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We investigate the relations between the rings E, G and D of 
values taken at algebraic points by arithmetic Gevrey series of 
order either −1 (E-functions), 0 (analytic continuations of G-
functions) or 1 (renormalization of divergent series solutions 
at ∞ of E-operators) respectively. We prove in particular that 
any element of G can be written as multivariate polynomial 
with algebraic coefficients in elements of E and D, and is 
the limit at infinity of some E-function along some direction. 
This prompts to defining and studying the notion of mixed 
functions, which generalizes simultaneously E-functions and 
arithmetic Gevrey series of order 1. Using natural conjectures 
for arithmetic Gevrey series of order 1 and mixed functions 
(which are analogues of a theorem of André and Beukers for E-
functions) and the conjecture D ∩E = Q (but not necessarily 
all these conjectures at the same time), we deduce a number 
of interesting Diophantine results such as an analogue for 
mixed functions of Beukers’ linear independence theorem for 
values of E-functions, the transcendence of the values of 
the Gamma function and its derivatives at all non-integral 
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algebraic numbers, the transcendence of Gompertz constant 
as well as the fact that Euler’s constant is not in E.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

A power series 
∑∞

n=0
an

n! x
n ∈ Q[[x]] is said to be an E-function when it is solution of a 

linear differential equation over Q(x) (holonomic), and |σ(an)| (for any σ ∈ Gal(Q/Q)) 
and the least common denominator of a0, a1, . . . , an grow at most exponentially in n. 
They were defined and studied by Siegel in 1929, who also defined the class of G-
functions: a power series 

∑∞
n=0 anx

n ∈ Q[[x]] is said to be a G-function when 
∑∞

n=0
an

n! x
n

is an E-function. In this case, 
∑∞

n=0 n!anzn ∈ Q[[z]] is called an �-function, following 
the terminology introduced by André in [1]. E-functions are entire, while G-functions 
have a positive radius of convergence, which is finite except for polynomials. Here and 
below, we see Q as embedded into C. Following André again, E-functions, G-functions 
and �-functions are exactly arithmetic Gevrey series of order s = −1, 0, 1 respectively. 
Actually André defines arithmetic Gevrey series of any order s ∈ Q, but the set of values 
at algebraic points is the same for a given s �= 0 as for s/|s| using [1, Corollaire 1.3.2].

�-functions are divergent series, unless they are polynomials. Given an �-function f
and any θ ∈ R, except finitely many values mod 2π (namely anti-Stokes directions of 
f), one can perform Ramis’ 1-summation of f(1/z) in the direction θ, which coincides 
in this setting with Borel-Laplace summation (see [12] or [7]). This provides a function 
denoted by fθ(1/z), holomorphic on the open subset of C consisting in all z �= 0 such that 
θ− π

2 −ε < arg z < θ+ π
2 +ε for some ε > 0, of which f(1/z) is the asymptotic expansion 

in this sector (called a large sector bisected by θ). Of course f(1/z) can be extended 
further by analytic continuation, but this asymptotic expansion may no longer be valid. 
When an �-function is denoted by fj , we shall denote by fj,θ or fj;θ its 1-summation and 
we always assume (implicitly or explicitly) that θ is not an anti-Stokes direction.

In [6], [7] and [8, §4.3], we have studied the sets G, E and D defined respectively as 
the sets of all the values taken by all (analytic continuations of) G-functions at algebraic 
points, of all the values taken by all E-functions at algebraic points and of all values 
fθ(1) where f is an �-function (θ = 0 if it is not an anti-Stokes direction, and θ > 0 is 
very small otherwise.) These three sets are countable sub-rings of C that all contain Q; 
conjecturally, they are related to the set of periods and exponential periods, see §3. (The 
ring D is denoted by � in [8].)

We shall prove the following result in §3.

Theorem 1. Every element of G can be written as a multivariate polynomial (with coef-
ficients in Q) in elements of E and D.
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Moreover, G coincides with the set of all convergent integrals 
∫∞
0 F (x)dx where F is 

an E-function, or equivalently with the set of all finite limits of E-functions at ∞ along 
some direction.

Above, a convergent integral 
∫∞
0 F (x)dx means a finite limit of the E-function ∫ z

0 F (x)dx as z → ∞ along some direction; this explains the equivalence of both state-
ments.

We refer to Eq. (3.2) in §3 for an expression of log(2) as a polynomial in elements in
E and D; the number π could be similarly expressed by considering z and iz instead of 
z and 2z there. Examples of the last statement are the identities (see [10] for the second 
one):

+∞∫
0

sin(x)
x

dx = π

2 and
+∞∫
0

J0(ix)e−3xdx =
√

6
96π3 Γ

( 1
24

)
Γ
( 5

24

)
Γ
( 7

24

)
Γ
(11

24

)
.

It is notoriously difficult to prove/disprove that a given element of G is transcendental; 
it is known that a Siegel-Shidlovskii type theorem for G-functions can not hold mutatis 
mutandis. Theorem 1 suggests that an alternative approach to the study of the Diophan-
tine properties of elements of G can be through a better understanding of joint study 
of the elements of E and D, modulo certain conjectures to begin with. Our applications 
will not be immediately directed to the elements of G but rather to the understanding 
of the (absence of) relations between the elements of E and D.

It seems natural (see [7, p. 37]) to conjecture that E ∩ G = Q, and also that 
G ∩ D = Q, though both properties seem currently out of reach. In this paper, we 
suggest (see §2) a possible approach towards the following analogous conjecture.

Conjecture 1. We have E ∩ D = Q.

In §2 we shall make a functional conjecture, namely Conjecture 3, that implies Con-
jecture 1. We also prove that Conjecture 1 has very important consequences, as the 
following result shows.

Theorem 2. Assume that Conjecture 1 holds. Then Γ(s)(a) is a transcendental number 
for any rational number a > 0 and any integer s ≥ 0, except of course if s = 0 and 
a ∈ N.

