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Abstract
Given any non-polynomial G-function F(z) = ∑∞

k=0 Akzk of radius of convergence R

and in the kernel a G-operator LF , we consider the G-functions F [s]
n (z) = ∑∞

k=0
Ak

(k+n)s
zk

for every integers s ≥ 0 and n ≥ 1. These functions can be analytically continued to a
domain DF star-shaped at 0 and containing the disk {|z| < R}. Fix any α ∈ DF ∩ Q

∗
,

not a singularity of LF , and any number field K containing α and the Ak’s. Let �α,S be
the K-vector space spanned by the values F [s]

n (α), n ≥ 1 and 0 ≤ s ≤ S. We prove that
uK,F log(S) ≤ dimK(�α,S) ≤ vF S for any S, for some constants uK,F > 0 and vF > 0.
This appears to be the first general Diophantine result for values of G-functions evaluated
outside their disk of convergence. This theorem encompasses a previous result of the authors
in [Linear independence of values of G-functions, J. Europ. Math. Soc. 22(5), 1531–1576
(2020)], where α ∈ Q

∗
was assumed to be such that |α| < R. Its proof relies on an explicit

construction of a Padé approximation problem adapted to certain non-holomorphic functions
associated to F , and it is quite different of that in the above mentioned paper. It makes use of
results of André, Chudnovsky and Katz on G-operators, of a linear independence criterion
à la Siegel over number fields, and of a far reaching generalization of Shidlovsky’s lemma
built upon the approach of Bertrand–Beukers and Bertrand.

Keywords G-functions · G-operators · Padé approximation · Siegel’s linear independence
criterion · Shidlovsky’s lemma

Mathematics Subject Classification Primary 11J72; Secondary 11J91 · 34M35 · 41A60

Résumé
Étant donnée uneG-fonction non polynomiale F(z) = ∑∞

k=0 Akzk de rayon de convergence

R qui est dans le noyau d’un G-opérateur LF , nous considérons les G-fonctions F [s]
n (z) =∑∞

k=0
Ak

(k+n)s
zk pour tous entiers s ≥ 0 et n ≥ 1. Ces fonctions peuvent être prolongées

analytiquement à un domaine DF étoilé en 0 qui contient le disque {|z| < R}. Fixons
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α ∈ DF ∩ Q
∗
, qui n’est pas une singularité de LF , et un corps de nombres K contenant

α et les coefficients Ak . Soit �α,S le K-espace vectoriel engendré par les valeurs F [s]
n (α),

n ≥ 1 et 0 ≤ s ≤ S. Nous montrons que uK,F log(S) ≤ dimK(�α,S) ≤ vF S pour tout S et
pour des constantes uK,F > 0 et vF > 0. Cela semble être le premier résultat diophantien
général portant sur les valeurs de G-fonctions en-dehors de leur disque de convergence. Ce
théorème généralise un précédent résultat des auteurs dans [Linear independence of values
of G-functions, J. Europ. Math. Soc. 22(5), 1531–1576 (2020)], où α ∈ Q

∗
était supposé

être tel que |α| < R. Sa démonstration repose sur la construction explicite d’un problème
d’approximation de Padé adapté à certaines fonctions non holomorphes associées à F , et
elle diffère substantiellement de celle de l’article cité ci-dessus. Nous utilisons des résultats
d’André, Chudnovsky et Katz sur les G-opérateurs, un critère d’indépendance linéaire à la
Siegel sur les corps de nombres, et une généralisation du Lemme de Shidlovsky obtenue à
partir de l’approche de Bertrand-Beukers et Bertrand.

1 Introduction

Siegel [27] defined the class of G-functions to generalize the Diophantine properties of the
logarithmic function, by opposition to the exponential function which he generalized with the
class of E-functions. A series F(z) = ∑∞

k=0 Akzk ∈ Q[[z]] is a G-function if the following
three conditions are met (we fix an embedding of Q into C):

1. There exists C > 0 such that for any σ ∈ Gal(Q/Q) and any k ≥ 0, |σ(Ak)| ≤ Ck+1.
2. Define Dn as the smallest positive integer such that Dn Ak is an algebraic integer for any

k ≤ n. There exists D > 0 such that for any n ≥ 0, Dn ≤ Dn+1.
3. F(z) is a solution of a linear differential equation with coefficients inQ(z) (holonomicity

or D-finiteness).

A power series
∑∞

k=0
Ak
k! z

k is an E-function if, and only if,
∑∞

k=0 Akzk is a G-function.
Algebraic functions overQ(z) that are holomorphic at z = 0 areG-functions. Transcendental

G-functions include the polylogarithms Lis(z) = ∑∞
k=1

zk
ks for every integer s ≥ 1, multiple

polylogarithms, and the generalized hypergeometric series p+1Fp with rational parameters.
The exponential function, Bessel’s functions and the generalized hypergeometric series pFp

with rational parameters are examples of E-functions.
TheDiophantine theory of E-functions iswell developped and complete in some sense;we

refer the reader to [26] and the introduction of [1] for statements of classical transcendence and
algebraic independence theorems for values of E-functions at algebraic points. A complete
picture is not yet known for G-functions, for which transcendence results are very sparse,
and in fact it is in general not even known whether interesting G-values like Li5(1) = ζ(5)
are irrational or not. We refer the reader to the introduction of [13] for statements of classical
Diophantine results on values of G-functions at algebraic points. The most general of them,
due to Chudnovsky, proves in particular the irrationality of the value F(α) of any given G-
function F evaluated at an algebraic point α sufficiently close to the origin (and this depends
on F), and in particular very far from the circle of convergence of F .

In [13], we adopted a dual point of view: for any given G-function F and any algebraic
point α in the disk of convergence, we obtained a non-trivial estimate for the dimension of a
certain vector space spanned by the values atα of a family ofG-functions naturally associated
to F . The goal of the present paper is to generalize the main result of [13] to values of F
outside the disk of convergence.
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Linear independence of values of G-functions

To begin with, we recall that any G-function is solution of a minimal non-zero differential
equation over Q(z), of order μ say. A result due to André, Chudnovsky and Katz (see [2, p.
719]) asserts that this minimal equation has very specific properties, which will be used in
the sequel: it is Fuchsian with rational exponents, and at any point α ∈ Q∪{∞} it has a basis
of solutions of the form

(
f1(z − α), . . . , fμ(z − α)

) · (z − α)A, where A ∈ Mμ×μ(Q) is
upper triangular, and the f j (z) ∈ Q[[z]] are G-functions (if α = ∞, z − α must be replaced
by 1/z). Such a non-zero minimal equation is called a G-operator.

To state our result, we introduce some notations. Starting from a G-function F(z) =∑∞
k=0 Akzk with radius of convergence R, we define for any integers n ≥ 1 and s ≥ 0 the

G-functions

F [s]
n (z) =

∞∑

k=0

Ak

(k + n)s
zk+n

which all have R as radius of convergence. It is quite natural to consider these functions
because they are easily related to iterated primitives of F(z), which complements the fact that
only derivatives of F are usually considered in the literature. Being an holonomic function,
F can be continued to a suitable cut plane. More precisely, let �F denote the set of finite
singularities of F , which are either poles or branch points. For α ∈ �F , we define�α := α+
ei arg(α)R+, the straight half-line “from α to ∞” whose direction goes through 0 but 0 /∈ �α .
Then, F and the F [s]

n can all be analytically continued to the domainDF := C\(∪α∈�F �α),
which is star-shaped at 0 and contains the disk {|z| < R}.
Theorem 1 LetK be a number field, and F be a G-functionwith Taylor coefficients inK, such
that F(z) /∈ C[z]. Let LF ∈ K[z, d

dz ] be a G-operator such that LF F = 0. Let z0 ∈ K\{0};
assume that z0 is not a singularity of LF and that z0 ∈ DF .

Then for any S, the K-vector space spanned by the numbers F [s]
n (z0) with n ≥ 1 and

0 ≤ s ≤ S has dimension over K at least 1+o(1)
[K:Q]C(F)

log(S), where C(F) depends only on F;
here o(1) denotes a sequence that tends to 0 as S → ∞.

Note that Eq. (1.4) below immediately implies that this dimension is bounded above by
�1S + μ for every S ≥ 0, where the quantities �1 and μ will be defined later in the paper.
Both can be computed from LF and are independent of K. We observe that �1S + μ can in
fact be replaced by �0S + μ (where �0 is defined in the introduction of [13] and is ≤ �1),
provided one uses the analytic continuation to DF of Identity (5.2) of [13] instead of (1.4).

The new point in Theorem 1 is that we allow |z0| ≥ R (provided z0 belongs to the star-
shaped domain DF and is not a singularity of LF ). All previous Diophantine results we are
aware of for values of any given G-function F deal with points z0 such that the defining
series

∑∞
k=0 Akzk of F(z) is convergent at z = z0. Our method enables us to also deal with

points z0 such that
∑∞

k=0 Akzk0 is divergent. For |z0| < R, Theorem 1 follows from [13,
Theorem 3].

It can also be observed from our proof that, in Theorem 1, it is in fact not necessary to
assume that the function F(z) = ∑∞

k=0 Akzk is exactly a G-function. Indeed, a similar result
holds provided we have Ak = ∑J

j=1 c j A j,k for some c j ∈ C independent of k, where the

series
∑∞

k=0 A j,k zk ∈ K[[z]] are G-functions all solutions of the same G-operator (playing
the role of LF ).

Moreover, Corollary 1 in [13] generalizes as follows.

Corollary 1 Let us fix some rational numbers a1, . . . , ap+1 and b1, . . . , bp such that ai /∈
Z\{1} and b j /∈ −N for any i , j . Then for any z0 ∈ Q

∗
such that z0 /∈ [1,+∞), infinitely

many of the hypergeometric values
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p+s+1Fp+s

[
a1, a2, . . . , ap+1, 1, . . . , 1
b1, b2, . . . , bp, 2, . . . , 2

; z0
]

, s ≥ 0 (1.1)

are linearly independent over Q(z0).

To deduce Corollary 1 from Theorem 1, one proceeds as in [13] by applying the analytic
continuation toDF of Identity (5.2) of [13], with the same parameters as in [13]. That Identity
(5.2) is formally similar to (1.4); the main difference is that for some values of the parameters
we cannot take �1 = 1 in (1.4). (See Remark 5 in Sect. 4.1 for related comments).

Of course, a more precise version of Corollary 1 holds: the dimension over Q(z0) of the
Q(z0)-vector space generated by the numbers in (1.1) for 0 ≤ s ≤ S is larger than C log(S)

for some constant C that depends on the a’s and b’s, and on [Q(z0) : Q]. We recall that if
|z0| < 1, the hypergeometric numbers in (1.1) are equal, by definition, to the convergent
series

∞∑

k=0

(a1)k(a2)k · · · (ap+1)k

(1)k(b1)k · · · (bp)k
zk0

(k + 1)s

with (a)k = a(a+1) · · · (a+k−1). If |z0| > 1, the numbers (1.1) are defined by the analytic
continuation of the hypergeometric series to the cut planeC\[1,+∞). These numbers can in
fact be also expressed as finite linear combinations of values of convergent hypergeometric
series with rational parameters, where the coefficients of the combinations are inQ[log(Q∗

)].
This is a consequence of the connection formulas between the solutions at 0 and ∞ of the
generalized hypergeometric differential equation (see [21, Section 3]). For the polylogarithms
analytically continued to C\[1,+∞) with −π < arg(1− z) < π , the connection formula is
as follows: for any integer s ≥ 1, we have

Lis(z) = (−1)s+1Lis
(1

z

)
− (2iπ)s

s! Bs

( log(z)

2iπ

)
, z /∈ [0,+∞) (1.2)

where log(z) = ln |z|+i arg(z), arg(z) ∈ (0, 2π), and Bs is the s-thBernoulli polynomial (see

[22, Section 1.3]). In particular, Li2(z) = −Li2( 1z ) + π2

3 − 1
2 log(z)

2 + iπ log(z) in these
conditions. The following specialization of Corollary 1 (and its implicit dimension lower
bound) is interesting because it improves on the best known result due to Marcovecchio [18],
which is restricted to the case 0 < |z0| < 1.

Corollary 2 For any z0 ∈ Q
∗
such that z0 /∈ [1,+∞), infinitely many of the values Lis(z0),

s ≥ 1, are linearly independent over Q(z0).

When |z0| > 1 and z0 /∈ [1,∞), Eq. (1.2) enables us to describe in more classical terms each
of the numbers Lis(z0): it is a Q-linear combination of Lis(1/z0) (defined by the convergent
series

∑∞
k=1 z

−k
0 /ks) and powers of log(z0) and 2iπ .

The proof of Theorem 1 is not a simple generalization of the corresponding theorem in
[13], even though the strategy is similar at the beginning. There are important difficulties to
overcome, which are not present in [13]. As in [13], we first consider the auxiliary function

JF (z) = n!S−r
∞∑

k=0

k(k − 1) · · · (k − rn + 1)

(k + 1)S(k + 2)S · · · (k + n + 1)S
Ak z

n+k+1 (1.3)

where a priori |z| < R, r and n are integer parameters such that r ≤ S and eventually
n → +∞. We have proved in [13] that it can be expressed as a linear combination of the
functions F [s]

n and (z d
dz )

u F with coefficients in K[z]. Here, we prove similarly that
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Linear independence of values of G-functions

JF (z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z)F
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u F)(z) (1.4)

where, in particular, the parameter �1 is defined in Sect. 3.1. For |z| < R, in [13] we applied
the saddle pointmethod to estimate |JF (z)| precisely; this enabled us to apply a generalization
of Nesterenko’s linear independence criterion [20] and deduce Theorem 1 in this case. When
|z| ≥ R, the first thing we would like to point out is that |JF (z)| is still small enough
to prove linear independence results; this could seem surprising since the series (1.3) is
divergent if |z| > R. Instead, we use an integral representation of JF (z) to bound |JF (z)|
from above (see Sect. 8.1). However we did not try to bound |JF (z)| from below (and don’t
even know if this would be possible) because the saddle point method would not be easy at
all to generalize to deal with the analytic continuation of JF (z); indeed, there are immediate
problems when one tries to extend it first to the case |z| = R (for instance, the number of
certain critical points suddenly drops when one shifts from the case |z| < R to the case
|z| = R). Therefore we cannot follow the original approach of [3,24] based on Nesterenko’s
linear independence criterion. This is the reason why we follow the strategy of [14]: we
first prove that the polynomial coefficients of (1.4) are solution of a Padé approximation
problem (namely Theorem 2 stated in Sect. 3.1). This enables us to apply a general version
of Shidlovsky’s lemma; since some solutions of the corresponding differential system may
have identically zero Padé remainders, the version of Shidlovsky’s lemma proved in [14]
(based upon differential Galois theory, following the approach of Bertrand-Beukers [5] and
Bertrand [4]) does not apply to our setting. We generalize it in Sect. 5, and we hope this result
will have other applications. To conclude the proof we apply a linear independence criterion
in the style of Siegel.

The structure of this paper is as follows. In Sect. 2 we focus on the two main tools in
our approach. First we extend in Sect. 2.1 the definition of f [s]

j , given in [13] when f is
holomorphic at 0, to any function in the Nilsson class with rational exponents at 0; then we
study in Sect. 2.2 the variation around a singularity of a solution of a Fuchsian operator, which
generalizes the weight of polylogarithms. Section 3 is devoted to the statement of Theorem 2,
namely the Padé approximation problem satisfied by the polynomial coefficients of (1.4).
We also make comments on this problem, especially on the fact that vanishing conditions
involve non-holomorphic functions. Then we prove Theorem 2 in Sect. 4, building upon
the construction of [13]. We move in Sect. 5 to the general version of Shidlovsky’s lemma
(namely Theorem 3) that we state and prove.We apply it in Sect. 6 to the Padé approximation
problem of Theorem 2: this enables us to construct linearly independent linear forms (see
Proposition 2). For the convenience of the reader, we state and prove in Sect. 7 a (rather
classical) version of Siegel’s linear independence criterion. Section 8 contains the estimates
needed in Sect. 9 to conclude the proof of Theorem 1.

