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Abstract

We investigate the relations between the rings E, G and D of values taken at alge-
braic points by arithmetic Gevrey series of order either −1 (E-functions), 0 (analytic
continuations of G-functions) or 1 (renormalization of divergent series solutions at
∞ of E-operators) respectively. We prove in particular that any element of G can
be written as multivariate polynomial with algebraic coefficients in elements of E
and D, and is the limit at infinity of some E-function along some direction. This
prompts to defining and studying the notion of mixed functions, which generalizes
simultaneously E-functions and arithmetic Gevrey series of order 1. Using natural
conjectures for arithmetic Gevrey series of order 1 and mixed functions (which are
analogues of a theorem of André and Beukers for E-functions) and the conjecture
D∩E = Q (but not necessarily all these conjectures at the same time), we deduce a
number of interesting Diophantine results such as an analogue for mixed functions of
Beukers’ linear independence theorem for values of E-functions, the transcendance
of the values of the Gamma function and its derivatives at all non-integral algebraic
numbers, the transcendance of Gompertz constant as well as the fact that Euler’s
constant is not in E.
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1 Introduction

A power series
∑∞

n=0
an
n!
xn ∈ Q[[x]] is said to be an E-function when it is solution of a linear

differential equation over Q(x) (holonomic), and |σ(an)| (for any σ ∈ Gal(Q/Q)) and the
least common denominator of a0, a1, . . . , an grow at most exponentially in n. They were
defined and studied by Siegel in 1929, who also defined the class of G-functions: a power
series

∑∞
n=0 anx

n ∈ Q[[x]] is said to be a G-function when
∑∞

n=0
an
n!
xn is an E-function. In

this case,
∑∞

n=0 n!anz
n ∈ Q[[z]] is called an Э-function, following the terminology intro-

duced by André in [1]. E-functions are entire, while G-functions have a positive radius of
convergence, which is finite except for polynomials. Here and below, we see Q as embedded
into C. Following André again, E-functions, G-functions and Э-fonctions are exactly arith-
metic Gevrey series of order s = −1, 0, 1 respectively. Actually André defines arithmetic
Gevrey series of any order s ∈ Q, but the set of values at algebraic points is the same for
a given s 6= 0 as for s/|s| using [1, Corollaire 1.3.2].

Э-functions are divergent series, unless they are polynomials. Given an Э-function f
and any θ ∈ R, except finitely many values mod 2π (namely anti-Stokes directions of
f), one can perform Ramis’ 1-summation of f(1/z) in the direction θ, which coincides
in this setting with Borel-Laplace summation (see [14] or [9]). This provides a function
denoted by fθ(1/z), holomorphic on the open subset of C consisting in all z 6= 0 such that
θ− π

2
−ε < arg z < θ+ π

2
+ε for some ε > 0, of which f(1/z) is the asymptotic expansion in

this sector (called a large sector bisected by θ). Of course f(1/z) can be extended further
by analytic continuation, but this asymptotic expansion may no longer be valid. When an
Э-function is denoted by fj, we shall denote by fj,θ or fj;θ its 1-summation and we always
assume (implicitly or explicitly) that θ is not an anti-Stokes direction.

In [8], [9] and [10, §4.3], we have studied the sets G, E and D defined respectively as
the sets of all the values taken by all (analytic continuations of) G-functions at algebraic
points, of all the values taken by all E-functions at algebraic points and of all values fθ(1)
where f is an Э-function (θ = 0 if it is not an anti-Stokes direction, and θ > 0 is very small
otherwise.) These three sets are countable sub-rings of C that all contain Q; conjecturally,
they are related to the set of periods and exponential periods, see §3. (The ring D is
denoted by Э in [10].)

We shall prove the following result in §3.

Theorem 1. Every element of G can be written as a multivariate polynomial (with coef-
ficients in Q) in elements of E and D.

Moreover, G coincides with the set of all convergent integrals
∫∞

0
F (x)dx where F is

an E-function, or equivalently with the set of all finite limits of E-functions at ∞ along
some direction.

Above, a convergent integral
∫∞

0
F (x)dxmeans a finite limit of theE-function

∫ z
0
F (x)dx

as z →∞ along some direction; this explains the equivalence of both statements.
We refer to Eq. (3.2) in §3 for an expression of log(2) as a polynomial in elements in E

and D; the number π could be similarly expressed by considering z and iz instead of z and
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2z there. Examples of the last statement are the identities (see [12] for the second one):∫ +∞

0

sin(x)

x
dx =

π

2
and

∫ +∞

0

J0(ix)e−3xdx =

√
6

96π3
Γ
( 1

24

)
Γ
( 5

24

)
Γ
( 7

24

)
Γ
(11

24

)
.

It is notoriously difficult to prove/disprove that a given element of G is transcendental;
it is known that a Siegel-Shidlovskii type theorem for G-functions can not hold mutatis
mutandis. Theorem 1 suggests that an alternative approach to the study of the Diophantine
properties of elements of G can be through a better understanding of joint study of the
elements of E and D, modulo certain conjectures to begin with. Our applications will
not be immediately directed to the elements of G but rather to the understanding of the
(absence of) relations between the elements of E and D.

It seems natural (see [9, p. 37]) to conjecture that E ∩ G = Q, and also that G ∩ D =
Q, though both properties seem currently out of reach. In this paper, we suggest (see §2)
a possible approach towards the following analogous conjecture.

Conjecture 1. We have E ∩ D = Q.

In §2 we shall make a functional conjecture, namely Conjecture 3, that implies Conjec-
ture 1. We also prove that Conjecture 1 has very important consequences, as the following
result shows.

Theorem 2. Assume that Conjecture 1 holds. Then Γ(s)(a) is a transcendental number
for any rational number a > 0 and any integer s ≥ 0, except of course if s = 0 and a ∈ N.