One of the aims of this paper is to show that combining �- and E-functions may lead 
to very important results in transcendental number theory. Let us recall now briefly the 
main known results on E-functions.

Point (i) in the following result is due to André [2] for E-functions with rational 
Taylor coefficients, and to Beukers [4] in the general case. André used this property to 
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obtain a new proof of the Siegel-Shidlovskii Theorem, and Beukers to prove an optimal 
refinement of this theorem (namely, (ii) below).

Theorem A.

(i) [André, Beukers] If an E-function F (z) is such that F (1) = 0, then F (z)
z−1 is an 

E-function.
(ii) [Beukers] Let F (z) := t(f1(z), . . . , fn(z)) be a vector of E-functions solution of a 

differential system F ′(z) = A(z)F (z) for some matrix A(z) ∈ Mn(Q(z)).
Let ξ ∈ Q

∗ which is not a pole of a coefficient of A. Let P ∈ Q[X1, . . . , Xn] be a 
homogeneous polynomial such that

P (f1(ξ), . . . , fn(ξ)) = 0.

Then there exists Q ∈ Q[Z, X1, . . . , Xn], homogeneous in the Xi, such that

Q(z, f1(z), . . . , fn(z)) = 0 identically and P (X1, . . . , Xn) = Q(ξ,X1, . . . , Xn).

In particular, we have

trdegQ(f1(ξ), . . . , fn(ξ)) = trdegQ(z)(f1(z), . . . , fn(z)).

The Siegel-Shidlovskii Theorem itself is the final statement about equality of tran-
scendence degrees.

In this paper we state conjectural analogues of these results, involving �-functions. 
The principal difficulty is that these functions are divergent power series, and the exact 
analogue of Theorem A is meaningless. André discussed the situation in [2] and even 
though he did not formulate exactly the following conjecture, it seems plausible to us. 
From it, we will show how to deduce an analogue of the Siegel-Shidlovskii theorem for 
�-functions. Ferguson [5, p. 171, Conjecture 1] essentially stated this conjecture when 
f(z) has rational coefficients and when θ = 0.

Conjecture 2. Let f(z) be an �-function and θ ∈ (−π/2, π/2) be such that fθ(1) = 0. 
Then f(z)

z−1 is an �-function.

In other words, the conclusion of this conjecture asserts that z
1−z f(1/z) is an �-

function in 1/z; this is equivalent to f(1/z)
z−1 being an �-function in 1/z (since we have 

f(1/z)
z−1 = O(1/z) unconditionally as |z| → ∞).

Following Beukers’ proof [4] yields the following result (see [3, §4.6] for a related 
conjecture).

Theorem 3. Assume that Conjecture 2 holds.
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Let f(z) := t(f1(z), . . . , fn(z)) be a vector of �-functions solution of a differential 
system f′(z) = A(z)f(z) for some matrix A(z) ∈ Mn(Q(z)). Let ξ ∈ Q

∗ and θ ∈ (arg(ξ) −
π/2, arg(ξ) + π/2); assume that ξ is not a pole of a coefficient of A, and that θ is anti-
Stokes for none of the fj.

Let P ∈ Q[X1, . . . , Xn] be a homogeneous polynomial such that

P (f1,θ(1/ξ), . . . , fn,θ(1/ξ)) = 0.

Then there exists Q ∈ Q[Z, X1, . . . , Xn], homogeneous in the Xi, such that

Q(z, f1(z), . . . , fn(z)) = 0 identically and P (X1, . . . , Xn) = Q(1/ξ,X1, . . . , Xn).

In particular, we have

trdegQ(f1,θ(1/ξ), . . . , fn,θ(1/ξ)) = trdegQ(z)(f1(z), . . . , fn(z)).

As an application of Theorem 3, we shall prove the following corollary. Note that 
under his weaker version of Conjecture 2, Ferguson [5, p. 171, Theorem 2] proved that 
Gompertz’s constant is an irrational number.

Corollary 1. Assume that Conjecture 2 holds. Then for any α ∈ Q, α > 0, and any 
s ∈ Q \ Z≥0, the number 

∫∞
0 (t + α)se−tdt is a transcendental number.

In particular, Gompertz’s constant δ :=
∫∞
0 e−t/(t + 1)dt is a transcendental number.

In this text we suggest an approach towards Conjecture 1, based on the new notion of 
mixed functions which enables one to consider E- and �-functions at the same time. In 
particular we shall state a conjecture about such functions, namely Conjecture 3 in §2, 
which implies both Conjecture 1 and Conjecture 2. The following result is a motivation 
for this approach.

Proposition 1. Assume that both Conjectures 1 and 2 hold. Then neither Euler’s constant 
γ := −Γ′(1) nor Γ(a) (with a ∈ Q+ \N) are in E.

It is likely that none of these numbers is in G, but (as far as we know) there is no 
“functional” conjecture like Conjecture 3 that implies this. It is also likely that none is 
in D as well, but we don’t know if this can be deduced from Conjecture 3.

The structure of this paper is as follows. In §2 we define and study mixed functions, 
a combination of E- and �-functions. Then in §3 we express any value of a G-function 
as a polynomial in values of E- and �-functions, thereby proving Theorem 1. We study 
derivatives of the Γ function at rational points in §4, and prove Theorem 2 and Proposi-
tion 1. At last, §5 is devoted to adapting Beukers’ method to our setting: this approach 
yields Theorem 3 and Corollary 1.
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2. Mixed functions

2.1. Definition and properties

In view of Theorem 1, it is natural to study polynomials in E- and �-functions. We 
can prove a Diophantine result that combines both Theorems A(ii) and 3 but under 
a very complicated polynomial generalization of Conjecture 2. We opt here for a dif-
ferent approach to mixing E- and �-functions for which very interesting Diophantine 
consequences can be deduced from a very easy to state conjecture which is more in the 
spirit of Conjecture 2. We refer to §2.3 for proofs of all properties stated in this section 
(including Lemma 1 and Proposition 2), except Theorem 4.

