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Abstract In this paper we deduce a lower bound for the rank of a family of p vectors in
Rk (considered as a vector space over the rationals) from the existence of a sequence
of linear forms on Rp, with integer coefficients, which are small at k points. This
is a generalization to vectors of Nesterenko’s linear independence criterion (which
corresponds to k = 1), used by Ball–Rivoal to prove that infinitely many values of
Riemann zeta function at odd integers are irrational. The proof is based on geometry
of numbers, namely Minkowski’s theorem on convex bodies.
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1 Introduction

The motivation for this paper comes from irrationality results on values of Riemann
zeta function ζ(s) = ∑∞

n=1
1
ns at odd integers s ≥ 3. The first result is due to Apéry [1]:

ζ(3) #∈ Q. The next breakthrough in this topic is due to Rivoal [22] and Ball–Rivoal
[2]:

dimQ SpanQ(1, ζ(3), ζ(5), ζ(7), . . . , ζ(a)) ≥ log a
1 + log 2

(1 + o(1)) (1.1)
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398 S. Fischler

as a → ∞, where a is an odd integer; notice this is a lower bound on the rank
of this family of real numbers, in R considered as a vector space over the rationals.
Conjecturally the left handside is equal to a+1

2 , but even the constant 1
1+log 2 in Eq. (1.1)

has never been improved. Actually, known refinements of Ball–Rivoal’s proof provide
sharper lower bounds only for fixed values of a: the improvement always lies inside
the error term o(1) as a → ∞.

However, the following improvement of (1.1) is proved in [10]:

Theorem 1 Let ε > 0, and a be an odd integer sufficiently large with respect to ε. Then
letting N denote the integer part of 1−ε

1+log 2 log a, there exist odd integers σ1, . . . , σN

between 3 and a such that:

• 1, ζ(σ1), …, ζ(σN ) are linearly independent over the rationals;
• For any i #= j , |σi − σ j | > aε.

In particular, if there are only N odd integers σ between 3 and a such that ζ(σ ) is
irrational, then they have to be evenly distributed (see [10]).

The strategy for proving Theorem 1 is based on the following classical construction.
For non-negative integers β, b, n, r with β and b odd, 1 ≤ β ≤ b, and 2br < a, let

Jβ,n = da+b−1
2n (2n)!a−2br

(β − 1)!
∞∑

k=1

dβ−1

dkβ−1

(
(k − 2rn)b

2rn(k + 2n + 1)b
2rn

(k)a
2n+1

)

, (1.2)

where the derivative is taken at k, Pochhammer’s symbol is defined by (α)p = α(α +
1) . . . (α + p − 1), and d2n is the least common multiple of 1, 2, 3, …, 2n. It is not
difficult to prove that

Jβ,n = &̃β,n + &3,n

(
β + 1
β − 1

)
ζ(β + 2) + &5,n

(
β + 3
β − 1

)
ζ(β + 4)

+ · · · + &a,n

(
β + a − 2

β − 1

)
ζ(β + a − 1)

with integers &̃β,n and &i,n ; moreover Jβ,n tends to 0 as n → ∞, for any β, provided
the parameters satisfy suitable relations (and up to technicalities, see [10] for precise
statements). This can be seen as a sequence (Ln) of linear forms on R(a+b)/2, with
integer coefficients, that take small values Ln(e j ) = J2 j−1,n at k = b+1

2 points
e1, . . . , ek ∈ R(a+b)/2. The key point in the proof of Theorem 1 is then to apply the
following result, to which the present paper is devoted.

We let Rp be endowed with its canonical scalar product and the corresponding
norm.

Theorem 2 Let 1 ≤ k ≤ p − 1, and e1, . . . , ek ∈ Rp.
Let τ1, . . . , τk > 0 be pairwise distinct real numbers.
Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 =

Q1+o(1)
n .
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Nesterenko’s linear independence... 399

For any n ≥ 1, let Ln = &1,n X1 + · · · + &p,n X p be a linear form on Rp, with
integer coefficients &i,n such that, as n → ∞:

|Ln(e j )| = Q
−τ j +o(1)
n for any j ∈ {1, . . . , k} and max

1≤i≤p
|&i,n| ≤ Q1+o(1)

n .

Then:

(i) If F is a subspace of Rp defined over Q which contains e1, …, ek then

dim F ≥ k + τ1 + · · · + τk .

In other words, letting C1, . . . , C p ∈ Rk denote the columns of the matrix whose
rows are e1, . . . , ek ∈ Rp, we have

rkQ(C1, . . . , C p) ≥ k + τ1 + · · · + τk

in Rk seen as a Q-vector space.
(ii) The vectors e1, . . . , ek are R-linearly independent in Rp, and the R-subspace

they span does not intersect Qp \ {(0, . . . , 0)}.
(iii) Let ε > 0, and Q be sufficiently large (in terms of ε). Let C(ε, Q) denote the set

of all vectors that can be written as λ1e1 + · · · + λkek + u with:

{
λ1, . . . , λk ∈ R such that |λ j | ≤ Qτ j −ε for any j ∈ {1, . . . , k}
u ∈ (SpanR(e1, . . . , ek))

⊥ such that ‖u‖ ≤ Q−1−ε

Then C(ε, Q) ∩ Zp = {(0, . . . , 0)}.

If k = 1 this is exactly Nesterenko’s 1985 linear independence criterion [21] used
in the proof of Ball–Rivoal’s result (1.1).

In the conclusions, (i i) is an easy result, and (i i i) is the main part (it is a quantitative
version of (i i)). We deduce (i) from (i i i) using Minkowski’s convex body theorem,
thereby generalizing the proof given in [12,13] of Nesterenko’s linear independence
criterion. The equivalence between both statements of (i) comes from linear algebra;
it is proved in §3.1. The proof of (i i i) relies on a matrix lemma (see §3.5) which might
be of independent interest and provides some information on linear independence of
the linear forms.

A result analogous to Theorem 2, but in which p linearly independent linear forms
like Ln appear in the assumption, is proved in §4.3. This linear independence criterion
(in the style of Siegel’s) is much easier to prove than Theorem 2. Both results can
be thought of as transference principles. In this respect it is worth pointing out that
in Theorem 2 we assume essentially that for any positive integer Q there is a linear
form : indeed this is Ln , where n is such that Qn ≤ Q < Qn+1 so that Q = Q1+o(1)

n

because Qn+1 = Q1+o(1)
n . The assumptions imply that this linear form belongs to

some convex body, and conclusion (i i i) asserts that (up to Qε) the dual convex body
does not contain any non-zero integer point. Therefore it is reasonable to imagine that
(i i i) is an optimal conclusion up to Qε. In general the lower bound k + τ1 + · · · + τk

123

Author's personal copy



400 S. Fischler

in (i) is optimal too (see [11] for a converse statement, valid almost everywhere). In
the special case p = 2, k = 1, and e1 = (1, ξ), Theorem 2 (i i i) yields an upper bound
µ(ξ) ≤ 1 + 1

τ1
on the irrationality exponent of ξ , and reduces essentially to Lemma

1 of [12]. A converse statement in this case is proved in [12] (Theorem 1).
The assumption that τ1, . . . , τk are pairwise distinct is very important in Theorem 2,

and it cannot be omitted. For instance, if τ1 = τ2 then Ln(e1 − e2) could be very
small: up to replacing (e1, e2) with (e1 + e2, e1 − e2), this amounts to dropping
the assumption that the linear forms Ln are not too small at the points e j . Now this
assumption is known to be essential, already in the classical case of Nesterenko’s linear
independence criterion (except for proving the linear independence of three numbers,
see Theorem 2 of [13]). Actually, if τ1 = τ2 then Ln(e1 − e2) could even vanish, so
the possibility that e1 = e2 cannot be eliminated: even assertion (i i) may fail to hold.