One of the aims of this paper is to show that combining Э- and E-functions may lead
to very important results in transcendental number theory. Let us recall now briefly the
main known results on E-functions.

Point (i) in the following result is due to André [2] for E-functions with rational Taylor
coefficients, and to Beukers [6] in the general case. André used this property to obtain a
new proof of the Siegel-Shidlovskii Theorem, and Beukers to prove an optimal refinement
of this theorem (namely, (ii) below).

Theorem A. (i) [André, Beukers] If an E-function F (z) is such that F (1) = 0, then F (z)
z−1

is an E-function.
(ii) [Beukers] Let F (z) := t(f1(z), . . . , fn(z)) be a vector of E-functions solution of a

differential system F ′(z) = A(z)F (z) for some matrix A(z) ∈Mn(Q(z)).
Let ξ ∈ Q∗ which is not a pole of a coefficient of A. Let P ∈ Q[X1, . . . , Xn] be a

homogeneous polynomial such that

P (f1(ξ), . . . , fn(ξ)) = 0.

Then there exists Q ∈ Q[Z,X1, . . . , Xn], homogeneous in the Xi, such that

Q(z, f1(z), . . . , fn(z)) = 0 identically and P (X1, . . . , Xn) = Q(ξ,X1, . . . , Xn).

In particular, we have

trdegQ(f1(ξ), . . . , fn(ξ)) = trdegQ(z)(f1(z), . . . , fn(z)).
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The Siegel-Shidlovskii Theorem itself is the final statement about equality of transcen-
dence degrees.

In this paper we state conjectural analogues of these results, involving Э-functions.
The principal difficulty is that these functions are divergent power series, and the exact
analogue of Theorem A is meaningless. André discussed the situation in [2] and even
though he did not formulate exactly the following conjecture, it seems plausible to us.
From it, we will show how to deduce an analogue of the Siegel-Shidlovskii theorem for
Э-functions. Ferguson [7, p. 171, Conjecture 1] essentially stated this conjecture when f(z)
has rational coefficients and when θ = 0.

Conjecture 2. Let f(z) be an Э-function and θ ∈ (−π/2, π/2) be such that fθ(1) = 0.

Then f(z)
z−1

is an Э-function.

In other words, the conclusion of this conjecture asserts that z
1−z f(1/z) is an Э-function

in 1/z; this is equivalent to f(1/z)
z−1

being an Э-function in 1/z (since we have f(1/z)
z−1

= O(1/z)
unconditionally as |z| → ∞).

Following Beukers’ proof [6] yields the following result (see [3, §4.6] for a related con-
jecture).

Theorem 3. Assume that Conjecture 2 holds.
Let f(z) := t(f1(z), . . . , fn(z)) be a vector of Э-functions solution of a differential system

f′(z) = A(z)f(z) for some matrix A(z) ∈ Mn(Q(z)). Let ξ ∈ Q∗ and θ ∈ (arg(ξ) −
π/2, arg(ξ) + π/2) ; assume that ξ is not a pole of a coefficient of A, and that θ is anti-
Stokes for none of the fj.

Let P ∈ Q[X1, . . . , Xn] be a homogeneous polynomial such that

P (f1,θ(1/ξ), . . . , fn,θ(1/ξ)) = 0.

Then there exists Q ∈ Q[Z,X1, . . . , Xn], homogeneous in the Xi, such that

Q(z, f1(z), . . . , fn(z)) = 0 identically and P (X1, . . . , Xn) = Q(1/ξ,X1, . . . , Xn).

In particular, we have

trdegQ(f1,θ(1/ξ), . . . , fn,θ(1/ξ)) = trdegQ(z)(f1(z), . . . , fn(z)).

As an application of Theorem 3, we shall prove the following corollary. Note that under
his weaker version of Conjecture 2, Ferguson [7, p. 171, Theorem 2] proved that Gompertz’s
constant is an irrational number.

Corollary 1. Assume that Conjecture 2 holds. Then for any α ∈ Q, α > 0, and any
s ∈ Q \ Z≥0, the number

∫∞
0

(t+ α)se−tdt is a transcendental number.
In particular, Gompertz’s constant δ :=

∫∞
0
e−t/(t+ 1)dt is a transcendental number.
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In this text we suggest an approach towards Conjecture 1, based on the new notion
of mixed functions which enables one to consider E- and Э-functions at the same time.
In particular we shall state a conjecture about such functions, namely Conjecture 3 in §2,
which implies both Conjecture 1 and Conjecture 2. The following result is a motivation
for this approach.

Proposition 1. Assume that both Conjectures 1 and 2 hold. Then neither Euler’s constant
γ := −Γ′(1) nor Γ(a) (with a ∈ Q+ \ N) are in E.

It is likely that none of these numbers is in G, but (as far as we know) there is no
“functional” conjecture like Conjecture 3 that implies this. It is also likely that none is in
D as well, but we don’t know if this can be deduced from Conjecture 3.

The structure of this paper is as follows. In §2 we define and study mixed functions, a
combination of E- and Э-functions. Then in §3 we express any value of a G-function as a
polynomial in values of E- and Э-functions, thereby proving Theorem 1. We study deriva-
tives of the Γ function at rational points in §4, and prove Theorem 2 and Proposition 1.
At last, §5 is devoted to adapting Beukers’ method to our setting: this approach yields
Theorem 3 and Corollary 1.

2 Mixed functions

2.1 Definition and properties

In view of Theorem 1, it is natural to study polynomials in E- and Э-functions. We can
prove a Diophantine result that combines both Theorems A(ii) and 3 but under a very com-
plicated polynomial generalization of Conjecture 2. We opt here for a different approach
to mixing E- and Э-functions for which very interesting Diophantine consequences can be
deduced from a very easy to state conjecture which is more in the spirit of Conjecture 2.
We refer to §2.3 for proofs of all properties stated in this section (including Lemma 1 and
Proposition 2), except Theorem 4.