2 Properties of f [s]j and variation around a singularity

In this section we focus on the two main tools in our approach. First we extend the definition
of f [s]

j , given in [13] when f is holomorphic at 0, to any function in the Nilsson class with
rational exponents at 0; we give both an inductive definition and an explicit formula. Then
we study in Sect. 2.2 the variation around a singularity of a solution of a Fuchsian operator,
which generalizes the weight of polylogarithms.
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Throughout this section we fix a simply connected dense open subsetD of C, with 0 /∈ D;
all functions we consider will be holomorphic on D. In all applications we have in mind, D
will be the subset defined after Lemma 5 in Sect. 3.1. We also fix a determination of log(z),
holomorphic on D; then zk = exp

(
k log(z)

)
is well-defined for z ∈ D and k ∈ Q.

2.1 General definition of f[s]j

Since G-operators are Fuchsian with rational exponents, all the functions we consider in this
paper have local expansions at 0 of the form

f (z) =
∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i z
k log(z)i (2.1)

with ak,i ∈ C. We denote by N the set of all functions holomorphic on D that have such
an expansion at 0 (i.e., belong to the Nilsson class with rational exponents at 0) – recall that
D is a simply connected dense open subset of C\{0} fixed in this section. It is important
to observe that N is a C-differential algebra stable by primitivation. (Restricting to rational
exponents is not really needed, but we do it because it contains all applications we have in
mind.)

The notation f [s]
j has been defined in [13] for f holomorphic at 0; let us extend this

definition to any f ∈ N . With this aim in view, we first let ev : N → C denote the
“regularized” evaluation at 0: if f (z) = ∑

k,i ak,i z
k log(z)i around z = 0 then ev( f ) = a0,0

by definition. Then for any f ∈ N , consider any of its primitives P( f ): it is a basic fact that
P( f ) ∈ N as well. We will denote by

∫ z f (x)dx (with no lower bound in the integral) the
unique primitive g of f such that ev(g) = 0. Of course we have g(z) = ∫ z

0 f (x)dx if this
integral is convergent. Moreover,

∫ z is a C-linear operator acting on N .
Given f ∈ N and j ≥ 1, we let

f j (z) = f [1]
j (z) =

∫ z

x j−1 f (x)dx (2.2)

and we define recursively f [s]
j for s ≥ 2 by

f [s+1]
j (z) =

∫ z 1

x
f [s]
j (x)dx . (2.3)

This defines f [s]
j ∈ N for any j, s ≥ 1: the function f [s]

j is holomorphic on D, and its local
expansion at 0 is of the form (2.1).

Let us focus on a few special cases. For any f ∈ N there exists κ( f ) ∈ Q such that

f (z) =
∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i z
k log(z)i

around z = 0. If j ≥ 1 is such that j > −κ( f ) then, for any s ≥ 1, in the process of defining
f [s]
j , all integrals are convergent; therefore in Eqs. (2.2) and (2.3) we may replace

∫ z with
∫ z
0 . This “convergent” case is the most important one. If f is holomorphic at 0 then we may
take κ( f ) = 0 and this situation holds for any j ≥ 1. More generally, if the local expansion
of f at 0 reads
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Linear independence of values of G-functions

f (z) =
∑

k∈Q
k≥κ( f )

akz
k

with ak = 0 for any negative integer k, then the above definition yields

f [s]
j (z) =

∑

k∈Q
k≥κ( f )

ak
(k + j)s

zk+ j

for any j, s ≥ 1, with |z| small enough. In this sum, the terms corresponding to k ∈ Z, k < 0,
have to be omitted; this is harmless since we have assumed ak = 0 in this case. Of course,
if f is holomorphic at 0 then we recover the definition of f [s]

j given in [13]. The situation

where ak 
= 0 for some negative integer k is more subtle. For instance, if f (z) = zk with
k ∈ Z, k < 0, then for any j, s ≥ 1 we have

f [s]
j (z) =

{
1

(k+ j)s z
k+ j if j 
= −k,

1
s! log(z)

s if j = −k.

More generally, the following lemma provides an explicit formula to compute f [s]
j . It will

be used to prove Lemma 9 in Sect. 6.1.

Lemma 1 Let f ∈ N be such that

f (z) =
∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i z
k log(z)i (2.4)

for |z| small enough. Then for any j ≥ 1, s ≥ 1 and any z ∈ D we have

f [s]
j (z) =

e∑

i=0

a− j,i i ! log(z)
s+i

(s + i)! +
∑

k∈Q\{− j}
k≥κ( f )

e∑

λ=0

zk+ j log(z)
λ

λ!
e∑

i=λ

ak,i (−1)i−λ
i !(s−1+i−λ

s−1

)

(k + j)s+i−λ
.

(2.5)

Remark 1 We may define f [s]
j also for s = 0, by letting f [0]

j (z) = z j f (z). Then Eq. (2.5)

holds also in this case, provided we write
(s−1+i−λ

s−1

) = s
s+i−λ

(s+i−λ
s

)
and consider that for

s = 0, this is equal to 1 if i = λ, and to 0 otherwise.

Proof We shall freely use the following elementary primitivation formulas: for every integers
m, n ∈ Z such that m 
= −1 and n ≥ 0, we have on D

P(zm log(z)n
) = zm+1

n∑

�=0

(
n

�

)
(−1)n−�(n − �)!
(m + 1)n−�+1 log(z)� + c,

P
(
log(z)n

z

)

= log(z)n+1

n + 1
+ c,

where, in both cases, the constant c ∈ C is arbitrary. In particular,
∫ z xm log(x)n dx and∫ z log(x)n/x dx are the primitives for which c = 0 in these formulas.

We will also need the following combinatorial identity: for every integers i, j, s ≥ 0,

i∑

λ= j

(
s + i − λ

s

)

=
(
s + 1 + i − j

s + 1

)

. (2.6)
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It is readily proved by noticing that
(s+i−λ

s

) = (s+1+i−λ
s+1

) − (s+i−λ
s+1

)
, which transforms the

sum on the left-hand side of (2.6) into a telescoping one (with the usual convention that(a
b

) = 0 if a < b).
We now prove Eq. (2.5) by induction on s ≥ 1. Let us prove the case s = 1. For any

integer j ≥ 1 and any z ∈ D, we have

f [1]
j (z) =

∫ z

x j−1
( ∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i x
k log(x)i

)

dx

=
e∑

i=0

a− j,i

∫ z log(x)i

x
dx +

∑

k∈Q\{− j}
k≥κ( f )

e∑

i=0

ak,i

∫ z

xk+ j−1 log(x)i dx

=
e∑

i=0

a− j,i

i + 1
log(z)i+1 +

∑

k∈Q\{− j}
k≥κ( f )

zk+ j
e∑

i=0

ak,i

i∑

λ=0

(
i

λ

)
(−1)i−λ(i − λ)!
(k + j)i−λ+1 log(z)λ

=
e∑

i=0

a− j,i i ! log(z)
i+1

(i + 1)! +
∑

k∈Q\{− j}
k≥κ( f )

zk+ j
e∑

λ=0

log(z)λ

λ!
e∑

i=λ

ak,i
(−1)i−λi !

(k + j)i−λ+1

so that Eq. (2.5) is proved in the case s = 1.
Let us now assume that Eq. (2.5) is proved for f [s]

j and let us prove it for f [s+1]
j . For

simplicity, we define

Cλ(u, s) :=
e∑

i=λ

ak,i
(−1)i−λi !
us+i−λ

(
s − 1 + i − λ

s − 1

)

so that (2.5) becomes

f [s]
j (z) =

e∑

i=0

a− j,i i !
(s + i)! log(z)

s+i +
∑

k∈Q\{− j}
k≥κ( f )

zk+ j
e∑

λ=0

Cλ(k + j, s)
log(z)λ

λ! . (2.7)

For any integer j ≥ 1 and any z ∈ D, we have:

f [s+1]
j (z) =

∫ z 1

x
f [s]
j (x)dx

=
∫ z 1

x

( e∑

i=0

a− j,i i !
(s + i)! log(x)

s+i
)

dx

+
∫ z 1

x

( ∑

k∈Q\{− j}
k≥κ( f )

xk+ j
e∑

λ=0

Cλ(k + j, s)
log(x)λ

λ!
)

dx

=
e∑

i=0

a− j,i i !
(s + i)!(s + i + 1)

log(z)s+i+1

+
∑

k∈Q\{− j}
k≥κ( f )

e∑

λ=0

Cλ(k + j, s)
λ∑

�=0

(−1)λ−�
(
λ
�

)
(λ − �)!

(k + j)λ−�+1λ! zk+ j log(z)�
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=
e∑

i=0

a− j,i i !
(s + i + 1)! log(z)

s+i+1

+
∑

k∈Q\{− j}
k≥κ( f )

zk+ j
e∑

�=0

log(z)�

�!
e∑

λ=�

Cλ(k + j, s)
(−1)λ−�

(k + j)λ−�+1 .

Now it remains to simplify the inner sum over λ. We have

e∑

λ=�

Cλ(k + j, s)
(−1)λ−�

(k + j)λ−�+1 =
e∑

λ=�

e∑

i=λ

ak,i
(−1)i−λi !(s−1+i−λ

s−1

)

(k + j)s+i−λ

(−1)λ−�

(k + j)λ−�+1

=
e∑

i=�

ak,i
(−1)i−�i !

(k + j)s+1+i−�

i∑

λ=�

(
s − 1 + i − λ

s − 1

)

=
e∑

i=�

ak,i
(−1)i−�i !

(k + j)s+1+i−�

(
s + i − �

s

)

= C�(k + j, s + 1), (2.8)

where we have used Identity (2.6) to compute the inner sum in Eq. (2.8). Therefore,

f [s+1]
j (z) =

e∑

i=0

a− j,i i !
(s + i + 1)! log(z)

s+i+1 +
∑

k∈Q\{− j}
k≥κ( f )

zk+ j
e∑

�=0

C�(k + j, s + 1)
log(z)�

�! .

This is nothing but Eq. (2.7) with s replaced by s + 1, which completes the proof of the
induction and that of Lemma 1. ��

2.2 Variation around a singularity

Recall thatD is a simply connected dense open subset of C, with 0 /∈ D, fixed in this section.
Let L be a Fuchsian operator with rational exponents at 0 (for instance aG-operator); assume
that D does not contain any singularity of L . Let f be a function holomorphic on D, such
that L f = 0.

For any α ∈ C and any z ∈ D we denote by τα f (z) the value obtained by analytic contin-
uation of f along the following path: starting from z, go very close to α (while remaining in
D), then do a small loop going around α once (in the positive direction), and at last come back
to z (remaining again in D). Observe that if α /∈ D (for instance if α is a singularity of the
Fuchsian operator we consider), then the loop around α does not remain in D so that τα f (z)
will be distinct from f (z) in general. This process defines a function τα f holomorphic on
D. We also let

varα f (z) = τα f (z) − f (z)

denote the variation of f around α; this function is also holomorphic on D. For instance,
var1 log(1− z) = 2iπ (withD = C\[0,+∞)), and varα f (z) = 0 is f is meromorphic at α.
An important property of analytic continuation is that monodromy (in particular variation)
commutes with differentiation: we have (varα f )′ = varα( f ′).
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Lemma 2 Assume that the k-th derivative f (k)(z) has a finite limit as z → α, for any
k ∈ {0, . . . , K }. Then we have

varα f (z) = o((z − α)K ) as z → α.

Remark 2 In the case of the polylogarithms, by [22, p. 53, Proposition 1], we have

var1Lis(z) = −(2iπ)
log(z)s−1

(s − 1)! , s ≥ 1.

We observe that var1Lis is essentially the weight of Lis (see for instance [10, Lemma 4.1]).
The case K = 0 of Lemma 2 corresponds to the remark before Lemma 4.2 of [10]: if f has
a finite limit at α then varα f (α) = 0.

Proof of Lemma 2 For any k ∈ {0, . . . , K } we have (varα f )(k) = varα( f (k)) = τα( f (k)) −
f (k). Since f (k)(z) has a finite limit as z → α, τα( f (k))(z) has the same limit since
the path used for analytic continuation can remain very close to α as z → α. Therefore
limz→α(varα f )(k)(z) = 0 for any k ∈ {0, . . . , K }. Now f is annihilated by a Fuchsian
operator, so that the same holds for τα f and varα f : there exist c ∈ C, r ∈ Q and j ∈ N

such that varα f (z) ∼ c(z − α)r (log(z − α)) j as z → α. Since all derivatives up to order K
vanish at α, we have r > K . This concludes the proof of Lemma 2.

Lemma 3 For any α ∈ C\{0} and any u, s ≥ 1 there exists Pα,u,s, f ∈ C[X ] of degree at
most s such that, for any z ∈ D:

varα( f [s]
u )(z) = (varα f )[s]u (z) + Pα,u,s, f (log z).

Proof If s ≥ 2, the derivative of the left hand side is

varα
( d

dz
f [s]
u

)
= varα

(1

z
f [s−1]
u

)
= 1

z
varα( f [s−1]

u ).

Computing the derivative of the right hand side shows that Lemma 3 holds for s if it does for
s − 1, by taking for Pα,u,s, f (0) the appropriate constant of integration. The same argument
proves Lemma 3 for s = 1. ��
Lemma 4 Let u ≥ 1 be such that u > −κ( f ), where κ( f ) is given by the local expansion
(2.1) of f at 0. Then for any s ≥ 1 we have

var0( f
[s]
u ) = (var0 f )

[s]
u .

Proof Since u > −κ( f ), in the process of defining f [s]
u all integrals are convergent; the

same holds for (var0 f )
[s]
u because we may choose κ(var0 f ) = κ( f ). Therefore we have

f [s]
u (0) = (var0 f )

[s]
u (0); then Lemma 2 (with K = 0) yields (var0( f

[s]
u ))(0) = 0. Moreover

var0 commuteswith differentiation, so that var0( f
[s]
u ) and (var0 f )

[s]
u have the same derivative

(assuming inductively that either s = 1 or Lemma 4 holds with s − 1). This concludes the
proof of Lemma 4. ��

3 Padé approximation problem: statement and comments

In this section we state and prove a Padé approximation problem satisfied by the polynomi-
als constructed in [13], namely Theorem 2. With this aim in mind we recall in Sect. 3.1 the
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notation and the output of the construction of [13]. An interesting feature of this Padé approx-
imation problem is that non-holomorphic functions appear in the vanishing conditions; we
comment this property in Sect. 3.2, and explain how to count the linear equations equivalent
to such conditions. This allows us to show in Sect. 3.3 that this Padé approximation problem
has essentially as many equations as its number of unknowns.

3.1 Notation and statement

Let F be a G-function, fixed throughout this paper, with Taylor coefficients at 0 in a number
field K. Let LF ∈ K[z, d

dz ] be a G-operator such that LF F = 0. To simplify the exposition
and avoid dealing with microsolutions in Sect. 4.4 (see for instance [12]), instead of LF

we shall use the differential operator L provided by the following lemma, and it is also a
G-operator.