We shall prove Theorem 2 in a more general form, stated in §2, which allows the
sequences (|Ln(e j )|)n≥1 to oscillate (as in [9]), and takes into account divisors of the
coefficients &i,n (as in [13]); the former is used in [10] to prove Theorem 1. We also
include a refinement useful when Ln is not too large at some other point, which is new
even in the classical case of Nesterenko’s linear independence (with k = 1).

We hope that our results will have Diophantine applications besides those of [10];
we mention some directions in §4.4, connected to polylogarithms or zeta values. Our
criterion could be used also for q-analogues, as in [13].

The structure of this text is as follows. In §2 we state our result in a very general
form, of which Theorem 2 is a special case. Section 3 is devoted to the proof; then we
deduce some corollaries in §§4.1 and 4.2. We prove an analogous result in the style of
Siegel’s linear independence criterion in §4.3, and conclude in §4.4 with Diophantine
applications.

2 Statement of the criterion

The following generalization of Theorem 2 is our main result.

Theorem 3 Let 1 ≤ k ≤ p − 1, and e1, . . . , ek ∈ Rp. Let (v1, . . . , vp) denote
a basis of Rp. Let τ1, . . . , τk > 0, σ1 ≥ . . . ≥ σp > 0, ω1, . . . ,ωk , ϕ1, . . . ,ϕk be
real numbers, with τ1, . . . , τk pairwise distinct. Assume that there exist infinitely many
integers n with the following property: for any j ∈ {1, . . . , k}, nω j +ϕ j #≡ π

2 mod π .
Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 =

Q1+O(1/n)
n ; if ω1 = · · · = ωk = 0, this assumption can be weakened to Qn+1 =

Q1+o(1)
n .
For any n ≥ 1, let Ln = &1,n X1 + · · · + &p,n X p be a linear form on Rp, with

integer coefficients &i,n such that, as n → ∞:

|Ln(e j )| = Q
−τ j +o(1)
n | cos(nω j + ϕ j ) + o(1)| for any j ∈ {1, . . . , k}, (2.1)

and

|Ln(vi )| ≤ Qσi +o(1)
n for any i ∈ {1, . . . , p}.
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Nesterenko’s linear independence... 401

For all n ≥ 1 and i ∈ {1, . . . , p}, let δi,n be a positive divisor of &i,n such that:

(i) δi,n divides δi+1,n for any n ≥ 1 and any i ∈ {1, . . . , p − 1},
(ii) δ j,n

δi,n
divides δ j,n+1

δi,n+1
for any n ≥ 1 and any 0 ≤ i < j ≤ p, with δ0,n = 1,

(iii) δi,n = Qdi +o(1)
n as n → ∞ for any i ∈ {1, . . . , p}, with real numbers di such

that 0 ≤ d1 ≤ · · · ≤ dp ≤ σp.

Then:

(i) If F is a subspace of Rp defined over Q which contains e1, …, ek , then s = dim F
satisfies s ≥ k + 1 and

σ1 + · · · + σs−k ≥ τ1 + · · · + τk + d1 + · · · + ds . (2.2)

In other words, letting C1, . . . , C p ∈ Rk denote the columns of the matrix whose
rows are e1, . . . , ek ∈ Rp, the rank s of the family (C1, . . . , C p) in Rk seen as a
Q-vector space satisfies s ≥ k + 1 and Eq. (2.2).

(ii) The vectors e1, . . . , ek are R-linearly independent in Rp, and the R-subspace
they span does not intersect Qp\{(0, . . . , 0)}.

(iii) Let ε > 0, and Q be sufficiently large (in terms of ε). Let C(ε, Q) denote the set
of all vectors that can be written as λ1e1 + · · · + λkek + u with:






λ1, . . . , λk ∈ R such that |λ j | ≤ Qτ j −ε for any j ∈ {1, . . . , k}
u ∈ (SpanR(e1, . . . , ek))

⊥ such that u = µ1v1+ · · ·+µpvp with |µi | ≤ Q−σi −ε

for any i ∈ {1, . . . , p}.

Let .(Q) denote the set of all (x1, . . . , x p) ∈ Qp such that δi,/(Q)xi ∈ Z for
any i ∈ {1, . . . , p}, where /(Q) is the largest integer n such that Qn ≤ Q.
Then C(ε, Q) ∩ .(Q) = {(0, . . . , 0)}.

In the special case where σi = δi,n = 1, di = ω j = ϕ j = 0 for any i , j , n,
and (v1, . . . , vp) is the canonical basis of Rp, this is exactly Theorem 2 stated in the

introduction. Indeed Eq. (2.1) reads |Ln(e j )| = Q
−τ j +o(1)
n in this case, and we have

Ln(vi ) = &i,n ; moreover Eq. (2.2) reads

dim F ≥ k + τ1 + · · · + τk .

There is only a minor difference in (i i i), where the norm of u is the Euclidean one in
Theorem 2, and the supremum one in Theorem 3; of course this is not significant.

The real numbers ω j and ϕ j allow oscillating behaviors of the sequences
(|Ln(e j )|)n≥1. This is used in [10], where the saddle point method is applied. In the spe-
cial case of Theorem 2 with k = 1, the corresponding generalization of Nesterenko’s
linear independence criterion has been proved in [9] when Qn = βn for some β > 1
(which is the most interesting case). We generalize it here to any sequence (Qn) such
that Qn+1 = Q1+O(1/n)

n ; eventhough this assumption is slightly more restrictive than
the usual one Qn+1 = Q1+o(1)

n , it is general enough to include sequences Qn = βnd

with β > 1 and d > 0.
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402 S. Fischler

The divisors δi,n allow one to make use of divisibility properties of the coefficients
&i,n : for instance, in most constructions of linear forms in zeta values, &i,n is a multiple
of δi,n = dei

n for some ei ≥ 1, where dn = lcm(1, 2, . . . , n). The first refinement of
Nesterenko’s linear independence criterion involving such divisors δi,n is Theorem 1
of [13], which is essentially the special case of Theorem 3 (i) where k = 1, σi = 1,
ω j = ϕ j = 0, and (v1, . . . , vp) is the canonical basis of Rp; it is the main ingredient
in the proof [13] that 1, ζ(3) and ζ( j) are Q-linearly independent for some odd integer
j between 5 and 139.

The real numbers σi allow one to take advantage of the fact that the linear forms
Ln might be smaller than ‖Ln‖ at some given points vi (eventhough Ln(vi ) does not
tend to 0 as n → ∞). For instance, if (v1, . . . , vp) is the canonical basis, this is useful
when one has a sharper upper bound on |&i,n| for some values of i than for others.
This feature is new even in the case of Nesterenko’s linear independence criterion
(namely, with k = 1, σi = δi,n = 1, and di = ω j = ϕ j = 0). It would be interesting
to deduce from this refinement a Diophantine consequence. Actually it happens for
linear forms in zeta values that limn→∞ |&i,n|1/n exists for any i and does depend on
i . For instance, F. Amoroso and T. Rivoal have noticed that in the expansion of

n!a−1
∞∑

k=1

(k − n)n

(k)a
n+1

as a linear combination of zeta values, the coefficients of odd and even zeta values
don’t have the same size (provided a is even).

It is very important in Theorem 3 that τ1, . . . , τk are pairwise distinct; however it is
not always necessary to compute their exact values. For instance, if min(τ1, . . . , τk)

is greater than or equal to some τ > 0, then Eq. (2.2) implies

σ1 + · · · + σs−k ≥ kτ + d1 + · · · + ds;

in the special case of Theorem 2 this lower bound reads dim F ≥ k(1 + τ ). This
remark is already used (with k = 1) in [2], and also in the proof [10] of Theorem 1.
We refer to §4.2 below for a related result.

At last, notice that if the assumptions of Theorem 3 hold with e1, . . . , ek , then they
hold also if we forget one of the e j ’s (say ek , with k ≥ 2). The same implication holds
also for parts (i i) and (i i i) of the conclusion, since the convex body C(ε, Q) becomes
smaller when ek is omitted. However this implication does not hold for part (i); to fix
this we refine part (i) in the following corollary (which is used in [10]).

