 0.

Remark 4. The constant c in part (iii) can be made effective, using the results of [7].

Proof. Consider the differential system

a′k(z) = −S1,k(z)a1(z)− . . .− Sm,k(z)am(z) for any k ∈ J1, mK. (3.15)

Since the system (3.1) of §3.1 has no non-zero finite singularity, all rational functions
Sℓ,k(z) belong to Q[z, 1/z] and the system (3.15) has no non-zero finite singularity. In
particular, there exists a fundamental matrix of solutions (ϕk,l(z))1≤k,l≤m such that ϕk,l(1)
is equal to the Kronecker symbol δk,l. Let ̺1, . . . , ̺m be independent variables, and put
ak(z) =

∑m
l=1 ̺lϕk,l(z) for k ∈ J1, mK. Then (a1(z), . . . , am(z)) is a solution of the system

(3.15).
Consider the vector Y (z) = (yλ(z))λ∈Ω defined by:

yλ(z) =

{
a1(z)

λ1 . . . am(z)
λm if |λ| = N,

a1(z)
λ1 . . . am(z)

λm(1 + a1(z)f1(z) + . . .+ am(z)fm(z)) if |λ| = N − 1.

(3.16)
Each of these functions is a polynomial in the variables ̺1, . . . , ̺m, with coefficients that
depend on z; all monomials that appear in this expression have total degree N − 1 or N .
Therefore we have

Y (z) =
∑

κ∈Ω
̺κ1

1 . . . ̺κm

m Yκ(z) (3.17)

and this expression defines functions Yκ(z) independent from ̺1, . . . , ̺m. We shall be
interested in these functions only when κ ∈ Θ, i.e. |κ| = N .

To prove part (i), we deduce from ϕk,l(1) = δk,l that ak(1) = ̺k, and Eq. (3.16) yields

yλ(1) =

{
̺λ1

1 . . . ̺λm
m if |λ| = N,

̺λ1

1 . . . ̺λm
m (1 + ̺1f1(1) + . . .+ ̺mfm(1)) if |λ| = N − 1.

(3.18)

Given κ ∈ Θ, we write Yκ(1) = (zκ,λ)λ∈Ω. Then Eq. (3.17) shows that zκ,λ is the coefficient
of ̺κ1

1 . . . ̺κm
m in the expression of yλ(1). Using Eq. (3.18), we obtain

zκ,λ =






1 if λ = κ,

fj(1) if λ = κ− ej for some j ∈ J1, mK,

0 otherwise.
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By definition of Zκ, this means Yκ(1) = Zκ and concludes the proof of part (i).
Part (ii) follows easily from part (i). Indeed we consider the matrix M ∈ Mω,θ(C) with

columns Zκ, κ ∈ Θ. We may assume that the bijective map J1, ωK → Ω we have chosen
in §3.1 maps J1, θK to Θ: it allows us to identify Θ and J1, θK. Then by definition on the

Zκ, we have M =

(
I
M ′

)
for some matrix M ′ ∈ Mω−θ,θ(C), where I ∈ Mθ(C) is the

identity matrix. Therefore M has rank θ, and the vectors Zκ are linearly independent over
C. Using part (i), this concludes the proof of (ii).

Let us prove parts (iii) and (iv) now. For brevity we let ρκ = ρκ1

1 . . . ρκm
m and define

a(z)λ in an analogous way. We have:

∑

κ∈Ω
ρκR(Yκ)(z) = R(Y )(z) =

∑

λ∈Ω
Pλ(z)yλ(z) using Eqns. (3.12) and (3.17)

=
∑

λ∈Θ
Pλ(z)a(z)

λ +
∑

λ∈Ω\Θ
Pλ(z)a(z)

λ
(
1 +

m∑

j=1

aj(z)fj(z)
)

by Eq. (3.16)

=
∑

λ∈Θ
a(z)λ

(
Pλ(z) +

m∑

j=1

Pλ−ej(z)fj(z)
)
+
∑

λ∈Ω\Θ
Pλ(z)a(z)

λ.

Now recall that ak(z) =
∑m

l=1 ̺lϕk,l(z). In the previous expression, we fix κ ∈ Θ and
identify the coefficients of ρκ in both sides. Since the second term of the right hand side is
homogeneous of degree N − 1, whereas |κ| = N , it does not contribute and we have

R(Yκ)(z) =
∑

λ∈Θ
bλ,κ(z)

(
Pλ(z) +

m∑

j=1

Pλ−ej(z)fj(z)
)

(3.19)

where bλ,κ(z) is the coefficient of ρκ in the expansion of a(z)λ. This coefficient bλ,κ(z) is
an explicit homogeneous polynomial of degree N (with constant integer coefficients) in the
functions ϕk,l(z).