Lemma 5 Let L0 be a G-operator. There exists a non-negative integer N such that, upon
letting L = ( d

dz )
N ◦ LF:

for any f such that L f ∈ C[z] there exists P ∈ C[z] such that L( f + P) = 0. (3.1)

Proof The quotient vector space L−1
0 (C[z])/C[z] is finite-dimensional; it has a basis ( f1 mod

C[z], . . . , f p mod C[z]). For any i ∈ {1, . . . , p} we have L0 fi ∈ C[z]; choose N such that
deg L0 fi < N for any i , and let L = ( d

dz )
N ◦ L0. For any f such that L f ∈ C[z], we have

L0 f ∈ C[z] so that f = λ1 f1 + · · · + λp f p − P for some λ1, . . . , λp ∈ C and P ∈ C[z];
then f + P = λ1 f1 + · · · + λp f p ∈ L−1

0 (C[z]<N ) = ker L . This concludes the proof of the
lemma. ��

Let us recall the notation of [13] (see Sect. 4.1 for details). We let θ = z d
dz , and denote

by μ the order of L , by � the set of all finite singularities of L , and by ker L the space of
solutions of L . We also define

D = C\
( ⋃

α∈�∪{0}
�α

)

where �α = {tα, t ∈ R, t ≥ 1} for α ∈ �\{0} and �0 is a fixed closed half-line starting at
0 such that �0 ∩ �α = ∅ for any α ∈ �\{0}. We have D ⊂ DF where DF is defined in the
introduction; notice that we consider here �α for any α ∈ � ∪ {0}, not only for singularities
of F . Then D is a simply connected dense open subset of C; we have 0 /∈ D, and D does
not contain any singularity of L . Therefore the notation and results of Sect. 2 apply to D.
All elements of ker L will be considered as holomorphic functions on D, and will often be
expanded around singularities of L (recall that L is Fuchsian with rational exponents at all
singularities).

We denote by H0 the space of functions holomorphic at 0, and let

� := dim
( H0 ∩ ker L

C[z] ∩ ker L

)
. (3.2)

We remark that this definition is equivalent to that of [13]. Indeed, with the latter, holomorphic
solutions of the differential equation Ly = 0 are given by y(z) = ∑∞

k=0 akz
k where the

sequence (ak) is determined (for k large enough) by a linear recurrence relation of order � (see

[13, Lemma 1 and Step 1 of the proof of Lemma 2]). This means that � = dim(H0∩L−1
C[z]

C[z] ).

To prove Eq. (3.2), it remains to show that the canonical linear injective map H0∩ker L
C[z]∩ker L →
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H0∩L−1
C[z]

C[z] is surjective. This is true using Lemma 5: for any f ∈ H0 such that L f ∈ C[z],
there exists P ∈ C[z] such that f + P ∈ H0 ∩ ker L .

We fix a sufficiently large positive integer m and let �1 = � + m − 1 (see Sect. 4.1 for
details). The only difference with [13] is that m may have to be larger in the present paper;
�1 plays the same role in the present paper as �0 in [13].

Let r , S be integers such that 0 ≤ r ≤ S. As in the introduction we denote by F(z) =∑+∞
k=0 Akzk the G-function we are interested in, with Ak ∈ K for any k. In [13] we have used

in a central way the series

JF (z) := n!S−r
∞∑

k=0

k(k − 1) · · · (k − rn + 1)

(k + 1)S(k + 2)S · · · (k + n + 1)S
Ak z

k+n+1

which is denoted by zn+1TF (1/z) in [13]. For any n ≥ �1 we have constructed polynomials
Pu,s,n(X) and P̃u,n(X) in K[X ] of respective degrees ≤ n and ≤ n + 1+ S(� − 1) such that
for any z inside the open disk of convergence of F ,

JF (z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z)F
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u F)(z)

(see Lemma 7 below; recall that θ = z d
dz ). These polynomials play a central role in the

present paper. We remark that, as in [13], these polynomials depend on the value of m we
have chosen; this value is fixed throughout the present paper.

One of our main steps is to prove that they make up a solution of the following Padé
approximation problem which involves

J f (z) :=
�1∑

u=1

S∑

s=1

Pu,s,n(z) f
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u f )(z)

for all solutions f of the differential equation Ly = 0; all functions f [s]
u and θu f involved

in this formula are holomorphic on D (see Sect. 2.1 for the definition of f [s]
u in this setting).

Theorem 2 Let F be a G-function and L be a G-operator such that LF = 0 and (3.1) holds.
Let r , S be integers such that 0 ≤ r ≤ S; assume that S is sufficiently large in terms of L.

Then there exists an integer κ (depending only on L, r , S) such that for any sufficiently
large integer n, the polynomials Pu,s,n(z) (for 1 ≤ u ≤ �0 and 1 ≤ s ≤ S) and P̃u,n(z) (for
0 ≤ u ≤ μ − 1) have the following properties.

(i) For any f ∈ ker L we have as z → 0:

J f (z) = O(z(r+1)n+1) if f is holomorphic at 0, (3.3)

J f (z) = O(zn−κ ) otherwise. (3.4)

(ii) For any α ∈ �\{0} and any f ∈ ker L we have

varα(J f )(z) = O((z − α)(S−r)n−κ ), z → α. (3.5)

Moreover the left hand side of Eq. (3.5) is identically zero if, and only if, f is holomorphic
at α.

(iii) For any u ∈ {1, . . . ,m − 1} and any s ∈ {1, . . . , S} we have
Pu,s,n(z) = O(zn+1−u), z → 0. (3.6)
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Theorem 2 really involves a Padé approximation problem since the left hand side of Eq.
(3.5) is

varα(J f )(z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z)varα( f [s]
u )(z) +

μ−1∑

u=0

P̃u,n(z)varα(θu f )(z).

Remark 3 It could be interesting to generalize Theorem 1 by restricting to values F [s]
n (z0)

for which s has a given parity. This would probably involve a Padé approximation problem
similar to the one of Theorem 2, but with also vanishing conditions at infinity (as in [8]).

3.2 Padé approximation with non-holomorphic conditions

An important feature of the Padé approximation problem of Theorem 2 is that it involves
vanishing conditions of non-holomorphic functions. In this section we explain how to count
the number of linear equations equivalent to such a condition. Let us start with a well-known
Padé approximation problem, namely Beukers’ for ζ(3). It is the following: find polynomials
P1, . . . , P4 of degree at most n such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1(z) := P1(z)Li2(1/z) + P2(z)Li1(1/z) + P3(z) = O(z−n−1), z → ∞

R2(z) := 2P1(z)Li3(1/z) + P2(z)Li2(1/z) + P4(z) = O(z−n−1), z → ∞

R3(z) := P1(z) log(z) − P2(z) = O(1 − z), z → 1.

In Beukers’ paper [6] the last condition is P2(1) = 0; this equivalent formulation appears in
[8]. The functions R1 and R2 are holomorphic at∞; R3 is holomorphic at 1. The first and last
conditions are “nice” because t (Li2(1/z),Li1(1/z), 1, 0) and t (log(z),−1, 0, 0) are solutions
of a common differential system Y ′ = AY . However the second one does not fit into this
context. This makes it impossible to apply Shidlovsky’s lemma to this Padé approximation
problem. Using non-holomorphic vanishing conditions will help us overcome this problem
(see [10,16,28] for other Padé approximation problems where the same situation appears).

Since the derivative of Li2(1/z) log(z) + 2Li3(1/z) is −1
z (Li1(1/z) log(z) + Li2(1/z)),

following [16, Section 4.1], we replace the condition on R2 with

R1(z) log(z) + R2(z) = P1(z)
(
Li2(1/z) log(z) + 2Li3(1/z)

)

+P2(z)
(
Li1(1/z) log(z) + Li2(1/z)

)
+ P3(z) log(z)

+P4(z) = O(z−n−1 log(z)), z → ∞.

Then we have three conditions (two at ∞ and one at 1) related to three solutions of the same
differential system: the new one is

t
(
Li2(1/z) log(z) + 2Li3(1/z), Li1(1/z) log(z) + Li2(1/z), log(z), 1

)
.

This solution at ∞ is not holomorphic at ∞. It could look complicated, at first glance, to see
howmany linear equations are equivalent to this system. Indeed the condition R1(z) log(z)+
R2(z) = O(z−n−1 log(z)) itself means that both R1(z) and R2(z) are O(z−n−1), z → ∞: it
should be counted as two conditions involving holomorphic functions. However the condition
on R1(z) already appears separately as the first vanishing condition of our Padé approximation
problem, so it has been counted already.
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The following lemma elaborates upon this idea; it enables one to count the number of
linear equations equivalent to such vanishing conditions (at a finite point α; it would not be
difficult to adapt it at∞ in case it would be needed for another Padé approximation problem).
We shall apply it in Sect. 3.3 to prove that the Padé approximation problem of Theorem 2
has (up to an additive constant) as many equations as its number of unknowns. Of course this
computation is not really used to apply Shidlovsky’s lemma, but it is useful to ensure that a
Padé approximation problem is reasonable.

Lemma 6 Let N ≥ 0, A ∈ Mq(C(X)) and α ∈ C; if α is a singularity of the differential
system Y ′ = AY , assume it is a regular one. Let E be a C-vector space of local solutions at
α of this differential system, such that varαY ∈ E for any Y ∈ E. Then the conditions

P1(z)y1(z) + · · · + Pq(z)yq(z) = O((z − α)N ), (3.7)

for Y = t(y1, . . . , yq) ∈ E, amount to N dim E + O(1) linear equations where O(1) is
bounded in terms of A only.

Remark 4 If all Y ∈ E have components holomorphic at α, Lemma 6 is trivial: one writes
Eq. (3.7) for all elements Y of a basis of E . The point of Lemma 6 is that the conditions (3.7)
can be translated into vanishing conditions of holomorphic functions.

Proof Let λ1, …, λp denote the pairwise distinct eigenvalues of varα , seen as a linear map
E → E . For any i ∈ {1, . . . , p}, let Ei = ker((varα − λi Id)dim E ); then we have E =
E1 ⊕ · · · ⊕ Ep .

For each i ∈ {1, . . . , p} there exist cyclic subspaces Ei,u (for 1 ≤ u ≤ Ui ) such that
Ei = Ei,1⊕· · ·⊕Ei,Ui . The assertion that Ei,u is cyclic means that there exists Y {i,u} ∈ Ei,u

such that Ei,u is the set of all �(varα)(Y {i,u}) with � ∈ C[X ]. Now let Vi,u denote the
minimal degree of a non-zero polynomial � ∈ C[X ] such that �(varα)(Y {i,u}) = 0. Then
the varvα(Y {i,u}), for 1 ≤ i ≤ p, 1 ≤ u ≤ Ui and 0 ≤ v ≤ Vi,u − 1, make up a basis of E .
Moreover the same property holds if each varvα(Y {i,u}) is replaced with �i,u,v(varα)(Y {i,u})
where �i,u,v ∈ C[X ] is an arbitrary polynomial of degree v.

In concrete terms, for any i ∈ {1, . . . , p} we denote by ei the exponent at α of the
differential system Y ′ = AY with the least real part among those such that exp(2iπei ) = λi .
Then we have Y {i,u} = t(y{i,u}

1 , . . . , y{i,u}
q ) with

y{i,u}
j (z) = (z − α)ei

Vi,u−1∑

t=0

κ
{i,u}
j,t (z)

1

t ! log(z − α)t for any j ∈ {1, . . . , q},

where κ
{i,u}
j,t (z) is holomorphic at α for any j , t , and κ

{i,u}
j,Vi,u−1(z) is not identically zero for at

least one j ∈ {1, . . . , q}. Choosing the above-mentionedpolynomials�i,u,v in a suitableway,
we obtain a basis of E consisting of vectors �i,u,v(varα)(Y {i,u}) = t (y{i,u,v}

1 , . . . , y{i,u,v}
q )

with the following expression:

y{i,u,v}
j (z) = (z − α)ei

Vi,u−1∑

t=v

κ
{i,u}
j,t (z)

1

(t − v)! log(z − α)t−v for any j ∈ {1, . . . , q}.

The point here is that κ{i,u}
j,t (z) does not depend on v. This basis is of the same form as those

produced by Frobenius’ method (see for instance [11, Eq. (4.4)]); the difference here is that
E is not (in general) the space of all solutions of the differential system.

123

Author's personal copy



Linear independence of values of G-functions

This basis allows us now to count the number of linear equations imposed by Eq. (3.7)
for any Y ∈ E , or equivalently for all �i,u,v(varα)(Y {i,u}) as i , u, v vary. Indeed let us fix
1 ≤ i ≤ p and 1 ≤ u ≤ Ui . Then for any 0 ≤ v ≤ Vi,u − 1 we have

q∑

j=1

Pj (z)y
{i,u,v}
j (z) = (z − α)ei

Vi,u−1∑

t=v

⎛

⎝
q∑

j=1

Pj (z)κ
{i,u}
j,t (z)

⎞

⎠ 1

(t − v)! log(z − α)t−v.

Therefore the vanishing conditions (3.7) for�i,u,v(varα)(Y {i,u})with v = 0, . . . , Vi,u−1 are
equivalent (up to powers of log(z−α)) to the following Vi,u vanishing conditions concerning
functions holomorphic at α:

q∑

j=1

Pj (z)κ
{i,u}
j,t (z) = O((z − α)N−ei ), t = 0, . . . , Vi,u − 1. (3.8)

As long as i and u are fixed, Eq. (3.8) is equivalent to NVi,u +O(1) linear equations, because
e1,…, ep depend only on A. Letting i and u vary, we obtain N dim E+O(1) linear equations:
this concludes the proof of Lemma 6. ��

3.3 Counting equations and unknowns in Theorem 2

In this section we shall prove that in the Padé approximation problem of Theorem 2, the
difference between the number of unknowns and the number of equations is bounded from
above independently from n. With this aim in view, we denote by O(1) any quantity that
can be bounded in terms of L , r , S only (independently from n). A parallel but more precise
argument will be used in Sect. 6.3 to check the assumptions of Shidlovsky’s lemma.

The unknowns are the coefficients of the following polynomials:

– Pu,s,n of degree at most n, for 1 ≤ u ≤ �1 and 1 ≤ s ≤ S, that is (n+1)�1S coefficients.
– P̃u,n of degree at most n + 1+ S(� − 1), for 0 ≤ u ≤ μ − 1, that is μ(n + 2+ S(� − 1))

coefficients.

To sum up, this Padé approximation problem involves
(
μ + �1S

)
n + O(1)

coefficients. Let us count now the number of equations.

– Polynomial solutions of the differential equation Ly = 0 have to be considered separately.
Indeed for any non-zero f ∈ C[z]∩ker L , Eq. (3.3) seems to be equivalent to (r+1)n+1
linear equations. However this is not the case: as Eq. (4.4) shows, J f (z) is a polynomial
of degree at most n+O(1): Eq. (3.3) means that J f (z) is identically zero. This should be
understood as a system of n+O(1) linear equations for each f in a basis ofC[z]∩ker L:
up to O(1), this is the same number of equations as Eq. (3.4). We would like to point out
that, as far as we know, Theorem 2 is the first Padé approximation problem in this setting
with this kind of conditions. The only new feature of the general version of Shidlovsky’s
lemma proved in Sect. 5 below (with respect to that of [14]) is to deal with this situation
through the parameter �.

– The condition (3.4), taken for f in a basis of ker L (including possible polynomial
solutions), amounts to

μn + O(1)
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linear equations since μ = dim ker L . This is not obvious a priori because elements of
ker L are not always holomorphic at 0. Let us deduce this property from Lemma 6. With
this aim in mind, we denote by E the set of tuples

(
( f [s]

u )m≤u≤�1,1≤s≤S, (θu f )0≤u≤μ−1

)

with f ∈ ker L . Since var0 commutes with differentiation we have var0(θu f ) =
θu(var0 f ), and Lemma 4 yields var0( f

[s]
u ) = (var0 f )

[s]
u for any u ≥ m. Therefore

E is stable under var0 because ker L is: Lemma 6 with N = n − κ concludes the proof
that Eq. (3.4) amounts to μn + O(1) linear equations.