Definition 1. We call mixed (arithmetic Gevrey) function any formal power series∑
n∈Z

anz
n

such that
∑

n≥0 anz
n is an E-function in z, and

∑
n≥1 a−nz

−n is an Э-function in 1/z.

In other words, a mixed function is defined as a formal sum Ψ(z) = F (z)+ f(1/z) where
F is an E-function and f is an Э-function. In particular, such a function is zero if, and
only if, both F and f are constants such that F + f = 0; obviously, F and f are uniquely
determined by Ψ upon assuming (for instance) that f(0) = 0. The set of mixed functions
is a Q-vector space stable under multiplication by zn for any n ∈ Z. Unless f(z) is a
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polynomial, such a function Ψ(z) = F (z) + f(1/z) is purely formal: there is no z ∈ C such
that f(1/z) is a convergent series. However, choosing a direction θ which is not anti-Stokes
for f allows one to evaluate Ψθ(z) = F (z) + fθ(1/z) at any z in a large sector bisected by
θ. Here and below, such a direction will be said not anti-Stokes for Ψ and whenever we
write fθ or Ψθ we shall assume implicitly that θ is not anti-Stokes.

Definition 1 is a formal definition, but one may identify a mixed function with the
holomorphic function it defines on a given large sector by means of the following lemma.

Lemma 1. Let Ψ be a mixed function, and θ ∈ R be a non-anti-Stokes direction for Ψ.
Then Ψθ is identically zero (as a holomorphic function on a large sector bisected by θ) if,
and only if, Ψ is equal to zero (as a formal power series in z and 1/z).

Any mixed function Ψ(z) = F (z) + f(1/z) is solution of an E-operator. Indeed, this
follows from applying [1, Theorem 6.1] twice: there exist an E-operator L such that
L(f(1/z)) = 0, and an E-operator M such that M(L(F (z))) = 0 (because L(F (z)) is an
E-function). Hence ML(F (z) + f(1/z)) = 0 and by [1, p. 720, §4.1], ML is an E-operator.

We formulate the following conjecture, which implies both Conjecture 1 and Conjec-
ture 2.

Conjecture 3. Let Ψ(z) be an mixed function, and θ ∈ (−π/2, π/2) be such that Ψθ(1) = 0.

Then Ψ(z)
z−1

is an mixed function.

The conclusion of this conjecture is that Ψ(z) = (z − 1)Ψ1(z) for some mixed function
Ψ1. This conclusion can be made more precise as follows; see §2.3 for the proof.

Proposition 2. Let Ψ(z) = F (z) + f(1/z) be an mixed function, and θ ∈ (−π/2, π/2) be
such that Ψθ(1) = 0. Assume that Conjecture 3 holds for Ψ and θ.

Then both F (1) and fθ(1) are algebraic, and f(1/z)−fθ(1)
z−1

is an Э-function.

Of course, in the conclusion of this proposition, one may assert also that F (z)−F (1)
z−1

is an
E-function using Theorem A(i).

Conjecture 3 already has far reaching Diophantine consequences: Conjecture 2 and
Theorem 2 stated in the introduction, and also the following result that encompasses
Theorem 3 in the linear case.

Theorem 4. Assume that Conjecture 3 holds.
Let Ψ(z) := t(Ψ1(z), . . . ,Ψn(z)) be a vector of mixed functions solution of a differential

system Ψ′(z) = A(z)Ψ(z) for some matrix A(z) ∈ Mn(Q(z)). Let ξ ∈ Q∗ and θ ∈
(arg(ξ)− π/2, arg(ξ) + π/2) ; assume that ξ is not a pole of a coefficient of A, and that θ
is anti-Stokes for none of the Ψj.

Let λ1, . . . , λn ∈ Q be such that

n∑
i=1

λiΨi,θ(ξ) = 0.
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Then there exist L1, . . . , Ln ∈ Q[z] such that

n∑
i=1

Li(z)Ψi(z) = 0 identically and Li(ξ) = λi for any i.

In particular, we have

rkQ(Ψ1,θ(ξ), . . . ,Ψn,θ(ξ)) = rkQ(z)(Ψ1(z), . . . ,Ψn(z)).

The proof of Theorem 4 follows exactly the linear part of the proof of Theorem 3 (see
§5.1), which is based on [6, §3]. The only difference is that Э-functions have to be replaced
with mixed functions, and Conjecture 2 with Conjecture 3.

However a product of mixed functions is not, in general, a mixed function. Therefore
the end of [6, §3] does not adapt to mixed functions, and there is no hope to obtain in this
way a result on the transcendence degree of a field generated by values of mixed functions.

As an application of Theorem 4, we can consider the mixed functions 1, eβz and f(1/z) :=∑∞
n=0(−1)nn!z−n, where β is a fixed non-zero algebraic number. These three functions are

linearly independent over C(z) and form a solution of a differential system with only 0 for
singularity (because (f(1/z))′ = (1 + 1/z)f(1/z)− 1), hence for any α ∈ Q, α > 0 and any
% ∈ Q∗, the numbers 1, e%, f0(1/α) :=

∫∞
0
e−t/(1 + αt)dt are Q-linearly independent (for a

fixed α, take β = %/α).

2.2 Values of mixed functions

We denote by MG the set of values Ψθ(1), where Ψ is a mixed function and θ = 0 if it is
not anti-Stokes, θ > 0 is sufficiently small otherwise. This set is obviously equal to E + D.

Proposition 3. For every integer s ≥ 0 and every a ∈ Q+, a 6= 0, we have Γ(s)(a) ∈
e−1MG.

