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Abstract

Building upon ideas of the second and third authors, we prove that at least
2(1−ε)(log s)/(log log s) values of the Riemann zeta function at odd integers between 3
and s are irrational, where ε is any positive real number and s is large enough in terms
of ε. This lower bound is asymptotically larger than any power of log s; it improves
on the bound (1− ε)(log s)/(1 + log 2) that follows from the Ball–Rivoal theorem. The
proof is based on construction of several linear forms in odd zeta values with related
coefficients.

Introduction

When s > 2 is an even integer, the value ζ(s) of the Riemann zeta function is a non-zero rational
multiple of πs and, therefore, a transcendental number. On the other hand, no such relation is
expected to hold for ζ(s) when s > 3 is odd; a folklore conjecture states that the numbers π,
ζ(3), ζ(5), ζ(7), . . . are algebraically independent over the rationals. This conjecture is predicted
by Grothendieck’s period conjecture for mixed Tate motives. But both conjectures are far out
of reach and we do not even know the transcendence of a single odd zeta value.

It was only in 1978 that Apéry astonished the mathematics community with his proof [Apé79]
of the irrationality of ζ(3) (see [Fis04] for a survey). The next breakthrough was made in 2000
by Ball and Rivoal [BR01, Riv00] who proved the following result.

Theorem 1 (Ball–Rivoal). Let ε > 0. Then for any s > 3 odd and sufficiently large with respect
to ε, we have

dimQ SpanQ(1, ζ(3), ζ(5), ζ(7), . . . , ζ(s)) >
1− ε

1 + log 2
log s.

Their corresponding result for small s has been refined several times [Zud02, FZ10], but the
question whether ζ(5) is irrational remains open. The proof of Theorem 1 involves the well-poised
hypergeometric series

n!s−2r
∞∑
t=1

∏(2r+1)n
j=0 (t− rn+ j)∏n

j=0(t+ j)s+1
, (0.1)

which happens to be a Q-linear combination of 1 and odd zeta values when s is odd and n is
even, and Nesterenko’s linear independence criterion [Nes85]. The bound (1−ε)(log s)/(1+log 2)
follows from comparison of how small the linear combination is with respect to the size of its
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Many odd zeta values are irrational

coefficients, after multiplying by a common denominator to make them integers. To improve on
this bound using the same strategy, one has to find linear combinations that are considerably
smaller, with coefficients not too large; it turns out to be a rather difficult task. This may be
viewed as an informal explanation of why the lower bound in Theorem 1 has never been improved
for large values of s, whereas the theorem itself has been generalized to several other families of
numbers.

Using (with s = 20) the series

n!s−6
∞∑
k=1

d2

dt2

((
t+

n

2

)∏3n
j=0(t−n+ j)3∏n
j=0(t+ j)s+3

)∣∣∣∣
t=k

,

which is a Q-linear combination of 1 and odd zeta values starting from ζ(5), Rivoal has
proved [Riv02] that among the numbers ζ(5), ζ(7), . . . , ζ(21), at least one is irrational. This
result has been improved by the third author [Zud01]: among the four numbers ζ(5), ζ(7), ζ(9),
ζ(11), at least one is irrational; and he also showed [Zud02] that, for any odd ` > 1, there is an
irrational number among ζ(`+ 2), ζ(`+ 4), . . . , ζ(8`− 1). Proofs of these results do not require
use of linear independence criteria: if a sequence of Z-linear combinations of real numbers from
a given (fixed) collection tends to 0, and is non-zero infinitely often, then at least one of these
numbers is irrational. A drawback of this approach is that it only allows one to prove that one
number in a family is irrational.

The situation drastically changed when the third author introduced [Zud18] a new method
(see also [KZ19]). He casts (with s = 25) the rational function in the form

R(t) = 26nn!s−5
∏6n
j=0(t− n+ j/2)∏n
j=0(t+ j)s+1

and proves that both series
∞∑
t=1

R(t) and
∞∑
t=1

R

(
t+

1

2

)
are Q-linear combinations of 1, ζ(3), ζ(5), . . . , ζ(s) with related coefficients. This allows him to
eliminate one odd zeta value, and to prove that at least two zeta values among ζ(3), ζ(5), . . . , ζ(25)
are irrational. In view of Apéry’s theorem, the result means that one number among ζ(5), . . . ,
ζ(25) is irrational, nothing really novel, but the method of proof is new and more elementary
than those in [Riv02, Zud01] as it avoids use of the saddle-point method. More importantly, the
method allows one to prove the irrationality of at least two zeta values in a family without having
to produce very small linear forms. The same strategy has been adopted by Rivoal and the third
author [RZ18] to prove that among ζ(5), ζ(7), . . . , ζ(69), at least two numbers are irrational.