Corollary 1 In the situation of Theorem 3, assume also that τ1 > · · · > τk . Then for
any subspace F of Rp defined over Q we have

s ≥ t + 1 and σ1 + · · · + σs−t ≥ τk+1−t + · · · + τk + d1 + · · · + ds, (2.3)

provided that s = dim F and t = dim(F ∩ SpanR(e1, . . . , ek)) are positive.
In other words, for any surjective R-linear map π : Rk → Rt with t ≥ 1, Eq. (2.3)

holds with
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Nesterenko’s linear independence... 403

s = rkQ(π(C1), . . . , π(C p))

where the rank is computed in Rt seen as a Q-vector space.

Proof of Corollary 1 Let F be a subspace of Rp defined over Q; assume that s =
dim F and t = dim(F ∩ SpanR(e1, . . . , ek)) are positive. For any j ∈ {1, . . . , k}
we let D j = dim(F ∩ SpanR(e1, . . . , e j )), so that 0 ≤ D1 ≤ · · · ≤ Dk = t
and D j ∈ {D j−1, D j−1 + 1} for any j (with D0 = 0). Then there exist t integers
1 ≤ j1 < · · · < jt ≤ k such that D j = D j−1 + 1 if, and only if, j is among
the ji ’s. For any i ∈ {1, . . . , t}, there exists e′

i ∈ F ∩ SpanR(e1, . . . , e ji ) such that
e′

i #∈ SpanR(e1, . . . , e ji −1). Then we have e′
i = ∑ ji

j=1 λi, j e j for real numbers λi, j
such that λi, ji #= 0. Since τ1 > · · · > τ ji , Eq. (2.1) yields

|Ln(e′
i )| = Q

−τ ji +o(1)
n | cos(nω ji + ϕ ji ) + o(1)|.

Therefore Theorem 3 applies to e′
1, . . . , e′

t with τ j1 , . . . , τ jt . Since τ1 > · · · > τk , the
inequality (2.2) obtained in this way implies Eq. (2.3). This concludes the proof of
Corollary 1, except for the second part of the conclusion which will be proved at the
end of §3.1 below.

3 Proof of the criterion

This section is devoted to proving Theorem 3, of which Theorem 2 stated in the
introduction is a special case (see §2). Reindexing e1, . . . , ek is necessary, we assume
that τ1 > · · · > τk > 0. This assumption will be used in §§3.3 and 3.6.

3.1 Rational rank of vectors

In this section, we give some details about the conclusions of our criterion, which
allow us to prove the equivalence of both conclusions of (i) in Theorems 2 and 3, and
to conclude the proof of Corollary 1.

In Nesterenko’s linear independence criterion, a lower bound is derived for the
dimension of the Q-subspace of R spanned by ξ0, . . . , ξr ∈ R, that is, for the Q-
rank of ξ0, . . . , ξr in R considered as a vector space over Q. This rank is equal to the
dimension of the smallest subspace of Rr+1, defined over the rationals, which contains
the point (ξ0, . . . , ξr ). We generalize this equality to our setting in Lemma 1 below.

Recall that a subspace F of Rp is said to be defined over Q if it is the zero locus of
a family of linear forms with rational coefficients. This is equivalent to the existence
of a basis (or a generating family) of F , as a vector space over R, consisting in vectors
of Qp (see for instance §8 of [3]). Since the intersection of a family of subspaces of
Rp defined over Q is again defined over Q, there exists for any subset S ⊂ Rp a
minimal subspace of Rp, defined over Q, which contains S: this is the intersection of
all subspaces of Rp, defined over Q, which contain S.

Let M be a matrix with k ≥ 1 rows, p ≥ 1 columns, and real entries. Letting
e1, . . . , ek ∈ Rp denote the rows of M , we can consider as above the smallest subspace
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404 S. Fischler

of Rp, defined over Q, which contains e1, . . . , ek . On the other hand, we denote by
C1, . . . , C p ∈ Rk the columns of M and consider Rk as an infinite-dimensional
vector space over Q. Then SpanQ(C1, . . . , C p) is the smallest Q-vector subspace of
Rk containing C1, . . . , C p; it consists in all linear combinations r1C1 + · · · + rpC p
with r1, . . . , rp ∈ Q. Its dimension (as a Q-vector space) is the rank (over Q) of
C1, . . . , C p, denoted by rkQ(C1, . . . , C p).

Lemma 1 Let M ∈ Matk,p(R) with k, p ≥ 1. Denote by e1, . . . , ek ∈ Rp denote
the rows of M, and by C1, . . . , C p ∈ Rk its columns. Then rkQ(C1, . . . , C p) is the
dimension of the smallest subspace of Rp, defined over Q, which contains e1, . . . , ek .

When k = 1, this lemma means that the Q-rank of ξ0, . . . , ξr is equal to the
dimension of the smallest subspace of Rr+1, defined over the rationals, which contains
the point (ξ0, . . . , ξr ).

Proof of Lemma 1 Let G = (SpanR(e1, . . . , ek))
⊥, where Rp is equipped with the

usual scalar product. Let F denote the minimal subspace of Rp, defined over Q, which
contains e1, . . . , ek . Then F⊥ is the maximal subspace of Rp, defined over Q, which is
contained in G = {e1, . . . , ek}⊥. Therefore F⊥ = SpanR(G∩Qp) = (G∩Qp)⊗QR:
any basis of the Q-vector space G ∩ Qp is an R-basis of F⊥. Since G ∩ Qp = ker ψ

where ψ : Qp → Rk is defined by ψ(r1, . . . , rp) = r1C1 + · · · + rpC p, we have:

dimR F = p − dimR F⊥ = p − dimQ(G ∩ Qp) = rkQψ = rkQ(C1, . . . , C p).

This concludes the proof of Lemma 1.

Let us deduce from Lemma 1 the following generalization, and use it to prove the
second assertion of Corollary 1.

Lemma 2 Let M, e1, . . . , ek , C1, . . . , C p be as in Lemma 1. Let π : Rk → Rt be
a R-linear map, with t ≥ 1. Then the rank of (π(C1), . . . ,π(C p)) in Rt (seen as a
Q-vector space) is equal to the dimension of the minimal subspace F of Rp, defined
over Q, which contains the image of ψ ◦tπ ; here ψ is the R-linear map of the dual of
Rk to Rp which maps the canonical basis to (e1, . . . , ek).

Proof of Lemma 2 Let P be the matrix of π with respect to canonical bases, and
M ′ = P M . Applying Lemma 1 to M ′ gives directly the result.

Proof of the second assertion of Corollary 1 Let F denote the minimal subspace of
Rp, defined over Q, which contains the image of ψ ◦tπ ; then Lemma 2 yields dim F =
s. Now rk(tπ) = rk(π) = t and ψ is injective because e1, . . . , ek are R-linearly
independent (using conclusion (i i) of Theorem 3), so that Im(ψ ◦tπ) has dimension
t . Since this subspace is contained in both F and SpanR(e1, . . . , ek) = Imψ , we have
dim(F ∩ SpanR(e1, . . . , ek)) ≥ t . Now the first part of Corollary 1 (deduced in §2
from Theorem 3) shows that Eq. (2.3) holds when t is replaced with this (possibly
larger) dimension; therefore it holds with t . This concludes the proof of the second
assertion of Corollary 1.
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Nesterenko’s linear independence... 405

3.2 Reduction to the non-oscillatory case

In this subsection, we deduce the general case of Theorem 3 from the special case
where ω1 = · · · = ωk = 0; notice that in this case we have φ j #≡ π

2 mod π for any

j ∈ {1, . . . , k}, so that Eq. (2.1) reads |Ln(e j )| = Q
−τ j +o(1)
n . This special case will

be proved in the following subsections, under the assumption that Qn+1 = Q1+o(1)
n