– For each f in a basis ofH0 ∩ ker L , Eq. (3.3) seems to be equivalent to (r + 1)n + O(1)
linear equations.HoweverEq. (3.4) has been taken into account already, so only rn+O(1)
equations are new. Moreover, if f is a polynomial this is misleading (see above): in this
case Eq. (3.3) amounts only to O(1) new equations with respect to Eq. (3.4). To conclude,
Eq. (3.3) should be seen as a system of

rn dim
( H0 ∩ ker L

C[z] ∩ ker L

)
+ O(1) = �rn + O(1)

new linear equations.
– Let us consider Eq. (3.5) now. For α ∈ �\{0} we denote by Eα the set of tuples

�α( f ) =
(
(varα( f [s]

u ))1≤u≤�1,1≤s≤S, (varα(θu f ))0≤u≤μ−1

)

with f ∈ ker L . LetHα denote the space of functions holomorphic atα. If f ∈ Hα∩ker L
then all f [s]

u and all θu f are holomorphic at α, so that f ∈ ker�α . Now if f ∈ ker�α ⊂
ker L is non-zero then f has (at most) a regular singularity at α, and varα f = 0 so that
f is meromorphic at α: there exists k ∈ Z and c ∈ C\{0} such that f (z) ∼ c(z − α)k

as z → α. If k < 0 then f [−k]
u has a logarithmic divergence at α for any u, which

is impossible because f ∈ ker�α and −k ≤ S (since the order of α as a pole of a
solution of L is bounded in terms of L). Therefore k ≥ 0: this concludes the proof that
ker�α = Hα ∩ ker L . Accordingly, the space Eα = Im�α is isomorphic to ker L

Hα∩ker L .
We have varα(varα(θu f )) = varα(θu(varα f )) since varα commuteswith differentiation,
and varα(varα( f [s]

u )) = varα((varα f )[s]u ) using Lemma 3. Therefore Eα is stable under
varα because ker L is. Lemma 6 with N = (S − r)n − κ shows that Eq. (3.5) amounts
to

(S − r)n dim Eα + O(1)

linear conditions. Now recall that L−1(Hα)/Hα is the vector space of microsolutions at
α; Kashiwara’s theorem [17] (see also Section 1.2 of [23]) asserts that this vector space
has dimension mα , the multiplicity of α as a singularity of L . For any f ∈ L−1(Hα),
Theorem 1 of [12] provides f0 ∈ Hα such that L( f + f0) ∈ C[z]; then (3.1) gives
P ∈ C[z] ⊂ Hα such that f + f0 + P ∈ ker L . This proves that the canonical injective

map ker L
Hα∩ker L → L−1(Hα)

Hα
is bijective, so that

dim Eα = dim
( ker L

Hα ∩ ker L

)
= dim

( L−1(Hα)

Hα

)
= mα.

Denote by δ the degree of L , and by ω the multiplicity of 0 as a singularity of L . Since
0 is a regular singularity we have δ = ω +∑

α 
=0 mα so that
∑

α 
=0 mα = δ − ω = �

(using the definition of � given in [13], which is equivalent to the one used in the present
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paper: see the remark after Eq. (3.2)). Therefore combining Eqs. (3.5) as α varies in
�\{0} amounts to �(S − r)n + O(1) linear equations.

– Eq. (3.6) amounts to n + 1− u linear conditions on Pu,s,n ; as u and s vary, they provide
(m − 1)Sn + O(1) equations.

To sum up, Theorem 2 amounts to (μ + �S + (m − 1)S)n + O(1) linear equations: up
to an additive constant (independent of n), this is exactly the number of unknowns since
� + m − 1 = �1.

4 Proof of Theorem 2

In this section we prove Theorem 2 stated in Sect. 3.1. Our approach is based on the main
technical result of [13], recalled (together with the notation) in Sect. 4.1. Following [13,
Lemma 4] we deal in Sect. 4.2 with holomorphic solutions at 0. Then we move to the
other local vanishing conditions of Theorem 2, involving other solutions at 0 (Sect. 4.3) and
solutions at non-zero finite singularities (Sect. 4.4).

Throughout this section we keep the notation of Sect. 3.1; in particular we use the G-
operator L provided by Lemma 5.

4.1 Prerequisites and notations from [13]

We recall that � has been defined in Sect. 3.1 (see Eq. (3.2)); we also define

κ0 := min(e1, . . . , eμ, 0) (4.1)

where e1, . . . , eμ are the exponents of L at zero (including possibly non-integer ones). Denot-
ing by f̂1, …, f̂η the integer exponents at ∞ (with η = 0 if there isn’t any), throughout this
paper we fix an integer m ≥ 1 such that

m > −κ0 and m > f̂ j − � for all 1 ≤ j ≤ η (4.2)

and let �1 = � + m − 1. The only difference with [13] is that our assumption (4.2) on m is
more restrictive than the one of [13] (where only the second inequality appears), so that we
may have to take a larger value of m. The integer �1 plays the same role as �0 in [13]. The
reason for this is that in [13] only a specific solution F , holomorphic at 0, is involved. On the
opposite, in the present paper we have to consider all solutions, holomorphic at 0 or not, of
the differential equation Ly = 0. However this larger value of m does not have any impact
on Theorem 1.

By definition of κ0, any local solution of L f = 0 at the origin can be written as

f (z) =
∑

k∈Q
k≥κ0

e∑

i=0

ak,i z
k log(z)i

since L is Fuchsian with rational exponents. Then for any n ≥ m > −κ0 and any s ≥ 1, all
integrals involved in the definition of f [s]

n (see Sect. 2.1) are convergent integrals. Therefore
the following proposition can be proved exactly as in [13] (where in (i) f is assumed to be
holomorphic at 0); recall that D has been defined after Lemma 5 in Sect. 3.1.
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Proposition 1 For any s ≥ 1 and any n ≥ m:

(i) There exist some algebraic numbers κ j,t,s,n ∈ K, and some polynomials K j,s,n(z) in
K[z] of degree at most n + s(� − 1), which depend also on L (but not on f ), such that
for any f ∈ ker L and any z ∈ D:

f [s]
n (z) =

s∑

t=1

�1∑

j=m

κ j,t,s,n f
[t]
j (z) +

μ−1∑

j=0

K j,s,n(z)(θ
j f )(z). (4.3)

(ii) All Galois conjugates of all the numbers κ j,t,s,n (m ≤ j ≤ �1, t ≤ s), and all Galois
conjugates of all the coefficients of the polynomials K j,s,n(z) ( j ≤ μ−1), have modulus
less than H(s, n) > 0 with

lim sup
n→+∞

H(s, n)1/n ≤ Cs
1

for some constant C1 ≥ 1 which depends only on L.
(iii) Let D(s, n) > 0 denote the least common denominator of the algebraic numbers κ j,t,s,n′

(m ≤ j ≤ �1, t ≤ s, n′ ≤ n) and of the coefficients of the polynomials K j,s,n′(z)
( j ≤ μ − 1, n′ ≤ n); then

lim sup
n→+∞

D(s, n)1/n ≤ Cs
2

for some constant C2 ≥ 1 which depends only on L.

Remark 5 The difference between this result and [13, Proposition 1] is that it applies to any
solution of the differential equation Ly = 0, whereas in [13, Proposition 1] f is assumed to
be holomorphic at 0. This is the reason whym has to be chosen larger in Eq. (4.2). To deduce
Corollary 1 from Theorem 1 in the introduction, we have used the analytic continuation to
DF of Identity (5.2) in [13] because with the notation of [13] it is possible in this example
to choose m = �0 = 1, whereas for some values of the parameters Eq. (4.2) does not hold
with m = 1 (so that we cannot choose �1 = 1). This is not a problem since the deduction
of Corollary 1 from Theorem 1 involves only F and no other solution of the differential
equation.

4.2 Holomorphic solutions at 0

In this section we prove Eqs. (3.3) and (3.6) of Theorem 2 involving holomorphic solutions at
0. They follow from Lemma 7 which is essentially the construction of Pu,s,n(X) and P̃u,n(X)

in [13].
Let f be a function, holomorphic onD and at 0, such that L f = 0. Denoting by

∑∞
k=0 akz

k

its local expansion at 0, we recall from Sect. 3.1 that

J f (z) = n!S−r
∞∑

k=0

k(k − 1) · · · (k − rn + 1)

(k + 1)S(k + 2)S · · · (k + n + 1)S
ak z

k+n+1. (4.4)

The following lemma is essentially [13, Lemma 4]. We copy the proof because it provides
an explicit construction of the polynomials Pu,s,n(X) and P̃u,n(X) (see Eqs. (4.6) and (4.7))
that will be used several times later.
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Lemma 7 Let n ≥ �1. There exist some polynomials Pu,s,n(X) and P̃u,n(X) in K[X ] of
respective degrees ≤ n and ≤ n + 1 + S(� − 1) such that, for any f ∈ ker L holomorphic
at 0 and any z ∈ D:

J f (z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z) f
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u f )(z).

Moreover:

– The polynomials Pu,s,n(z) and P̃u,n(z) depend only on L but not on f .
– For u ≤ m − 1 and any s, we have Pu,s,n(z) = cu,s,nzn+1−u with cu,s,n ∈ Q.

This lemma implies directly Eqs. (3.3) and (3.6) of Theorem 2.

Remark 6 With the notation of [13] we have

Pu,s,n(z) = zn+1Cu,s,n(1/z) and P̃u,n(z) = zn+1+S(�−1)C̃u,n(1/z).

Proof We have the partial fractions expansion in k:

n!S−r k(k − 1) · · · (k − rn + 1)

(k + 1)S(k + 2)S · · · (k + n + 1)S
=

n+1∑

j=1

S∑

s=1

c j,s,n
(k + j)s

(4.5)

for some c j,s,n ∈ Q, which also depend on r and S. By analytic continuation it is enough to
prove Lemma 7 when |z| < R, where R is the radius of convergence of the local expansion∑∞

k=0 akz
k of f (z) around 0. Recall that f [s]

j (z) = ∑
k∈Q, k≥κ( f )

ak
(k+ j)s z

k+ j , so that

J f (z) =
n+1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z).

Since n ≥ �1 ≥ m, by Proposition 1 we have

J f (z) =
�1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z) +
n+1∑

j=�1+1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z)

=
�1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z)

+
n+1∑

j=�1+1

S∑

s=1

c j,s,nz
n+1− j

⎛

⎝
s∑

t=1

�1∑

u=m

κu,t,s, j f
[t]
u (z) +

μ−1∑

u=0

Ku,s, j (z)(θ
u f )(z)

⎞

⎠

=
�1∑

u=1

S∑

s=1

Pu,s,n(z) f
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u f )(z)

where

Pu,s,n(z) := cu,s,nz
n+1−u +

n+1∑

j=�1+1

S∑

σ=s

zn+1− j c j,σ,nκu,s,σ, j , (4.6)

P̃u,n(z) :=
n+1∑

j=�1+1

S∑

s=1

c j,s,nz
n+1− j Ku,s, j (z). (4.7)
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In Eq. (4.6) we agree that κu,s,σ, j = 0 if 1 ≤ u ≤ m − 1, so that Pu,s,n(z) = cu,s,nzn+1−u .
The assertion on the degree of these polynomials is clear from their expressions since

Ku,s, j (z) is a polynomial of degree at most j + s(� − 1). ��

4.3 Other local solutions at 0

In this section we prove condition (3.4) in Theorem 2 (i) involving (non-holomorphic) local
solutions at 0, as a direct consequence of Lemma 8 below.

Since L is Fuchsian with rational exponents, any solution of L f = 0 can bewritten around
z = 0 as

f (z) =
∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i z
k log(z)i . (4.8)

Moreover, by definition of κ0 (see Sect. 4.1), we may choose κ( f ) = κ0. Using the polyno-
mials Pu,s,n(X) and P̃u,n(X) provided by Lemma 7 we may consider (as in Sect. 3.1)

J f (z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z) f
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u f )(z). (4.9)

Lemma 8 If n ≥ �1 then for any f ∈ ker L we have, as z → 0:

J f (z) = O(zn+1+κ0 log(z)e+S).

In particular we deduce that J f (z) = O(zn+κ0) as z → 0; therefore Lemma 8 implies
condition (3.4) in Theorem 2 (i).

Proof Let us consider

J̃ f (z) :=
n+1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z).

Since n ≥ �1, we have

J̃ f (z) =
�1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z) +
n+1∑

j=�1+1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z).

The same computation as in the proof of Lemma 7, based on Proposition 1, yields

J̃ f (z) =
�1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z)

+
n+1∑

j=�1+1

S∑

s=1

c j,s,nz
n+1− j

⎛

⎝
s∑

t=1

�1∑

u=m

κu,t,s, j f
[t]
u (z) +

μ−1∑

u=0

Ku,s, j (z)(θ
u f )(z)

⎞

⎠

=
�1∑

u=1

S∑

s=1

Pu,s,n(z) f
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
u f )(z)
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using Eqs. (4.6) and (4.7), so that J̃ f (z) = J f (z). Now we have f (z) = O(zκ0 log(z)e) as

z → 0 since Eq. (4.8) holds with κ( f ) = κ0, so that f
[s]
j (z) = O(zκ0+ j log(z)e+s) for any j

and any s. Therefore J̃ f (z) = O(zκ0+n+1 log(z)e+S), and the same property holds for J f (z).
��

Remark 7 Assume that the local expansion of f ∈ ker L around the origin is given by
f (z) = ∑∞

k∈Q,k≥κ( f ) akz
k with ak = 0 for any k ∈ Z such that k < 0. Then as in the

holomorphic case (see Sect. 4.2) we obtain from (4.9), by combining the proofs of Lemmas 7
and 8:

J f (z) = n!S−r
∞∑

k∈Q
k≥κ( f )

k(k − 1) · · · (k − rn + 1)

(k + 1)S(k + 2)S · · · (k + n + 1)S
akz

k+n+1

where we omit the terms corresponding to k ∈ Z, k ≤ 0. We refer to Lemma 9 in Sect. 6.1
below for the general expression of J f (z) in terms of the local expansion of f around 0.

4.4 Vanishing conditions at singularities

In this section we conclude the proof of Theorem 2 by proving assertion (i i). We fix α ∈
�\{0} and assume that r < S (otherwise it holds trivially). Given f ∈ ker L , Theorem 1
of [12] provides a function h, holomorphic at 0 and at all singularities β ∈ �\{α}, such
that h − f is holomorphic at α and Lh ∈ C[z]. Using (3.1) to add a suitable polynomial (if
necessary), we may assume that Lh = 0. If h is holomorphic at α then so is f , and the left
hand side of Eq. (3.5) is identically zero; from now on we assume that h is not holomorphic
at α. Since h is holomorphic at 0, Lemma 7 yields

Jh(z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z)h
[s]
u (z) +

μ−1∑

u=0

P̃u,n(z)(θ
uh)(z) (4.10)

for any z ∈ D, with

Jh(z) = n!S−r
∞∑

k=0

(k − rn + 1)rn
(k + 1)Sn+1

hk z
k+n+1 (4.11)

for |z| < |α|, where h(z) = ∑∞
k=0 hkz

k ; recall that α is the only finite singularity of h.
Transference theorems (see for instance [15, Section VI.5] or [9, Section 6.2]) provide t ∈ Q,
e ∈ N, J ≥ 1, d1, . . . , dJ ∈ C� and pairwise distinct ζ1, . . . , ζJ ∈ C with |ζ1| = · · · =
|ζJ | = 1 such that

hk = |α|−kkt (log k)e
(
χk + o(1)

)
as k → ∞, with χk =

J∑

j=1

d jζ
k
j . (4.12)

Assume that n is sufficiently large. Since r < S, Eq. (4.12) shows that the series (4.11)
converges absolutely for any z such that |z| ≤ |α|, so that Jh(z) has no pole of modulus
|α|. However Eq. (4.12) proves that the k-th Taylor coefficient of Jh(z) at the origin grows
essentially like |α|−k (see [9, Lemma 6]). Therefore Jh(z) has a (non-polar) singularity of
modulus |α|; Eq. (4.10) shows that it is also a singularity of h, so that this non-polar singularity
of Jh(z) is α.