Definition 1. We call mixed (arithmetic Gevrey) function any formal power series

∑
n∈Z

anz
n

such that 
∑

n≥0 anz
n is an E-function in z, and 

∑
n≥1 a−nz

−n is an �-function in 1/z.

In other words, a mixed function is defined as a formal sum Ψ(z) = F (z) + f(1/z)
where F is an E-function and f is an �-function. In particular, such a function is zero 
if, and only if, both F and f are constants such that F + f = 0; obviously, F and f are 
uniquely determined by Ψ upon assuming (for instance) that f(0) = 0. The set of mixed 
functions is a Q-vector space stable under multiplication by zn for any n ∈ Z. Unless 
f(z) is a polynomial, such a function Ψ(z) = F (z) + f(1/z) is purely formal: there is no 
z ∈ C such that f(1/z) is a convergent series. However, choosing a direction θ which is 
not anti-Stokes for f allows one to evaluate Ψθ(z) = F (z) + fθ(1/z) at any z in a large 
sector bisected by θ. Here and below, such a direction will be said not anti-Stokes for Ψ
and whenever we write fθ or Ψθ we shall assume implicitly that θ is not anti-Stokes.

Definition 1 is a formal definition, but one may identify a mixed function with the 
holomorphic function it defines on a given large sector by means of the following lemma.

Lemma 1. Let Ψ be a mixed function, and θ ∈ R be a non-anti-Stokes direction for Ψ. 
Then Ψθ is identically zero (as a holomorphic function on a large sector bisected by θ) 
if, and only if, Ψ is equal to zero (as a formal power series in z and 1/z).

Any mixed function Ψ(z) = F (z) + f(1/z) is solution of an E-operator. Indeed, this 
follows from applying [1, Theorem 6.1] twice: there exist an E-operator L such that 
L(f(1/z)) = 0, and an E-operator M such that M(L(F (z))) = 0 (because L(F (z)) is an 
E-function). Hence ML(F (z) +f(1/z)) = 0 and by [1, p. 720, §4.1], ML is an E-operator.

We formulate the following conjecture, which implies both Conjecture 1 and Conjec-
ture 2.
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Conjecture 3. Let Ψ(z) be an mixed function, and θ ∈ (−π/2, π/2) be such that Ψθ(1) =
0. Then Ψ(z)

z−1 is an mixed function.

The conclusion of this conjecture is that Ψ(z) = (z−1)Ψ1(z) for some mixed function 
Ψ1. This conclusion can be made more precise as follows; see §2.3 for the proof.

Proposition 2. Let Ψ(z) = F (z) + f(1/z) be an mixed function, and θ ∈ (−π/2, π/2) be 
such that Ψθ(1) = 0. Assume that Conjecture 3 holds for Ψ and θ.

Then both F (1) and fθ(1) are algebraic, and f(1/z)−fθ(1)
z−1 is an �-function.

Of course, in the conclusion of this proposition, one may assert also that F (z)−F (1)
z−1 is 

an E-function using Theorem A(i).
Conjecture 3 already has far reaching Diophantine consequences: Conjecture 2 and 

Theorem 2 stated in the introduction, and also the following result that encompasses 
Theorem 3 in the linear case.

Theorem 4. Assume that Conjecture 3 holds.
Let Ψ(z) := t(Ψ1(z), . . . , Ψn(z)) be a vector of mixed functions solution of a differ-

ential system Ψ′(z) = A(z)Ψ(z) for some matrix A(z) ∈ Mn(Q(z)). Let ξ ∈ Q
∗ and 

θ ∈ (arg(ξ) − π/2, arg(ξ) + π/2); assume that ξ is not a pole of a coefficient of A, and 
that θ is anti-Stokes for none of the Ψj.

Let λ1, . . . , λn ∈ Q be such that

n∑
i=1

λiΨi,θ(ξ) = 0.

Then there exist L1, . . . , Ln ∈ Q[z] such that

n∑
i=1

Li(z)Ψi(z) = 0 identically and Li(ξ) = λi for any i.

In particular, we have

rkQ(Ψ1,θ(ξ), . . . ,Ψn,θ(ξ)) = rkQ(z)(Ψ1(z), . . . ,Ψn(z)).

The proof of Theorem 4 follows exactly the linear part of the proof of Theorem 3
(see §5.1), which is based on [4, §3]. The only difference is that �-functions have to be 
replaced with mixed functions, and Conjecture 2 with Conjecture 3.

However a product of mixed functions is not, in general, a mixed function. Therefore 
the end of [4, §3] does not adapt to mixed functions, and there is no hope to obtain in 
this way a result on the transcendence degree of a field generated by values of mixed 
functions.
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As an application of Theorem 4, we can consider the mixed functions 1, eβz and 
f(1/z) :=

∑∞
n=0(−1)nn!z−n, where β is a fixed non-zero algebraic number. These three 

functions are linearly independent over C(z) and form a solution of a differential system 
with only 0 for singularity (because (f(1/z))′ = (1 +1/z)f(1/z) −1), hence for any α ∈ Q, 
α > 0 and any � ∈ Q

∗, the numbers 1, e�, f0(1/α) :=
∫∞
0 e−t/(1 + αt)dt are Q-linearly 

independent (for a fixed α, take β = �/α).

2.2. Values of mixed functions

We denote by MG the set of values Ψθ(1), where Ψ is a mixed function and θ = 0 if 
it is not anti-Stokes, θ > 0 is sufficiently small otherwise. This set is obviously equal to 
E + D.

Proposition 3. For every integer s ≥ 0 and every a ∈ Q+, a �= 0, we have Γ(s)(a) ∈
e−1MG.