(which is weaker than the assumption Qn+1 = Q1+O(1/n)
n we make when ω1, . . . , ωk

may be non-zero).
Let ω1, . . . ,ωk , ϕ1, . . . , ϕk , and (Qn) be as in Theorem 3, with Qn+1 = Q1+O(1/n)

n .
Since there are infinitely many integers n such that, for any j ∈ {1, . . . , k}, nω j +
ϕ j #≡ π

2 mod π , Proposition 1 of [9] provides ε, λ > 0 and an increasing function
ψ : N → N such that limn→∞

ψ(n)
n = λ and, for any n and any j ∈ {1, . . . , k},

| cos(ψ(n)ω j + ϕ j )| ≥ ε. Let L ′
n = Lψ(n) and Q′

n = Qψ(n) for any n ≥ 1. Then
we have |L ′

n(e j )| = Q′
n
−τ j +o(1) because | cos(ψ(n)ω j + ϕ j )| = Qo(1)

ψ(n). Let us check

that Q′
n+1 = Q′1+o(1)

n ; then the special case of Theorem 3 will apply to the sequences
(L ′

n)n≥1 and (Q′
n)n≥1, with the same other parameters: this will conclude the proof.

Since Qn+1 = Q1+O(1/n)
n there exists M > 0 such that, for any n ≥ 1, Qn+1 ≤

Q1+M/n
n ; this implies

log Qn+& ≤ (1 + M/n)& log Qn

for any & ≥ 0. Letting δn = ψ(n + 1) − ψ(n) ≥ 1, we have:

log Q′
n+1 = log Qψ(n)+δn ≤(1 + M/ψ(n))δn log Qψ(n) ≤ exp(Mδn/ψ(n)) log Qψ(n)

= (1 + o(1)) log Q′
n

since 1+x ≤ ex and δn = o(n) since ψ(n) = λn+o(n). This concludes the reduction
to the case where ω1 = . . . = ωk = 0 and Qn+1 = Q1+o(1)

n .

3.3 Proof of (i i)

Let us come now to the easiest part of Theorem 3, namely (i i). We shall prove simulta-
neously that e1, . . . , ek are linearly independent in Rp, and that F ∩Qp = {(0, . . . , 0)}
where F = SpanR(e1, . . . , ek). With this aim in mind, we assume (by contradiction)
that there exist real numbers λ1, . . . , λk , not all zero, such that

∑k
j=1 λ j e j ∈ Qp;

multiplying all λ j by a common denominator of the coordinates, we may assume∑k
j=1 λ j e j ∈ Zp. Then κn = Ln(

∑k
j=1 λ j e j ) = ∑k

j=1 λ j Ln(e j ) is an integer for

any n ≥ 1. Now if n is sufficiently large then |κn| ≤ ∑k
j=1 |λ j | |Ln(e j )| < 1, so

that κn = 0. Let j0 denote the largest integer j such that λ j #= 0. Then for any n
sufficiently large, the fact that κn = 0 implies |λ j0 Ln(e j0)| = | ∑ j0−1

j=1 λ j Ln(e j )| so
that
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|λ j0 | ≤
j0−1∑

j=1

|λ j |
|Ln(e j )|
|Ln(e j0)|

≤
j0−1∑

j=1

|λ j |Q
τ j0 −τ j +o(1)
n

as n → ∞. Now the right handside tends to 0 as n → ∞ because we have assumed
that τ1 > · · · > τk , so that λ j0 = 0: this contradicts the definition of λ j0 .

Therefore such real numbers λ1, . . . , λk cannot exist, and this concludes the proof
of (i i).

3.4 Proof that (i i) and (i i i) imply (i)

Before proceeding in §§3.5 and 3.6 to the proof of (i i i), which is the main part, we
deduce (i) from (i i) and (i i i). Recall that the second statement of (i) is equivalent to
the first one (which we shall prove now) thanks to Lemma 1 proved in §3.1.

Let F be a subspace of Rp, defined over Q, which contains e1, …, ek . Letting
s = dim F , we have s > k using (i i). Assertion (i i i) yields, for any ε > 0 and any
Q sufficiently large (in terms of ε), a subset C(ε, Q) and a lattice .(Q) such that
C(ε, Q) ∩ .(Q) = {(0, . . . , 0)}. Now C(ε, Q) ∩ F is a convex body, compact and
symmetric with respect to the origin, in the Euclidean space F . On the other hand,
.(Q)∩ F is a lattice in F because F is defined over Q. Therefore Minkowski’s convex
body theorem (see for instance Chapter III of [5]) implies that C(ε, Q)∩ F has volume
less than 2s det(.(Q) ∩ F). Letting

α = τ1 + · · · + τk − σ1 − · · · − σs−k − sε,

this volume is greater than or equal to Qα , up to a multiplicative constant which
depends only on F , e1, . . . , ek , v1, …, vp (using the inequalities σ1 ≥ · · · ≥ σp).
On the other hand, since d1 ≤ · · · ≤ dp we have det(.(Q) ∩ F) ≤ cQβ+o(1) where
β = −d1 − · · · − ds and c is a constant depending only on F . Since Q can be chosen
arbitrarily large, the above-mentioned consequence of Minkowski’s theorem yields
α ≤ β. Now ε can be any positive real number, so that we obtain

τ1 + · · · + τk + d1 + · · · + ds ≤ σ1 + · · · + σs−k,

thereby concluding the proof of (i).

3.5 A matrix lemma

We state and prove in this section the main tool in the proof of Theorem 2, namely
Lemma 3. This result has been used recently by Dauguet [6], and might be of inde-
pendent interest; its proof relies on estimating the determinant and cofactors.

Lemma 3 Let A be a k × k matrix with real positive entries ai, j , 1 ≤ i, j ≤ k, such
that
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ai ′, j ai, j ′ ≤ 1
(k + 1)!ai, j ai ′, j ′ for any i, j, i ′, j ′ such that i < i ′ and j < j ′. (3.1)

Then A is an invertible matrix, and letting A−1 = [bi, j ]1≤i, j≤k we have

|b j,i | ≤
(

1 + 1
k

+ 1
k2

)
a−1

i, j for any i, j ∈ {1, . . . , k}.

Lemma 3 is optimal up to the value of the constant 1+ 1
k + 1

k2 : it would be false with
a constant less than 1/k instead (this is immediately seen by computing a diagonal
coefficient of AA−1, which is equal to 1). We did not try to improve on the constant
1 + 1

k + 1
k2 , but anyway it could easily be made smaller by replacing 1

(k+1)! in (3.1)
with a smaller constant.

In the proof of Lemma 3 we shall use the following result.

Lemma 4 Under the assumptions of Lemma 3, for any σ ∈ Sk we have

k∏

j=1

aσ ( j), j ≤ ησ

k∏

j=1

a j, j (3.2)

where ησ = 1
(k+1)! if σ #= Id, and ηId = 1.

Proof of Lemma 4 For σ #= Id let κσ denote the largest integer j ∈ {1, . . . , k} such
that σ ( j) #= j ; put also κId = 0. We are going to prove Eq. (3.2) by induction on κσ . If
κσ ≤ 1 then σ = Id, so that Eq. (3.2) holds trivially. Let σ ∈ Sk be such that κσ ≥ 2,
and assume that Eq. (3.2) holds for any σ ′ such that κσ ′ < κσ . We have σ ( j) = j
for any j ∈ {κσ + 1, . . . , k}, and σ (κσ ) < κσ . Let j0 = σ−1(κσ ); then j0 < κσ .
Let σ ′ = σ ◦ τ j0,κσ where τ j0,κσ is the transposition that exchanges j0 and κσ . Then
σ ′( j) = j for any j ∈ {κσ , . . . , k} so that κσ ′ < κσ and Eq. (3.2) holds for σ ′. Since
σ ′( j) = σ ( j) for j #∈ { j0, κσ }, σ ′( j0) = σ (κσ ) and σ ′(κσ ) = κσ , this implies (using
the fact that ησ ′ ≤ 1)

aσ (κσ ), j0 aκσ ,κσ

∏

1≤ j≤k
j #∈{ j0,κσ }

aσ ( j), j ≤
k∏

j=1

a j, j .