The method in [Zud18] has been generalized by the second author [Spr18], who introduces
another integer parameter D > 1 and considers the rational function

R(t) = D6(D−1)nn!s−3D−1
∏3Dn
j=0 (t− n+ j/D)∏n
j=0(t+ j)s+1

. (0.2)

He proves that for any divisor d of D the series

d∑
j=1

∞∑
t=1

R

(
t+

j

d

)
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is a Q-linear combination of 1, ζ(3), ζ(5), . . . , ζ(s). The crucial point of this construction is
that each ζ(i) appears in this Q-linear combination with a coefficient that depends on d in
a very simple way. This makes it possible to eliminate from the entire collection of these linear
combinations as many odd zeta values as the number of divisors of D. Finally, taking D equal
to a power of 2 and s sufficiently large with respect to D, the second author proves that at
least logD/log 2 numbers are irrational among ζ(3), ζ(5), . . . , ζ(s). This strategy represents a
new proof that ζ(i) is irrational for infinitely many odd integers i.

Building upon the approach in [Zud18, Spr18], we prove the following result (announced
in [FSZ18]).

Theorem 2. Let ε > 0, and let s > 3 be an odd integer sufficiently large with respect to ε. Then
among the numbers

ζ(3), ζ(5), ζ(7), . . . , ζ(s),

at least
2(1−ε)(log s)/(log log s)

are irrational.

In this result, the lower bound is asymptotically greater than exp(
√

log s), and than any power
of log s; ‘to put it roughly, [it is] much more like a power of s than a power of log s’ [HW79,
ch. XVIII, § 1].

In comparison, Theorem 1 gives only (1− ε)(log s)/(1 + log 2) irrational odd zeta values, but
they are linearly independent over the rationals, whereas Theorem 2 ends up only with their
irrationality.

Our proof of Theorem 2 follows the above-mentioned strategy of the second and third authors.
The main new ingredient, compared to the proof in [Spr18], is to take D large (about s1−2ε)
and equal to the product of the first prime numbers (the so-called primorial); such a number
has asymptotically the largest possible number of divisors with respect to its size (see [HW79,
ch. XVIII, § 1]). To perform the required elimination of a prescribed set of odd zeta values, we
need to establish that a certain auxiliary matrix is invertible. Whereas the second author’s choice
of D in [Spr18] allows him to deal with elementary properties of a Vandermonde matrix, we use
at this step a generalization of the corresponding result. We give three different proofs of the
latter, based on arguments from combinatorics of partitions, from linear algebra accompanied
with a lemma of Fekete, and from analysis using Rolle’s theorem.

The structure of this paper is as follows. In § 1 we construct linear forms in values of the
Hurwitz zeta function. Denominators of the coefficients are studied in § 2; and the asymptotics of
the linear forms are dealt with in § 3. Section 4 is devoted to the proof that an auxiliary matrix
is invertible. Finally, we establish Theorem 2 in § 5.

1. Construction of linear forms

From now on we let s, D be positive integers such that s > 3D; we assume that s is odd. Let n
be a positive integer, such that Dn is even. Consider the rational function

Rn(t) = D3Dnn!s+1−3D
∏3Dn
j=0 (t− n+ j/D)∏n
j=0(t+ j)s+1

which, of course, depends also on s and D. Notice that the difference between Rn(t) and the
corresponding function in [Spr18] is in the factor D3Dn instead of D6(D−1)n (see Equation (0.2)).
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Many odd zeta values are irrational

Similar rational functions have already been considered; see [RZ03] for the case D = 2
and [Nas04, Nis11, Fis18] for general D. However, the ‘central’ factors t−n+ j/D with
Dn < j < 2Dn are missing, and (as the second author noticed [Spr18]) they play a central
role in the arithmetic estimates (see Lemma 2 below).

Remark 1. Though one can implement an additional parameter r in the definition of the rational
function Rn(t), in a way similar to that for the Ball–Rivoal series (0.1), we have verified that
this does not bring any improvement to the result of Theorem 2.

