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Topological Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ and Γ ⊂ G
a subgroup.
Let g := Lie(G) and HΓ ⊂ GL(g) be the Zariski closure of AdΓ.

If HΓ is connected semisimple with no compact factor,
every Γ-orbit closure F = Γx0 in X is homogeneous.
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Topological Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ and Γ ⊂ G
a subgroup.
Let g := Lie(G) and HΓ ⊂ GL(g) be the Zariski closure of AdΓ.
vol(X ) <∞.

If HΓ is connected semisimple with no compact factor,
every Γ-orbit closure F = Γx0 in X is homogeneous.
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Topological Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ and Γ ⊂ G
a subgroup.
Let g := Lie(G) and HΓ ⊂ GL(g) be the Zariski closure of AdΓ.
The smallest algebraic subgroup containing AdΓ.

If HΓ is connected semisimple with no compact factor,
every Γ-orbit closure F = Γx0 in X is homogeneous.
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Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ and Γ ⊂ G
a subgroup.
Let g := Lie(G) and HΓ ⊂ GL(g) be the Zariski closure of AdΓ.
Ex. 1 : G = SL(2,R), Λ = SL(2,Z) , Γ non elementary.

If HΓ is connected semisimple with no compact factor,
every Γ-orbit closure F = Γx0 in X is homogeneous.
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Topological Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ and Γ ⊂ G
a subgroup.
Let g := Lie(G) and HΓ ⊂ GL(g) be the Zariski closure of AdΓ.

If HΓ is connected semisimple with no compact factor,
every Γ-orbit closure F = Γx0 in X is homogeneous.

i.e. The stabilizer of F in G acts transitively on F .

Yves Benoist – Jean-François Quint Recurrence



Dynamics on G/Λ

Recurrence
Construction of f .

Orbit closure on G/Λ

Stationary measures on G/Λ

Actions on tori
Strategy

Topological Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ and Γ ⊂ G
a subgroup.
Let g := Lie(G) and HΓ ⊂ GL(g) be the Zariski closure of AdΓ.

If HΓ is connected semisimple with no compact factor,
every Γ-orbit closure F = Γx0 in X is homogeneous.

A similar result is true for p-adic groups.
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Measure Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ, µ ∈ P(G)
a probability with compact support.
Set Γµ to be the subgroup generated by Supp(µ) and H := HΓµ .

If H is connected semisimple with no compact factor,
every µ-ergodic µ-stationary probability ν on X is homogeneous.

i.e. µ ∗ ν = ν where µ ∗ ν =
∫

G g∗ν dµ(g)
i.e. The stabilizer of ν in G acts transitively on Supp(ν).

Corollary Every Γ-ergodic Γ-invariant probability ν on X is
homogeneous.
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Example Let X = Td , µ ∈ P(SL(d ,Z)) a probability with finite
support generating a subgroup Γµ whose Zariski closure is
connected semisimple with no compact factor.

Corollary Every µ-ergodic µ-stationary probability ν on X is a
finite sum of Haar measures on affine subtori.

The above corollary is due to Bourgain, Furman, Lindenstrauss,
Mozes when Γ is irreducible and contains proximal elements.

Corollary (Muchnik and Guivarc’h, Starkov)
Every Γ-orbit closure in X is a finite union of affine subtori.
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Why does Measure Theorem implies Topological Theorem?

Choose µ ∈ P(G) with support S generating Γ.
Let x0 ∈ X . Use Kakutani’s trick:
Any weak sublimit ν0 of the sequence 1

n (µ ∗ δx0 + · · ·+ µ∗n ∗ δx0)
is µ-stationary and supported on Γx0.
One has to check that ν0 is a probability.
For that, one has to use and to extend ideas of Eskin-Margulis
that I will explain now.
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Recurence Theorem

Let G be a real Lie group, Λ ⊂ G a lattice, X = G/Λ.
Let µ ∈ P(G) be a probability with an exponential moment.
i.e.

∫
G ‖Adg‖δ dµ(g) <∞ for some δ > 0.

Definition X is µ-recurrent if

∀ε > 0, ∀x0 ∈ X ,∃K ⊂ X compact, ∃n0 ≥ 1,∀n ≥ n0,

µ∗n ∗ δx0(K ) ≥ 1− ε.

If H is semisimple, then X is µ-recurrent.

This theorem is due to Eskin-Margulis when Γ is not included in
a parabolic subgroup of G.
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Foster recurrence criterion

Assume that, for all x0 ∈ X , there exists f : X → [0,∞] such that
(i) f (x0) <∞,
(ii) f is proper,
(iii) Aµf ≤ a f + b , for some a < 1, b > 0,
then X is µ-recurrent.

where Aµf (x) =
∫

G f (gx) dµ(g)

We have now to construct f . We will assume that

G = SL(d ,R) and Λ = SL(d ,Z)

so that X is the set of lattices x of V := Rd of covolume 1.
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Furstenberg positivity of the first Lyapounov

Let µ ∈ P(SL(m,R)) be a probability with an exponential
moment.
Let ϕ : Rd → [0,∞); v 7→ ϕ(v) = ‖v‖.