Now denote by Z ′ = SZ the differential system (3.1) of §3.1. It has at worst a regular
singularity at 0, and therefore admits a fundamental matrix of solutions M(z) with coeffi-
cients in the Nilsson class at 0. Then tM(z)−1 is a fundamental matrix of solutions of the
(dual) differential system Y ′ = − tSY . Removing the first coordinate of the solutions yields
a fundamental matrix of solutions of the differential system (3.15), all of which coefficients
are in the Nilsson class at 0. Accordingly all ϕk,l and all bλ,κ belong to the Nilsson class
at 0, and so does R(Yκ) using Eq. (3.19): this proves part (iv). Moreover, there exists
a constant c, which depends only on this system, such that ϕk,l(z) = O(z−c) as z → 0.
Therefore we have bλ,κ(z) = O(z−cN) for any λ, κ ∈ Θ. Using Eq. (3.19) and Lemma 1 this
concludes the proof of part (iii).

To conclude the proof of Proposition 4, let us prove that Y ′
κ = AYκ for any κ ∈ Θ. To
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begin with, Eq. (3.16) yields for any λ ∈ Θ:

y′λ(z) = −

m∑

j=1

λja(z)
λ−ej

m∑

l=1

Sl,j(z)al(z) using Eq. (3.15)

= −
m∑

j=1

m∑

l=1

λjSl,j(z)a(z)
λ−ej+el

=
∑

κ∈Ω
Aλ,κ(z)yκ(z) using Eq. (3.13).

To prove the same formula for λ ∈ Ω \Θ, we notice that, using Eqns. (3.15) and (3.1):

d

dz

(
1+

m∑

p=1

ap(z)fp(z)
)
=

m∑

p=1

a′p(z)fp(z) +
m∑

l=1

al(z)f
′
l (z)

= −
m∑

p=1

m∑

l=1

Sl,p(z)al(z)fp(z) +
m∑

l=1

al(z)(Sl,0(z) +
m∑

p=1

Sl,p(z)fp(z))

=

m∑

l=1

Sl,0(z)al(z).

This gives for any λ ∈ Ω \Θ, using Eqns. (3.16) and (3.15):

y′λ(z) = a(z)λ
m∑

p=1

Sp,0(z)ap(z) +
m∑

j=1

λja(z)
λ−eja′j(z)(1 +

m∑

p=1

ap(z)fp(z))

=

m∑

p=1

Sp,0(z)a(z)
λ+ep −

m∑

j=1

λja(z)
λ−ej

m∑

l=1

Sl,j(z)al(z)(1 +

m∑

p=1

ap(z)fp(z))

=
m∑

p=1

Sp,0(z)yλ+ep(z)−
m∑

j=1

m∑

l=1

λjSl,j(z)yλ−ej+el
(z)

=
∑

κ∈Ω
Aλ,κ(z)yκ(z) using Eq. (3.13).

This concludes the proof of Proposition 4.

3.6 Application of the multiplicity estimate: proof of Proposi-

tion 3

In this section we prove Proposition 3 stated in §3.2, as consequence of Theorem A stated
in §2.3 (using also Theorem 2 that will be stated and proved in §4). We apply Theorem A
in the setting of §3.5, namely with q = ω, the differential system Y ′ = AY where A is
defined by Eq. (3.13), n = M − 1 and the polynomials Pκ(z), z ∈ Ω, defined in Lemma 1.
All vector spaces, dimensions and other notions of linear algebra are over C.
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We denote by R the space of solutions Y of Y ′ = AY such that R(Y )(z) is identically
zero, so that ̺ = dimR with the notation of Theorem A. The difficult part is to prove that
R = {0}; this is a necessary condition for the matrix of Proposition 3 to be of maximal rank
(see the remark after Theorem A). Before going into details, let us explain our strategy by
studying the influence on Eq. (2.5) of Theorem A of a non-zero solution Y ∈ R: it changes
̺ to ̺ + 1, and therefore decreases the right hand side by n + 1. Accordingly it has the
same effect on Eq. (2.5) as an additional solution Yj that would vanish at 0 to order n+1.
This is optimal in the general setting, and it was sufficient in the application we had in
[15], but it isn’t for our purposes. Indeed, if a non-zero solution Y ∈ R is amongst the
solutions Yκ of Proposition 4, then it cannot be included in the family (Yj) of Theorem A
because in that theorem the functions R(Yj) have to be linearly independent over C. In
Eq. (2.5) of Theorem A this results in a loss of ord0R(Y ) ≥ K − cN in the left hand side;
as explained above we gain n + 1 because Y ∈ R, but the gain does not compensate the
loss because K − cN is much bigger than n + 1 = M (recall from Eq. (3.3) that K/M is
very close to ω/θ = 2− m−1

N+m−1
> 1). The bound on τ such that Eq. (2.5) holds is not good

enough, and we cannot complete the proof unless we manage to gain more. Such a gain is
provided by Theorem 2 proved in §4: the solutions Y ∈ Span{Yκ} such that R(Y ) = 0 are
balanced by additional solutions Y 6∈ Span{Yκ} such that R(Y ) = 0, that count for n + 1
in Eq. (2.5). If R 6= {0}, the overall gain is even slightly bigger than the loss, so that we
deduce a too good estimate on τ , in contradiction with part (i) of Theorem A. Therefore
R = {0}, and part (ii) of Theorem A enables us to deduce Proposition 3.

To work out the proof of Proposition 3, we let F = Span{Yκ, κ ∈ Θ} where the
solutions Yκ are given by Proposition 4. They are in the Nilsson class at 0, and are linearly
independent over C so that dimF = θ.