To conclude the proof, we notice that the integer κ in Theorem2may be increased to ensure
that κ > t − S+1 (since the integer t in Eq. (4.12) can be bounded in terms of L only). Let p
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be a non-negative integer less than or equal to (S−r)n−κ , so that p+t+rn−S(n+1) < −1.
Then Eq. (4.12) shows that the p-th derivative of Jh(z) at z = α is defined by an absolutely
convergent series (obtained by differentiating Eq. (4.11)), so that it has a finite limit as z → α.
Applying Lemma 2 yields

varα(J f )(z) = o((z − α)(S−r)n−κ ) as z → α.

Using Eq. (4.10) we obtain

�1∑

u=1

S∑

s=1

Pu,s,n(z)varα(h[s]
u )(z) +

μ−1∑

u=0

P̃u,n(z)varα(θuh)(z) = o((z − α)(S−r)n−κ ) as z → α.

Now h − f is holomorphic at α: so are h[s]
u − f [s]

u and θuh − θu f , and therefore h may be
replaced with f in this equation. Replacing also trivially the symbol owith O , this yields Eq.
(3.5) for f . Moreover the function in the left hand side is varα(Jh)(z): it is not identically
zero since Jh(z) has a non-polar singularity at α. This concludes the proof of Theorem 2.

5 A general version of Shidlovsky’s lemma

In this section we state and prove a general version of Shidlovsky’s lemma. The point is to
adapt the one of [14] (based upon the approach of Bertrand-Beukers [5] and Bertrand [4])
so as to take into account polynomial solutions with zero Padé remainders. We consider a
general setting (see Sect. 5.1) because we hope this result can be useful in other situations.

5.1 Setting

Given σ ∈ C ∪ {∞}, recall that the Nilsson class at σ is the set of finite sums

f (z) =
∑

e∈C

∑

i∈N
λi,e hi,e(z)(z − σ)e log(z − σ)i

where λi,e ∈ C, hi,e is holomorphic at σ , and z − σ should be understood as 1/z if σ = ∞.
If such a function f (z) is not identically zero, we may assume that hi,e(σ ) 
= 0 for any i ,
e; then the generalized order of f at σ , denoted by ordσ f , is the minimal real part of an
exponent e such that λi,e 
= 0 for some i .

Let q be a positive integer, and A ∈ Mq(C(z)). We fix P1, . . . , Pq ∈ C[z] and n ∈ N =
{0, 1, 2, . . .} such that deg Pi ≤ n for any i . Then with any solution Y = t(y1, . . . , yq) of
the differential system Y ′ = AY is associated a remainder R(Y ) defined by

R(Y )(z) =
q∑

i=1

Pi (z)yi (z).

Let � be a finite subset of C ∪ {∞}. This will be the set of points where vanishing
conditions appear. We do not assume any relationship1 between� and the set of singularities
of the differential system Y ′ = AY (even though interesting Padé approximation problems
often involve vanishing conditions at singularities, as in Theorem 2). For each σ ∈ �, let

1 To help the reader compare with [14], the notation of this section is independent from the one in the previous
sections. In particular �, α, n and Jσ have different meanings (see Sect. 6.3).
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(Y j ) j∈Jσ be a family of solutions of Y ′ = AY such that the functions R(Y j ), j ∈ Jσ , are
C-linearly independent and belong to the Nilsson class at σ .

We agree that Jσ = ∅ if σ /∈ �, and we also consider a finite set J and a family (Y j ) j∈J

of solutions of Y ′ = AY such that R(Y j ) = 0 for any j ∈ J ; we assume these solutions Y j

to be C-linearly independent, and to belong to the Nilsson class at σ . We let � = CardJ ;
the case � = 0 is treated in [14]. Such solutions Y j with zero Padé remainders appear in
Theorem 2 if r ≥ 1 and the differential operator L has non-zero polynomial solutions (see
the proof of Proposition 2 in Sect. 6 below). They are the only reason why [14, Theorem 2]
does not apply to our setting.

At last we let M(z) = (Pk,i (z))1≤i,k≤q ∈ Mq(C(z)) where the rational functions Pk,i ∈
C(z) are defined for k ≥ 1 and 1 ≤ i ≤ q by

⎛

⎜
⎝

Pk,1
...

Pk,q

⎞

⎟
⎠ =

(
d

dz
+ tA

)k−1

⎛

⎜
⎝

P1
...

Pq

⎞

⎟
⎠ . (5.1)

Obviously the poles of the coefficients Pk,i of M are among those of A. These rational
functions Pk,i play an important role because they are used to differentiate the remainders
[26, Chapter 3, Section 4]:

R(Y )(k−1)(z) =
q∑

i=1

Pk,i (z)yi (z). (5.2)

5.2 Statement of Shidlovsky’s lemma

In the setting of Sect. 5.1, let τ ∈ Z be such that
∑

σ∈�

∑

j∈Jσ

ordσ (R(Y j )) ≥ (n + 1)(q − CardJ∞ − �) − τ. (5.3)

The first result we shall prove below is the existence of a positive constant c1, which depends
only on A and �, such that:

– We have τ ≥ −c1.
– If τ ≤ n − c1 then rk(M(z)) = q − �.

Here and below, we denote by rk the rank of a matrix. This result generalizes the functional
part of Shidlovsky’s lemma, namely det M(z) is not identically zero (if � = 0). Its proof
relies on the functional Shidlovsky’s lemma of [14], which is itself based upon the approach
of Bertrand-Beukers [5] and Bertrand [4].

The next step is to evaluate at a given point α, going from functional to numerical linear
forms (see [26, Chapter 3, Lemma 10] for the classical setting). As in [14] we allow α to be
a singularity of the differential system Y ′ = AY , and/or an element of � (eventhough in the
proof of Theorem 1, α /∈ � is not a singularity).

Theorem 3 There exists a positive constant c2, which depends only on A and �, with the
following property. Assume that, for some α ∈ C:

(i) If α is a singularity of the differential system Y ′ = AY , it is a regular one and all
non-zero exponents at α have positive real parts.

(ii) Eq. (5.3) holds for some τ with 0 ≤ τ ≤ n − c1.
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(iii) All rational functions Pk,i , with 1 ≤ i ≤ q and 1 ≤ k < τ + c2, are holomorphic at
z = α.

Then the matrix (Pk,i (α))1≤i≤q,1≤k<τ+c2 ∈ Mq,τ+c2−1(C) has rank at least q−�−CardJα .

In particular, assertion (i) holds if the differential system Y ′ = AY has a basis of local
solutions at α with coordinates inC[log(z−α)][[(z−α)e]] for some positive rational number
e.

The lower bound on rk
(
Pk,i (α)

)
provided by Theorem 3 is an equality in many special

cases, including the Padé approximation problem of Theorem 2 (see Proposition 2 below)
and the one studied in [14, Section 4]; it would be interesting to know if this is always the
case.

5.3 Proof of Shidlovsky’s lemma

In this section we prove Theorem 3. The proof falls into 3 steps.

Step 1: M(z) ∈ Mq(C(z)) has rank at least q − �.
As in [26], there is a non-trivial linear relation with coefficients in C(z) between the

rk(M) + 1 first columns of M ; this provides a differential operator L of order μ = rk(M)

such that L(R(Y )) = 0 for any solution Y of the differential system Y ′ = AY , because we
have

t Y M = (
R(Y ) R(Y )′ . . . R(Y )(q−1)

)
.

In particular, L(R(Y j )) = 0 for any σ and any j ∈ Jσ . Therefore [14, Theorem 3.1] yields
∑

σ∈�

∑

j∈Jσ

ordσ (R(Y j )) ≤ (n + 1)(μ − CardJ∞) + c1

where c1 is a constant that depends only on A and �. Together with Eq. (5.3) and the
assumption τ ≤ n − c1, this inequality implies μ ≥ q − �.

Step 2: Determination of minors up to factors of bounded degree.
From now on we denote byμ the rank of M(z), and we consider aμ×μ submatrix M0(z)

of M(z) such that det M0(z) 
= 0. Step 1 yields μ ≥ q − �, and we shall prove that equality
holds.

Let S denote the set of finite singularities of the differential system Y ′ = AY , i.e. poles of
coefficients of A. For any s ∈ S, let Ns denote the maximal order of s as a pole of a coefficient
of A; let Ns = 0 for s ∈ C\S. Then Eq. (5.1) shows that (z−s)(k−1)Ns Pk,i (z) is holomorphic
at z = s for any k ≥ 1 and any i ∈ {1, . . . , q}. Therefore det M0(z) ·∏s∈S(z − s)q(q−1)Ns

has no pole: is it a polynomial.
Now let σ ∈ �, and denote by Tσ ∈ M�+CardJσ ,q(H) thematrixwith rows t Y j , j ∈ J� Jσ ;

here J � Jσ is the disjoint union of J and Jσ , in which any element of J ∩ Jσ appears twice
(but we shall prove shortly that there is no such element). Let us prove that these rows are
linearly independent over C, so that rkTσ = � + CardJσ . Assume that

∑
j∈J�Jσ λ j Y j = 0;

then
∑

j∈Jσ λ j R(Y j ) = 0, so that λ j = 0 for any j ∈ Jσ because the remainders R(Y j ),
j ∈ Jσ , are C-linearly independent. Therefore

∑
j∈J λ j Y j = 0, and finally λ j = 0 for any

j ∈ J because the solutions Y j , j ∈ J , are C-linearly independent. This concludes the proof
that rkTσ = � + CardJσ ; in the same time we have proved that J ∩ Jσ = ∅.

Therefore there exists a basis of solutions Bσ of the differential system Y ′ = AY of which
the � first elements are the Y j , j ∈ J , and the CardJσ next ones are the Y j , j ∈ Jσ . The
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wronskian determinant of Bσ may vanish at σ if σ is a singularity, but even in this case it has
generalized order ≤ c0(σ ) at σ (see [14, Section 3.1]), where c0(σ ) is a constant depending
only on A and σ (not on Bσ ). On the other hand, all components of all elements of Bσ have
generalized order≥ rσ at σ , where rσ ∈ R depends only on A and σ (see [5, Proposition 1]).
Therefore there exists a subset Iσ of {1, . . . , q}, with CardIσ = q−�−CardJσ , such that the
determinant of the submatrix of Tσ corresponding to the columns indexed by {1, . . . , q}\Iσ
has generalized order ≤ c(σ ) at σ , where c(σ ) = c0(σ ) − rσCardIσ depends only on A and
σ . Increasing c0(σ ) and c(σ ) if necessary, we may assume that c(σ ) ∈ N.

Let Pσ ∈ Mq(H) denote the matrix of which the � + CardJσ first rows are that of
Tσ , and the other rows are the tei , i ∈ Iσ , where (e1, . . . , eq) is the canonical basis of
Mq,1(C). Then Pσ M has its � first rows equal to (0 0 . . . 0), its CardJσ next ones equal to(
R(Y j ) R(Y j )

′ . . . R(Y j )
(q−1)

)
with j ∈ Jσ , and its last rows equal to

(
P1,i . . . Pq,i

)
with

i ∈ Iσ . Therefore all coefficients in the row corresponding to j ∈ Jσ have order at σ at least
ordσ R(Y j ) − q + 1, and (if σ 
= ∞) all coefficients in the row corresponding to i ∈ Iσ are
either holomorphic at σ , or have a pole of order at most (q − 1)Nσ is σ ∈ S.

By construction of Iσ , the determinant of Pσ has generalized order ≤ c(σ ) at σ ; in
particular Pσ is invertible and we may write M = P−1

σ (Pσ M). Since the first � rows of
Pσ M ∈ Mq(H) are identically zero, we have rk(Pσ M) ≤ q − � so that rkM ≤ q − �.
Combining this inequality with Step 1, we obtain rkM = q − �.

Recall thatM0(z) is aμ×μ submatrix ofM(z) such that det M0(z) 
= 0, withμ = rkM =
q − �. Let k1 < · · · < kμ denote the indices k such that the k-th column of M(z) appears in
M0(z). Denote by M1(z) ∈ Mμ(H) the submatrix of Pσ M obtained by removing the first �
rows (which are identically zero) and keeping only the columns with indices k1, …, kμ. Let
M2(z) ∈ Mμ(H) denote the submatrix of P−1

σ obtained by removing the first � columns,
and keeping only the columns with indices i1, …, iμ where i1 < · · · < iμ are the indices i
such that the i-th row of M(z) appears in M0(z). Then the identity M = P−1

σ (Pσ M) yields
M0 = M2M1 because the first � rows of Pσ M are identically zero. Recall that all coefficients
in the row of M1 corresponding to j ∈ Jσ have order at σ at least ordσ R(Y j ) − q + 1, and
(if σ 
= ∞) all coefficients in the row corresponding to i ∈ Iσ are either holomorphic at σ ,
or have a pole of order at most (q − 1)Nσ is σ ∈ S. Since Nσ = 0 if σ /∈ S, we have if
σ ∈ �\{∞}:

ordσ det(M1) ≥
⎛

⎝
∑

j∈Jσ

ordσ R(Y j )

⎞

⎠− (q − 1)CardJσ − (q − 1)Nσ (μ − CardJσ ).

Now let us focus on M2. Recall that all coefficients of the � + CardJσ first rows of Pσ

have generalized order ≥ rσ at σ , and all coefficients of the other rows are equal to 0 or 1.
Therefore all coefficients of the comatrix ComPσ have generalized order ≥ (� +CardJσ )rσ
at σ (becausewemay assume that rσ ≤ 0). Since ordσ det(Pσ ) ≤ c(σ ) andM2 is a submatrix
of P−1

σ = (det Pσ )−1 tComPσ , we deduce that all coefficients of M2 have generalized order
≥ (� + CardJσ )rσ − c(σ ) at σ , so that

ordσ det(M2) ≥ μ(� + CardJσ )rσ − μc(σ ). (5.4)

Combining this inequality with the corresponding one on M1, we obtain

ordσ det(M0) ≥
⎛

⎝
∑

j∈Jσ

ordσ R(Y j )

⎞

⎠− c′(σ ) (5.5)
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for some integer constant c′(σ ) which depends only on A and �. Now let

Q2(z) =
(
∏

s∈S
(z − s)q(q−1)Ns

)

·
( ∏

σ∈�\{∞}
(z − σ)c

′(σ )
)

so that Q2(z) det M(z) is a polynomial and vanishes at any σ ∈ �\{∞} with order at
least

∑
j∈Jσ ordσ R(Y j ). To bound from above the degree of this polynomial, we define

T∞ and P∞ as above; if ∞ /∈ � then J∞ = ∅ and there is no row corresponding to J∞.
Everything works in the same way as for σ ∈ C, except that for some non-negative integer t
we have R(Y j )

(k−1) = O(z−ord∞R(Y j ) log(z)t ) as |z| → ∞ for any j ∈ J∞ and any k ≥ 1,
and Pk,i (z) = O(zn+(q−1)d) for any i ∈ I∞ and any k ∈ {1, . . . , q} (where d is greater
than or equal to the degree of all coefficients of A). Therefore we have ord∞R(Y j )

(k−1) ≥
ord∞R(Y j ) for any j ∈ J∞ and any k ≥ 1, and ord∞Pk,i ≥ −n − (q − 1)d for any i ∈ I∞
and any k ∈ {1, . . . , q}. Arguing as above we obtain

ord∞ det(M1) ≥
( ∑

j∈J∞
ord∞R(Y j )

)
− (n + (q − 1)d)(μ − CardJ∞),

and Eq. (5.4) remains valid with σ = ∞, so that

ord∞ det(M0) ≥
( ∑

j∈J∞
ord∞R(Y j )

)
− n(μ − CardJ∞) − c′(∞)

for some c′(∞) which depends only on A and �. Since det M0(z) is a rational function this
means det M0(z) = O(zu) as |z| → ∞, with

u = c′(∞) + n(q − � − CardJ∞) −
∑

j∈J∞
ord∞R(Y j ),

so that

deg(Q2(z) det M0(z)) ≤ u + deg Q2 ≤ τ + c1 +
∑

σ∈�\{∞}

⌈ ∑

j∈Jσ

ordσ R(Y j )
⌉

using Eq. (5.3), where c1 depends only on A and � (since 0 ≤ CardJσ ≤ q for any σ ) and
�ω� is the least integer greater than or equal to ω. To sum up, we have found a polynomial
Q1 of degree at most τ + c1 such that

det M0(z) = Q1(z)

Q2(z)

∏

σ∈�\{∞}
(z − σ)

�∑ j∈Jσ ordσ R(Y j )�.

