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Discrete subgroups of Lie groups
and divisible convex sets

Lecture 1: A survey of results



0 Definition An open subset Ω ⊂ Pm(R) is

? properly convex if it is convex and bounded
in some affine chart,

? strictly convex if moreover ∂Ω does not
contain any segment,

? divisible if there exists a discrete subgroup
Γ ⊂ G := SL(m + 1,R) acting properly
cocompactly on Ω.



0 Definition An open subset Ω ⊂ Pm(R) is

? properly convex if it is convex and bounded
in some affine chart,

? strictly convex if moreover ∂Ω does not
contain any segment,

? divisible if there exists a discrete subgroup
Γ ⊂ G := SL(m + 1,R) acting properly
cocompactly on Ω.



Example: let q(x) = x2
0 − x2

1 − · · · − x2
m and

Hm := {` ∈ Pm(R) / q > 0 on `}.

Theorem (Siegel 1950) For every m ≥ 2 Hm

is divisible.

Siegel’s construction is arithmetic:
Γ := O+(q′,Z[

√
d ]) where d is not a square and

q′(x0, · · · , xm) :=
√
d x2
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1 − · · · − x2
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Here are two other easy examples:

? Ω is decomposable i.e. is the interior of the

convex hull of two divisible properly convex sets Ωi of

dimension ni with m1 + m2 + 1 = m.

? Ω is a symmetric space i.e. for every x in Ω

there exists a projective symmetry sx ∈ G preserving Ω

whose set of fixed points is {x} (for instance the set of

positive symmetric matrices up to homothety).

Convex symmetric open sets have been classified by

Koecher and Vinberg (1965).

Theorem (Borel 1965) Every symmetric
convex open set Ω is divisible.
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Question : For m ≥ 2, do there exist discrete
subgroups Γ ⊂ SL(m + 1,R) dividing a strictly
convex open subset Ω 6' Hm of Pm(R)?

Answer 1 (Kac-Vinberg, 1970): YES, in
small dimension m=2,3,4..., thanks to Coxeter
groups.

Answer 2 (Koszul, Johnson-Millson, 1970-80)
YES, for all m, thanks to a deformation
process starting with a tiling of Hm.
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1 Let Γ ⊂ SL(m + 1,R) dividing a properly
convex open subset Ω 6' Hm of Pm(R).

Theorem (Benzecri 1960) ∂Ω is not C2.

Theorem 1 ∂Ω is C1

iff Ω is strictly convex
iff Γ is Gromov hyperbolic.

Corollary If Ω is strictly convex, then the geodesic flow

on M := Γ\Ω is Anosov.

Corollary If Ω is strictly convex, then ∂Ω has a

C1+Holder regularity but its curvature is concentrated on

a subset of measure zero.
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2 Let Γ ⊂ SL(m + 1,R) dividing a properly
convex open subset Ω of Pm(R).

Theorem (Vey 1970) The action of Γ on
Rm+1 is semisimple.

Theorem 2 If Ω is indecomposable and non
symmetric, Γ is Zariski dense in SL(m + 1,R) .
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3 Let Γ0 be a group, G := SL(m + 1,R) and
let EΓ0

be the space of “discrete faithful
morphisms ρ : Γ0 −→ G dividing some properly
convex open subset Ωρ in Pm(R)”

Theorem (Koszul 1970) EΓ0
is open.

Theorem 3 If the virtual center of Γ0 is
trivial, EΓ0

is closed.

Hence EΓ0 is a union of components of Hom(Γ0,G ).

Theorem (Goldman 1990) Let Γ0 = π1(Σg ).
If g = 1, Ω is a triangle.

If g ≥ 2, EΓ0/G ' R16(g−1)
.
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