This result follows immediately from Eq. (4.4) below (see §4.2), written in the form

Γ(s)(a) = e−1((−1)ses!Ea,s+1(−1) + fa,s+1;0(1)
)
,

because ezEa,s+1(−z) is an E-function and fa,s+1;0(1) is the 1-summation in the direction 
0 of an �-function.

It would be interesting to know if Γ(s)(a) belongs to MG. We did not succeed in 
proving it does, and we believe it does not. Indeed, for instance if we want to prove that 
γ ∈ MG, a natural strategy would be to construct an E-function F (z) with asymptotic 
expansion of the form γ+log(z) + f(1/z) in a large sector, and then to evaluate at z = 1. 
However this strategy cannot work since there is no such E-function (see the footnote 
in the proof of Lemma 1 in §2.3).

2.3. Proofs concerning mixed functions

To begin with, let us take Proposition 2 for granted and prove that Conjecture 3
implies both Conjecture 1 and Conjecture 2. Concerning Conjecture 2 it is clear. To 
prove that it implies Conjecture 1, let ξ ∈ D, i.e. ξ = fθ(1) is the 1-summation of 
an �-function f(z) in the direction θ = 0 if it is not anti-Stokes, and θ > 0 close to 
0 otherwise. Assume that ξ is also in E: we have ξ = F (1) for some E-function F (z). 
Therefore, Ψ(z) = F (z) −f(1/z) is a mixed function such that Ψθ(1) = 0. By Conjecture 3
and Proposition 2, we have ξ = fθ(1) ∈ Q. This concludes the proof that Conjecture 3
implies Conjecture 1.

Let us prove Proposition 2 now. Assuming that Conjecture 3 holds for Ψ and θ, there 
exists a mixed function Ψ1(z) = F1(z) + f1(1/z) such that Ψ(z) = (z−1)Ψ1(z). We have

F (z) − (z − 1)F1(z) + f(1/z) − (z − 1)f1(1/z) = 0 (2.1)
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as a formal power series in z and 1/z. Now notice that z − 1 = z(1 − 1
z ), and that we 

may assume f and f1 to have zero constant terms. Denote by α the constant term of 
f(1/z) − z(1 − 1

z )f1(1/z). Then we have

F (z) − (z − 1)F1(z) + α + f2(1/z) = 0

for some �-function f2 without constant term, so that f2 = 0, F (z) = (z − 1)F1(z) − α

and F (1) = −α ∈ Q. This implies fθ(1) = α, and f(1/z)−fθ(1)
z−1 = f1(1/z) is an �-function 

since f2 = 0. This concludes the proof of Proposition 2.
At last, let us prove Lemma 1. We write Ψ(z) = F (z) + f(1/z) and assume that Ψθ

is identically zero. Modifying θ slightly if necessary, we may assume that the asymp-
totic expansion −f(1/z) of F (z) in a large sector bisected by θ is given explicitly by [7, 
Theorem 5] applied to F (z) − F (0); recall that such an asymptotic expansion is unique 
(see [7]). As in [7] we let g(z) =

∑∞
n=1 anz

−n−1 where the coefficients an are given by 
F (z) − F (0) =

∑∞
n=1

an

n! z
n. For any σ ∈ C \ {0} there is no contribution in eσz in the 

asymptotic expansion of F (z), so that g(z) is holomorphic at σ. At σ = 0, the local 
expansion of g is of the form g(z) = h1(z) + h2(z) log(z) with G-functions h1 and h2, 
and the coefficients of h2 are related to those of f; however we shall not use this special 
form (1). Now recall that g(z) = G(1/z)/z where G is a G-function; then G is entire 
and has moderate growth at infinity (because ∞ is a regular singularity of G), so it is 
a polynomial due to Liouville’s theorem. This means that F (z) is a polynomial in z. 
Recall that asymptotic expansions in large sectors are unique. Therefore both F and f
are constant functions, and F + f = 0. This concludes the proof of Lemma 1.

3. Proof of Theorem 1: values of G-functions

In this section we prove Theorem 1. Let us begin with an example, starting with the 
relation proved in [13, Proposition 1] for z ∈ C \ (−∞, 0]:

γ + log(z) = zE1,2(−z) − e−zf1,2;0(1/z) (3.1)

where E1,2 is an E-function, and f1,2 is an �-function, both defined below in §4.2.
Apply Eq. (3.1) at both z and 2z, and then substract one equation from the other. 

This provides a relation of the form

log(2) = F (z) + e−zf1;0(1/z) + e−2zf2;0(1/z) (3.2)

valid in a large sector bisected by 0, with an E-function F and �-functions f1 and f2. 
Choosing arbitrarily a positive real algebraic value of z yields an explicit expression of 

1 Actually we are proving that the asymptotic expansion of a non-polynomial E-function is never a C-
linear combination of functions zα logk(z)f(1/z) with α ∈ Q, k ∈ N and �-functions f: some exponentials 
have to appear.
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log(2) ∈ G as a multivariate polynomial in elements of E and D. But this example shows 
also that a polynomial in E- and �-functions may be constant even though there does 
not seem to be any obvious reason. In particular, the functions 1, F (z), e−zf1;0(1/z), 
and e−2zf2;0(1/z) are linearly dependent over C. However we see no reason why they 
would be linearly dependent over Q. This could be a major drawback to combine in E-
and �-functions, since functions that are linearly dependent over C but not over Q can 
not belong to any Picard-Vessiot extension over Q.

Let us come now to the proof of Theorem 1. We first prove the second part, which 
runs as follows (it is reproduced from the unpublished note [14]).