We denote by J a maximal subset of Θ such that R ∩ Span{Yκ, κ ∈ J} = {0}. Then
we have F = (F ∩R)⊕ Span{Yκ, κ ∈ J} so that Card J = θ − dim(F ∩R).

With this definition, the functions R(Yκ), κ ∈ J , are linearly independent over C: if∑
κ∈J λκR(Yκ) = 0 with λκ ∈ C, then

∑
κ∈J λκYκ ∈ R ∩ Span{Yκ, κ ∈ J} = {0} so that

λκ = 0 for any κ.
Therefore we may apply Theorem A with

τ = (ω − ̺)M −
∑

κ∈J
ord0(R(Yκ)) ≤ (ω − ̺)M − (K − cN)(θ − dim(F ∩R)) (3.20)

using assertion (iii) of Proposition 4 and the equality Card J = θ − dim(F ∩R).

Now consider the map ev1 : Y 7→ Y (1), from the space of solutions of Y ′ = AY to Cω.
It is bijective because 1 is not a singularity of this differential system, defined by (3.13)
with Sl,j(z) ∈ Q[z, 1/z] for any l, j. We let F = ev1(F); this space is spanned by the
vectors Zκ, κ ∈ Θ, by Proposition 4 (i).

We claim that R = ev1(R) is defined over Q. Indeed given a solution Y = (yκ(z))κ∈Ω
of Y ′ = AY , we have Y (1) ∈ R if, and only if, the function

∑
κ∈Ω Pκ(z)yκ(z) is identically

zero. This means that all derivatives of this function vanish at 1, i.e.
∑

κ∈Ω Pk,κ(1)yk(1) = 0
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for any k ≥ 1 using Eq. (2.3). This set of linear equations with rational coefficients Pk,κ(1)
defines the subspace R.

By construction (see §3.1) the functions 1, f1(z), . . . , fm(z) are linearly independent
over C(z), and they make up a vector solution of a differential system of order 1 with
coefficients in Q[z, 1/z], given by Eq. (3.1). Since 1 is not a singularity of this system,
Beukers’ refinement [8, Corollary 1.4] of the Siegel-Shidlovskii theorem shows that the
values at 1 of these functions are linearly independent over Q. Therefore Theorem 2
applies with ξ1 = f1(1), . . . , ξm = fm(1).

To begin with, assume that R 6= {0} and R 6= CΩ. Then Theorem 2 yields

dimR >
(
2−

m− 1

N +m− 1

)
dim(F ∩R).

Since both sides of the inequality are integer multiples of 1
N+m−1

, we obtain

dimR ≥
(
2−

m− 1

N +m− 1

)
dim(F ∩R) +

1

N +m− 1

=
ω

θ
dim(F ∩R) +

1

N +m− 1
.

We have dimR = dimR = ̺ and dim(F ∩ R) = dim(F ∩R), so that Eq. (3.20) yields

τ ≤
(
1−

̺

ω

)
ωM − (K − cN)θ

(
1−

̺

ω
+

1

ω(N +m− 1)

)
.

Now recall that ωM −Kθ ≤ 2ηM using Eq. (3.3), and ̺, θ ≤ ω, so that

τ ≤
(
1−

̺

ω

)
(2ηM + cNθ)−

(ω − 2η)M − cNθ

ω(N +m− 1)

≤ 2ηM + cNθ −

(
1− 2η

ω

)
M

N +m− 1
+

cN

N +m− 1

≤ −

(
1
3
− 2η

ω

)
M

N +m− 1
+ c(1 +Nθ) < −c1

since η ≤ 1
3(N+m−1)

and M has been chosen large enough with respect to N , m and η; the
crucial point here is that the constants c of Proposition 4 and c1 of Theorem A depend
only on N and f1, . . . , fm but not on M . This upper bound on τ contradicts conclusion
(i) of Theorem A.

Therefore we have R = {0} or R = CΩ. The latter means that for any solution Y =
(yκ(z))κ∈Ω of the differential system Y ′ = AY , the function R(Y )(z) =

∑
κ∈Ω Pκ(z)yκ(z) is

identically zero. This is impossible: there exist κ0 ∈ Ω and z0 ∈ C∗ such that Pκ0
(z0) 6= 0,

and since z0 is not a singularity there exists a solution Y such that yκ0
(z0) = 1 and

yκ(z0) = 0 for any κ 6= κ0.
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Accordingly we have proved that R = {0}, so that F ∩ R = R = {0} and Eq. (3.20)
yields

τ ≤ ωM − (K − cN)θ ≤ 2ηM + cNθ

using Eq. (3.3). Therefore τ ≤ ⌊3ηM⌋ ≤ M − c1 since M has been chosen sufficiently large
with respect to N , f1, . . . , fm and η. Increasing τ if necessary, we may assume τ ≥ 0 so
that Theorem A yields rk(Pk,κ(1))κ∈Ω,1≤k≤⌊2ηM⌋+c1−1 = ω. Using Eq. (3.14) proved in §3.5,
this concludes the proof of Proposition 3.