The rational function Rn(t) has a partial fraction expansion

Rn(t) =
s∑
i=1

n∑
k=0

ai,k
(t+ k)i

. (1.1)

For any j ∈ {1, . . . , D}, take

rn,j =

∞∑
m=1

Rn

(
m+

j

D

)
.

This series converges because of the following estimate for the degree of the rational function:

degRn(t) = (3Dn+ 1)− (n+ 1)(s+ 1) 6 −2.

We recall that the Lerch zeta function is defined by the convergent series

Φ(z, i, α) =

∞∑
n=0

zn

(n+ α)i

for α ∈ R>0, z ∈ C and i ∈ Z with either |z| < 1, or |z| = 1 and i > 2; the Hurwitz zeta function
is its special case

ζ(i, α) = Φ(1, i, α) =
∞∑
n=0

1

(n+ α)i
.

The following lemma is precisely [Spr18, Lemma 1.5]; the change of the normalizing factor
D3Dn does not affect the statement.

Lemma 1. For each j ∈ {1, . . . , D}, we have

rn,j = ρ0,j +
∑
36i6s
i odd

ρiζ

(
i,
j

D

)
,

where

ρi =

n∑
k=0

ai,k for 3 6 i 6 s, i odd,

does not depend on j, and

ρ0,j = −
n∑
k=0

k∑
`=0

s∑
i=1

ai,k
(`+ j/D)i

. (1.2)
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Proof. We follow the strategy of proofs in [Zud18, Lemma 3] and [Spr18, Lemma 1.5]. Let z be
a real number such that 0 < z < 1. We have

∞∑
m=1

Rn

(
m+

j

D

)
zm =

∞∑
m=1

s∑
i=1

n∑
k=0

ai,kz
m

(m+ k + j/D)i

=
s∑
i=1

n∑
k=0

ai,kz
−k

∞∑
m=1

zm+k

(m+ k + j/D)i

=
s∑
i=1

n∑
k=0

ai,kz
−k
(

Φ

(
z, i,

j

D

)
−

k∑
`=0

z`

(`+ j/D)i

)
.

Now we let z tend to 1 in the equality we have obtained; the left-hand side tends to rn,j . On the
right-hand side, the term involving the Lerch function with i = 1 has coefficient

∑n
k=0 a1,kz

−k.
Since Φ(z, 1, j/D) has only a logarithmic divergence as z → 1 and

n∑
k=0

a1,k = lim
t→∞

tRn(t) = 0,

this term tends to 0 as z → 1. All other terms have finite limits as z → 1, so that

rn,j = ρ0,j +
s∑
i=2

ρiζ

(
i,
j

D

)
,

where ρ0,j is given by Equation (1.2), and ρi =
∑n

k=0 ai,k for any i ∈ {2, . . . , s}.
To complete the proof, we apply the symmetry phenomenon of [BR01, Riv00]. Since s is

odd and Dn is even we have Rn(−n − t) = −Rn(t). Now the partial fraction expansion (1.1) is
unique, so that ai,n−k = (−1)i+1ai,k for any i and k. This implies that ρi = 0 when i is even, and
Lemma 1 follows. 2

2. Arithmetic estimates

As usual, we let dn = lcm(1, 2, . . . , n).

Lemma 2. We have

ds+1−i
n ρi ∈ Z for i = 3, 5, . . . , s, (2.1)

and

ds+1
n+1ρ0,j ∈ Z for any j ∈ {1, . . . , D}. (2.2)

For part (2.1) we use the strategy of the proof of [Fis18, Lemma 4.5]; note that [Spr18,
Lemma 1.3] does not apply in our present situation because of the different normalization of the
rational function Rn(t) compared to that in (0.2). To establish (2.2) we follow the proof of [Spr18,
Lemma 1.4]; we use dn+1 here instead of dn to include the case corresponding to j = D.

Proof of Lemma 2. For any α ∈ (1/D)Z we introduce

Fα(t) = Dn

∏n
j=1(t+ α+ j/D)∏n

j=0(t+ j)
=

n∑
k=0

Aα,k
t+ k

,
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Many odd zeta values are irrational

where Aα,k is an integer in view of the explicit formulas

(−1)kAα,k =

(
n

k

)∏n
j=1(D(α− k) + j)

n!
=



(
n

k

)(
D(α− k) + n

n

)
if α− k > 0,

0 if
−n
D

6 α− k < 0,

(−1)n
(
n

k

)(
D(k − α)− 1

n

)
if α− k < −n

D
.