This result follows immediately from Eq. (4.4) below (see §4.2), written in the form

Γ(s)(a) = e−1
(
(−1)ses!Ea,s+1(−1) + fa,s+1;0(1)

)
,

because ezEa,s+1(−z) is an E-function and fa,s+1;0(1) is the 1-summation in the direction
0 of an Э-function.

It would be interesting to know if Γ(s)(a) belongs to MG. We did not succeed in proving
it does, and we believe it does not. Indeed, for instance if we want to prove that γ ∈MG,
a natural strategy would be to construct an E-function F (z) with asymptotic expansion
of the form γ + log(z) + f(1/z) in a large sector, and then to evaluate at z = 1. However
this strategy cannot work since there is no such E-function (see the footnote in the proof
of Lemma 1 in §2.3).
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2.3 Proofs concerning mixed functions

To begin with, let us take Proposition 2 for granted and prove that Conjecture 3 implies
both Conjecture 1 and Conjecture 2. Concerning Conjecture 2 it is clear. To prove that it
implies Conjecture 1, let ξ ∈ D, i.e. ξ = fθ(1) is the 1-summation of an Э-function f(z) in
the direction θ = 0 if it is not anti-Stokes, and θ > 0 close to 0 otherwise. Assume that ξ
is also in E: we have ξ = F (1) for some E-function F (z). Therefore, Ψ(z) = F (z)− f(1/z)
is a mixed function such that Ψθ(1) = 0. By Conjecture 3 and Proposition 2, we have
ξ = fθ(1) ∈ Q. This concludes the proof that Conjecture 3 implies Conjecture 1.

Let us prove Proposition 2 now. Assuming that Conjecture 3 holds for Ψ and θ, there
exists a mixed function Ψ1(z) = F1(z) + f1(1/z) such that Ψ(z) = (z − 1)Ψ1(z). We have

F (z)− (z − 1)F1(z) + f(1/z)− (z − 1)f1(1/z) = 0 (2.1)

as a formal power series in z and 1/z. Now notice that z − 1 = z(1 − 1
z
), and that we

may assume f and f1 to have zero constant terms. Denote by α the constant term of
f(1/z)− z(1− 1

z
)f1(1/z). Then we have

F (z)− (z − 1)F1(z) + α + f2(1/z) = 0

for some Э-function f2 without constant term, so that f2 = 0, F (z) = (z− 1)F1(z)−α and

F (1) = −α ∈ Q. This implies fθ(1) = α, and f(1/z)−fθ(1)
z−1

= f1(1/z) is an Э-function since
f2 = 0. This concludes the proof of Proposition 2.

At last, let us prove Lemma 1. We write Ψ(z) = F (z) + f(1/z) and assume that Ψθ

is identically zero. Modifying θ slightly if necessary, we may assume that the asymptotic
expansion−f(1/z) of F (z) in a large sector bisected by θ is given explicitly by [9, Theorem 5]
applied to F (z) − F (0); recall that such an asymptotic expansion is unique (see [9]). As
in [9] we let g(z) =

∑∞
n=1 anz

−n−1 where the coefficients an are given by F (z) − F (0) =∑∞
n=1

an
n!
zn. For any σ ∈ C\{0} there is no contribution in eσz in the asymptotic expansion

of F (z), so that g(z) is holomorphic at σ. At σ = 0, the local expansion of g is of the
form g(z) = h1(z) + h2(z) log(z) with G-functions h1 and h2, and the coefficients of h2

are related to those of f; however we shall not use this special form (1). Now recall that
g(z) = G(1/z)/z where G is a G-function; then G is entire and has moderate growth at
infinity (because ∞ is a regular singularity of G), so it is a polynomial due to Liouville’s
theorem. This means that F (z) is a polynomial in z. Recall that asymptotic expansions
in large sectors are unique. Therefore both F and f are constant functions, and F + f = 0.
This concludes the proof of Lemma 1.

1Actually we are proving that the asymptotic expansion of a non-polynomial E-function is never a C-
linear combination of functions zα logk(z)f(1/z) with α ∈ Q, k ∈ N and Э-functions f: some exponentials
have to appear.
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3 Proof of Theorem 1: values of G-functions

In this section we prove Theorem 1. Let us begin with an example, starting with the
relation proved in [15, Proposition 1] for z ∈ C \ (−∞, 0]:

γ + log(z) = zE1,2(−z)− e−zf1,2;0(1/z) (3.1)

where E1,2 is an E-function, and f1,2 is an Э-function, both defined below in §4.2.
Apply Eq. (3.1) at both z and 2z, and then substract one equation from the other.

This provides a relation of the form

log(2) = F (z) + e−zf1;0(1/z) + e−2zf2;0(1/z) (3.2)

valid in a large sector bisected by 0, with an E-function F and Э-functions f1 and f2.
Choosing arbitrarily a positive real algebraic value of z yields an explicit expression of
log(2) ∈ G as a multivariate polynomial in elements of E and D. But this example shows
also that a polynomial in E- and Э-functions may be constant eventhough there does not
seem to be any obvious reason. In particular, the functions 1, F (z), e−zf1;0(1/z), and
e−2zf2;0(1/z) are linearly dependent over C. However we see no reason why they would
be linearly dependent over Q. This could be a major drawback to combine in E- and
Э-functions, since functions that are linearly dependent over C but not over Q can not
belong to any Picard-Vessiot extension over Q.

Let us come now to the proof of Theorem 1. We first prove the second part, which runs
as follows (it is reproduced from the unpublished note [16]).