4 The key technical result

In this section we state and prove Theorem 2, a key ingredient in the proof of Proposition 3
given in §3.6. The motivation and application of this result is explained at the beginning
of §3.6. We believe that analogous auxiliary results might be useful when the multiplicity
estimate of [15] is applied in settings where R(Y ) may vanish identically for non-zero
solutions Y .

Theorem 2 is an independent result, for which we need only the following notations. We
consider integers m,N ≥ 1 and complex numbers ξ1, . . . , ξm; we assume that 1, ξ1, . . . , ξm
are linearly independent over Q. As in §3.1 we let Ω = {κ ∈ Nm, N − 1 ≤ |κ| ≤ N} where
|κ| = κ1 + . . . + κm, and ω = CardΩ =

(
N+m−2
m−1

)
+
(
N+m−1
m−1

)
; we denote by (ej)1≤j≤m the

canonical basis of Zm, and by (Eκ)κ∈Ω that of CΩ. In other words, we have Eκ = (δκ,κ′)κ′∈Ω
where δκ,κ′ is the Kronecker’s symbol. We consider

Zκ = Eκ +

m∑

j=1

ξjEκ−ej for any κ ∈ Θ = {κ ∈ Nm, |κ| = N}

with the convention that Eκ−ej = 0 if κ − ej ∈ Zm has at least one negative component
(namely, if κj = 0); with ξj = fj(1) these are exactly the vectors Zκ defined before
Proposition 4 in §3.5. We denote by F the subspace of CΩ generated by these vectors,
namely

F = Span{Zκ, κ ∈ Θ}.

It is not difficult (see the proof of (ii) in Proposition 4 above) to see that the Zκ are linearly
independent, so that dimF =

(
N+m−1
m−1

)
, denoted by θ.

Theorem 2. Let R be a vector subspace of CΩ defined over Q. Then we have:

dimR ≥
(
2−

m− 1

N +m− 1

)
dim(F ∩R),

and equality holds if and only if R = {0} or R = CΩ.

By defined over Q, or rational over Q, we mean that R has a C-basis consisting in

vectors in Q
Ω
. This is equivalent to the existence of a system of linear equations with

coefficients in Q that defines R. We point out that an inequality on dimensions, such as
the one of Theorem 2, is reminiscent of the notion of (e, j)-irrationality introduced in [20]
and [21].
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4.1 Two lemmas

The data of Theorem 2 depend only on m,N ≥ 1 and on ξ = (ξ1, . . . , ξm) ∈ Cm; in the
proof we shall often deduce Theorem 2 for some triples (m,N, ξ) from the same statement
for other triples. It will always be assumed, implicitly or explicitly, that 1, ξ1, . . . , ξm are
linearly independent over Q. We first prove two lemmas; recall that we identify tuples in
Cm to column matrices in Mm,1(C).

Lemma 4. Let m,N ≥ 1 and ξ = (ξ1, . . . , ξm) ∈ Cm, with 1, ξ1, . . . , ξm linearly indepen-
dent over Q. Let A ∈ GLm(Q); define ξ′ = (ξ′1, . . . , ξ

′
m) by ξ′ = Aξ.

If Theorem 2 holds for (m,N, ξ) with any subspace R defined over Q of a given dimen-
sion ̺, then it also does for (m,N, ξ′).

Proof. Decomposing A into a product of simpler matrices, we may restrict to the following
3 cases.

• Case 1: ξ′j = ξσ(j) for any j ∈ J1, mK, with σ ∈ Sm. In this case Lemma 4 is obvious,
by permuting the coordinates in Nm and accordingly in CΩ.

• Case 2: ξ′j0 = λξj0 for some λ ∈ Q
∗
and j0 ∈ J1, mK, and ξ′j = ξj for any j ∈

J1, mK \ {j0}. Let f : CΩ → CΩ be the (bijective) linear map defined by f(Eκ) = λκj0Eκ

for any κ ∈ Ω. We denote by (Zκ) and F (resp. (Z ′
κ) and F ′) the data associated with ξ

(resp. ξ′). Then we have for any κ ∈ Θ:

f(Z ′
κ) = f(Eκ) +

m∑

j=1

ξ′jf(Eκ−ej)

= λκj0Eκ + λξj0λ
κj0

−1Eκ−ej0
+
∑

j 6=j0

ξjλ
κj0Eκ−ej = λκj0f(Zκ)

so that f(F ′) = F . Let R′ be a subspace of CΩ defined over Q, with dimR′ = ̺. Taking
R = f(R′) we have dimR = dimR′, dim(F ∩ R) = dim(F ′ ∩ R′) and R is defined over Q.
Therefore Theorem 2 applied to (m,N, ξ) with R shows that Theorem 2 holds for (m,N, ξ′)
with R′.

• Case 3: ξ′j0 = ξj0+ξj1 with distinct j0, j1 ∈ J1, mK, and ξ′j = ξj for any j ∈ J1, mK\{j0}.
We consider the linear map f : CΩ → CΩ given by

f(Eκ) =

κj0∑

t=0

(
t + κj1

κj1

)
Eκ−tej0+tej1

for any κ ∈ Ω.