We also consider

G(t) =
n!∏n

j=0(t+ j)
=

n∑
k=0

(−1)k
(
n
k

)
t+ k

,

so that

Rn(t) = (t− n)G(t)s+1−3D
3D−1∏
`=0

F−n+`n/D(t). (2.3)

From this expression we compute the partial fraction expansion of Rn(t) using the rules

t− n
t+ k

= 1− k + n

t+ k
and

1

(t+ k)(t+ k′)
=

1

(k′ − k)(t+ k)
+

1

(k − k′)(t+ k′)
for k 6= k′.

A denominator appears each time the second rule is applied, and the denominator is always
a divisor of dn (see [Col03] or [Zud18, Lemma 1]). This happens s+ 1− i times in each term
that contributes to ai,k because there are s+ 1 factors in the product (2.3) (apart from t−n).
Therefore,

ds+1−i
n ai,k ∈ Z for any i and k,

implying (2.1).
We now proceed with the second part of Lemma 2, that is, with demonstrating the inclusions

(2.2). Recall from Lemma 1 that

ds+1
n+1ρ0,j = −

n∑
k=0

k∑
`=0

( s∑
i=1

ds+1
n+1ai,k

(`+ j/D)i

)
. (2.4)

If j = D then

ds+1−i
n+1 ai,k and

din+1

(`+ j/D)i

are integers for any k, ` and i, so that ds+1
n+1ρ0,j ∈ Z. From now on, we assume that 1 6 j 6 D− 1

and we prove that for any k and any ` the internal sum over i in Equation (2.4) is an integer.
With this aim in mind, fix integers k0 and `0, with 0 6 `0 6 k0 6 n, and assume that the
corresponding sum is not an integer. Recall that Rn was defined at the beginning of § 1, and
vanishes at all non-integer values of n− j′/D with 0 6 j′ 6 3Dn. Since 1 6 j 6 D− 1 we have
Rn(`0− k0 + j/D) = 0; it follows from (1.1) that

s∑
i=1

ds+1
n+1ai,k0

(`0 + j/D)i
= −

n∑
k=0
k 6=k0

s∑
i=1

ds+1
n+1ai,k

(`0 − k0 + k + j/D)i
. (2.5)
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By our assumption this rational number is not an integer: it has negative p-adic valuation for
at least one prime number p. Therefore, on either side of (2.5) there is at least one term with
negative p-adic valuation: there exist i0, i1 ∈ {1, . . . , s} and k1 ∈ {0, . . . , n}, k1 6= k0, such that

vp

(
ds+1
n+1ai0,k0

(`0 + j/D)i0

)
< 0 and vp

(
ds+1
n+1ai1,k1

(`0 − k0 + k1 + j/D)i1

)
< 0.

Since ds+1−i
n+1 ai,k ∈ Z for any i and k, this leads to

vp

(
di0n+1

(`0 + j/D)i0

)
< 0 and vp

(
di1n+1

(`0 − k0 + k1 + j/D)i1

)
< 0,

implying

min

(
vp

(
`0 +

j

D

)
, vp

(
`0 − k0 + k1 +

j

D

))
> vp(dn+1).

As k0− k1 = (`0 + j/D)− (`0− k0 + k1 + j/D), we deduce that vp(k0− k1) > vp(dn+1), which is
impossible in view of the inequalities 0 < |k0− k1| 6 n. The contradiction completes the proof
of Lemma 2. 2

Remark 2. It is made explicit in [RZ18] (though for a particular situation considered there),
that the inclusions in Lemma 2 can be sharpened into the form

Φ−1n ds+1−i
n ρi ∈ Z for i = 3, 5, . . . , s,

and
Φ−1n ds+1

n+1ρ0,j ∈ Z for any j ∈ {1, . . . , D},

where Φn = Φn(D) is a certain product over primes in the range 2 6 p 6 n, whose asymptotic
behaviour

φ = φ(D) = lim
n→∞

log Φn

n

can be controlled by means of the prime number theorem. It is possible to show that the quantity
φ(D)/D increases to ∞ and at the same time φ(D)/(D logεD) → 0 as D →∞, for any choice
of ε > 0. Later, we choose D such that D logD < s, implying that the arithmetic gain coming
from the factors Φ−1n is asymptotically negligible as s →∞. For the same reason, any arithmetic
improvement like the one established in [KR07] would have no influence on the statement of
Theorem 2.