If Γµ is unbounded and acts irreducibly on Rm,
then there exist n0 ≥ 1, δ > 0 and a < 1 such that

An0
µ ϕ
−δ ≤ aϕ−δ.

We will assume n0 = 1.
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d = 2 and H = SL(2,R)

The elements x ∈ X are lattices of covolume 1 in R2.

α(x) = inf{‖v‖ | v ∈ x r {0}}
f (x) = α(x)−δ

Key fact The lattices x never contain two non-colinear vectors
of norm at most 1.
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f (x) = α(x)−δ

Key fact The lattices x never contain two non-colinear vectors
of norm at most 1.
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d ≥ 2 and H = SL(d ,R)

αi(x) = inf{‖v‖ | v ∈ Λix r {0} pure tensor }
f (x) =

∑
i ε

(d−i)i
0 αi(x)−δ, for δ and ε0 small.

i.e. v = v1 ∧ · · · ∧ vi , with vj ∈ x .
Key fact : if x contains two non-colinear vectors of small norm,

Λ2x will contain a pure tensor of much smaller norm.

Key inequality : ∀u, v ,w ∈ Λ∗(Rd ), pure tensors,

‖u‖ ‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖ ‖u ∧ w‖.
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Dynamics on G/Λ

Recurrence
Construction of f .

d = 2, H = SL(2)

d ≥ 2, H = SL(d)

d = 3, H = SL(2)

d ≥ 2, H semisimple.
Main Inequality

d = 3 and H = upper left SL(2,R)

One has V = V+ ⊕ V0 = R2 ⊕R ,
Λ2V = V ∗ = V ∗+ ⊕ V ∗0 = R2 ⊕R ,
write v = v+ + v0, for v ∈ V or Λ2V .

α(x) = inf{‖v+‖ | v ∈ x or Λ2x , v 6= 0, ‖v0‖ < ε0}
f (x) = α(x)−δ

Key inequality : For all v ,w in V ,
‖(v ∧ w)+‖ ≤ ‖v0‖ ‖w+‖+ ‖v+‖ ‖w0‖
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d ≥ 2, H semisimple.
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d ≥ 2 and H semisimple
Let a be a Cartan subspace of h, and H0 be an element in the
interior of a Weyl chamber a+.
For λ ∈ a∗, let qλ be the projector on the sum of the irreducible
representation of H of highest weight λ.

ϕ(v) = max
λ 6=0

ε
(d−i)i/λ(H0)
0 ‖qλ(v)‖1/λ(H0)

α(x) = inf{ϕ(v) | v ∈ Λ∗x r {0} pure tensor with ‖q0(v)‖ < ε0}
f (x) = α(x)−δ, for δ and ε0 small.

Main inequality : ∀λ, µ ∈ a∗, for u, v ,w ∈ Λ∗(Rd ) pure tensors,

‖qλ(u)‖ ‖qµ(u ∧ v ∧w)‖ = O(
∑

ν+ρ≥λ+µ

‖qν(u ∧ v)‖ ‖qρ(u ∧w)‖).

order relation: λ ≥ µ⇐⇒ λ− µ is a sum of positive roots.
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Dynamics on G/Λ

Recurrence
Construction of f .

d = 2, H = SL(2)

d ≥ 2, H = SL(d)

d = 3, H = SL(2)

d ≥ 2, H semisimple.
Main Inequality

Proof of Main Inequality : For u, v ,w ∈ Λ∗(Rd ) pure tensors,

‖qλ(u)‖ ‖qµ(u ∧ v ∧w)‖ = O(
∑

ν+ρ≥λ+µ

‖qν(u ∧ v)‖ ‖qρ(u ∧w)‖).

Step 1 There exists a GL(V )-equivariant linear map

ψ : Λr+sV ⊗ Λr+tV → Λr V ⊗ Λr+s+tV

such that for all pure tensors u ∈ Λr V , v ∈ ΛsV , w ∈ ΛtV ,

ψ((u ∧ v)⊗ (u ∧ w)) = u ⊗ (u ∧ v ∧ w).

Step 2 Let E be a representation of H. One has, for x , y ∈ E ,

‖qλ(x)‖ ‖qµ(y)‖ = O(‖qλ+µ(x ⊗ y)‖)
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Exercise: a special case of Main Inequality

If V = V0 ⊕ V+, then for all vectors u, v ,w in V ,

‖u0‖ ‖u0 ∧ v+ ∧ w+ + u+ ∧ v0 ∧ w+ + u+ ∧ v+ ∧ w0‖

= O(‖u0 ∧ v+ + u+ ∧ v0‖ ‖u0 ∧ w+ + u+ ∧ w0‖)
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