It is bijective because f(Eκ) − Eκ is a linear combination of the Eκ′ with κ′
j0

< κj0 . For
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any κ ∈ Θ we have:

f(Eκ−ej1
) + f(Eκ−ej0

) =

κj0∑

t=0

(
t+ κj1 − 1

κj1 − 1

)
Eκ−tej0+(t−1)ej1

+

κj0
−1∑

t=0

(
t + κj1

κj1

)
Eκ−(t+1)ej0+tej1

=

κj0∑

t=0

((
t+ κj1 − 1

κj1 − 1

)
+

(
t+ κj1 − 1

κj1

))
Eκ−tej0+(t−1)ej1

(t′ = t+ 1 in the second sum)

=

κj0∑

t=0

(
t + κj1

κj1

)
Eκ−tej0+(t−1)ej1

(4.1)

so that

f(Z ′
κ) = f(Eκ) +

m∑

j=1

ξjf(Eκ−ej) + ξj1f(Eκ−ej0
)

=

κj0∑

t=0

(
t+ κj1

κj1

)(
Eκ−tej0+tej1

+
∑

j 6=j1

ξjEκ−ej−tej0+tej1

)
+ ξj1

(
f(Eκ−ej1

) + f(Eκ−ej0
)
)

=

κj0∑

t=0

(
t+ κj1

κj1

)
Zκ−tej0+tej1

∈ F, using Eq. (4.1).

Therefore f(F ′) = F , and we deduce the result as in Case 2. This concludes the proof of
Lemma 4.

Lemma 5. Let m,N ≥ 1. We consider the subspace

K = Span{Eκ, κ ∈ Ω, κm = 0}.

Assume that Theorem 2 holds for any ξ ∈ Cm and any R defined over Q such that

dim(F ∩ R ∩K) ≥ 2 dim(F ∩ R)− dim(R).

Then Theorem 2 holds for any ξ ∈ Cm and any R defined over Q.

Proof. We start with any ξ = (ξ1, . . . , ξm) ∈ Cm such that 1, ξ1, . . . , ξm are linearly
independent over Q. Let R be a subspace of CΩ defined over Q, and put ̺ = dimR. We
shall construct g ∈ GL(Cm) defined over Q (i.e., whose matrix in the canonical basis of
Cm has coefficients in Q), such that ξ′ = g(ξ) satisfies dim(F ′ ∩ R′ ∩ K) ≥ 2 dim(F ′ ∩
R′) − dim(R′) for any subspace R′ of CΩ defined over Q of dimension ̺, where F ′ is
associated with ξ′ = g(ξ) as before the statement of Theorem 2. Then Lemma 4 shows
that if Theorem 2 holds for ξ′, then it does for ξ.

Denote by V0 the Zariski closure of {ξ} in the affine space Am
Q
over Q, i.e. the smallest

subset of Cm, defined by polynomial equations with coefficients in Q, that contains ξ. In
more concrete terms, V0 is the set of all (z1, . . . , zm) ∈ Cm such that P (z1, . . . , zm) = 0 for

24



any P ∈ Q[X1, . . . , Xm] such that P (ξ1, . . . , ξm) = 0. Since ξ1 is transcendental, V0 has
dimension at least 1. There exists an algebraic curve C, defined by polynomial equations
with coefficients in Q, contained in V0 but in no hypersurface defined over Q of degree less
than or equal to θ (with possible exceptions for such hypersurfaces that contain V0).

There exists j0 ∈ J1, mK such that the j0-th projection C → C, (χ1, . . . , χm) 7→ χj0, has
infinite image; then this image contains all real numbers greater than someM0. Parametriz-
ing a branch of C, we obtain algebraic functions over Q(z), denoted by χ1(z), . . . , χm(z),
such that (χ1(a), . . . , χm(a)) ∈ C for any real a ≥ M0, and |χj0(a)| → ∞ as a → +∞ with

a ∈ R. Their asymptotic behaviour as a → +∞ is given by χj(a) ∼ ̟0
ja

dj with ̟0
j ∈ Q

∗

and dj ∈ Q; we have dj0 > 0. Let D = max(d1, . . . , dm) > 0, and put ̟j = ̟0
j for any

j ∈ J1, mK such that dj = D, and ̟j = 0 otherwise. In this way, for any j ∈ J1, mK we
have

̟j = lim
a∈R, a→+∞

a−Dχj(a) with D > 0. (4.2)

We can now construct a bijective linear map g : Cm → Cm defined over Q such
that g(̟1, . . . , ̟m) = (0, . . . , 0, 1). We let ξ′ = (ξ′1, . . . , ξ

′
m) = g(ξ); then 1, ξ′1, . . . , ξ

′
m

are linearly independent over Q. We denote by F ′, C′, ̟′
j, . . . the objects defined as

above, starting from ξ′ instead of ξ. Then we may choose C′ = g(C), (χ′
1(z), . . . , χ

′
m(z)) =

g(χ1(z), . . . , χm(z)) so that D′ = D and (̟′
1, . . . , ̟

′
m) = g(̟1, . . . , ̟m) = (0, . . . , 0, 1).