From the stability of the class of E-functions by d
dz

and
∫ z

0
, we deduce that the set of

convergent integrals
∫∞

0
F (x)dx of E-functions and the set of finite limits of E-functions

along some direction as z → ∞ are the same. Theorem 2(iii) in [9] implies that if an
E-function has a finite limit as z →∞ along some direction, then this limit must be in G.
Conversely, let β ∈ G. By Theorem 1 in [8], there exists a G-function G(z) =

∑∞
n=0 anz

n

of radius of convergence ≥ 2 (say) such that G(1) = β. Let F (z) =
∑∞

n=0
an
n!
zn be the

associated E-function. Then for any z such that Re(z) > 1
2
, we have

1

z
G
(1

z

)
=

∫ +∞

0

e−xzF (x)dx.

Hence, β =
∫ +∞

0
e−xF (x)dx where e−zF (z) is an E-function.

We shall now prove the first part of Theorem 1. In fact, we shall prove a slightly more
general result, namely Theorem 5 below. We first recall a few notations. Denote by S
the G-module generated by all derivatives Γ(s)(a) (with s ∈ N and a ∈ Q \ Z≤0), and
by V the S-module generated by E. Recall that G, S and V are rings. Conjecturally,
G = P [1/π] and V = Pe[1/π] where P and Pe are the ring of periods and the ring of
exponential periods over Q respectively (see [8, §2.2] and [10, §4.3]). We have proved in
[10, Theorem 3] that V is the S-module generated by the numbers eρχ, with ρ ∈ Q and
χ ∈ D.
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Theorem 5. The ring V is the ring generated by E and D. In particular, all values of
G-functions belong to the ring generated by E and D.

In other words, the elements of V are exactly the sums of products ab with a ∈ E and
b ∈ D.

Proof of Theorem 5. We already know that V is a ring, and that it contains E and D. To
prove the other inclusion, denote by U the ring generated by E and D. Using Proposition 3
proved in §2.2 and the functional equation of Γ, we have Γ(s)(a) ∈ U for any s ∈ N and
any a ∈ Q \ Z≤0. Therefore for proving that V ⊂ U , it is enough to prove that G ⊂ U .

Let ξ ∈ G. Using [11, Theorem 3] there exists an E-function F (z) such that for any for
any θ ∈ [−π, π) outside a finite set, ξ is a coefficient of the asymptotic expansion of F (z)
in a large sector bisected by θ. As the proof of [11, Theorem 3] shows, we can assume that
ξ is the coefficient of ez in this expansion.

Denote by L an E-operator of which F is a solution, and by µ its order. André has
proved [1] that there exists a basis (H1(z), . . . , Hµ(z)) of formal solutions of L at infinity

such that for any j, e−ρjzHj(z) ∈ NGA{1/z}Q1 for some algebraic number ρj. We recall

that elements of NGA{1/z}Q1 are arithmetic Nilsson-Gevrey series of order 1 with algebraic
coefficients, i.e. Q-linear combinations of functions zk(log z)`f(1/z) with k ∈ Q, ` ∈ N
and Э-functions f. Expanding in this basis the asymptotic expansion of F (z) in a large

sector bisected by θ (denoted by F̃ ), there exist complex numbers κ1, . . . , κd such that

F̃ (z) = κ1H1(z) + . . . + κµHµ(z). Then we have ξ = κ1c1 + . . . + κµcµ, where cj is the

coefficient of ez in Hj(z) ∈ eρjzNGA{1/z}Q1 . We have cj = 0 if ρj 6= 1, and otherwise cj is
the constant coefficient of e−zHj(z): in both cases cj is an algebraic number. Therefore to
conclude the proof that ξ ∈ U , it is enough to prove that κ1, . . . , κµ ∈ U .

For simplicity let us prove that κ1 ∈ U . Given solutions F1, . . . , Fµ of L, we denote
by W (F1, . . . , Fµ) the corresponding wronskian matrix. Then for any z in a large sector
bisected by θ we have

κ1 =
detW (F (z), H2,θ(z), . . . , Hµ,θ(z))

detW (H1,θ(z), . . . , Hµ,θ(z))

where Hj,θ(z) is the 1-sommation of Hj(z) in this sector. The determinant in the denomi-

nator belongs to eazNGA{1/z}Q1 with a = ρ1+. . .+ρµ ∈ Q. As the proof of [10, Theorem 6]
shows, there exist b, c ∈ Q, with c 6= 0, such that

detW (H1,θ(z), . . . , Hµ,θ(z)) = czbeaz.

We take z = 1, and choose θ = 0 if it is not anti-Stokes for L (and θ > 0 sufficiently small
otherwise). Then we have

κ1 = c−1e−a
(

detW (F (z), H2,θ(z), . . . , Hµ,θ(z))
)
|z=1
∈ U.

This concludes the proof.
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Remark 1. The second part of Theorem 1 suggests the following comments. It would
be interesting to have a better understanding (in terms of E, G and D) of the set of
convergent integrals

∫∞
0
R(x)F (x)dx where R is a rational function in Q(x) and F is an

E-function, which are thus in G when R = 1 (see [16] for related considerations). Indeed,

classical examples of such integrals are
∫ +∞

0
cos(x)
1+x2

dx = π/(2e) ∈ πE, Euler’s constant∫ +∞
0

1−(1+x)e−x

x(1+x)
dx = γ ∈ E + e−1D (using Eq. (3.1) and [20, p. 248, Example 2]) and

Gompertz constant δ :=
∫ +∞

0
e−x

1+x
dx ∈ D. A large variety of behaviors can thus be expected

here.
For instance, using various explicit formulas in [13, Chapters 6.5–6.7], it can be proved

that ∫ +∞

0

R(x)J0(x)dx ∈ G + E + γE + log(Q?
)E

for any R(x) ∈ Q(x) without poles on [0,+∞), where J0(x) =
∑∞

n=0(ix/2)2n/n!2 is a Bessel
function.