Since det M0 
= 0, this implies in particular τ ≥ −c1.

Step 3: Evaluation at α.
To begin with, we denote by Lα the C-vector space spanned by the functions h(z)(z −

α)e(log(z − α))i with h holomorphic at α, i ∈ N, and e ∈ C such that either e = 0 or
Re (e) > 0.

Let qα = CardJα and q ′
α = q − � − qα , where Jα = ∅ if α /∈ �; for simplicity we

assume that J = {1, . . . , �} and Jα = {� + 1, . . . , � + qα}. Since the solutions Y1, …,
Y�+qα of the differential system Y ′ = AY are linearly independent over C (see Step 2), there
exist solutions Y�+qα+1, …, Yq such that (Y1, . . . , Yq) is a local basis of solutions at α. Let
Y be the matrix with columns Y1, …, Yq ; then tYM is the matrix (R(Yi )(k−1))1≤i,k≤q , and
assumption (i) of Theorem 3 yields Y ∈ Mq(Lα). Moreover the first � rows of tYM are
identically zero.
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As in Step 2 we fix a square submatrix M0(z) of M(z) of size μ = q − �, such that
det M0(z) 
= 0. We also denote by k1 < · · · < kq−� the indices k such that the k-th column
of M(z) appears in M0(z). We shall consider now the matrix M ′

0 ∈ Mq−�(H) obtained from
tYM by removing the first � rows (which are identically zero) and keeping only the columns
with indices k1, …, kq−�. In other words, we have M ′

0(z) = (
R(Y�+i )

(k j−1)
)
1≤i, j≤q−�

.

Let Z denote the submatrix of tY−1 obtained by keeping only the columns with indices
� + 1, …, q and the rows with indices i1, …, iq−� (where 1 ≤ i1 < · · · < iq−� ≤ q are the
indices of the rows of M that appear in M0). Then we have ZM ′

0 = M0. Moreover det Y is
the wronskian of Y1, …, Yq : it is a solution of the first order differential equation

w′(z) = w(z)trace(A(z)). (5.6)

Now the generalized order at α of any non-zero solution of Eq. (5.6), and in particular that
of det Y , can be bounded from above in terms of A only. On the other hand, as in Step 2,
all coefficients of Y have generalized order ≥ rα at α. Since tY−1 = (det Y)−1 tCom(tY),
all coefficients of tY−1, and accordingly det Z , have generalized order at α bounded from
below in terms of A only. On the other hand, Step 2 shows that ordα det M0 ≤ ωα + τ + c1,
where ωα = �∑ j∈Jα ordαR(Y j )� if α ∈ �, and ωα = 0 otherwise. Finally, the matrix

M ′
0 = Z−1M0 satisfies

ordα det M
′
0 ≤ ωα + τ + c′

1 (5.7)

where c′
1 depends only on A.

For any subset E of {1, . . . , q − �} of cardinality q ′
α := q − � − qα , we denote by �E

the determinant of the submatrix of M ′
0 obtained by considering only the rows with index

i ≥ qα + 1 and the columns with index j ∈ E , and by �̃E the one obtained by removing
these rows and columns. Then Laplace expansion by complementary minors yields

det M ′
0(z) =

∑

E⊂{1,...,q−�}
CardE=q ′

α

εE�E (z)�̃E (z) (5.8)

with εE ∈ {−1, 1}. Using Eq. (5.7) there exists a subset E such that

�1 := ordα�E (z) ≤ ωα + τ − c′
1 − ordα�̃E (z). (5.9)

Now for any i ∈ Jα = {�+1, . . . , �+qα} and any k ∈ {1, . . . , q}we have ordαR(Yi )(k−1) ≥
ordαR(Yi ) − (q − 1) so that ordα�̃E (z) ≥ ωα − qα(q − 1). Therefore Eq. (5.9) yields
�1 ≤ τ + c3 for some constant c3 depending only on A and �. Using this upper bound we
shall prove now that �1 is a non-negative integer, and �

(�1)
E (z) has a finite non-zero limit as

z tends to α.
Since Y ∈ Mq(Lα) and Pi,k has no pole at α for k ≤ q , we have �E (z) ∈ Lα so that

�E (z) =
∑

e∈E

I∑

i=0

λi,e hi,e(z)(z − α)e(log(z − α))i (5.10)

where hi,e(z) is holomorphic at α and E is a finite subset of C such that for any e ∈ E , either
e = 0 or Re (e) > 0. Moreover we may assume that e− e′ /∈ Z for any distinct e, e′ ∈ E , and
that for any e ∈ E there exists i such that λi,ehi,e(α) 
= 0. At last, the integer I can be chosen
in terms of A only, since the exponents of log(z − α) in local solutions at α of Y ′ = AY are
bounded.
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We choose the constant c2 of Theorem 3 to be c2 = c3 + I + q + 1. For any non-negative
integer � ≤ c2 + τ − q − 1, the � -th derivative �

(�)
E (z) is a Z-linear combination of

determinants of matrices of the form

Nk′
1,...,k

′
q′
α

= (
R(Y�+qα+i )

(k′
j−1))

1≤i, j≤q ′
α

with 1 ≤ k′
1 < · · · < k′

q ′
α

≤ q + � < c2 + τ . Since Yi ∈ Mq,1(Lα) and Pk,i is assumed to

be holomorphic at α for any i and any k < τ + c2, we have R(Yi )(k−1) ∈ Lα . Accordingly
det Nk′

1,...,k
′
q′
α

∈ Lα , and finally �
(�)
E (z) ∈ Lα for any non-negative integer � ≤ c2 + τ −

�n − q − 1. Therefore in the expression (5.10), all pairs (e, i) such that λi,ehi,e(α) 
= 0 and
Re (e) + i ≤ c2 + τ − q − 1 satisfy e ∈ N and i = 0. Now recall that �1 = ordα�E (z) ≤
τ +c3 = c2+τ −q−1− I . Then there is a term (e, i) in Eq. (5.10) such that λi,ehi,e(α) 
= 0
and Re (e) = �1 ≤ c2+τ −q−1− I , and accordingly Re (e)+ i ≤ c2+τ −q−1: we have
e ∈ N, i = 0, and no other term (e′, i ′) such that λi ′,e′hi ′,e′(α) 
= 0 satisfies Re (e′) = �1.

In particular �1 is a non-negative integer, and �
(�1)
E (z) has a finite non-zero limit as z tends

to α.
Let evα : Lα → C denote the regularized evaluation at α, defined by evα( f ) =

λ0,0 h0,0(α) if f (z) is the right hand side of Eq. (5.10), and of course evα( f ) = 0 if 0 /∈ E .
The important point here is that any e ∈ E satisfies either e = 0 or Re (e) > 0, so that evα

is a C-algebra homomorphism; moreover evα( f ) is equal to the limit of f (z) as z → α

whenever this limit exists. In particular we have evα(�
(�1)
E ) 
= 0. Now, as above evα(�

(�1)
E )

is aZ-linear combination of evα(det Nk′
1,...,k

′
q′
α

)with 1 ≤ k′
1 < · · · < k′

q ′
α

≤ q+�1 < c2+τ ,

so that evα(det Nk′
1,...,k

′
q′
α

) 
= 0 for some tuple (k′
1, . . . , k

′
q ′
α
). For this tuple we consider the

equality t Ỹ M̃ = Nk1,...,kq′
α
, where Ỹ ∈ Mq,q ′

α
(Lα) is the matrix with columns Y�+qα+1, …,

Yq , and M̃ = (
Pk′

j ,i
)
1≤i≤q,1≤ j≤q ′

α
. The Cauchy-Binet formula yields

det Nk′
1,...,k

′
q′
α

=
∑

B⊂{1,...,q}
CardB=q ′

α

det t ỸB · det M̃B (5.11)

where ỸB (resp. M̃B) is the square matrix consisting in the rows of Ỹ (resp. of M̃) corre-
sponding to indices in B. Extending evα coefficientwise to matrices, Eq. (5.11) yields

evα

(
det Nk′

1,...,k
′
q′
α

)
=

∑

B⊂{1,...,q}
CardB=q ′

α

evα

(
det t ỸB

)
· evα

(
det M̃B

)
.

Now the left hand side is non-zero, so that evα(det M̃B) 
= 0 for some B. Since all coefficients
Pk,i are holomorphic at α, so is det M̃B and therefore det(M̃B(α)) = evα(det M̃B) 
= 0. We
have found an invertible submatrix ofM(α) of size q ′

α , so that rk(M(α)) ≥ q ′
α: this concludes

the proof of Theorem 3.

6 Linear independence of the linear forms

In this section we combine Theorems 2 and 3 to construct linearly independent linear forms
(that will be used in Sect. 9, together with Siegel’s linear independence criterion, to prove
Theorem 1). Our main result is Proposition 2 that we shall state now, and prove in Sects. 6.2
and 6.3 using an explicit computation of J f (z) (see Sect. 6.1).
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Let

I =
(
{1, . . . , �1} × {1, . . . , S}

)
� {0, . . . , μ − 1}

and q = Card I = �1S + μ. Elements of I will be denoted by (u, s) (with 1 ≤ u ≤ �1 and
1 ≤ s ≤ S) or u (with 0 ≤ u ≤ μ − 1). For any n sufficiently large, Lemma 7 provides a
family (Pi )i∈I of polynomials indexed by I , namely Pu,s = Pu,s,n and Pu = P̃u,n ; here the
integer n is omitted in the notation.

Let us denote by W the set of tuples

Y = (yi )i∈I =
(
(yu,s)1≤u≤�1,1≤s≤S, (ỹu)0≤u≤μ−1

)

consisting in functions yu,s and ỹu holomorphic onD that obey the same differentiation rules
as if they were given by yu,s = y[s]

u and ỹu = θu y with y ∈ ker L; recall that D has been
defined in Sect. 3.1. In precise terms we require:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y′
u,s(z) = 1

z yu,s−1(z) for any 1 ≤ u ≤ �1 and 2 ≤ s ≤ S
y′
u,1(z) = zu−1 ỹ0(z) for any 1 ≤ u ≤ �1

ỹ ′
u(z) = 1

z ỹu+1(z) for any 0 ≤ u ≤ μ − 2

L ỹ0 = 0

Since L has order μ, there exist R0, . . . , Rμ ∈ K(z) such that L = ∑μ
u=0 Ru(z)θu and

Rμ 
= 0 ; the equation L ỹ0 = 0 can be replaced with

ỹ ′
μ−1(z) = −1

zRμ(z)

μ−1∑

u=0

Ru(z)ỹu(z).

We obtain in this way a square matrix A of size q , with rows and columns indexed by I and
coefficients in K(z), such that W is exactly the set of solutions holomorphic on D of the
differential system Y ′ = AY . Here and below, when Y = (yi )i∈I is an element of W , we
shall consider Y as a column vector and let (as in Sect. 5)

R(Y )(z) =
∑

i∈I
Pi (z)yi (z) =

�1∑

u=1

S∑

s=1

Pu,s,n(z)yu,s(z) +
μ−1∑

u=0

P̃u,n(z)ỹu(z).

The point is that if yu,s = y[s]
u and ỹu = θu y for some y ∈ ker L , then R(Y )(z) = Jy(z)

with the notation of Theorem 2, and Eq. (5.2) yields

J (k−1)
y (z) = R(Y )(k−1)(z) =

∑

i∈I
Pk,i (z)yi (z) for any k ≥ 1 and any z ∈ D. (6.1)

In the following Proposition the Pk,i (z) ∈ K(z) are evaluated at a point z0 ∈ D\{0}, so that
z0 is not a singularity of L or A, and accordingly not a pole of any of these rational functions
[cf. Eq. (5.1)].

Proposition 2 Under the assumptions of Theorem 2, suppose also that r ≥ 1 and that n is
sufficiently large. Put � = dim(C[z] ∩ ker L) and let z0 ∈ D\{0}. Then:
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(i) There exist pairwise distinct elements i1, …, i� of I such that

Pk,it (z0) =
∑

i∈I\{i1,...,i�}
λi,tPk,i (z0) for any t ∈ {1, . . . , �} and any k ≥ 1

with λi,t ∈ K; here i1, …, i� and the λi,t depend only on L and z0 but not on k.
(ii) There exist integers 1 ≤ k1 < k2 < · · · < kq−�, bounded from above in terms of L, r , S

only, such that the matrix (Pk j ,i (z0))i∈I , 1≤ j≤q−� has rank q − �.

Of course this proposition shows that the matrix (Pk j ,i (z0))i∈I\{i1,...,i�}, 1≤ j≤q−� is invert-
ible; in the proof of Theorem 1 we shall apply Siegel’s linear independence criterion to this
matrix (see Sect. 9).

The rest of this section is devoted to the proof of Proposition 2. We begin with a technical
lemma.

6.1 Explicit computation of Jf(z)

In Sect. 6.3 we shall use the following technical lemma, which gives an explicit expression
of J f (z) (see Remark 7 for an easier special case).

Lemma 9 Let f ∈ N belong to the Nilsson class with rational exponents at 0; write

f (z) =
∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i z
k log(z)i .

Then we have

J f (z) =
∑

k∈Q
k≥κ( f )

zn+1+k
e∑

λ=0

log(z)λ
e∑

i=λ

ak,i

(
i

λ

)

A(i−λ)(k)

+
S∑

s=1

e∑

i=0

log(z)s+i
n+1∑

j=1

zn+1− j a− j,i c j,s,n
i !

(s + i)!

where A(i−λ)(k) is the (i − λ)-th derivative of A(X) = n!S−r (X−rn+1)rn
(X+1)Sn+1

taken at X = k if

k /∈ {−1, . . . ,−n − 1}; the general definition of this number (valid for any k ∈ Q) is given
by

A(i−λ)(k) = (i − λ)!
n+1∑

j=1
j 
=−k

S∑

s=1

c j,s,n
(−1)i−λ

(s−1+i−λ
s−1

)

(k + j)s+i−λ
.

Proof To begin with, recall that in the proof of Lemma 8 we have obtained the following
identity:

J f (z) =
n+1∑

j=1

S∑

s=1

c j,s,nz
n+1− j f [s]

j (z).
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Using Lemma 1 we obtain

J f (z) =
n+1∑

j=1

S∑

s=1

c j,s,nz
n+1− j

e∑

i=0

a− j,i i ! log(z)
s+i

(s + i)!

+
n+1∑

j=1

S∑

s=1

c j,s,n
∑

k∈Q\{− j}
k≥κ( f )

zn+1+k
e∑

λ=0

log(z)λ

λ!
e∑

i=λ

ak,i (−1)i−λ
i !(s−1+i−λ

s−1

)

(k + j)s+i−λ

=
S∑

s=1

e∑

i=0

log(z)s+i
n+1∑

j=1

zn+1− j a− j,i c j,s,n
i !

(s + i)!

+
∑

k∈Q
k≥κ( f )

zn+1+k
e∑

λ=0

log(z)λ

λ!
e∑

i=λ

ak,i i !
n+1∑

j=1
j 
=k

S∑

s=1

c j,s,n(−1)i−λ

(s−1+i−λ
s−1

)

(k + j)s+i−λ
.

This concludes the proof of Lemma 9. ��
Corollary 3 With the notations of Lemma 9, assume that S > e and

J f (z) =
n∑

p=0

S−1∑

s=0

αp,s z
p log(z)s with αp,s ∈ C. (6.2)

Then f is a polynomial.