As explained at the beginning of the proof, we shall prove that ξ′ satisfies the additional
property dim(F ∩R∩K) ≥ 2 dim(F ∩R)−dim(R) for any subspace R of CΩ of dimension
̺ defined over Q; here and below (until the end of the proof), for simplicity we write ξ, C,
V0, F , R, ̟j, . . . instead of ξ′, C′, V ′

0, F
′, R′, ̟′

j, . . . .

We let R be a subspace of CΩ of dimension ̺ defined over Q, write

d = dim(F ∩R), d′ = dim(F ∩R ∩K),

and assume (by contradiction) that d′ < 2d− ̺.
For any χ = (χ1, . . . , χm) ∈ Cm, we denote by Fχ the subspace defined exactly like F ,

except that χ1, . . . , χm are used instead of ξ1, . . . , ξm to define the Zκ. We denote by V
the set of all χ ∈ Cm such that

dimFχ = θ, dim(Fχ ∩ R) = d, dim(Fχ ∩R ∩K) = d′,

i.e. such that these dimensions are the same as for χ = ξ.
We claim that we have inclusions

(Cm \H1) ∩ (Cm \H2) ∩ (Cm \H3) ∩H4 ∩ . . . ∩Hv ⊂ V ⊂ H4 ∩ . . . ∩Hv (4.3)

where v ≥ 3 and H1, . . . , Hv are hypersurfaces of Cm of degree at most θ defined over
Q, such that V0 6⊂ Hi for any i ∈ J1, 3K. We recall that V0 is the Zariski closure of {ξ}
in Am

Q
, so that V0 6⊂ Hi is equivalent to ξ 6∈ Hi. Indeed we denote by Z(X1, . . . , Xm) ∈

Mω,θ(Q[X1, . . . , Xm]) the matrix of which the columns are the coordinates of the Zκ in the
canonical basis of CΩ (for κ ∈ Θ), in which ξj is replaced with Xj. Then dimFχ = rk(Z(χ))
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is equal to θ if, and only if, at least one minor of Z(χ) of size θ is non-zero. The coefficients
of Z(X1, . . . , Xm) are polynomials of total degree at most 1 in X1, . . . , Xm, so each minor
of size θ has degree at most θ. We choose a minor which is non-zero at ξ, and denote by
H1 the hypersurface defined in Cm by the vanishing of this minor.

Now we consider the matrix S(X1, . . . , Xm) ∈ Mω,θ+̺(Q[X1, . . . , Xm]) of which the first

θ columns are those of Z(X1, . . . , Xm), and the last ̺ columns belong to Q
Ω
and make

up a basis of R (which is possible since R is defined over Q). Assuming that dimFχ = θ,
we have dim(Fχ ∩ R) = d if, and only if, dim(Fχ + R) = θ + ̺ − d; this is equivalent to
rk(S(χ)) = θ + ̺ − d. This condition can be expressed as the vanishing of all minors of
size θ + ̺ − d + 1, and the non-vanishing of at least one minor of size θ + ̺ − d. Again
we choose such a minor of size θ + ̺− d that does not vanish at ξ, and denote by H2 the
corresponding hypersurface (which has degree at most θ); we define H4, H5, . . . to be the
hypersurfaces defined by the vanishing of the minors of size θ + ̺ − d + 1. We proceed
in the same way with R ∩ K instead of R to ensure that dim(Fχ ∩ R ∩ K) = d′. This
concludes the proof of the claimed inclusions (4.3).

These inclusions imply that C\C1 ⊂ V for some finite set C1. Indeed, we have ξ ∈ V ⊂ Hi

for any i ∈ J4, vK, so that C ⊂ V0 ⊂ Hi by definition of V0, since Hi is defined over Q. For
i ∈ J1, 3K, we have V0 6⊂ Hi and Hi is a hypersurface of degree at most θ, so that C 6⊂ Hi

(by construction of C) and C ∩Hi is a finite set; taking for C1 the union of these finite sets,
Eq. (4.3) yields C \ C1 ⊂ V.

Since C1 is finite, there exists a real number M1 ≥ M0 such that for any real a ≥ M1,
the point χ(a) = (χ1(a), . . . , χm(a)) belongs to C \C1 ⊂ V. We shall focus on real algebraic
values of a ≥ M1; since χ(a) ∈ V ∩Q

m
, the subspace Fχ(a) is then defined over Q and we

have dimFχ(a) = θ, dim(Fχ(a)∩R) = d, dim(Fχ(a)∩R∩K) = d′. We fix such an a, denoted

by a0, and consider a subspace W defined over Q such that

(
Fχ(a0) ∩R ∩K

)
⊕W = Fχ(a0) ∩R. (4.4)

For any a ∈ Q ∩ R such that a ≥ M1, we have χ(a) ∈ V so that

dimW + dim
(
Fχ(a) ∩R

)
= (d− d′) + d > ̺ = dimR

since we have assumed (by contradiction) that d′ < 2d−̺. Accordingly these subspaces of
R are not in direct sum: there exists ua ∈ W ∩Fχ(a) ∩R with ua 6= 0. Since W ∩Fχ(a) ∩R

is defined over Q, we may assume that ua ∈ Q
Ω
. We write ua = (ua,κ)κ∈Ω with ua,κ ∈ Q.