3. Asymptotic estimates of the linear forms

The following lemma is proved along the same lines as [Spr18, Lemma 2.1] (see also [Zud18,
Lemma 4] and the second proof of [BR01, Lemme 3]). The difference is that here we only assume
s/(D logD) to be sufficiently large, whereas in [Spr18] parameter D is fixed and s →∞.

Lemma 3. Assume that D > 2 and

s

D logD
is larger than some (effectively computable) absolute constant. (3.1)

Then

lim
n→∞

r
1/n
n,j = g(x0) < 4−(s+1) and lim

n→∞

rn,j′

rn,j
= 1 for any j, j′ ∈ {1, . . . , D}, (3.2)
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Many odd zeta values are irrational

where

g(x) = D3D (x+ 3)3D(x+ 1)s+1

(x+ 2)2(s+1)

and x0 is the unique positive root of the polynomial

(X + 3)D(X + 1)s+1 −XD(X + 2)s+1.

Proof. For j ∈ {1, . . . , D} and k > 0, let

ck,j = Rn

(
n+ k +

j

D

)
= D3Dnn!s+1−3D

∏3Dn
`=0 (k + (j + `)/D)∏n

`=0(n+ k + `+ j/D)s+1
,

so that

rn,j =
∞∑
m=1

Rn

(
m+

j

D

)
=
∞∑
k=0

ck,j

is a sum of positive terms. We have

ck+1,j

ck,j
=

( D∏
`=1

k + 3n+ (j + `)/D

k + (j + `− 1)/D

)(
k + n+ j/D

k + 2n+ 1 + j/D

)s+1

(3.3)

implying that, for any j, the quotient ck+1,j/ck,j tends to f(κ) as n →∞ assuming k ∼ κn for
κ > 0 fixed, where

f(x) =

(
x+ 3

x

)D(x+ 1

x+ 2

)s+1

.

For the logarithmic derivative of this function we have

f ′(x)

f(x)
=

D

x+ 3
− D

x
+
s+ 1

x+ 1
− s+ 1

x+ 2
=

ax2 + bx+ c

x(x+ 1)(x+ 2)(x+ 3)

with a = s+ 1− 3D > 0 and c = −6D < 0, hence the derivative f ′(x) vanishes at exactly one
positive real number x1. This means that the function f(x) decreases on (0, x1] and increases
on [x1,+∞). Since limx→0+ f(x) = +∞ and limx→+∞ f(x) = 1, we deduce that there exists a
unique positive real number x0 such that f(x0) = 1.

Let us now prove (3.2). As in [dBru81, § 3.4] we wish to demonstrate that the asymptotic
behaviour of rn,j is governed by the terms ck,j with k close to x0n (see Equation (3.8) below).
To begin with, notice that

ck,j = D−1n!s+1−3D
∏3Dn
`=0 (Dk + j + `)∏n

`=0(n+ k + `+ j/D)s+1

= D−1n!s+1−3D (3Dn+Dk + j)!

(Dk + j − 1)!

Γ(n+ k + j/D)s+1

Γ(2n+ k + 1 + j/D)s+1
.

Denoting by k0(n) the integer part of x0n and applying the Stirling formula to the factorial and
gamma factors we obtain, as n →∞,

c
1/n
k0(n),j

∼
(
n

e

)s+1−3D(3Dn+Dk0(n) + j

e

)3D+Dx0( e

Dk0(n) + j − 1

)Dx0
×
(
n+ k0(n) + j/D

e

)(s+1)(x0+1)( e

2n+ k0(n) + j/D + 1

)(s+1)(x0+2)
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∼ ((x0 + 3)D)(x0+3)D

(x0D)x0D
(x0 + 1)(s+1)(x0+1)

(x0 + 2)(s+1)(x0+2)

= g(x0)f(x0)
x0 = g(x0). (3.4)

We now show that the asymptotic behaviour of rn,j as n → ∞ is determined by the terms
ck,j with k close to x0n. Given D and s, we take ε > 0 sufficiently small to accommodate the
condition

b(ε) = max

(
f(x0 + ε),

1

f(x0 − ε)

)
< 1.