On the other hand, Eq. (3.1) implies

aκσ , j0 aσ (κσ ),κσ ≤ 1
(k + 1)!aσ (κσ ), j0 aκσ ,κσ

because σ (κσ ) < κσ and j0 < κσ . Multiplying out the previous two inequalities yields
Eq. (3.2) for σ , since σ ( j0) = κσ . This concludes the proof of Lemma 4.
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Proof of Lemma 3 Letting 4 = | det A | we have, using Lemma 4:

4 ≥
k∏

j=1

a j, j −
∑

σ∈Sk
σ #=Id

k∏

j=1

aσ ( j), j ≥
(

1 − 1
k + 1

) k∏

j=1

a j, j > 0 (3.3)

so that A is invertible. Given i, j ∈ {1, . . . , k} we have |b j,i | = 4i, j
4 where 4i, j is the

absolute value of the determinant of the matrix obtained from A by deleting the i-th
row and the j th column. Using Lemma 4 again we have

4i, j ≤
∑

σ∈Sk
σ ( j)=i

∏

1≤ j ′≤k
j ′ #= j

aσ ( j ′), j ′ ≤




∑

σ∈Sk
σ ( j)=i

ησ



 a−1
i, j

k∏

j ′=1

a j ′, j ′ . (3.4)

Now we have ησ = 1 for at most one σ , and ησ = 1
(k+1)! for all other permutations σ

among the (k − 1)! such that σ ( j) = i , so that

∑

σ∈Sk
σ ( j)=i

ησ ≤ 1 + (k − 1)!
(k + 1)! = k + 1 + 1

k

k + 1
.

Combining this upper bound with Eqs. (3.3) and (3.4) yields

|b j,i | = 4i, j

4
≤ k + 1 + 1

k

k
a−1

i, j ,

thereby completing the proof of Lemma 3.

3.6 Proof of (i i i)

We are now in position to prove the remaining part of Theorem 2, namely (i i i).
We assume τ1 > · · · > τk > 0 and ω1 = · · · = ωk = 0 (see §3.2), so that
|Ln(e j )| = Q

−τ j +o(1)
n .

Before giving details, let us make a few comments on our strategy.
Recall that Nesterenko’s linear independence criterion is much easier to prove if

the linear forms Ln , Ln+1, …, Ln+p−1 are linearly independent (see §2.3 of [13]
or the references to Siegel’s criterion in §4.3 below). Of course this is not always
the case, but Lemma 3 enables us to make a step in this direction. Actually letting
F = SpanR(e1, . . . , ek), we consider the restrictions Ln|F of the linear forms to F ;
recall that dim F = k thanks to (i i) proved in §3.3. It is not true in general that Ln|F ,
Ln+1|F , …, Ln+k−1|F are linearly independent linear forms on F : for instance, the
equality Ln = Ln+1 might hold for any even integer n (because of the error terms
o(1) in the assumptions of Theorem 3). To make this statement correct, we introduce
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a function ϕ : N∗ → N∗ such that ϕ(n) ≥ n + 1 for any n ≥ 1. The integer ϕ(n)

plays the role of n + 1, that is: applying ϕ corresponds to “taking the next integer”.
The idea is that ϕ(n) will be large enough (in comparison to n) to avoid obvious
counter-examples as above coming from error terms. In more precise terms, ϕ(n) will
be defined by the property Qϕ(n)−1 ≤ Q1+ε1

n < Qϕ(n) (where ε1 is a small positive
real number); in this way, the error terms o(1) in the assumptions of Theorem 3 will
not be a problem any more.

With this definition, we shall prove that for any n sufficiently large, the linear
forms Ln|F , Lϕ(n)|F , Lϕ2(n)|F , …, Lϕk−1(n)|F on F are linearly independent (where
ϕi = ϕ ◦ . . . ◦ ϕ), so that they make up a basis of the dual vector space F5. In the
proof of Theorem 3 we shall need the following quantitative version of this property:
in writing the linear form e5

j (defined by e5
j (λ1e1 + · · · + λkek) = λ j ) as a linear

combination of 1
Ln(e j )

Ln|F , 1
Lϕ(n)(e j )

Lϕ(n)|F , …, 1
Lϕk−1(n)(e j )

Lϕk−1(n)|F , the coefficients

that appear are bounded independently from n (actually they are between −3 and
3): see Eq. (3.8) below. This will follow from Lemma 3 applied to the matrix An =
[|Lϕi−1(n)(e j )|]1≤i, j≤k . The point in applying this lemma is that sharp upper and lower
bounds on |Lϕi−1(n)(e j )| are available; the assumption τ1 > · · · > τk plays also a
central role here.

Now let us prove (i i i).
Let ε > 0. We choose ε1 > 0 sufficiently small, so that

((1 + ε1)
k−1 − 1) max(1, τ1, σ1) < ε/4. (3.5)

If k = 1 there is no assumption on ε1, because it does not really appear in the proof:
Lemma 3 is a triviality in this case, and the proof of (i i i) reduces essentially to that
of [13].

For any n ≥ 1, we define ϕ(n) by Qϕ(n)−1 ≤ Q1+ε1
n < Qϕ(n), because the sequence

(Qn) is increasing and we may assume Qn ≥ 1 for any n. Then we have ϕ(n) ≥ n +1.
This implies limn→+∞ ϕ(n) = +∞, so that Qϕ(n) = Q1+o(1)

ϕ(n)−1 (because we assume

Qn+1 = Q1+o(1)
n ) and

Qϕ(n) = Q1+ε1+o(1)
n ; (3.6)

here o(1) denotes any sequence that tends to 0 as n → ∞. Moreover the assumption
|Ln(e j )| = Q

−τ j +o(1)
n implies |Ln(e j )| > 0 for any j , n with n sufficiently large. We

have also for any n sufficiently large and any j ∈ {1, . . . , k}:

|Lϕ(n)(e j )| = Q
−τ j +o(1)

ϕ(n) = Q
−τ j (1+ε1)+o(1)
n < |Ln(e j )|. (3.7)

For i ∈ {0, . . . , k − 1} let ϕi = ϕ ◦ . . . ◦ϕ denote the map ϕ composed i times with
itself (so that ϕ0(n) = n and ϕ1(n) = ϕ(n)). Put

An =
[
|Lϕi−1(n)(e j )|

]

1≤i, j≤k

and denote by ai, j the entries of An (omitting for simplicity the dependence on n).
Let us check the assumption (3.1) of Lemma 3, provided n is sufficiently large. Let
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i, j, i ′, j ′ ∈ {1, . . . , k} be such that i < i ′ and j < j ′ ; we put n′ = ϕi−1(n) and
n′′ = ϕi ′−1(n), so that n′′ ≥ ϕ(n′). Using Eq. (3.6) and the assumption τ j > τ j ′ we
obtain

ai ′, j ai, j ′

ai, j ai ′, j ′
=

∣∣∣
Ln′′(e j )Ln′(e j ′)

Ln′(e j )Ln′′(e j ′)

∣∣∣ = Q
τ j ′−τ j +o(1)

n′′

Q
τ j ′−τ j +o(1)

n′

≤
(

Qϕ(n′)

Qn′

)τ j ′−τ j +o(1)

= Q
ε1(τ j ′−τ j )+o(1)

n′ ≤ 1
(k + 1)!

if n is sufficiently large, so that Lemma 3 applies. Given M = ∑k
j=1 λ j e j with

λ1, . . . , λk ∈ R, we have Lϕi−1(n)(M) = ∑k
j=1 ai, jλ

′
j where we let λ′

j = λ j if
Lϕi−1(n)(e j ) > 0, and λ′

j = −λ j otherwise. Therefore Lemma 3 yields, for any
j ∈ {1, . . . , k} and any n sufficiently large:

|λ j | = |λ′
j | =

∣∣∣∣∣

k∑

i=1

b j,i Lϕi−1(n)(M)

∣∣∣∣∣ ≤
(

1 + 1
k

+ 1
k2

) k∑

i=1

|Lϕi−1(n)(M)|
|Lϕi−1(n)(e j )|

. (3.8)

This upper bound on |λ j | in terms of the |Lϕi−1(n)(M)| is the main tool we shall use
now in the proof.