A second class of examples is when R(x)F (x) is an even function without poles on
[0,+∞) and such that lim|x|→∞,Im(x)≥0 x

2R(x)F (x) = 0. Then by the residue theorem,∫ +∞

0

R(x)F (x)dx = iπ
∑

ρ, Im(ρ)>0

Resx=ρ

(
R(x)F (x)

)
∈ πE

where the summation is over the poles of R in the upper half plane.

4 Derivatives of the Γ function at rational points

In this section we prove Theorem 2 and Proposition 1 stated in the introduction, dealing
with Γ(s)(a). To begin with, we define E-functions Ea,s(z) in §4.1 and prove a linear
independence result concerning these functions. Then we prove in §4.2 a formula for
Γ(s)(a), namely Eq. (4.4), involving Ea,s+1(−1) and the 1-summation of an Э-function.
This enables us to prove Theorem 2 in §4.3 and Proposition 1 in §4.4.

4.1 Linear independence of a family of E-functions

To study derivatives of the Γ function at rational points, we need the following lemma.
For s ≥ 1 and a ∈ Q \ Z≤0, we consider the E-function Ea,s(z) :=

∑∞
n=0

zn

n!(n+a)s
.

Lemma 2. (i) For any a ∈ Q \ Z and any s ≥ 1, the functions

1, ez, ezEa,1(−z), ezEa,2(−z), . . . , ezEa,s(−z)

are linearly independent over C(z).

(ii) For any a ∈ N∗ and any s ≥ 2, the functions

1, ez, ezEa,2(−z), . . . , ezEa,s(−z)

are linearly independent over C(z).
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Remark 2. Part (i) of the lemma is false if a ∈ N∗ because 1, ez, ezEa,1(−z) are Q(z)-linearly
dependent in this case (see the proof of Part (ii) below).

Proof. (i) For simplicity, we set ψs(z) := ezEa,s(−z). We proceed by induction on s ≥ 1.
Let us first prove the case s = 1. The derivative of ψ1(z) is (1 + (z − a)ψ1(z))/z. Let
us assume the existence of a relation ψ1(z) = u(z)ez + v(z) with u, v ∈ C(z) (a putative
relation U(z) + V (z)ez + W (z)ψ1(z) = 0 forces W 6= 0 because ez /∈ C(z)). Then after
differentiation of both sides, we end up with

1 + (z − a)ψ1(z)

z
=
(
u(z) + u′(z)

)
ez + v′(z).

Hence,
1 + (z − a)

(
u(z)ez + v(z)

)
z

=
(
u(z) + u′(z)

)
ez + v′(z).

Since ez /∈ C(z), the function v(z) is a rational solution of the differential equation zv′(z) =
(z − a)v(z) + 1: v(z) cannot be identically 0, and it cannot be a polynomial (the degrees
do not match on both sides). It must then have a pole at some point ω, of order d ≥ 1
say. We must have ω = 0 because otherwise the order of the pole at ω of zv′(z) is d + 1
while the order of the pole of (z − a)v(z) + 1 is at most d. Writing v(z) =

∑
n≥−d vnz

n

with v−d 6= 0 and comparing the term in z−d of zv′(z) and (z − a)v(z) + 1, we obtain that
d = a. This forces a to be an integer ≥ 1, which is excluded. Hence, 1, ez, ezEa,1(−z) are
C(z)-linearly independent.

Let us now assume that the case s − 1 ≥ 1 holds. Let us assume the existence of a
relation over C(z)

ψs(z) = v(z) + u0(z)ez +
s−1∑
j=1

uj(z)ψj(z). (4.1)

(A putative relation V (z) +U0(z)ez +
∑s

j=1 Uj(z)ψj(z) = 0 forces Us 6= 0 by the induction

hypothesis). Differentiating (4.1) and because ψ′j(z) = (1− a
z
)ψj(z)+ 1

z
ψj−1(z) for all j ≥ 1

(where we have let ψ0(z) = 1), we have

A(z)ψs(z) +
1

z
ψs−1(z) = v′(z) +

(
u0(z) + u′0(z)

)
ez +

s−1∑
j=1

u′j(z)ψj(z)

+
s−1∑
j=1

uj(z)
(
A(z)ψj(z) +

1

z
ψj−1(z)

)
, (4.2)

where A(z) := 1− a/z. Substituting the right-hand side of (4.1) for ψs(z) on the left-hand
side of (4.2), we then deduce that

v′(z)− A(z)v(z) +
(
u′0(z) + (1− A(z))u0(z)

)
ez

+
1

z
(z − a)u1(z)ψ1(z) +

s−1∑
j=1

u′j(z)ψj(z) +
1

z

s−1∑
j=1

uj(z)ψj−1(z)− 1

z
ψs−1(z) = 0.
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This is a non-trivial C(z)-linear relation between 1, ez, ψ1(z), ψ2(z), . . . , ψs−1(z) because
the coefficient of ψs−1(z) is u′s−1(z)− 1/z and it is not identically 0 because u′s−1(z) cannot
have a pole of order 1. But by the induction hypothesis, we know that such a relation is
impossible.

(ii) The proof can be done by induction on s ≥ 2 similarily. In the case s = 2, assume
the existence of a relation ψ2(z) = u(z)ez +v(z) with u(z), v(z) ∈ C(z). By differentiation,
we obtain (

1− a

z

)
ψ2(z) = −1

z
ψ1(z) +

(
u(z) + u′(z)

)
ez + v′(z).