Then there exists A(ε) > x1, where x1 is the unique positive root of f ′(x) = 0, such that
f(A(ε)) = b(ε). We have f(x) > 1/b(ε) for any x ∈ (0, x0− ε] and f(x) 6 b(ε) for any
x ∈ [x0 + ε,A(ε)]. For any k such that (x0 + 2ε)n 6 k 6 (A(ε)− ε)n, Equation (3.3) and the
sentence after imply that ck,j 6 b(ε)ck−1,j provided n is large (in terms of D, s and ε), so that,
taking k1 = b(x0 + 2ε)nc and k2 = b(x0 + 3ε)nc, we obtain∑

k26k6(A(ε)−ε)n

ck,j 6 ck1,j

+∞∑
k=k2

b(ε)k−k1 6 ck1,j
b(ε)k2−k1

1− b(ε)
6 εck1,j (3.5)

for all n sufficiently large. In the same way, we get the estimate∑
06k6b(x0−3ε)nc

ck,j 6 εcb(x0−2ε)nc,j (3.6)

for all n large (in terms of D, s and ε). Finally, choosing ε small, we can assume that A(ε) is
sufficiently large (in terms of D and s), so that for k > (A(ε)− ε)n we have

ck,j 6 (2D)3Dn
(

n!

kn+1

)s+1−3D

for n large. Combining this result with the estimate

+∞∑
k=d(A(ε)−ε)ne

1

k(n+1)(s+1−3D)
6

1

d(A(ε)− ε)ne(n+1)(s+1−3D)−2

+∞∑
k=d(A(ε)−ε)ne

1

k2

6
2

d(A(ε)− ε)ne(n+1)(s+1−3D)−2

gives
+∞∑

k=d(A(ε)−ε)ne

ck,j 6 2(2D)3Dn
n!s+1−3D

d(A(ε)− ε)ne(n+1)(s+1−3D)−2 .

Using hypothesis (3.1) and the Stirling formula, the latter estimate implies

+∞∑
k=d(A(ε)−ε)ne

ck,j 6

(
2D

e(A(ε)− ε)

)sn/2
provided n is sufficiently large. For ε small, we can assume that A(ε) is sufficiently large
(in terms of D and s) to obtain

+∞∑
k=d(A(ε)−ε)ne

ck,j 6

(
1

2
g(x0)

)n
. (3.7)
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Many odd zeta values are irrational

Combining Equations (3.4)–(3.7), we deduce that

(1− 3ε)rn,j 6
∑

(x0−3ε)n6k6(x0+3ε)n

ck,j 6 rn,j . (3.8)

Now for any k in the range (x0− 3ε)n 6 k 6 (x0 + 3ε)n it follows from the proof of Equation (3.4)
that

g(x0)− h(ε) 6 c
1/n
k,j 6 g(x0) + h(ε)

for n large (in terms of D, s and ε), where h is a positive function of ε such that limε→0+ h(ε) = 0.
Using (3.8), this implies

(g(x0)− 2h(ε))n 6 5εn(g(x0)− h(ε))n 6 rn,j 6
7εn

1− 3ε
(g(x0) + h(ε))n 6 (g(x0) + 2h(ε))n

for n sufficiently large, and finishes the proof of limn→∞ r
1/n
n,j = g(x0) for any j.

To establish
lim
n→∞

rn,j′

rn,j
= 1

for any j, j′ ∈ {1, . . . , D}, we can assume that 1 6 j 6 D− 1 and j′ = j+ 1. For any k we have

ck,j+1

ck,j
=
k + 3n+ (j + 1)/D

k + j/D

(
Γ(n+ k + (j + 1)/D)

Γ(n+ k + j/D)

Γ(2n+ k + 1 + j/D)

Γ(2n+ k + 1 + (j + 1)/D)

)s+1

.

It follows from the Stirling formula that Γ(x+ 1/D) ∼ x1/DΓ(x) as x→∞, so that for k = bx0nc
we have, as n →∞,

ck,j+1

ck,j
∼ x0 + 3

x0

(
(x0 + 1)1/D

(x0 + 2)1/D

)s+1

= f(x0)
1/D = 1.

More generally, for k in the range (x0− 3ε)n 6 k 6 (x0 + 3ε)n and n sufficiently large we have

1− h̃(ε) 6
ck,j+1

ck,j
6 1 + h̃(ε)

with limε→0+ h̃(ε) = 0. Using Equation (3.8) twice, we deduce that

rn,j+1 6
1

1− 3ε

∑
(x0−3ε)n6k6(x0+3ε)n

ck,j+1

6
1 + h̃(ε)

1− 3ε

∑
(x0−3ε)n6k6(x0+3ε)n

ck,j

6
1 + h̃(ε)

1− 3ε
rn,j .