Let Q be sufficiently large in terms of ε, and assume that C(ε, Q)∩.(Q) contains
a non-zero point P . Then we have

P = λ1e1 + · · · + λkek + u = (x1, . . . , x p) #= (0, . . . , 0)

with λ1, . . . , λk ∈ R, u = µ1v1 +· · ·+µpvp ∈ (SpanR(e1, . . . , ek))
⊥, |λ j | ≤ Qτ j −ε

for any j ∈ {1, . . . , k}, |µi | ≤ Q−σi −ε for any i ∈ {1, . . . , p}, and δi,n xi ∈ Z for any
i , where n = /(Q) is the largest integer such that Qn ≤ Q. In particular we have
Qn ≤ Q < Qn+1 so that Q = Q1+o(1)

n , and n tends to ∞ as Q → ∞: if un = o(1),
that is un → 0 as n → ∞, then un tends also to 0 as Q → ∞.

Let & denote the least integer such that

for any j ∈ {1, . . . , k}, we have |λ j L&(e j )| ≤ δp,&

3kδp,n
. (3.9)

Since |λ j | ≤ Qτ j −ε and n is sufficiently large, this upper bound holds for n so that
this integer exists and we have & ≤ n.

The integer & depends on Q and on the choice of a non-zero point P ∈ C(ε, Q) ∩
.(Q). Let us prove that & → ∞ as Q → ∞, uniformly with respect to the choice of
P . Let &0 ≥ 1, and denote by K&0 the set of all points P ′ = λ′

1e1 + · · · + λ′
kek + u′

with

|λ′
j | min

1≤&′≤&0
|L&′(e j )| ≤ 1

3k
for any j ∈ {1, . . . , k},
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where u′ ∈ (Span(e1, . . . , ek))
⊥ can be written as u′ = µ′

1v1 + · · · + µ′
pvp with

|µ′
i | ≤ Q−σi −ε for any i ∈ {1, . . . , p}. By definition of & and K&0 , if & ≤ &0 then

δp,n
δp,&

P ∈ K&0 . Moreover the point δp,n
δp,&

P belongs also to .(Q&0) since

δi,&0

(
δp,n

δp,&
xi

)
=

(
δi,&0

δi,&

) (
δp,n/δi,n

δp,&/δi,&

) (
δi,n xi

)
∈ Z

for any i ∈ {1, . . . , p}, by assumption on the divisors δt,n . Therefore (assuming & ≤ &0)
the point δp,n

δp,&
P belongs to K&0 ∩.(Q&0), which is a finite set because K&0 is compact

and .(Q&0) is discrete. Now the function χ : K&0 ∩.(Q&0) → R defined by χ(P ′) =
‖π⊥(P ′)‖, where π⊥ is the orthogonal projection on (Span(e1, . . . , ek))

⊥, has a least
positive value χ0. We have χ(

δp,n
δp,&

P) #= 0 because P #∈ Qp ∩ Span(e1, . . . , ek) =
{(0, . . . , 0)} (using assertion (i i) proved in §3.3), so that

χ0 ≤ χ

(
δp,n

δp,&
P

)
= δp,n

δp,&
‖u‖ ≤ Q

dp+o(1)
n Q−σp−ε = Qdp−σp−ε+o(1)

since δp,& ≥ 1 and σp ≤ · · · ≤ σ1. This inequality implies that Q is not too large
in terms of &0 and ε (because we assume dp ≤ σp). This concludes the proof that
& → ∞ as Q → ∞. In what follows, a sequence denoted by o(1) will tend to 0 as n,
& or Q tends to ∞; therefore in any case, it tends to 0 as Q → ∞. Moreover, we may
assume & to be arbitrarily large.

We come back now to the point P ∈ C(ε, Q) ∩ .(Q) chosen above. Since u =
µ1v1 + · · · + µpvp with |µh | ≤ Q−σh−ε for any h, we have for any i ∈ {1, . . . , k}:

|Lϕi−1(&)(u)| ≤
p∑

h=1

|µh ||Lϕi−1(&)(vh)| ≤
p∑

h=1

Q−σh−ε Qσh+o(1)
ϕi−1(&)

≤
p∑

h=1

Q−σh−ε+o(1)
n Qσh(1+ε1)

i−1+o(1)
& using Eq. (3.6)

≤
p∑

h=1

( Q&

Qn

)σh
Q−ε+o(1)

n Qε/4+o(1)
& using Eq. (3.5) and σh ≤ σ1

≤
( Q&

Qn

)dp
Q−ε/2 <

1
3

δp,&

δp,n
since σh ≥ σp ≥ dp and & ≤ n.

(3.10)

On the other hand, Eqs. (3.9) and (3.7) yield for any i ∈ {1, . . . , k}:
∣∣∣∣∣∣
Lϕi−1(&)




k∑

j=1

λ j e j





∣∣∣∣∣∣
≤

k∑

j=1

|Lϕi−1(&)(e j )|
|L&(e j )|

δp,&

3kδp,n
≤ δp,&

3δp,n
,
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since & is sufficiently large. Combining this inequality with Eq. (3.10) we obtain for
the point P = λ1e1 + · · · + λkek + u:

|Lϕi−1(&)(P)| ≤ δp,&

3δp,n
+ δp,&

3δp,n
<

δp,&

δp,n
. (3.11)

Now we have Lϕi−1(&) = &1,ϕi−1(&) X1+· · ·+&p,ϕi−1(&) X p where & j,ϕi−1(&) is a multiple
of δ j,ϕi−1(&), and therefore of δ j,& since ϕi−1(&) ≥ &. Moreover δ j,n x j ∈ Z so that

δp,n

δp,&
& j,ϕi−1(&)x j =

(
δp,n/δ j,n

δp,&/δ j,&

)(
& j,ϕi−1(&)

δ j,&

)
(δ j,n x j ) ∈ Z

since & ≤ n, by assumption on the divisors δt,n . Therefore we have Lϕi−1(&)(P) ∈
δp,&

δp,n
Z, and the upper bound (3.11) implies that this rational number is zero for any

i ∈ {1, . . . , k}. Using Eq. (3.10) this yields the following upper bound on |Lϕi−1(&)(M)|
(where we let M = ∑k

j=1 λ j e j ):

|Lϕi−1(&)(M)| = |Lϕi−1(&)(u)| ≤
( Q&

Qn

)dp
Q−ε/2.

Combining this upper bound with Eq. (3.8) yields, for any j ∈ {1, . . . , k}:

|λ j L&−1(e j )| ≤
(

1 + 1
k

+ 1
k2

) k∑

i=1

( Q&

Qn

)dp
Q−ε/2 Q

τ j +o(1)

ϕi−1(&)
Q

−τ j +o(1)

&−1

≤ Q
dp+τ j ((1+ε1)

i−1−1)+o(1)

& Q
−dp
n Q−ε/2 using Eq. (3.6)

≤ Q
dp+ε/4+o(1)

& Q
−dp
n Q−ε/2 using the assumption τ j ≤τ1 and Eq. (3.5)

≤
(

Q&

Qn

)dp

Q−ε/4+o(1) ≤ δp,&

3kδp,n

since Q& ≤ Qn = Q1+o(1) and δp,&

δp,n
= Q

dp+o(1)

&

Q
dp+o(1)
n

. This contradicts the minimality of &

in Eq. (3.9), thereby concluding the proof of (i i i).