Remark 8 Of course if f is a polynomial then so is f [s]
j for any j, s, and therefore also J f (z).

Proof In this proof we keep the notation of Lemma 9, that we shall use repeatedly to compute
the coefficient of zτ log(z)σ in Eq. (6.2) for various pairs (τ, σ ) ∈ Q × N. The point is that
this coefficient is zero if τ /∈ {0, . . . , n} or σ /∈ {0, . . . , S − 1}.

To begin with, let k ∈ Q\{−n − 1, . . . , rn − 1}. For any σ ∈ {0, . . . , e}, considering the
coefficient of zτ log(z)σ with τ = k+n+1 /∈ {0, . . . , n} yields∑e

i=σ ak,i
( i
σ

)
A(i−σ)(k) = 0.

Now k /∈ {0, . . . , rn − 1} so that A(k) 
= 0; therefore by decreasing induction we obtain
ak,i = 0 for any i ∈ {0, . . . , e}.

Now let k ∈ {−n−1, . . . ,−1}. For any σ ∈ {S, . . . , S+e}we consider the coefficient of
zτ log(z)σ with τ = k + n + 1. Since σ ≥ S > e this yields

∑e
i=σ−S ak,i c−k,σ−i,n

i !
σ ! = 0.

Using this relation with σ = S + e we obtain ak,e = 0 since c−k,S,n 
= 0. By decreasing
induction we prove that ak,i = 0 for any i ∈ {0, . . . , e}.

At last we take k ∈ {0, . . . , rn − 1}. Since A(k) = 0, considering the coefficient of
zk+n+1 log(z)σ yields

∑e
i=σ+1 ak,i

( i
σ

)
A(i−σ)(k) = 0 for any σ ∈ {0, . . . , e−1}. By decreas-

ing induction this implies ak,i = 0 for any i ∈ {1, . . . , e} because A′(k) 
= 0.
In conclusion we have proved that ak,i = 0 for any pair (k, i) ∈ Q × {0, . . . , e}, except

maybe when k ∈ {0, . . . , rn − 1} and i = 0. Therefore f is a polynomial of degree less than
rn. ��

6.2 Proof of Proposition 2 (i): polynomial solutions

In this section we focus on polynomial solutions of L , and prove that each one provides a
solution of the differential system Y ′ = AY such that R(Y ) = 0. This will enable us to prove
part (i) of Proposition 2.
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Recall that � = dim(C[z] ∩ ker L), and choose a basis ( f {1}, . . . , f {�}) of C[z] ∩ ker L .
For any p ∈ {1, . . . , �} we let

Y {1,p} =
(
(( f {p})[s]u )1≤u≤�1,1≤s≤S, (θu f {p})0≤u≤μ−1

)
.

Then we have Y {1,p} ∈ W , and R(Y {1,p})(z) = J f {p}(z). Using Eq. (3.3) we obtain
ord0R(Y {1,p}) ≥ (r + 1)n + 1 for any p ∈ {1, . . . , �}. Now f {p} is a polynomial and
its degree is bounded in terms of L only. Therefore Eq. (4.4) shows that R(Y {1,p}) = J f {p} is
a polynomial of degree at most n + c, where c depends only on L . Since r ≥ 1 and n is large
enough, we deduce that J f {p} = R(Y {1,p}) is the zero polynomial for any p ∈ {1, . . . , �}.
Therefore Eq. (6.1) shows that for any k ≥ 1, the values xi = Pk,i (z0) make up a solution of
the following linear system:

∑

i∈I
y{1,p}
i (z0)xi = 0 for any p ∈ {1, . . . , �}. (6.3)

Now z0 ∈ D\{0} so that z0 is not a singularity of L , and not of the differential system
Y ′ = AY either. Therefore the map W → CI , Y = (yi ) �→ (yi (z0))i∈I is bijective. Since
Y {1,1},…, Y {1,�} areC-linearly independent (because f {1},…, f {�} are and θ0 f {p} = f {p} is
a component of Y {1,p}), we deduce that the matrix (y{1,p}

i (z0))i∈I ,1≤p≤� of the linear system
(6.3) has rank �. This linear system can therefore be put in reduced row-echelon form as
follows: there exist pairwise distinct elements i1, …, i� of I , and coefficients λi,t ∈ K, such
that this system is equivalent to

xit =
∑

i∈I\{i1,...,i�}
λi,t xi for any t ∈ {1, . . . , �}.

Since xi = Pk,i (z0) is a solution of this linear system for any k ≥ 1, this concludes the proof
of part (i) of Proposition 2.

6.3 Proof of Proposition 2 (ii)

In this section we check the assumptions of Theorem 3 to apply Shidlovsky’s lemma to the
solution of the Padé approximation problem given by Theorem 2, thereby proving assertion
(i i) of Proposition 2.

The notation of the present section is the same as those of Sections 3 and 4. It is consistent
with the one of Sect. 5.1, except for the following. We fix a bijective map I → {1, . . . , q} so
that the family (Pi )i∈I of polynomials involved in Theorem 2 can be written as (P1, . . . , Pq).
The integer n of Sect. 5.1, which is an upper bound on deg Pi , is taken equal to n+1+S(�−1).
The finite subset denoted by� in Sect. 5.1 is�∪{0}, where� is the set of finite singularities
of L . The family of solutions of the differential systemY ′ = AY associatedwith each element
of � ∪ {0} will be defined below. We let J = {1, . . . , �}, where � = dim(C[z] ∩ ker L). We
have constructed in Sect. 6.2 linearly independent solutions Y {1,p} of the differential system
Y ′ = AY , for 1 ≤ p ≤ �, such that R(Y {1,p}) = 0 for any p ∈ {1, . . . , �}. We shall apply
Theorem 3 with α = z0. Since z0 ∈ D\{0}, it is not a singularity of the differential system
Y ′ = AY so that assumptions (i) and (i i i) of Theorem 3 hold immediately. Moreover the
conclusion of Theorem 3 is exactly that of part (i i) of Proposition 2. Therefore to conclude
the proof it is enough to check that assumption (i i) of Theorem 3 holds; this is what we shall
do now. We refer to Sect. 3.3 for a more or less informal presentation of the following ideas.
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To begin with, let us consider the vanishing conditions at a non-zero singularity α ∈
�\{0}. Recall from Sect. 3.3 that mα = dim(ker L/(Hα ∩ ker L)) is the multiplicity of α

as a singularity of L . Let ( f {α,1}, . . . , f {α,mα}) be a basis of ker L/(Hα ∩ ker L). For any
1 ≤ p ≤ mα , let

Yα,p =
(
(varα(( f {α,p})[s]u ))1≤u≤�1,1≤s≤S, (varα(θu f {α,p}))0≤u≤μ−1

)
∈ W;

in other words, (Yα,p)u,s = varα(( f {α,p})[s]u ) for any u, s, and (Yα,p)u = varα(θu f {α,p}) for
any u. Then Eq. (3.5) of Theorem 2 reads R(Yα,p)(z) = O((z − α)(S−r)n−κ ) as z → α, that
is

ordαR(Yα,p) ≥ (S − r)n − κ for any 1 ≤ p ≤ mα. (6.4)

Let us prove that R(Yα,1),…, R(Yα,mα ) are linearly independent overC. Let λ1,…, λmα ∈
C be such thatλ1R(Yα,1)+· · ·+λmα R(Yα,mα ) = 0, and put f = λ1 f {α,1}+· · ·+λmα f {α,mα}.
Then we have

varα(J f )(z) =
�1∑

u=1

S∑

s=1

Pu,s,n(z)varα( f [s]
u )(z) +

μ−1∑

u=0

P̃u,n(z)varα(θu f )(z) = 0.

As asserted in Theorem 2 (i i), this implies that f is holomorphic at α, i.e. f = 0 in the
quotient space ker L/(Hα ∩ ker L), so that λ1 = · · · = λmα = 0. This concludes the proof
that R(Yα,1), …, R(Yα,mα ) are linearly independent over C.

Let us move now to the conditions around z = 0, namely parts (i) and (i i i) of Theorem 2,
starting with (i i i). Given u0 ∈ {1, . . . ,m − 1} and s0 ∈ {1, . . . , S} we define Y {2,u0,s0} by

Y {2,u0,s0}
u0,s (z) = log(z)s−s0

(s − s0)! for s ∈ {s0, . . . , S}

and Y {2,u0,s0}
i (z) = 0 for all other i ∈ I , namely i = (u0, s) with s < s0, i = (u, s) with

u 
= u0, or i = u ∈ {0, . . . , μ − 1}. Then we have Y {2,u0,s0} ∈ W and

R(Y {2,u0,s0})(z) =
S∑

s=s0

Pu0,s,n(z)
log(z)s−s0

(s − s0)! .

For any s ∈ {s0, . . . , S} Eq. (3.6) yields Pu0,s,n = O(zn+1−u0) as z → 0, so that

ord0R(Y {2,u0,s0}) ≥ n + 1 − u0. (6.5)

For any fixed u0 ∈ {1, . . . ,m − 1} we have obtained S vanishing conditions (6.5) (namely
for 1 ≤ s0 ≤ S), with non-holomorphic remainders; they correspond to the S equations (3.6)
(for 1 ≤ s ≤ S) in which no logarithm appears, but no solution of the differential system
Y ′ = AY either. This is an illustration of the phenomenon explained in Sect. 3.2: to apply
Shidlovsky’s lemma we may have to translate some vanishing conditions in order to express
them in terms of solutions of the differential system.

Let us deal now with assertion (i) of Theorem 2. Recall that � = dim(C[z] ∩ ker L), � =
dim( H0∩ker L

C[z]∩ker L ), and that in Sect. 6.2 we have chosen a basis ( f {1}, . . . , f {�}) ofC[z]∩ker L .

Let f {�+1}, . . . , f {�+�} be such that ( f {1}, . . . , f {�+�}) is a basis ofH0∩ker L . At last, choose
f {�+�+1}, . . . , f {μ} such that ( f {1}, . . . , f {μ}) is a basis of ker L . For any p ∈ {1, . . . , μ}
we let

Y {1,p} =
(
(( f {p})[s]u )1≤u≤�1,1≤s≤S, (θu f {p})0≤u≤μ−1

)
,
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which is consistent with the notation Y {1,p} introduced in Sect. 6.2 for p ∈ {1, . . . , �}. Then
we have Y {1,p} ∈ W , and R(Y {1,p})(z) = J f {p}(z) for any p ∈ {1, . . . , μ}. Using Eqs. (3.3)
and (3.4) we obtain

ord0R(Y {1,p}) ≥
{

(r + 1)n + 1 for any p ∈ {1, . . . , � + �},
n − κ for any p ∈ {� + � + 1, . . . , μ}. (6.6)

We have proved in Sect. 6.2 that

R(Y {1,p}) is identically zero for 1 ≤ p ≤ �. (6.7)

This condition “replaces” the vanishing condition (6.6) for these values of p.
In order to apply Theorem 3 we still have to prove some results of linear independence.

To begin with, as noticed in Sect. 6.2, the functions f {1}, . . . , f {�} are linearly independent
over C, so that the vectors Y {1,p} (for 1 ≤ p ≤ �) involved in Eq. (6.7) are also linearly
independent (recall that f {p} = θ0 f {p} is a component of Y {1,p}).

Let us prove now that the functions R(Y {2,u0,s0}) and R(Y {1,p}) involved in Eqs. (6.5) and
(6.6) (with � + 1 ≤ p ≤ μ) are linearly independent over C. Let λ1,p (for � + 1 ≤ p ≤ μ)
and λ2,u0,s0 (for 1 ≤ u0 ≤ m − 1 and 1 ≤ s0 ≤ S) be complex numbers such that

μ∑

p=�+1

λ1,p R(Y {1,p}) +
m−1∑

u0=1

S∑

s0=1

λ2,u0,s0 R(Y {2,u0,s0}) = 0.

Letting f = ∑μ
p=�+1 λ1,p f {p} ∈ ker L we have using Lemma 8:

J f (z) +
m−1∑

u0=1

S∑

s0=1

λ2,u0,s0

S∑

s=s0

Pu0,s,n(z)
log(z)s−s0

(s − s0)! = 0. (6.8)

Now f belongs to the Nilsson class with rational exponents at 0; assume that f 
= 0. Then
we may write

f (z) =
∑

k∈Q
k≥κ( f )

e∑

i=0

ak,i z
k log(z)i

with e bounded in terms of L only. Therefore we may assume S > e, and Corollary 3
yields f ∈ C[z] using Eq. (6.8). By construction of f {�+1}, …, f {μ} this implies f = 0.
Since f {�+1}, …, f {μ} are linearly independent over C we deduce that λ1,p = 0 for any
p ∈ {� + 1, . . . , μ}.

Moreover, recall from the proof of Lemma 7 that Pu0,s,n(z) = cu0,s,nz
n+1−u0 for any

u0 ∈ {1, . . . ,m − 1} and any s ∈ {1, . . . , S}. Since f = 0, Eq. (6.8) reads

m−1∑

u0=1

zn+1−u0
S−1∑

σ=0

log(z)σ

σ !
S−σ∑

s0=1

λ2,u0,s0cu0,σ+s0,n = 0

for any z ∈ D, so that
∑S−σ

s0=1 λ2,u0,s0cu0,σ+s0,n = 0 for any u0 and any σ . With σ = S − 1
we obtain λ2,u0,1 = 0 since cu0,S,n 
= 0; by induction on s0 it follows in the same way that
λ2,u0,s0 = 0 for any u0 and any s0. Finally, the functions R(Y {1,p}) and R(Y {2,u0,s0}) involved
in Eqs. (6.5) and (6.6) (with � + 1 ≤ p ≤ μ) are linearly independent over C.

Combining these results of linear independence with Eqs. (6.4), (6.5), (6.6) and (6.7), we
have checked assumption (i i)ofTheorem3with τ independent fromn, since

∑
α∈�\{0} mα =

123

Author's personal copy



Linear independence of values of G-functions

� (see Sect. 3.3) and q = �1S + μ. As explained at the beginning of Sect. 6.3, assertion (i i)
of Proposition 2 follows.

7 A Siegel-type linear independence criterion

The following criterion is based on Siegel’s ideas (see for instance [7, pp. 81–82 and 215–
216], [19, Section 3], [14, Section 4.6] or [18, Proposition 4.1]).

Let K be a number field embedded in C; denote by OK its ring of integers. We fix an
embedding of K in a Galois closure L, and of L in C, so that Galois conjugates of elements
of K can be seen as complex numbers. Given ξ ∈ K, we denote by ξ the house of ξ , i.e.
the maximum modulus of the Galois conjugates of ξ .

Theorem 4 Let (Qn) be an increasing sequence of positive real numbers, with limit +∞.
Consider N numbers ϑ1, . . . , ϑN ∈ C. Assume that for some τ > 0 there exist N 2

sequences (p( j)
i,n )n≥0, i, j = 1, . . . , N, such that:

– For any i , j and n, we have p( j)
i,n ∈ OK.

– For any i , j , we have p( j)
i,n ≤ Q1+o(1)

n as n → ∞.
– For any j we have, as n → ∞:

∣
∣
∣
∣

N∑

i=1

p( j)
i,n ϑi

∣
∣
∣
∣ ≤ Q−τ+o(1)

n .

– For any n sufficiently large the matrix (p( j)
i,n )1≤i, j≤N is invertible.

Then

dimK SpanK(ϑ1, . . . , ϑN ) ≥ τ + 1

[K : Q] ,

and this lower bound can be refined to 2(τ+1)
[K:Q] if K (seen as a subset of C) is not contained

in R.

Given real numbers 0 < a0 < 1 < b, this theorem can be applied when p( j)
i,n ≤

bn(1+o(1)) and
∣
∣
∣
∑N

i=1 p
( j)
i,nϑi

∣
∣
∣ ≤ an(1+o(1))

0 ; then

dimK SpanK(ϑ1, . . . , ϑN ) ≥ 1

[K : Q]
(
1 − log(a0)

log(b)

)

with the right hand side multiplied by 2 if K 
⊂ R.