In the same way we obtain
rn,j+1 > (1− 3ε)(1− h̃(ε))rn,j .

Combining these inequalities and using that ε > 0 is arbitrary results in

lim
n→∞

rn,j+1

rn,j
= 1.

This concludes the proof of (3.2), except for the upper bound on g(x0) which we verify now.
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To estimate g(x0) from above, we can assume by (3.1) that the value

f(12) = 7D(35)s+1

is smaller than 1, so that x0 <
1
2 . The logarithmic derivative of g(x) is given by

g′(x)

g(x)
=

3D

x+ 3
+
s+ 1

x+ 1
− 2(s+ 1)

x+ 2
.

By the hypothesis (3.1), the function g(x) is decreasing on the interval [0, 12 ]. We deduce that

g(x0) < g(12) = D3D(72)3D(2425)s+1(14)s+1 < (14)s+1,

where (3.1) was used again. This completes our proof of Lemma 3. 2

Remark 3. For s = 77 and D = 4 one computes g(x0) < exp(−78). Thus, the suitable linear
combinations (cf. § 5)

r̂n,1 = rn,4, r̂n,2 = rn,2 + rn,4 and r̂n,4 = rn,1 + rn,2 + rn,3 + rn,4

of the corresponding linear forms allow us to eliminate three of the odd zeta values from the list

{ζ(3), ζ(5), . . . , ζ(77)}.

In particular, we obtain that two out of {ζ(5), ζ(7), . . . , ζ(77)} are irrational. This result is slightly
weaker than the result of Rivoal and the third author [RZ18], but it emerges as a byproduct of
the construction above. The arithmetic gain given by Φn(4) for Φn(D) defined in Remark 2 can
be used to slightly reduce the bound of 77 to 73, still weaker than that in [RZ18].

4. A non-vanishing determinant

The following lemma is used to eliminate irrational zeta values in § 5 below.

Lemma 4. For t > 1, let x1 < · · · < xt be positive real numbers and α1 < · · · < αt non-negative
integers. Then the generalized Vandermonde matrix [xαi

j ]16i,j6t has positive determinant.

We remark that, subject to the hypothesis that x1, . . . , xt are real and positive, Lemma 4 is
a stronger version of [LMN95, Lemme 1] and, therefore, has potential applications to the zero
estimates for linear forms in two logarithms.

The above result is quite classical and known to many people. While writing this paper we
found various proofs of rather different nature, three given below. We leave it to the reader to
choose their favourite proof.

Combinatorial proof of Lemma 4. As pointed out in [Kra99, § 2.1], the generalized Vandermonde
determinant in question is closely related to Schur polynomials. Let ∆ := det[xαi

j ]16i,j6t, and

V = det[xi−1j ]16i,j6t =
∏

16i<j6t

(xj − xi) > 0

be the Vandermonde determinant of x1, . . . , xt. For any i ∈ {1, . . . , t}, we take λi = αt+1−i+i−t,
so that λ1 > · · · > λt > 0; then λ = (λ1, . . . , λt) is a partition of the integer λ1 + · · · + λt. The
associated Schur polynomial

sλ = sλ(x1, . . . , xt) =
∆

V
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Many odd zeta values are irrational

possesses the expression

sλ =
∑
T

x
m1(T )
1 · · ·xmt(T )

t ,

with the sum over all column-strict Young tableaux T of shape λ (see, for instance, [FH91,
Appendix A, A.31] or [Mac79, I.3], and [Pro89] for a direct proof). Here, mi(T ) denotes the
number of occurrences of i in the tableau T . From this we deduce that sλ is a positive real
number, thus ∆ = sλ · V > 0. 2

Linear algebra proof of Lemma 4. Write AJ,K for the minor of an n×m matrix A, where n 6m,
determined by ordered index sets J and K. A classical result due to Fekete [FP12] asserts that
if all (n− 1)-minors

A(1,2,...,n−1),K , K = (k1, . . . , kn−1) with 1 6 k1 < · · · < kn−1 6 m

are positive, and all minors of size n with consecutive columns are positive, then all n-minors
of A are positive. Thus, Lemma 4 follows by induction on t from Fekete’s result applied to the
matrix [xkj ]16j6t, 06k<m, using the positivity of the Vandermonde determinant. 2