From the stability of the class of E-functions by d
dz and 

∫ z

0 , we deduce that the set of 
convergent integrals 

∫∞
0 F (x)dx of E-functions and the set of finite limits of E-functions 

along some direction as z → ∞ are the same. Theorem 2(iii) in [7] implies that if an E-
function has a finite limit as z → ∞ along some direction, then this limit must be in G. 
Conversely, let β ∈ G. By Theorem 1 in [6], there exists a G-function G(z) =

∑∞
n=0 anz

n

of radius of convergence ≥ 2 (say) such that G(1) = β. Let F (z) =
∑∞

n=0
an

n! z
n be the 

associated E-function. Then for any z such that Re(z) > 1
2 , we have

1
z
G
(1
z

)
=

+∞∫
0

e−xzF (x)dx.

Hence, β =
∫ +∞
0 e−xF (x)dx where e−zF (z) is an E-function.

We shall now prove the first part of Theorem 1. In fact, we shall prove a slightly more 
general result, namely Theorem 5 below. We first recall a few notations. Denote by S
the G-module generated by all derivatives Γ(s)(a) (with s ∈ N and a ∈ Q \ Z≤0), and 
by V the S-module generated by E. Recall that G, S and V are rings. Conjecturally, 
G = P[1/π] and V = Pe[1/π] where P and Pe are the ring of periods and the ring of 
exponential periods over Q respectively (see [6, §2.2] and [8, §4.3]). We have proved in 
[8, Theorem 3] that V is the S-module generated by the numbers eρχ, with ρ ∈ Q and 
χ ∈ D.

Theorem 5. The ring V is the ring generated by E and D. In particular, all values of 
G-functions belong to the ring generated by E and D.

In other words, the elements of V are exactly the sums of products ab with a ∈ E
and b ∈ D.

Proof of Theorem 5. We already know that V is a ring, and that it contains E and
D. To prove the other inclusion, denote by U the ring generated by E and D. Using 
Proposition 3 proved in §2.2 and the functional equation of Γ, we have Γ(s)(a) ∈ U for 
any s ∈ N and any a ∈ Q \Z≤0. Therefore for proving that V ⊂ U , it is enough to prove 
that G ⊂ U .
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Let ξ ∈ G. Using [9, Theorem 3] there exists an E-function F (z) such that for any
θ ∈ [−π, π) outside a finite set, ξ is a coefficient of the asymptotic expansion of F (z) in 
a large sector bisected by θ. As the proof of [9, Theorem 3] shows, we can assume that 
ξ is the coefficient of ez in this expansion.

Denote by L an E-operator of which F is a solution, and by μ its order. André 
has proved [1] that there exists a basis (H1(z), . . . , Hμ(z)) of formal solutions of L at 
infinity such that for any j, e−ρjzHj(z) ∈ NGA{1/z}Q1 for some algebraic number ρj. We 

recall that elements of NGA{1/z}Q1 are arithmetic Nilsson-Gevrey series of order 1 with 
algebraic coefficients, i.e. Q-linear combinations of functions zk(log z)	f(1/z) with k ∈ Q, 
� ∈ N and �-functions f. Expanding in this basis the asymptotic expansion of F (z) in a 
large sector bisected by θ (denoted by F̃ ), there exist complex numbers κ1, . . . , κd such 
that F̃ (z) = κ1H1(z) +. . .+κμHμ(z). Then we have ξ = κ1c1+. . .+κμcμ, where cj is the 

coefficient of ez in Hj(z) ∈ eρjzNGA{1/z}Q1 . We have cj = 0 if ρj �= 1, and otherwise cj
is the constant coefficient of e−zHj(z): in both cases cj is an algebraic number. Therefore 
to conclude the proof that ξ ∈ U , it is enough to prove that κ1, . . . , κμ ∈ U .

For simplicity let us prove that κ1 ∈ U . Given solutions F1, . . . , Fμ of L, we denote 
by W (F1, . . . , Fμ) the corresponding wronskian matrix. Then for any z in a large sector 
bisected by θ we have

κ1 = detW (F (z), H2,θ(z), . . . , Hμ,θ(z))
detW (H1,θ(z), . . . , Hμ,θ(z))

where Hj,θ(z) is the 1-summation of Hj(z) in this sector. The determinant in the de-
nominator belongs to eazNGA{1/z}Q1 with a = ρ1 + . . . + ρμ ∈ Q. As the proof of [8, 
Theorem 6] shows, there exist b, c ∈ Q, with c �= 0, such that

detW (H1,θ(z), . . . , Hμ,θ(z)) = czbeaz.

We take z = 1, and choose θ = 0 if it is not anti-Stokes for L (and θ > 0 sufficiently 
small otherwise). Then we have

κ1 = c−1e−a
(

detW (F (z), H2,θ(z), . . . , Hμ,θ(z))
)
|z=1

∈ U.

This concludes the proof. �
Remark 1. The second part of Theorem 1 suggests the following comments. It would 
be interesting to have a better understanding (in terms of E, G and D) of the set of 
convergent integrals 

∫∞
0 R(x)F (x)dx where R is a rational function in Q(x) and F is an 

E-function, which are thus in G when R = 1 (see [14] for related considerations). Indeed, 
classical examples of such integrals are 

∫ +∞
0

cos(x)
1+x2 dx = π/(2e) ∈ πE, Euler’s constant ∫ +∞ 1−(1+x)e−x

dx = γ ∈ E + e−1D (using Eq. (3.1) and [15, p. 248, Example 2]) and 
0 x(1+x)
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Gompertz constant δ :=
∫ +∞
0

e−x

1+xdx ∈ D. A large variety of behaviors can thus be 
expected here.

For instance, using various explicit formulas in [11, Chapters 6.5–6.7], it can be proved 
that

+∞∫
0

R(x)J0(x)dx ∈ G + E + γE + log(Q
)E

for any R(x) ∈ Q(x) without poles on [0, +∞), where J0(x) =
∑∞

n=0(ix/2)2n/n!2 is a 
Bessel function.