4 Consequences and related results

In this section we state and prove consequences of our main result (§§4.1 and 4.2), and
mention Diophantine applications (§4.4). We also prove in §4.3 an analogous result,
in the spirit of Siegel’s linear independence criterion.

Throughout this section we restrict to the setting of Theorem 2, omitting for sim-
plicity the refinements of Theorem 3 (eventhough they could have been adapted here).
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4.1 Distance to integers

In this section we state corollaries of our criterion dealing with linear forms which
are close to integers (rather than close to 0), as in Khintchine–Groshev’s theorem
for instance. In particular we deduce from Theorem 3 a result (namely Corollary 3
below) analogous to Nesterenko’s linear independence criterion but which applies to
sequences of simultaneous approximations of real numbers with the same denomina-
tor. This result is related to type II Padé approximation problems, in the same way as
Nesterenko’s criterion is related to type I problems. In this respect, Theorem 3 makes a
bridge between the latter and the former: it is related to Padé approximation problems
intermediate between type I and type II (see for instance [24]).

To begin with, let us state Theorem 2 in a dual way, namely in terms of C1, . . . , C p ∈
Rk rather than e1, . . . , ek ∈ Rp.

Theorem 4 Let C1, . . . , C p ∈ Rk , with k, p ≥ 1.
Let τ1, . . . , τk and (Qn)n≥1 be as in Theorem 2.
For any n ≥ 1, let &1,n, . . . , &p,n ∈ Z be such that, as n → ∞:

max
1≤i≤p

|&i,n| ≤ Q1+o(1)
n and &1,nC1 + · · · + &p,nC p =




±Q−τ1+o(1)

n
...

±Q−τk+o(1)
n



 (4.1)

where the ± signs can be independent from one another. Then:

(i) The rank of the family of vectors C1, . . . , C p in Rk , considered as a Q-vector
space, is greater than or equal to k + τ1 + · · · + τk .

(ii) For any non-zero linear form χ : Rk → R there exists i ∈ {1, . . . , p} such that
χ(Ci ) #∈ Q.

(iii) Let ε > 0, and Q be sufficiently large in terms of ε. Let λ1, . . . , λk ∈ R, not all
zero, be such that |λ j | ≤ Qτ j −ε for any j ∈ {1, . . . , k}. Then denoting by χ the
linear map Rk → R defined by χ(x1, . . . , xk) = λ1x1 + · · · + λk xk , we have

dist
(
(χ(C1), . . . ,χ(C p)), Zp \ {(0, . . . , 0)}

)
≥ Q−1−ε

where dist(y, Zp\{(0, . . . , 0)}) is the minimal distance of y ∈ Rp to a non-zero
integer point.

This result is just a translation of Theorem 2. Indeed let us consider the matrix
M ∈ Matk,p(R) of which C1, . . . , C p are the columns. We denote by e1, . . . , ek ∈ Rp

the rows of M . Then assumption (4.1) means that the linear form Ln = &1,n X1 +· · ·+
&p,n X p on Rp is small at the points e1, . . . , ek . It is not difficult to see that (i i) and
(i i i) in Theorem 4 are respectively equivalent to (i i) and (i i i) in Theorem 2, because
(χ(C1), . . . ,χ(C p)) = λ1e1 + · · · + λkek . We remark also that assuming k ≤ p − 1
in Theorem 2 is not necessary; it has not been used in the proof. This upper bound
follows from (i i), so that it is actually a consequence of the other assumptions.
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Let us focus now on an important special case of Theorem 4, related to Padé
approximation: when C1, …, Ck is the canonical basis of Rk . This happens in all
practical situations mentioned in §4.4 below: indeed Padé approximation provides
linear combinations of Ck+1, . . . , C p which are very close to Zk . In this case, in (i i)
the interesting point is when the linear form χ(x1, . . . , xk) = λ1x1 + · · · + λk xk has
rational coefficients λ j ; then we have χ(Ci ) #∈ Q for some i ∈ {k + 1, . . . , p}. An
analogous remark holds for (i i i); both are more easily stated as follows, in terms of
e1,…, ek . We denote by ‖·‖ any fixed norm on Rp−k .

Corollary 2 Under the assumptions of Theorem 2, suppose that for any j ∈ {1, . . . , k}
we have e j = (0, . . . , 0, 1, 0, . . . , 0, e′

j ) with e′
j ∈ Rp−k , where the 1 is in j th position.

Then no non-trivial Q-linear combination of e′
1, . . . , e′

k belongs to Qp−k . In addi-
tion, let ε > 0, and Q be sufficiently large in terms of ε. Let λ1, . . . , λk ∈ Z, not all
zero, be such that |λ j | ≤ Qτ j −ε for any j ∈ {1, . . . , k}. Then for any S ∈ Zp−k we
have

‖λ1e′
1 + · · · + λke′

k − S‖ ≥ Q−1−ε.

This corollary is a measure of linear independence of the vectors e′
1, . . . , e′

k and
those of the canonical basis of Zp−k . It can be weakened by assuming |λ j | ≤ Qτ−ε

for any j ∈ {1, . . . , k}, where τ = min(τ1, . . . , τk) (as in Theorem 5 below). Then
a measure of non-discreteness (in the sense of [15]) is obtained for the lattice Ze′

1 +
· · ·+Ze′

k +Zp−k , which has rank p. In the examples (4.2), (4.3) and (4.4) considered
in §4.4 below, the matrix with columns Ck+1, …, C p is symmetric (with p = 2k),
so that this lattice is exactly ZC1 + · · · + ZC p (using the fact that C1, …, Ck is the
canonical basis of Rk).

This case k = p/2 lies “in the middle” between k = 1, which corresponds to
type I Padé approximation and Nesterenko’s original criterion, and k = p − 1, which
corresponds to type II Padé approximation. In the latter case, Corollary 2 yields the
following result by letting ξ j = −e′

j .

Corollary 3 Let k ≥ 1, and ξ1, . . . , ξk ∈ R.
Let τ1, . . . , τk > 0 be pairwise distinct real numbers.
Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 =

Q1+o(1)
n .
For any n ≥ 1, let &1,n, . . . , &k,n, &k+1,n ∈ Z be such that

max
1≤i≤k+1

|&i,n| ≤ Q1+o(1)
n

and

|&k+1,nξ j − & j,n| = Q
−τ j +o(1)
n for any j ∈ {1, . . . , k}.

Then:

(i) The numbers 1, ξ1, . . . , ξk are Q-linearly independent.
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(ii) Let ε > 0, and Q be sufficiently large (in terms of ε). Then for any
(a0, a1, . . . , ak) ∈ Zk+1 \ {(0, . . . , 0)} with |a j | ≤ Qτ j −ε for any j ∈ {1, . . . , k},
we have:

|a0 + a1ξ1 + · · · + akξk | ≥ Q−1−ε.

We have not found this statement in the literature; see however [8] (p. 98), [16]
(Lemma 2.1) or [17] (Lemma 6.1) for related results, which are probably closer to
Siegel’s criterion than to Nesterenko’s (see §4.3 below).

4.2 Upper bound on a Diophantine exponent

Given a subspace F of Rp, and a non-zero point P ∈ Rp, we denote by Dist(P, F)

the projective distance of P to F , seen in Pp−1(R). Several definitions may be given,
all of them equivalent up to multiplicative constants (see for instance [23]); we choose
Dist(P, F) = ‖u‖

‖P‖ where u is the orthogonal projection of P on F⊥ (that is, P can be
written as u + f with u ∈ F⊥ and f ∈ F), and ‖·‖ is the Euclidean norm on Rp.

The following result is a consequence of Theorem 2.