These coordinates satisfy

ua,κ =

m∑

j=1

χj(a)ua,κ+ej for any κ ∈ Ω \Θ (4.5)

since all generators of Fχ(a) satisfy these linear equations.

Let (T1, . . . , Tw) be a basis of W consisting of vectors of Q
Ω
, with w = dimW = d− d′.

Since ua ∈ W ∩Q
Ω
there exist λa,1, . . . , λa,w ∈ Q, not all zero, such that ua =

∑w
ℓ=1 λa,ℓTℓ.
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Writing Tℓ = (tℓ,κ)κ∈Ω we have ua,κ =
∑w

ℓ=1 λa,ℓtℓ,κ for any κ ∈ Ω. Using this into Eq. (4.5)
yields

w∑

ℓ=1

λa,ℓPℓ,κ(a) = 0 for any κ ∈ Ω \Θ, (4.6)

where

Pℓ,κ(z) = −tℓ,κ +
m∑

j=1

tℓ,κ+ejχj(z)

is a function algebraic over Q(z). Let P (z) denote the matrix (Pℓ,κ(z))κ∈Ω\Θ,1≤ℓ≤w. For

any a ∈ Q ∩ R with a ≥ M1, Eq. (4.6) shows that rk(P (a)) < w: all minors of size w
of the matrix P (z) vanish at a. Since these minors are functions algebraic over Q(z),
they are identically zero: P (z) has rank at most w − 1, as a matrix with coefficients in
Q(z). This provides algebraic functions µ1(z), . . . , µw(z) ∈ Q(z), not all zero, such that∑w

ℓ=1 µℓ(z)Pℓ,κ(z) = 0 for any κ ∈ Ω \Θ. In other words,

w∑

ℓ=1

µℓ(z)
(
− tℓ,κ +

m∑

j=1

tℓ,κ+ejχj(z)
)
= 0 for any κ ∈ Ω \Θ. (4.7)

Now as z → +∞ with z ∈ R, each non-zero function µℓ(z) has an asymptotic behavior
given by µℓ(z) ∼ µℓ,0z

eℓ with µℓ,0 ∈ Q
∗
and eℓ ∈ Q; if µℓ(z) is identically zero we put

eℓ = −∞. Let e = max(e1, . . . , em); for any ℓ, we let µℓ,1 = µℓ,0 if eℓ = e, and µℓ,1 = 0
otherwise, so that limz→+∞ z−eµℓ(z) = µℓ,1. We recall that Eq. (4.2) has a similar flavour,
and that in this equation we have ̟1 = . . . = ̟m−1 = 0, ̟m = 1, since ξ′ (denoted now
by ξ) has been constructed for this purpose. Combining these limits and letting z → +∞,
with z ∈ R, Eq. (4.7) yields (since D > 0)

w∑

ℓ=1

µℓ,1tℓ,κ+em = 0 for any κ ∈ Ω \Θ.

Let T =
∑w

ℓ=1 µℓ,1Tℓ ∈ W \ {0}, and write T = (tκ)κ∈Ω. Then we have tκ+em = 0 for
any κ ∈ Ω \ Θ, i.e. tλ = 0 for any λ ∈ Θ such that λm ≥ 1. For any λ ∈ Ω \ Θ such
that λm ≥ 1, we obtain tλ =

∑m
j=1 χj(a0)tλ+ej = 0 since T ∈ W ⊂ Fχ(a0 (see Eq. (4.5)).

Therefore T ∈ K: this is a contradiction with the definition (4.4) of W . This concludes
the proof of Lemma 5.

4.2 Proof of Theorem 2

We prove Theorem 2 by induction on m +N . Letting m,N ≥ 1, if m ≥ 2 (resp. N ≥ 2)
we may assume that Theorem 2 holds with m−1 instead of m (resp. N −1 instead of N).

We shall apply this idea using the linear map π : CΩ → CΩ defined by π(Eκ) = Eκ−em for
any κ ∈ Ω; here we let

Ω = {κ ∈ Nm, N − 2 ≤ |κ| ≤ N − 1}.
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As explained at the beginning of §4, we have Eκ−em = 0 if, and only if, κ − em has a
negative coordinate, i.e. κm = 0. Therefore the kernel of π is

K = ker π = Span{Eκ, κ ∈ Ω, κm = 0}

with the same notation K as in Lemma 5.

The sketch of the proof is the following. Using Theorem 2 with m − 1 if m ≥ 2, we
shall prove that

dim(R ∩K) ≥
(
2−

m− 2

N +m− 2

)
dim(F ∩ R ∩K). (4.8)

Then we shall use Theorem 2 with N − 1 (if N ≥ 2) to prove that

dim π(R) ≥
(
2−

m− 1

N +m− 2

)
dim π(F ∩R). (4.9)

At last we shall conclude the proof by combining these inequalities with the one provided
by Lemma 5.