Proof The proof is very classical, and similar (for instance) to that of [18, Proposition 4.1].
We sketch it for the convenience of the reader. Let � ∈ MN ,1(C) denote the column matrix
t (ϑ1, . . . , ϑN ), and δ = dimK SpanK(ϑ1, . . . , ϑN ). There exists a matrix A ∈ MN−δ,N (OK)

of rank N − δ such that A� = 0. Let n ≥ 0. Since Pn := (p( j)
i,n )1≤i, j≤N is invertible, we

may assume (up to a permutation of the indices j) that the matrix
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B :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(1)
1,n . . . p(1)

N ,n
...

...

p(δ)
1,n . . . p(δ)

N ,n

A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ MN (OK)

is invertible. Then NK/Q(det B) is a non-zero rational integer; here NK/Q(x) = ∏
σ σ (x)

is the norm of x ∈ K, and σ ranges through the set of embeddings K → C. Accordingly
|NK/Q(det B)| ≥ 1.

Now this positive integer can be bounded from above as follows. Denoting by Li the i-th
column of B and considering the embedding σ = Id (recall that K is seen as a subset of C

from the beginning), the first δ coefficients of
∑N

i=1 ϑi Li have modulus less than Q−τ+o(1)
n ,

while the last N − δ coefficients are zero. Since A does not depend on n, this leads to the
following inequality as n → ∞ (applying trivial bounds for σ 
= Id):

1 ≤ |NK/Q(det B)| ≤ Q−τ+o(1)
n Qδ−1+o(1)

n

∏

σ 
=Id

Qδ+o(1)
n .

Since Qn → +∞ this implies δ ≥ τ+1
[K:Q] . If K 
⊂ R the non-trivial upper bound on σ(det B)

can be used not only for σ = Id, but also for complex conjugation; this yields δ ≥ 2(τ+1)
[K:Q]

and concludes the proof of Theorem 4. ��

8 Analytic and arithmetic estimates

This section is devoted to technical estimates that will be used in Sect. 9 to conclude the
proof of Theorem 1. In Sect. 8.1 we obtain an upper bound for

∣
∣J (k−1)

F (z)
∣
∣. The important

point is that we do not assume z to be in the disk of convergence of the local expansion of
F at 0; we use analytic continuation and an integral representation. In Sect. 8.2 we estimate
the denominators and size of the coefficients of the linear forms.

8.1 An upper bound for
∣
∣J(k−1)
F (z)

∣
∣

The G-function F of Theorem 1 can be analytically continued to the domain DF , which is
star-shaped at 0, as explained in the introduction. Recall from Sect. 3.1 that

JF (z) = n!s−r
∞∑

k=0

k(k − 1) · · · (k − rn + 1)

(k + 1)S(k + 2)S · · · (k + n + 1)S
Akz

k+n+1

for |z| < R, where R is the radius of convergence of the local expansion
∑∞

k=0 Akzk of F(z)
around 0. By Proposition 3 in [13], for any z such that |z| < R, we have

JF (z) = z(r+1)n+1

n!r
∫

[0,1]S
F (rn)(zt1 · · · tS)

S∏

j=1

trnj (1 − t j )
ndt1 · · · dtS . (8.1)

Now, using the continuation of F to DF , we see from (8.1) that JF can be analytically
continued to DF as well; indeed for z ∈ DF and t ∈ [0, 1], we have zt ∈ DF . Observe that
D � DF because the definition ofD involves a half-line starting at 0, and possibly half-lines
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starting at singularities of L at which F is holomorphic; in the previous sections, JF was
analytically continued to D only.

We now fix an integer k ≥ 1, that will be fixed even as n → ∞. By (8.1), we have

J (k−1)
F (z) =

k−1∑

i=0

(
k − 1

i

)

((r + 1)n + i − k + 3)k−i−1

× z(r+1)n+i−k+2

n!r
∫

[0,1]S
F (rn+i)(zt1 · · · tS)

S∏

j=1

trn+i
j (1 − t j )

ndt1 · · · dtS .

(8.2)

Let us fix z ∈ DF . We can find a simple smooth direct contour Cz ⊂ DF such that for any
t ∈ [0, 1], the segment [0, zt] is at positive distance inside Cz . By Cauchy formula,

F (rn+i)(zt) = (rn + i)!
2iπ

∫

Cz

F(x)

(x − zt)rn+i+1 dx .

Since the functions

g(z) := max
(
1, max

x∈Cz ,t∈[0,1]
1

|x − zt |
)

and

h(z) := 1

2π
length(Cz)max

x∈Cz
|F(x)|

are well defined and finite for any z ∈ DF , we thus deduce for any t ∈ [0, 1] and any
0 ≤ i ≤ k − 1:

|F (rn+i)(zt)| ≤ (rn + k − 1)!h(z)g(z)rn+k . (8.3)

We can now give an upper bound for
∣
∣J (k−1)

F (z)
∣
∣.

Proposition 3 For any integers S ≥ r ≥ 0 and k ≥ 1, and any z ∈ DF , we have

lim sup
n→+∞

∣
∣J (k−1)

F (z)
∣
∣1/n ≤ max(1, |z|)r+1g(z)r

(r + 1)S−r
. (8.4)

Proof In the end we shall make n → +∞ while keeping the other parameters fixed. We can
thus assume that n ≥ k − 1 without loss of generality, so that 0 ≤ (r + 1)n + i − k + 2 ≤
(r + 1)n + 1 for 0 ≤ i ≤ k − 1. We set z̃ for max(1, |z|). We use (8.3) in (8.2) with
t = t1t2 · · · tS and get

|J (k−1)
F (z)| ≤ (rn + k − 1)!h(z)g(z)rn+k z̃(r+1)n+1

n!r

×
k−1∑

i=0

(
k − 1

i

)

((r + 1)n + i − k + 3)k−i−1

∫

[0,1]S

S∏

j=1

trn+i
j (1 − t j )

ndt1 · · · dtS

≤ k2k−1((r + 1)n + 2)k−1 (rn + k − 1)!h(z)g(z)rn+k z̃(r+1)n+1

n!r
(∫ 1

0
trn(1 − t)ndt

)S

= k2k−1((r + 1)n + 2)k−1h(z)g(z)rn+k z̃(r+1)n+1

· (rn + k − 1)!
n!r ·

(
n!(rn)!

((r + 1)n + 1)!
)S

.
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Now by Stirling’s formula (see [8] for a similar computation), we readily obtain

lim sup
n→+∞

∣
∣J (k−1)

F (z)
∣
∣1/n ≤ z̃r+1g(z)r

rr(S+1)

(r + 1)S(r+1)
≤ z̃r+1g(z)r

(r + 1)S−r
,

as expected. ��

8.2 Denominators and size of the coefficients

In this section we prove the last estimates to be used in the proof of Theorem 1, namely
those on the denominators and size of the coefficients of the linear forms. As in Sect. 7 we
denote by OK the ring of integers of K; we consider the rational functions Pk,i ∈ K(z) (see
the beginning of Sect. 6). Recall that Pk,i depends also on n, and that the set � of finite
singularities of L contains all poles of the Pk,i .

Lemma 10 Let z0 ∈ K\� and v ∈ N� be such that vz ∈ OK; let K ≥ 1. Then there
exists a sequence (δn,K )n≥1 of positive rational integers such that for any i ∈ I and any
k ∈ {1, . . . , K }:

δn,KPk,i (z0) ∈ OK for any n, and lim
n→+∞ δ

1/n
n,K = vCS

2 e
S .

Proof Let dn = lcm{1, 2, . . . , n}. As in [13], the proof of [25, Lemme 5] shows that
dS
n c j,s,n ∈ Z for all j, s, n; recall that limn d

1/n
n = e. Upon multiplying D(S, n) with a

suitable positive integer, we may assume in Proposition 1 (i i i) that D(S, n) ≥ CSn
2 /2,

so that limn D(S, n)1/n = CS
2 . Moreover Proposition 1 and Eqs. (4.6) and (4.7) yield

dS
n D(S, n+1)Pi ∈ OK[z] for any i ∈ I . Now let T ∈ OK[z] be such that T A ∈ Mq(OK[z]),

where A ∈ Mq(K(z)) is the matrix of the differential system (see Sect. 6); we may assume
that all roots of T are poles of coefficients of A, so that T (z0) 
= 0 since z0 /∈ �. Then
Eq. (5.1) yields dS

n D(S, n + 1)T (z)kPk,i (z) ∈ OK[z] for any i ∈ I , by induction on k ≥ 1.
Since deg(T kPk,i ) ≤ k deg T + n + 1+ S(� − 1) and k ≤ K , we obtain δ′

n,K Pk,i (z0) ∈ OK

by letting

δ′
n,K = vK deg T+n+1+S(�−1)dS

n D(S, n + 1)T (z0)
K ∈ OK.

Now let NK/Q denote the norm relative to the extensionK/Q, as in the proof of Theorem 4
(see Sect. 7). Since vK deg T T (z0)K ∈ OK\{0} we have NK/Q(vK deg T T (z0)K ) ∈ N� and
NK/Q(vK deg T T (z0)K )

vK deg T T (z0)K
∈ OK. Therefore letting

δn,K = vn+1+S(�−1)dS
n D(S, n + 1) NK/Q(vK deg T T (z0)

K ) ∈ N�

concludes the proof of Lemma 10. ��
Given ξ ∈ Q, recall from Sect. 7 that ξ is the house of ξ , i.e. the maximum modulus of

the Galois conjugates of ξ .

Lemma 11 Let z0 ∈ K\� and K ≥ 1. Then we have for any i ∈ I :

lim sup
n→+∞

(

max
1≤k≤K

Pk,i (z0)

)1/n

≤ CS
1 r

r2S+r+1 max(1, z0 ).

Remark 9 The upper bounds in Lemmas 10 and 11 do not depend on K ; they are the same as
in the corresponding lemmas in [13]. Actually the important point in our application is that
K will be independent from n.
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Proof Given P ∈ K[z], we denote by H(P) the maximum of the houses of its coefficients.
In [25, Lemma 4], it is proved that the coefficients c j,s,n in (4.5) satisfy

|c j,s,n| ≤ (rn + 1)2S(rr2S+r+1)n

for all j, s, n. (Our c j,s,n are denoted by cs, j−1,n in [25]). Using this bound in (4.6) and

(4.7) together with Proposition 1(i i) we obtain H(Pi ) ≤ Hn for any i , with lim H1/n
n =

CS
1 r

r2S+r+1. Now choose T as in the proof of Lemma 10, and let �k,i = T kPk,i ∈ K[z] for
any k, i . Then Eq. (5.1) yields deg�k,i ≤ cAk+n by induction on k, and then H(�k+1,i ) ≤
(c′

Ak + n)H(�k,i ), where cA and c′
A depend only on A. For k ≤ K we deduce �k,i (z0) ≤

(cAK + n)H(�k,i )max(1, z0 )cAK+n with H(�k,i ) ≤ (c′
AK + n)K Hn . This enables us to

conclude the proof of Lemma 11. ��

9 Proof of Theorem 1

In this section we prove Theorem 1 by combining the results obtained in previous sections.

Proof Let F(z) = ∑∞
k=0 Akzk be a G-function, with Ak ∈ K and F(z) /∈ C[z]. As in the

introduction we denote by �F the set of finite singularities of F and for α ∈ �F we define
�α := α + ei arg(α)R+; we let DF := C\(∪α∈�F �α). Let LF and z0 be as in Theorem 1.

As in Sect. 3.1 we consider the G-operator L obtained from LF by Lemma 5, and define
μ,�, � andD in terms of L . In definingDwe choose a half-line�0 such that z0 /∈ �0, so that
z0 ∈ D. We also consider κ0, m and �1 and in Sect. 4.1, and integer parameters S ≥ r ≥ 1
with S large enough in terms of L .

As in Sect. 6 we let

I =
(
{1, . . . , �1} × {1, . . . , S}

)
� {0, . . . , μ − 1}

and q = Card I = �1S + μ. Elements of I are denoted by (u, s) (with 1 ≤ u ≤ �1 and
1 ≤ s ≤ S) or u (with 0 ≤ u ≤ μ − 1). For any n sufficiently large, Lemma 7 provides a
family (Pi )i∈I of polynomials indexed by I , namely Pu,s = Pu,s,n and Pu = P̃u,n ; here the
integer n is omitted in the notation.

For any k ≥ 1 we are interested in the following linear form:

J (k−1)
F (z0) =

�1∑

u=1

S∑

s=1

Pk,u,s(z0)F
[s]
u (z0) +

μ−1∑

u=0

Pk,u(z0)(θ
u F)(z0)

obtained by taking the (k − 1)-th derivative of the formula given by Lemma 7; here the
rational functions Pk,i , for i ∈ I , are given by Eq. (5.1) (see the beginning of Sect. 6). This
formula can be written in a more compact way:

J (k−1)
F (z0) =

∑

i∈I
Pk,i (z0)yi (z0)

by letting yu,s = F [s]
u and yu = θu F . Now Proposition 2 provides elements i1, …, i� of I

and coefficients λi,t ∈ K; assertion (i) of this Proposition yields

J (k−1)
F (z0) =

∑

i∈I\{i1,...,i�}
Pk,i (z0)

(
yi (z0) +

�∑

t=1

λi,t yit (z0)
)
. (9.1)
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Let N = q−� = Card(I\{i1, . . . , i�}), and choose a bijective mapψ : I\{i1, . . . , i�} →
{1, . . . , N }. For any i ∈ I\{i1, . . . , i�} and any j ∈ {1, . . . , N }, let

ϑψ(i) = yi (z0) +
�∑

t=1

λi,t yit (z0) and p( j)
ψ(i),n = δn,KPk j ,i (z0)

where k1, …, kN are the integers provided by Proposition 2 (i i), K is an upper bound on
them, and δn,K is defined by Lemma 10. The important point, here and below, is that K
depends only on L , r , S, but not on n (eventhough the integers k1, …, kN depend on n). Then
Eq. (9.1) yields

δn,K J
(k j−1)
F (z0) =

N∑

i=1

p( j)
i,n ϑi for any j ∈ {1, . . . , N }.

Lemma 10 shows that all coefficients p( j)
i,n belong to OK; Lemma 11 provides an upper

bound on the moduli of their Galois conjugates. At last, Proposition 2 asserts that the matrix
(p( j)

i,n )1≤i, j≤N is invertible for any n sufficiently large. Therefore Siegel’s linear independence
criterion (namely Theorem 4) applied with Qn = bn yields

dimK SpanK(ϑ1, . . . , ϑN ) ≥ τ + 1

[K : Q] (9.2)

where

τ := − log(a0)

log(b)
, a0 := vCS

2 e
Smax(1, |z|)r+1g(z)r

(r + 1)S−r
,

b := vCS
1C

S
2 e

Srr2S+r+1 max(1, z0 )

using Proposition 3 and Lemmas 10 and 11 (of whichwe keep the notation). Now for any i the
number ϑi belongs to the K-vector space spanned by the numbers F [s]

u (z0) and (θu F)(z0),
so that the lower bound (9.2) holds also with the dimension of this vector space in the left
hand side. We obtain therefore

dimK SpanK{F [s]
u (z0), 1 ≤ u ≤ �1, 1 ≤ s ≤ S} ≥ τ + 1

[K : Q] − μ. (9.3)

Taking for r the integer part of S/ log(S)2, and letting S tend to infinity, we deduce Theorem 1
with C(F) = log(2eC1C2). Observe that C(F) depends only on L , and that this part of the
computation is exactly the same as in [13, Section 6.4]: b is the same, and even though a0
is slightly different the main term as S → ∞ (with r = �S/ log(S)2�) is the same. This
concludes the proof of Theorem 1. ��
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