Theorem 5 Under the assumptions of Theorem 2, let τ = min(τ1, . . . , τk) and F =
SpanR(e1, . . . , ek). Then for any ε > 0 and any P ∈ Zp\{(0, . . . , 0)} we have:

Dist(P, F) ≥ ‖P‖−1− 1
τ −ε

provided ‖P‖ is sufficiently large in terms of ε.

It is important to notice that Theorem 5 is not optimal, since it involves only
min(τ1, . . . , τk). It is specially interesting when τ1, . . . , τk are close to one another.

The interest of Theorem 5 is that it can be written as an upper bound on a Diophantine
exponent which measures the approximation of F by points of Zp (see [4,19,23]).

Proof of Theorem 5 Using assertion (i i) of Theorem 2, we see that (e1, . . . , ek) is a
basis of F . Since F is finite-dimensional, all norms on F are equivalent: there exists
κ > 0 such that, for any f = λ1e1 + · · · + λkek ∈ F (with λ j ∈ R), we have
max |λ j | ≤ κ‖ f ‖.

Let ε > 0 be such that ε < τ . Let Q0 be such that assertion (i i i) of Theorem 2
holds for any Q ≥ Q0; we assume that ‖P‖ ≥ Qτ−ε

0 /κ . Letting Q = (κ‖P‖)1/(τ−ε)

we have Q ≥ Q0. Since P ∈ Zp \ {(0, . . . , 0)}, P does not belong to the set C(ε, Q)

defined in assertion (i i i). Now writing P = λ1e1 + · · · + λkek + u with λ j ∈ R and
u ∈ F⊥, we have

max
1≤ j≤k

|λ j | ≤ κ‖λ1e1 + · · · + λkek‖ ≤ κ‖P‖ = Qτ−ε

so that ‖u‖ > Q−1−ε. Using the definition of Q and that of Dist(P, F), this concludes
the proof of Theorem 5.
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4.3 Connection with a Siegel-type criterion

The following result is analogous to Theorem 2, but its proof is much easier. It relies
on Siegel’s ideas for linear independence (see for instance [8], p. 81–82 and 215–216,
or [20], Proposition 4.1). Special cases of this proposition have already been used in
Diophantine results (see §4.4 below).

Proposition 1 Let 1 ≤ k ≤ p − 1, and e1, . . . , ek ∈ Rp be R-linearly independent
vectors.

Let (Qn)n≥1 be an increasing sequence of positive integers, and for any n ≥ 1,
let L(t)

n = &
(t)
1,n X1 + · · · + &

(t)
p,n X p be p linearly independent linear forms on Rp (for

1 ≤ t ≤ p), with integer coefficients &
(t)
i,n such that, as n → ∞:

|L(t)
n (e j )| ≤ Q

−τ j +o(1)
n for any j ∈ {1, . . . , k} and any t ∈ {1, . . . , p},

where τ1, . . . , τk > 0 are real numbers, and

max
1≤i≤p
1≤t≤p

|&(t)
i,n| ≤ Q1+o(1)

n .

Then:

(a) Conclusions (i) and (i i) of Theorem 2 hold.
(b) Let ε > 0, and n be sufficiently large (in terms of ε). Let Cn denote the set of all

vectors that can be written as λ1e1 + · · · + λkek + u with:

{
λ1, . . . , λk ∈ R such that |λ j | ≤ Q

τ j −ε
n for any j ∈ {1, . . . , k}

u ∈ (SpanR(e1, . . . , ek))
⊥ such that ‖u‖ ≤ Q−1−ε

n

Then Cn ∩ Zp = {(0, . . . , 0)}.
The main difference with Theorem 2 is that we require here p linearly independent

linear forms for any n (and we also assume e1, . . . , ek to be R-linearly independent).
This makes the proof much easier, and enables one to get rid of several important
assumptions of Theorem 2 (namely Qn+1 = Q1+o(1)

n , τ1, . . . , τk pairwise distinct,
and |Ln(e j )| not too small).

If Qn+1 = Q1+o(1)
n in Proposition 1 then in (b) we may replace Qn with any Q,

by letting n be such that Qn ≤ Q < Qn+1.

Proof of Proposition 1 To prove conclusion (i) of Theorem 2, let F be a subspace of
Rp defined over Q, of dimension d, which contains e1, …, ek . Let n be sufficiently
large. Up to reordering L(1)

n , …, L(p)
n , we may assume the restrictions of L(1)

n , …,
L(d)

n to F to be linearly independent linear forms on F . Denoting by (u1, . . . , ud) a
basis of F consisting in vectors of Zp, the matrix [L(t)

n (u j )]1≤t, j≤d has a non-zero
integer determinant. By making suitable linear combinations of the columns, the values
L(t)

n (e1), …, L(t)
n (ek) appear and lead to the upper bound Qd−k−τ1−···−τk+o(1)

n on the
absolute value of this determinant. This concludes the proof of (i) of Theorem 2.
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To prove part (b) of Proposition 1 (which implies conclusion (i i) of Theorem 2),
we let P = λ1e1 +· · ·+λkek + u ∈ Cn ∩Zp be non-zero; then L(t)

n (P) #= 0 for some
t , but L(t)

n (P) ∈ Z and |L(t)
n (P)| < 1. This concludes the proof of Proposition 1.

4.4 Diophantine applications

The main interest of Theorems 2 and 3 is that they provide (in conclusion (i)) a lower
bound for the rank of (C1, . . . , C p). Such a lower bound (with k essentially equal to
aε) implies Theorem 1, using a general lemma of linear algebra (see [10] for details).
This kind of lower bounds (with k ≥ 2) exists in the literature: for instance Gutnik
has proved [14] that the vectors

(
1
0

)
,

(
0
1

)
,

(−2 log 2
ζ(2)

)
,

(
ζ(2)

−3ζ(3)

)
(4.2)

are Q-linearly independent in R2 (so that, for any r ∈ Q5, at least one number among
ζ(2) − 2r log 2 and 3ζ(3) − rζ(2) is irrational). More recently he has obtained also
[15] the Q-linear independence of

(
1
0

)
,

(
0
1

)
,

(
2ζ(3)

3ζ(4)

)
,

(
3ζ(4)

6ζ(5)

)
. (4.3)

In the same spirit, T. Hessami-Pilehrood has proved [18] that if q is greater than some
explicit function of k then the following 2k vectors are Q-linearly independent in Rk :





1
0
...

0




,





0
1
...

0




, . . . ,





0
0
...

1




, (4.4)





Li1(−1
q )

Li2(−1
q )

...

Lik(−1
q )




, . . . ,





(
j − 1
j − 1

)
Li j (

−1
q )

(
j

j − 1

)
Li j+1(

−1
q )

...(
j + k − 2

j − 1

)
Li j+k−1(

−1
q )





, . . . ,





(
k − 1
k − 1

)
Lik(−1

q )
(

k
k − 1

)
Lik+1(

−1
q )

...(
2k − 2
k − 1

)
Li2k−1(

−1
q )





.

The same result holds with 1/q instead of −1/q; see also Gutnik’s preprints cited in
[18].

These results share two common features: they rely on a special case of Proposi-
tion 1, and they prove the linear independence of the full set of p vectors involved.
Using Theorem 3 it should not be difficult to produce alternative proofs of these results,
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in which only one sequence of small linear forms is constructed (instead of p linearly
independent ones). This may lead to further generalizations: for instance no proof
of Ball–Rivoal’s lower bound (1.1) is known without using Nesterenko’s criterion.
Moreover, it should be possible also to obtain lower bounds for the rank of a family of
vectors [like (4.2) or (4.3) up to ζ(a), or (4.4) with smaller values of q] eventhough
the present methods fail to prove the linear independence of the full set.

At last we would like to mention that during the submission process of the present
paper, several results of the same flavour have been obtained by Dauguet [6] and
applied to zeta values by Dauguet and Zudilin [7].
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