A second class of examples is when R(x)F (x) is an even function without poles on 
[0, +∞) and such that lim|x|→∞,Im(x)≥0 x

2R(x)F (x) = 0. Then by the residue theorem,

+∞∫
0

R(x)F (x)dx = iπ
∑

ρ, Im(ρ)>0

Resx=ρ

(
R(x)F (x)

)
∈ πE

where the summation is over the poles of R in the upper half plane.

4. Derivatives of the Γ function at rational points

In this section we prove Theorem 2 and Proposition 1 stated in the introduction, 
dealing with Γ(s)(a). To begin with, we define E-functions Ea,s(z) in §4.1 and prove a 
linear independence result concerning these functions. Then we prove in §4.2 a formula for 
Γ(s)(a), namely Eq. (4.4), involving Ea,s+1(−1) and the 1-summation of an �-function. 
This enables us to prove Theorem 2 in §4.3 and Proposition 1 in §4.4.

4.1. Linear independence of a family of E-functions

To study derivatives of the Γ function at rational points, we need the following lemma. 
For s ≥ 1 and a ∈ Q \ Z≤0, we consider the E-function Ea,s(z) :=

∑∞
n=0

zn

n!(n+a)s .

Lemma 2.

(i) For any a ∈ Q \ Z and any s ≥ 1, the functions

1, ez, ezEa,1(−z), ezEa,2(−z), . . . , ezEa,s(−z)

are linearly independent over C(z).
(ii) For any a ∈ N∗ and any s ≥ 2, the functions

1, ez, ezEa,2(−z), . . . , ezEa,s(−z)

are linearly independent over C(z).
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Remark 2. Part (i) of the lemma is false if a ∈ N∗ because 1, ez, ezEa,1(−z) are Q(z)-
linearly dependent in this case (see the proof of Part (ii) below).

Proof. (i) For simplicity, we set ψs(z) := ezEa,s(−z). We proceed by induction on s ≥ 1. 
Let us first prove the case s = 1. The derivative of ψ1(z) is (1 + (z − a)ψ1(z))/z. Let us 
assume the existence of a relation ψ1(z) = u(z)ez + v(z) with u, v ∈ C(z) (a putative 
relation U(z) + V (z)ez + W (z)ψ1(z) = 0 forces W �= 0 because ez /∈ C(z)). Then after 
differentiation of both sides, we end up with

1 + (z − a)ψ1(z)
z

=
(
u(z) + u′(z)

)
ez + v′(z).

Hence,

1 + (z − a)
(
u(z)ez + v(z)

)
z

=
(
u(z) + u′(z)

)
ez + v′(z).

Since ez /∈ C(z), the function v(z) is a rational solution of the differential equation 
zv′(z) = (z−a)v(z) +1: v(z) cannot be identically 0, and it cannot be a polynomial (the 
degrees do not match on both sides). It must then have a pole at some point ω, of order 
d ≥ 1 say. We must have ω = 0 because otherwise the order of the pole at ω of zv′(z) is 
d +1 while the order of the pole of (z−a)v(z) +1 is at most d. Writing v(z) =

∑
n≥−d vnz

n

with v−d �= 0 and comparing the term in z−d of zv′(z) and (z−a)v(z) +1, we obtain that 
d = a. This forces a to be an integer ≥ 1, which is excluded. Hence, 1, ez, ezEa,1(−z) are 
C(z)-linearly independent.

Let us now assume that the case s − 1 ≥ 1 holds. Let us assume the existence of a 
relation over C(z)

ψs(z) = v(z) + u0(z)ez +
s−1∑
j=1

uj(z)ψj(z). (4.1)

(A putative relation V (z) +U0(z)ez+
∑s

j=1 Uj(z)ψj(z) = 0 forces Us �= 0 by the induction 
hypothesis.) Differentiating (4.1) and because ψ′

j(z) = (1 − a
z )ψj(z) + 1

zψj−1(z) for all 
j ≥ 1 (where we have let ψ0(z) = 1), we have

A(z)ψs(z) + 1
z
ψs−1(z) = v′(z) +

(
u0(z) + u′

0(z)
)
ez +

s−1∑
j=1

u′
j(z)ψj(z)

+
s−1∑
j=1

uj(z)
(
A(z)ψj(z) + 1

z
ψj−1(z)

)
, (4.2)

where A(z) := 1 −a/z. Substituting the right-hand side of (4.1) for ψs(z) on the left-hand 
side of (4.2), we then deduce that
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v′(z) −A(z)v(z) +
(
u′

0(z) + (1 −A(z))u0(z)
)
ez

+ 1
z
(z − a)u1(z)ψ1(z) +

s−1∑
j=1

u′
j(z)ψj(z) + 1

z

s−1∑
j=1

uj(z)ψj−1(z) −
1
z
ψs−1(z) = 0.

This is a non-trivial C(z)-linear relation between 1, ez, ψ1(z), ψ2(z), . . . , ψs−1(z) because 
the coefficient of ψs−1(z) is u′

s−1(z) − 1/z and it is not identically 0 because u′
s−1(z)

cannot have a pole of order 1. But by the induction hypothesis, we know that such a 
relation is impossible.

(ii) The proof can be done by induction on s ≥ 2 similarly. In the case s = 2, 
assume the existence of a relation ψ2(z) = u(z)ez + v(z) with u(z), v(z) ∈ C(z). By 
differentiation, we obtain

(
1 − a

z

)
ψ2(z) = −1

z
ψ1(z) +

(
u(z) + u′(z)

)
ez + v′(z).