By induction on a ≥ 1, we have ψ1(z) = (a−1)!ez/za+w(z) for some w(z) ∈ Q(z). Hence,
we have (

1− a

z

)
u(z) = −

((a− 1)!

za+1
+ 1
)
u(z) + u′(z)

which is not possible. Let us now assume that the case s − 1 ≥ 2 holds, as well as the
existence of a relation over C(z)

ψs(z) = v(z) + u0(z)ez +
s−1∑
j=2

uj(z)ψj(z). (4.3)

We proceed exactly as above by differentiation of both sides of (4.3). Using the relation
ψ′j(z) = (1− a

z
)ψj(z)+ 1

z
ψj−1(z) for all j ≥ 2 and the fact that ψ1(z) = (a−1)!ez/za+w(z),

we obtain a relation ṽ(z) + ũ0(z)ez +
∑s−1

j=2 ũj(z)ψj(z) = 0 where ũs−1(z) = u′s−1(z) −
1/z cannot be identically 0. The induction hypothesis rules out the existence of such a
relation.

4.2 A formula for Γ(s)(a)

Let z > 0 and a ∈ Q+, a 6= 0. We have

Γ(s)(a) =

∫ ∞
0

ta−1 log(t)se−tdt =

∫ z

0

ta−1 log(t)se−tdt+

∫ ∞
z

ta−1 log(t)se−tdt.

On the one hand,∫ z

0

ta−1 log(t)se−tdt =
∞∑
n=0

(−1)n

n!

∫ z

0

ta+n−1 log(t)sdt

=
∞∑
n=0

(−1)n

n!

s∑
k=0

(−1)k
s!

(s− k)!

zn+a log(z)s−k

(n+ a)k+1

=
s∑

k=0

(−1)ks!

(s− k)!
za log(z)s−kEa,k+1(−z);
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recall that Ea,j(z) =
∑∞

n=0
zn

n!(n+a)j
. On the other hand,∫ ∞

z

ta−1 log(t)se−tdt = e−z
∫ ∞

0

(t+ z)a−1 log(t+ z)se−tdt

= za−1e−z
s∑

k=0

(
s

k

)
log(z)s−k

∫ ∞
0

(1 + t/z)a−1 log(1 + t/z)ke−tdt.

Now z > 0 so that

fa,k+1;0(z) :=

∫ ∞
0

(1 + tz)a−1 log(1 + tz)ke−tdt =
1

z

∫ ∞
0

(1 + x)a−1 log(1 + x)ke−x/zdx

is the 1-summation at the origin in the direction 0 of the Э-function

∞∑
n=0

n!ua,k,nz
n,

where the sequence (ua,k,n)n≥0 ∈ QN is defined by the expansion of the G-function:

(1 + x)a−1 log(1 + x)k =
∞∑
n=0

ua,k,nx
n.

Note that if k = 0 and a ∈ N∗, then ua,k,n = 0 for any n ≥ a, and fa,k+1;0(1/z) is a
polynomial in 1/z. Therefore, we have for any z > 0:

Γ(s)(a) =
s∑

k=0

(−1)ks!

(s− k)!
za log(z)s−kEa,k+1(−z) + za−1e−z

s∑
k=0

(
s

k

)
log(z)s−kfa,k+1;0(1/z).

In particular, for z = 1, this relation reads

Γ(s)(a) = (−1)ss!Ea,s+1(−1) + e−1fa,s+1;0(1). (4.4)

Since γ = −Γ′(1) we obtain as a special case the formula

γ = E1,2(−1)− e−1f1,2;0(1), (4.5)

which is also a special case of Eq. (3.1) proved in [15].

4.3 Proof of Theorem 2

Let us assume that Γ(s)(a) ∈ Q for some a ∈ Q+ \ N and s ≥ 0. Then ezΓ(s)(a) +
(−1)s+1s!ezEa,s+1(−z) is an E-function. The relation eΓ(s)(a) + (−1)s+1s!eEa,s+1(−1) =
fa,s+1;0(1) proved at the end of §4.2 shows that α := eΓ(s)(a) + (−1)s+1s!eEa,s+1(−1) ∈
E ∩ D. Hence α is in Q by Conjecture 1 and we have a non-trivial Q-linear relation
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between 1, e and eEa,s+1(−1): we claim that this is not possible. Indeed, consider the
vector

Y (z) := t(1, ez, ezEa,1(−z), . . . , ezEa,s+1(−z)).

It is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only pole of
M(z) ∈ Ms+3(Q(z)) (see the computations in the proof of Lemma 2 above). Since the
components of Y (z) are Q(z)-linearly independent by Lemma 2(i), we deduce from Beuk-
ers’ [6, Corollary 1.4] that

1, e, eEa,1(−1), . . . , eEa,s+1(−1)

are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly
independent. This concludes the proof if a ∈ Q+ \ N.

Let us assume now that Γ(s)(a) ∈ Q for some a ∈ N∗ and s ≥ 1. Then ezΓ(s)(a) +
(−1)s+1s!ezEa,s+1(−z) is an E-function. The relation Γ(s)(a) + (−1)s+1s!Ea,s+1(−1) =
e−1fa,s+1;0(1) shows that α := eΓ(s)(a)+(−1)s+1s!eEa,s+1(−1) ∈ E∩D. Hence α is in Q by
Conjecture 1 and we have a non-trivial Q-linear relation between 1, e and eEa,s+1(−1): we
claim that this is not possible. Indeed, consider the vector Y (z) := t(1, ez, ezEa,2(−z), . . . ,
ezEa,s+1(−z)): it is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only
pole of M(z) ∈ Ms+2(Q(z)). Since the components of Y (z) are Q(z)-linearly independent
by Lemma 2(ii), we deduce again from Beukers’ theorem that

1, e, eEa,2(−1), . . . , eEa,s+1(−1)

are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly
independent. This concludes the proof of Theorem 2.