Analytical proof of Lemma 4 (see [GK02, pp. 76–77]). By induction on t one proves the
following claim. A non-zero function

f(x) =
t∑
i=1

cix
αi ,

with ci, αi ∈ R, has at most t− 1 positive zeros. Indeed, if f has t positive zeros then Rolle’s
theorem provides t− 1 positive zeros of the derivative (d/dx)(x−α1f(x)). The non-vanishing
of the determinant in Lemma 4 is an immediate consequence of this claim. Since the determinant
depends continuously on the parameters αi, we deduce the required positivity from the positivity
of the Vandermonde determinant. 2

5. Elimination of odd zeta values

Let 0 < ε < 1
3 , and let s be odd and sufficiently large with respect to ε. We take D to be the

product of all primes less than or equal to (1− 2ε) log s (such a product has asymptotically
the largest possible number of divisors with respect to its size; see [HW79, ch. XVIII, § 1]).
We have

logD =
∑

p prime
p6(1−2ε) log s

log p 6 (1− ε) log s

by the prime number theorem, that is, D 6 s1−ε. Then D logD 6 s1−ε log s: the assumption of
Lemma 3 holds.

Notice that D has precisely δ = 2π((1−2ε) log s) divisors, with

log δ = π((1− 2ε) log s) log 2 > (1− 3ε)(log 2)
log s

log log s
.

Assume that the number of irrational odd zeta values between ζ(3) and ζ(s) is less than or equal
to δ− 1. Let 3 = i1 < i2 < · · · < iδ−1 6 s be odd integers such that if ζ(i) 6∈ Q and i is odd,
3 6 i 6 s, then i = ij for some j. We set i0 = 1, and consider the set D of all divisors of D,
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so that CardD = δ. Lemma 4 implies that the matrix [dij ]d∈D,06j6δ−1 is invertible. Therefore,
there exist integers wd ∈ Z, where d ∈ D, such that∑

d∈D
wdd

ij = 0 for any j ∈ {1, . . . , δ − 1} (5.1)

and ∑
d∈D

wdd
i0 =

∑
d∈D

wdd 6= 0. (5.2)

With the help of Lemma 1 we construct the linear forms

rn,j = ρ0,j +
∑
36i6s
i odd

ρiζ

(
i,
j

D

)

for n > 1 and 1 6 j 6 D. The crucial point (as in [Spr18, § 3]) is that for any d ∈ D and any
i > 2,

d∑
j=1

ζ

(
i,
jD/d

D

)
=

d∑
j=1

ζ

(
i,
j

d

)
=
∞∑
n=0

d∑
j=1

di

(dn+ j)i
= diζ(i),

implying that

r̂n,d =
d∑
j=1

rn,jD/d =
d∑
j=1

ρ0,jD/d +
∑
36i6s
i odd

ρid
iζ(i)

are linear forms in the odd zeta values with asymptotic behaviour

r̂n,d = (d+ o(1))rn,1 as n →∞ where lim
n→∞

r
1/n
n,1 = g(x0) < 4−(s+1),

by Lemma 3.
We now use the integers wd to eliminate the odd zeta values ζ(ij) for j = 1, . . . , δ− 1,

including all irrational ones, as in [Zud18, Spr18]. For that purpose, consider

r̃n =
∑
d∈D

wdr̂n,d.

Equations (5.1) imply that

r̃n =
∑
d∈D

wd

d∑
j=1

ρ0,jD/d +
∑
i∈I

ρi

(∑
d∈D

wd d
i

)
ζ(i),

where I = {3, 5, 7, . . . , s}\{i1, . . . , iδ−1}; in particular, no irrational zeta value ζ(i), where
3 6 i 6 s, appears in this linear combination. Using Equation (5.2), we obtain

r̃n =

(∑
d∈D

wdd+ o(1)

)
rn,1 with

∑
d∈D

wdd 6= 0,

so that

lim
n→∞

|r̃n|1/n = g(x0) < 4−(s+1).
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Many odd zeta values are irrational

Now all ζ(i), i ∈ I, are assumed to be rational. Denoting by A their common denominator,
we deduce from Lemma 2 that Ads+1

n+1r̃n is an integer. From the prime number theorem we have

limn→∞ d
1/n
n+1 = e, hence the sequence of integers satisfies

0 < lim
n→∞

|Ads+1
n+1r̃n|

1/n = es+1g(x0) <

(
e

4

)s+1

< 1.

This contradiction concludes the proof of Theorem 2.
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vol. 61 (Société Mathématique de France, Paris, 1979), 11–13.

BR01 K. Ball and T. Rivoal, Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers
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