By induction on a ≥ 1, we have ψ1(z) = (a − 1)!ez/za + w(z) for some w(z) ∈ Q(z). 
Hence, we have

(
1 − a

z

)
u(z) = −

( (a− 1)!
za+1 + 1

)
u(z) + u′(z)

which is not possible. Let us now assume that the case s − 1 ≥ 2 holds, as well as the 
existence of a relation over C(z)

ψs(z) = v(z) + u0(z)ez +
s−1∑
j=2

uj(z)ψj(z). (4.3)

We proceed exactly as above by differentiation of both sides of (4.3). Using the relation 
ψ′
j(z) = (1 − a

z )ψj(z) + 1
zψj−1(z) for all j ≥ 2 and the fact that ψ1(z) = (a − 1)!ez/za +

w(z), we obtain a relation ṽ(z) + ũ0(z)ez +
∑s−1

j=2 ũj(z)ψj(z) = 0 where ũs−1(z) =
u′
s−1(z) − 1/z cannot be identically 0. The induction hypothesis rules out the existence 

of such a relation. �
4.2. A formula for Γ(s)(a)

Let z > 0 and a ∈ Q+, a �= 0. We have

Γ(s)(a) =
∞∫
0

ta−1 log(t)se−tdt =
z∫

0

ta−1 log(t)se−tdt +
∞∫
z

ta−1 log(t)se−tdt.

On the one hand,



50 S. Fischler, T. Rivoal / Journal of Number Theory 261 (2024) 36–54
z∫
0

ta−1 log(t)se−tdt =
∞∑

n=0

(−1)n

n!

z∫
0

ta+n−1 log(t)sdt

=
∞∑

n=0

(−1)n

n!

s∑
k=0

(−1)k s!
(s− k)!

zn+a log(z)s−k

(n + a)k+1

=
s∑

k=0

(−1)ks!
(s− k)!z

a log(z)s−kEa,k+1(−z);

recall that Ea,j(z) =
∑∞

n=0
zn

n!(n+a)j . On the other hand,

∞∫
z

ta−1 log(t)se−tdt = e−z

∞∫
0

(t + z)a−1 log(t + z)se−tdt

= za−1e−z
s∑

k=0

(
s

k

)
log(z)s−k

∞∫
0

(1 + t/z)a−1 log(1 + t/z)ke−tdt.

Now z > 0 so that

fa,k+1;0(z) :=
∞∫
0

(1 + tz)a−1 log(1 + tz)ke−tdt = 1
z

∞∫
0

(1 + x)a−1 log(1 + x)ke−x/zdx

is the 1-summation at the origin in the direction 0 of the �-function

∞∑
n=0

n!ua,k,nz
n,

where the sequence (ua,k,n)n≥0 ∈ QN is defined by the expansion of the G-function:

(1 + x)a−1 log(1 + x)k =
∞∑

n=0
ua,k,nx

n.

Note that if k = 0 and a ∈ N∗, then ua,k,n = 0 for any n ≥ a, and fa,k+1;0(1/z) is a 
polynomial in 1/z. Therefore, we have for any z > 0:

Γ(s)(a) =
s∑

k=0

(−1)ks!
(s− k)!z

a log(z)s−kEa,k+1(−z) + za−1e−z
s∑

k=0

(
s

k

)
log(z)s−kfa,k+1;0(1/z).

In particular, for z = 1, this relation reads

Γ(s)(a) = (−1)ss!Ea,s+1(−1) + e−1fa,s+1;0(1). (4.4)

Since γ = −Γ′(1) we obtain as a special case the formula
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γ = E1,2(−1) − e−1f1,2;0(1), (4.5)

which is also a special case of Eq. (3.1) proved in [13].

4.3. Proof of Theorem 2

Let us assume that Γ(s)(a) ∈ Q for some a ∈ Q+ \ N and s ≥ 0. Then ezΓ(s)(a) +
(−1)s+1s!ezEa,s+1(−z) is an E-function. The relation eΓ(s)(a) +(−1)s+1s!eEa,s+1(−1) =
fa,s+1;0(1) proved at the end of §4.2 shows that α := eΓ(s)(a) + (−1)s+1s!eEa,s+1(−1) ∈
E ∩ D. Hence α is in Q by Conjecture 1 and we have a non-trivial Q-linear relation 
between 1, e and eEa,s+1(−1): we claim that this is not possible. Indeed, consider the 
vector

Y (z) := t(1, ez, ezEa,1(−z), . . . , ezEa,s+1(−z)).

It is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only pole of 
M(z) ∈ Ms+3(Q(z)) (see the computations in the proof of Lemma 2 above). Since 
the components of Y (z) are Q(z)-linearly independent by Lemma 2(i), we deduce from 
Beukers’ [4, Corollary 1.4] that

1, e, eEa,1(−1), . . . , eEa,s+1(−1)

are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly 
independent. This concludes the proof if a ∈ Q+ \N.

Let us assume now that Γ(s)(a) ∈ Q for some a ∈ N∗ and s ≥ 1. Then ezΓ(s)(a) +
(−1)s+1s!ezEa,s+1(−z) is an E-function. The relation Γ(s)(a) + (−1)s+1s!Ea,s+1(−1) =
e−1fa,s+1;0(1) shows that α := eΓ(s)(a) + (−1)s+1s!eEa,s+1(−1) ∈ E ∩ D. Hence α
is in Q by Conjecture 1 and we have a non-trivial Q-linear relation between 1, e and 
eEa,s+1(−1): we claim that this is not possible. Indeed, consider the vector Y (z) :=
t(1, ez, ezEa,2(−z), . . ., ezEa,s+1(−z)): it is solution of a differential system Y ′(z) =
M(z)Y (z) where 0 is the only pole of M(z) ∈ Ms+2(Q(z)). Since the components of 
Y (z) are Q(z)-linearly independent by Lemma 2(ii), we deduce again from Beukers’ 
theorem that

1, e, eEa,2(−1), . . . , eEa,s+1(−1)

are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly 
independent. This concludes the proof of Theorem 2.

