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Abstract

Let Z be a symmetric variety defined over Q and p a
prime number. (For instance Z may be a quadric)

I will describe equidistribution results for the rational
points of Z with denominator a power of p.

This will rely on a polar decomposition of p-adic
symmetric spaces.
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3. Rational points on symmetric varieties
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1. An old example

Set NR = #({(x , y) ∈ Z2 | x2 + y2 ≤ R2}).

Theorem (Gauss) NR = πR2 + O(R)

Proof π (R − 1√
2
)2 ≤ NR ≤ π (R + 1√

2
)2.

Best hoped error term: O(R
1
2 +ε).

It is related to the equidistribution speed of the image
of a great circle in R2/Z2













The hyperbolic plane

Set NR = #({(x , y , z) ∈ Z3 | z2 = x2 + y2 + 1
x2 + y2 + z2 ≤ R2}).

Theorem (Huber) NR ∼ 4
√

2R

Since the length of the circle is comparable to the
area of the disk, one has, already for the main term, to
understand equidistribution properties of the image
of the circle.

Best hoped error term: O(R
1
2 +ε).



Motivation

Let V be the n-dimensional affine space,
Fi ∈ Z[X1, . . . ,Xn],
Z = {z ∈ V | Fi(z) = 0 ∀i}.

General question

Study rational points on Z.
• Do they exist?
• Are they dense in ZR?
• Are they equidistributed in ZR?
• What is the speed of equidistribution?



2. Integral points

A symmetric variety Z is a variety which is an orbit
Z = Gz0 = G/H ⊂ V where
G is a semisimple algebraic group
G acts linearly on V, z0 ∈ V,
H ⊂ Gσ = {g ∈ G | gσ = g} is of finite index,
for some involution σ of G.

We assume
• Everything is defined over Q
• G is quasisimple and simplyconnected
• H has no Q-characters.



Examples of symmetric varieties Z

Z1 = {(x1, . . . , xn1 , y1, . . . , yn2) |
∑

x2
i −

∑
y2

j = 1}

Z2 = {M, d×d matrix | det M = k}

Z3 = {π, d×d matrix | tπ = π = π2 tr(π) = d ′}

Z4 = {S, d×d symmetric matrix | det S = k}

with n1,n2 > 0, (n1,n2) 6= (2,1),
d ≥ 3, k 6= 0 and 0 < d ′ < d .



Set BR = ZR ∩ B(0,R) and vR = µZR(BR).
Assume ZR is non compact.

Theorem (Duke, Rudnick, Sarnak; Eskin, McMullen)

∃ c > 0 # (ZZ ∩ BR) ∼ c vR.

Examples
#{z = (x , y) ∈ Zn1+n2 |

∑
x2

i −
∑

y2
j = 1 , ‖z‖ ≤ R}

∼ cn1,n2 Rn1+n2−2

#{M ∈M(d ,Z) | det M = k , ‖M‖ ≤ R} ∼ cd ,k Rd2−d



3. Rational points Assume ZQp is non compact.

Theorem (Be-Oh) The rational points on Z with
denominator pn become equidistributed on ZR when
n 7→ ∞ with exponential speed.

In other words

Theorem (Be-Oh) ∃α > 0, ωn > 0 | for all compact
Ω ⊂ ZR with smooth boundary
#{z ∈ Ω | pnz ∈ VZ} = ωn µZR(Ω) (1 + O(p−αn))

• ωn = µZQp
({z ∈ ZQp | pnz ∈ VZp})

• ∃a > 0,b ≥ 0, c1, c2 > 0 | c1pannb ≤ ωn ≤ c2pannb



Theorem (Be-Oh)

#{z ∈ Ω1 | pnz ∈ VZ}
#{z ∈ Ω2 | pnz ∈ VZ}

=
µZR(Ω1)

µZR(Ω2)
(1 + O(p−αn))

Strategy We use an ergodic method.
A few people have already worked on related
counting problems using various ergodic methods:

L. Clozel, W. Duke, A. Eskin, A. Gorodnik, A. Guilloux, F.
Ledrappier, Y. Linnik, G. Margulis, F. Maucourant, P. Michel,
S. Mozes, H. Oh, J.F. Quint, M. Ratner, Z. Rudnick, P.
Sarnak, N. Shah, Y. Tschinkel, E. Ullmo, A. Venkatesh, ...



Starting point
Let S be a finite set of primes and ZS = Z[1

p ,p ∈ S].
When S = ∅ then ZS = Z.

Theorem (Borel, Harish-Chandra)
• GZS ↪→ GR ×

∏
p∈S GQp is a lattice.

• GZS has finitely many orbits in ZZS .