4.4 Proof of Proposition 1

Recall that Eq. (4.5) proved in §4.2 reads eE1,2(−1)−eγ = f1,2;0(1). Assuming that γ ∈ E,
the left-hand side is in E while the right-hand side is in D. Hence both sides are in Q by
Conjecture 1. Note that, by integration by parts,

f1,2;0(1) =

∫ ∞
0

log(1 + t)e−tdt =

∫ ∞
0

e−t

1 + t
dt

is Gompertz’s constant. Hence, by Corollary 1 (which holds under Conjecture 2), the
number f1,2;0(1) is not in Q. Consequently, γ /∈ E.

Similarly, Eq. (4.4) with a ∈ Q \ Z and s = 0 reads eΓ(a) − eEa,1(−1) = fa,1;0(1).
Assuming that Γ(a) ∈ E, the left-hand side is in E while the right-hand side is in D. Hence
both sides are in Q by Conjecture 1. But by Corollary 1 (which holds under Conjecture 2),
the number fa,1;0(1) =

∫∞
0

(1 + t)a−1e−tdt is not in Q. Hence, Γ(a) /∈ E.
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5 Application of Beukers’ method and consequence

In this section we prove Theorems 3 and 4, and Corollary 1 stated in the introduction.

5.1 Proofs of Theorems 3 and 4

The proof of Theorem 3 (resp. Theorem 4) is based on the arguments given in [6], ex-
cept that E-functions have to be replaced with Э-functions (resp. mixed functions), and
1-summation in non-anti-Stokes directions is used for evaluations. Conjecture 2 (resp.
Conjecture 3) is used as a substitute for Theorem A(i).

The main step is the following result.

Proposition 4. Assume that Conjecture 2 (resp. Conjecture 3) holds.
Let f be an Э-function (resp. a mixed function), ξ ∈ Q∗ and θ ∈ (arg(ξ)−π/2, arg(ξ)+

π/2). Assume that θ is not anti-Stokes for f, and that fθ(1/ξ) = 0 (resp. fθ(ξ) = 0).
Denote by Ly = 0 a differential equation, of minimal order, satisfied by f(1/z) (resp. by
f(z)).

Then all solutions of Ly = 0 are holomorphic and vanish at ξ; the differential operator
L has an apparent singularity at ξ.

We recall that mixed functions (usually denoted by Ψ in this paper) are given by
Ψ(z) = F (z)+ f(1/z) where F is an E-function, and f an Э-function; both Ψ(z) and f(1/z)
are annihilated by E-operators (but neither Ψ(1/z) nor f(z) in general).

Proof of Proposition 4. We follow the end of the proof of [6, Corollary 2.2]. Upon replacing
f(z) with f(z/ξ) we may assume that ξ = 1. Then we apply Conjecture 2 (resp. Conjec-

ture 3) to f, since fθ(1) = 0. Accordingly, g(z) = −zf(z)
z−1

= f(z)
1
z
−1

(resp. g(z) = f(z)
z−1

) is an

Э-function (resp. a mixed function). Now L ◦ (z − 1) is a differential operator, of mini-
mal order, that annihilates g(1/z) (resp. g(z)). Since this function is annihilated by an
E-operator Φ, there exists Q ∈ Q[z] \ {0} such that Q(z)Φ is a left multiple of L ◦ (z − 1)
in Q[z, d/dz]. Now André proved [1, Theorem 4.3] that 1 is not a singularity of Φ, so that
all solutions of L ◦ (z − 1) are holomorphic at 1. This provides a basis of solutions of L,
all of which vanish at 1, and concludes the proof of Proposition 4.

Let us deduce now the linear case of Theorem 3 (namely when degP = 1) from Propo-
sition 4, by following [6, §3]. The arguments for proving Theorem 4 are exactly the same.

Again we may assume that ξ = 1. Letting m denote the rank of f1, . . . , fn over Q(z),
[6, Lemma 3.1] yields polynomials Ci,j ∈ Q[z], 1 ≤ i ≤ n−m, 1 ≤ j ≤ n, such that

n∑
j=1

Ci,j(1/z)fj(1/z) = 0 for any z and any i,
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and the matrix [Ci,j(1)] has rank n−m. Assume now that a Q-linear relation
∑n

j=1 αjfj,θ(1) =

0 does not come from specialization at z = 1 of a Q(z)-linear relation between the functions
fj. Then it is possible (as in [6, proof of Theorem 3.2]) to construct polynomials Aj ∈ Q[z],
1 ≤ j ≤ n, such that Aj(1) = αj, L has order m and 1 is a regular point of L, where L
is a differential operator of minimal order that annihilates f(1/z) =

∑n
j=1 Aj(1/z)fj(1/z).

But f is an Э-function such that fθ(1) = 0: this contradicts Proposition 4, and concludes
the proof of the linear case of Theorem 3.

The general case of Theorem 3 follows by applying the linear case to the family of
monomials fi11 . . . f

in
n where i1 + . . .+ in = degP , since any product of Э-functions is again

an Э-function. But the corresponding property with mixed functions does not hold, so
that Theorem 4 is restricted to the linear case.

5.2 Proof of Corollary 1

Let s ∈ Q \ Z≥0. The Э-function f(z) :=
∑∞

n=0 s(s− 1) . . . (s− n + 1)zn is solution of the
inhomogeneous differential equation z2f′(z)+(1−sz)f(z)−1 = 0, which can be immediately
transformed into a differential system satisfied by the vector of Э-functions t(1, f(z)). The
coefficients of the matrix have only 0 as pole. Moreover, f(z) is a transcendental function
because s /∈ Z≥0. Hence, by Theorem 3, f0(1/α) /∈ Q when α ∈ Q, α > 0, because 0 is not
an anti-Stokes direction of f(z). It remains to observe that this 1-sommation is∫ ∞

0

(1 + tz)se−tdt.
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