4.4. Proof of Proposition 1

Recall that Eq. (4.5) proved in §4.2 reads eE1,2(−1) − eγ = f1,2;0(1). Assuming that 
γ ∈ E, the left-hand side is in E while the right-hand side is in D. Hence both sides are 
in Q by Conjecture 1. Note that, by integration by parts,
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f1,2;0(1) =
∞∫
0

log(1 + t)e−tdt =
∞∫
0

e−t

1 + t
dt

is Gompertz’s constant. Hence, by Corollary 1 (which holds under Conjecture 2), the 
number f1,2;0(1) is not in Q. Consequently, γ /∈ E.

Similarly, Eq. (4.4) with a ∈ Q \ Z and s = 0 reads eΓ(a) − eEa,1(−1) = fa,1;0(1). 
Assuming that Γ(a) ∈ E, the left-hand side is in E while the right-hand side is in D. 
Hence both sides are in Q by Conjecture 1. But by Corollary 1 (which holds under 
Conjecture 2), the number fa,1;0(1) =

∫∞
0 (1 + t)a−1e−tdt is not in Q. Hence, Γ(a) /∈ E.

5. Application of Beukers’ method and consequence

In this section we prove Theorems 3 and 4, and Corollary 1 stated in the introduction.

5.1. Proofs of Theorems 3 and 4

The proof of Theorem 3 (resp. Theorem 4) is based on the arguments given in [4], 
except that E-functions have to be replaced with �-functions (resp. mixed functions), 
and 1-summation in non-anti-Stokes directions is used for evaluations. Conjecture 2
(resp. Conjecture 3) is used as a substitute for Theorem A(i).

The main step is the following result.

Proposition 4. Assume that Conjecture 2 (resp. Conjecture 3) holds.
Let f be an �-function (resp. a mixed function), ξ ∈ Q

∗ and θ ∈ (arg(ξ) −π/2, arg(ξ) +
π/2). Assume that θ is not anti-Stokes for f, and that fθ(1/ξ) = 0 (resp. fθ(ξ) = 0). 
Denote by Ly = 0 a differential equation, of minimal order, satisfied by f(1/z) (resp. by 
f(z)).

Then all solutions of Ly = 0 are holomorphic and vanish at ξ; the differential operator 
L has an apparent singularity at ξ.

We recall that mixed functions (usually denoted by Ψ in this paper) are given by 
Ψ(z) = F (z) + f(1/z) where F is an E-function, and f an �-function; both Ψ(z) and 
f(1/z) are annihilated by E-operators (but neither Ψ(1/z) nor f(z) in general).

Proof of Proposition 4. We follow the end of the proof of [4, Corollary 2.2]. Upon re-
placing f(z) with f(z/ξ) we may assume that ξ = 1. Then we apply Conjecture 2 (resp. 
Conjecture 3) to f, since fθ(1) = 0. Accordingly, g(z) = −zf(z)

z−1 = f(z)
1
z−1 (resp. g(z) = f(z)

z−1 ) 
is an �-function (resp. a mixed function). Now L ◦ (z − 1) is a differential operator, of 
minimal order, that annihilates g(1/z) (resp. g(z)). Since this function is annihilated 
by an E-operator Φ, there exists Q ∈ Q[z] \ {0} such that Q(z)Φ is a left multiple of 
L ◦ (z − 1) in Q[z, d/dz]. Now André proved [1, Theorem 4.3] that 1 is not a singularity 
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of Φ, so that all solutions of L ◦ (z − 1) are holomorphic at 1. This provides a basis of 
solutions of L, all of which vanish at 1, and concludes the proof of Proposition 4. �

Let us deduce now the linear case of Theorem 3 (namely when degP = 1) from 
Proposition 4, by following [4, §3]. The arguments for proving Theorem 4 are exactly 
the same.

Again we may assume that ξ = 1. Letting m denote the rank of f1, . . . , fn over Q(z), 
[4, Lemma 3.1] yields polynomials Ci,j ∈ Q[z], 1 ≤ i ≤ n −m, 1 ≤ j ≤ n, such that

n∑
j=1

Ci,j(1/z)fj(1/z) = 0 for any z and any i,

and the matrix [Ci,j(1)] has rank n − m. Assume now that a Q-linear relation ∑n
j=1 αjfj,θ(1) = 0 does not come from specialization at z = 1 of a Q(z)-linear rela-

tion between the functions fj. Then it is possible (as in [4, proof of Theorem 3.2]) to 
construct polynomials Aj ∈ Q[z], 1 ≤ j ≤ n, such that Aj(1) = αj , L has order m
and 1 is a regular point of L, where L is a differential operator of minimal order that 
annihilates f(1/z) =

∑n
j=1 Aj(1/z)fj(1/z). But f is an �-function such that fθ(1) = 0: 

this contradicts Proposition 4, and concludes the proof of the linear case of Theorem 3.
The general case of Theorem 3 follows by applying the linear case to the family of 

monomials fi11 . . . finn where i1+. . .+in = degP , since any product of �-functions is again 
an �-function. But the corresponding property with mixed functions does not hold, so 
that Theorem 4 is restricted to the linear case.

5.2. Proof of Corollary 1

Let s ∈ Q \ Z≥0. The �-function f(z) :=
∑∞

n=0 s(s − 1) . . . (s − n + 1)zn is solution 
of the inhomogeneous differential equation z2f′(z) + (1 − sz)f(z) − 1 = 0, which can be 
immediately transformed into a differential system satisfied by the vector of �-functions 
t(1, f(z)). The coefficients of the matrix have only 0 as pole. Moreover, f(z) is a tran-
scendental function because s /∈ Z≥0. Hence, by Theorem 3, f0(1/α) /∈ Q when α ∈ Q, 
α > 0, because 0 is not an anti-Stokes direction of f(z). It remains to observe that this 
1-summation is

∞∫
0

(1 + tz)se−tdt.
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