Let us start by proving Eq. (4.8). It holds trivially if m = 1 since in this case, K = {0}.
Therefore we may assume m ≥ 2 and let Ω′ = {κ ∈ Nm−1, N − 1 ≤ |κ| ≤ N}, ξ′ =
(ξ1, . . . , ξm−1), and F ′ be the subspace defined from (m− 1, N, ξ′) as explained before the
statement of Theorem 2, spanned by vectors Z ′

κ ∈ CΩ′

for κ ∈ Θ′ = {κ ∈ Nm−1, |κ| = N}.
Let ι denote the injective linear map CΩ′

→ CΩ defined by ι(Eκ) = E(κ,0) for any κ =
(κ1, . . . , κm−1) ∈ Ω′, where (κ, 0) stands for (κ1, . . . , κm−1, 0). We claim that ι(F ′) = F∩K.
The inclusion ι(F ′) ⊂ F ∩K is obvious since ι(Z ′

κ) = Z(κ,0) for any κ ∈ Θ′. Conversely, let
Z =

∑
κ∈Θ λκZκ ∈ F ∩K, with complex numbers λκ. For any κ ∈ Θ, the coordinate of Z

on Eκ (in the canonical basis of CΩ) is equal to λκ. Since Z ∈ K, we deduce that λκ = 0
for any κ ∈ Θ such that κm ≥ 1. Therefore Z = ι(

∑
κ∈Θ′ λ(κ,0)Z

′
κ) ∈ ι(F ′) and the claim

follows.
We may apply Theorem 2 with (m− 1, N, ξ′) to the subspace ι−1(R) which is defined

over Q. This yields

dim ι−1(R) ≥
(
2−

m− 2

N +m− 2

)
dim(F ′ ∩ ι−1(R)). (4.10)

Since ι(F ′) = F ∩K we have F ′ ∩ ι−1(R) = ι−1(F ∩R ∩K). Now the image of ι is K, so
that dim(F ′ ∩ ι−1(R)) = dim(F ∩R∩K) and dim ι−1(R) = dim(R∩K): Eq. (4.8) follows
from Eq. (4.10).

We shall now prove Eq. (4.9). If N = 1 it reads dim π(R) ≥ dim π(F ∩ R) and holds
trivially. Let us assume N ≥ 2. Recall that Ω = {κ ∈ Nm, N − 2 ≤ |κ| ≤ N − 1}, and
denote by Zκ, for κ ∈ Θ = {κ ∈ Nm, |κ| = N − 1}, the vectors constructed from ξ with
respect to m and N − 1. We write F = Span{Zκ, κ ∈ Θ}. It is clear that for any κ ∈ Θ
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we have π(Zκ) = Zκ−em if κm ≥ 1, and π(Zκ) = 0 otherwise. Therefore π(F ) = F , and
Theorem 2 applied to π(R) with (m,N − 1, ξ) yields

dim π(R) ≥
(
2−

m− 1

N +m− 2

)
dim(π(F ) ∩ π(R)). (4.11)

Since π(F ∩ R) ⊂ π(F ) ∩ π(R) this implies Eq. (4.9).

We may now conclude the proof of Theorem 2, since using Lemma 5 we may assume
that

dimR ≥ 2 dim(F ∩ R)− dim(F ∩ R ∩K). (4.12)

The restriction πR has kernel R ∩ K and image π(R), so that dimR = dim(R ∩ K) +
dim π(R). Similarly, dim(F ∩ R) = dim(F ∩ R ∩ K) + dim π(F ∩ R). Therefore adding
Eqs. (4.8) and (4.9) yields

dimR ≥
(
2−

m− 1

N +m− 2

)
dim(F ∩ R) +

1

N +m− 2
dim(F ∩ R ∩K).

Multiplying this equation by N+m−2
N+m−1

, and adding Eq. (4.12) divided by N +m− 1, yields

dimR ≥
(
2−

m− 1

N +m− 1

)
dim(F ∩R). (4.13)

This concludes the proof of the inequality in Theorem 2.

Assume now that equality holds in Eq (4.13). If m = 1 then dimF = θ = 1, ω = 2,
and R is either {0} or CΩ since F is not defined over Q (because ξ1 is transcendental).
Assume now that m ≥ 2, and notice that equality holds in Eqs. (4.8), (4.9), (4.11) and
(4.12). Using Theorem 2 with m − 1 instead of m, since equality holds in Eq. (4.8) we
have either R ∩K = {0} or R∩K = K. In the former case, equality in Eq. (4.12) implies
dimR = 2dim(F ∩R), which implies dimR = 0 since we have assumed that equality holds
in Eq (4.13). In the latter case, we use (if N ≥ 2) Theorem 2 and the fact that equality

holds in Eq. (4.11) to deduce a new alternative: either π(R) = CΩ or π(R) = {0}. In the
former case, since R ∩ K = K we obtain R = CΩ. In the latter case, we have R = K

so that Eq. (4.8) reads dimR =
(
2 − m−2

N+m−2

)
dim(F ∩ R) > 0. This contradiction with

equality in Eq. (4.13) concludes the proof of Theorem 2.
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[20] E. Joseph, On the approximation exponents for subspaces of Rn, Mosc. J. Comb.
Number Theory 11.1 (2022), 21–35.

[21] E. Joseph, Upper bounds and spectrum for approximation exponents for subspaces of
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