Set G := GR ×
∏

p∈S GQp , Γ := GZS ,
H := HR ×

∏
p∈S HQp , Z = Gz0 = G/H,

µZ the normalized G-invariant measure on Z ,
Bn = Ω×

∏
p∈S{z ∈ ZQp | ‖z‖p ≤ pn}, vn := µZ (Bn).

Theorem (Be-Oh) Assume vn →∞. Then, ∃ δ > 0 st.

# (Γz0 ∩ Bn) = vn (1 + O(v−δ
n )).



POLAR DECOMPOSITION G = KAH

Example 1 : G/H = SL(p + q,R)/SO(p,q) :
Every non-degenerate quadratic form on Rn is
diagonalizable in an orthogonal basis.
(here K = SO(n) and A = {diagonal matrices})

Theorem For k = R, one has GR = KAHR with K
maximal compact subgroup of GR and A a maximal
split abelian subgroup.



POLAR DECOMPOSITION G = KAH

Example 2 : G/H = SL(n,Qp)/SO(Q) p 6= 2 :
Every non-degenerate quadratic form Q on Qn

p is
diagonalizable with base change in SL(n,Zp).

Theorem (Be-Oh, Delorme-Sécherre)
For k = Qp, one has Gk = KAHk with K compact and A
a finite union of split abelian groups.



4. Let G be a locally compact group, Γ a lattice in G,
H ⊂ G closed subgroup st H ∩ Γ is a lattice in H,
µZ the normalized G-invariant measure on Z := G/H,
Bn ⊂ Z , vn := µZ (Bn). Assume vn →∞.

Theorem (Eskin, McMullen)
Assume
1. Bn is WELL-ROUNDED,
2. G is MIXING on X = G/Γ,
3. G has the WAVE-FRONT property on Z = G/H
Then

# (Γz0 ∩ Bn) ∼ vn.

To get the error term, we will need effective versions of
WELL-ROUNDED, MIXING & WAVE-FRONT



1. Bn is WELL-ROUNDED means,

∀ ε > 0, ∃ U ⊂ G neighborhood of e st ∀ n

(1− ε) µZ (
⋃
u∈U

uBn) ≤ µZ (Bn) ≤ (1 + ε) µZ (
⋂
u∈U

uBn)

To check effective WELL-ROUNDEDNESS for our Z : use
the asymptotic expansions for the volume of balls:
Jeanquartier’s theorem for real balls,
Denef’s theorem for p-adic balls.

For x = gΓ ∈ X , set Fn(x) = 1
vn

# (Γg−1z0 ∩ Bn).

Well-roundedness allows to replace pointwise
convergence Fn(x) → 1 by weak convergence∫

X Fnα→
∫

X α ∀ α ∈ Cc(X ).



2. G is MIXING on X = G/Γ, means

∀ϕ, ψ ∈ L2(X ),
∫

X ϕ(gx)ψ(x)dµX −→
∫

X ϕ
∫

X ψ,

when g →∞ in G.

i.e. g?(ϕµX ) −→ (
∫
ϕ) µX .

or ∀ϕ, ψ ∈ L2
0(X ), 〈π(g)ϕ, ψ〉 −→ 0,

To check effective MIXING: use uniform decay of
matrix coefficients for automorphic representations
due to Clozel & Gorodnik, Maucourant, Oh :



3. G has the WAVE-FRONT property on Z = G/H means

∃F ⊂ G st G = FH and ∀ U ⊂ G neighborhood of e,
∃ V ⊂ G neighborhood of e, st

∀g ∈ F , gVH ⊂ UgH (?).

Set Y = H/(H ∩ Γ) ⊂ X = G/Γ. The wave-front
property allows to deduce from mixing that

g?µY −→ µX when g →∞ in G/H.

To check WAVE-FRONT, for Z = Zk, one uses the POLAR
DECOMPOSITION Gk = KAHk with K compact, A finite
union of split abelian subgroups so that we only have
to check (?) for g ∈ A.



Proof of counting theorem We know:

g?µY −→ µX , when g →∞ in G/H

we want to show: Fn −→ 1 weakly when n →∞

Just compute, with α ∈ Cc(X ):∫
X

Fnα =
1
vn

∫
G/Γ

∑
Γ/(Γ∩H)

1Bn(gγH)α(gΓ)

=
1
vn

∫
G/(Γ∩H)

1Bn(gH)α(gΓ)

=
1
vn

∫
G/H

∫
H/(H∩Γ)

1Bn(gH)α(ghΓ)

=
1
vn

∫
Bn

(∫
Y
α(gy)dµY (y)

)
−→

∫
X
α.



Rational points on symmetric varieties

Let Z be a symmetric variety defined over Q and p a
prime number.

We have got equidistribution results for the rational
points of Z with denominator a power of p.

This relied on a polar decomposition of p-adic
symmetric spaces.


