Young Geometric Group Theory Meeting

Discrete subgroups of Lie groups and divisible convex sets

Lecture 1: A survey of results

0 Definition An open subset $\Omega \subset \mathbb{P}^m(\mathbb{R})$ is

 \star properly convex if it is convex and bounded in some affine chart,

 \star strictly convex if moreover $\partial \Omega$ does not contain any segment,

0 Definition An open subset $\Omega \subset \mathbb{P}^m(\mathbb{R})$ is

 \star properly convex if it is convex and bounded in some affine chart,

 \star strictly convex if moreover $\partial\Omega$ does not contain any segment,

* <u>divisible</u> if there exists a discrete subgroup $\Gamma \subset G := SL(m+1, \mathbb{R})$ acting properly cocompactly on Ω .

Example: let $q(x) = x_0^2 - x_1^2 - \cdots - x_m^2$ and

 $\mathbb{H}^m := \{\ell \in \mathbb{P}^m(\mathbb{R}) \mid q > 0 \text{ on } \ell\}.$

Theorem (Siegel 1950) For every $m \ge 2$ \mathbb{H}^m is divisible.

Example: let $q(x) = x_0^2 - x_1^2 - \cdots - x_m^2$ and

 $\mathbb{H}^m := \{\ell \in \mathbb{P}^m(\mathbb{R}) \mid q > 0 \text{ on } \ell\}.$

Theorem (Siegel 1950) For every $m \ge 2$ \mathbb{H}^m is divisible.

Siegel's construction is arithmetic: $\Gamma := O^+(q', \mathbb{Z}[\sqrt{d}])$ where *d* is not a square and $q'(x_0, \cdots, x_m) := \sqrt{d} x_0^2 - x_1^2 - \cdots - x_m^2$.

* Ω is decomposable i.e. is the interior of the convex hull of two divisible properly convex sets Ω_i of dimension n_i with $m_1 + m_2 + 1 = m$.

* Ω is decomposable i.e. is the interior of the convex hull of two divisible properly convex sets Ω_i of dimension n_i with $m_1 + m_2 + 1 = m$.

* Ω is a symmetric space i.e. for every x in Ω there exists a projective symmetry $s_x \in G$ preserving Ω whose set of fixed points is $\{x\}$ (for instance the set of positive symmetric matrices up to homothety).

* Ω is decomposable i.e. is the interior of the convex hull of two divisible properly convex sets Ω_i of dimension n_i with $m_1 + m_2 + 1 = m$.

* Ω is a symmetric space i.e. for every x in Ω there exists a projective symmetry $s_x \in G$ preserving Ω whose set of fixed points is $\{x\}$ (for instance the set of positive symmetric matrices up to homothety).

Convex symmetric open sets have been classified by Koecher and Vinberg (1965).

* Ω is decomposable i.e. is the interior of the convex hull of two divisible properly convex sets Ω_i of dimension n_i with $m_1 + m_2 + 1 = m$.

* Ω is a symmetric space i.e. for every x in Ω there exists a projective symmetry $s_x \in G$ preserving Ω whose set of fixed points is $\{x\}$ (for instance the set of positive symmetric matrices up to homothety).

Convex symmetric open sets have been classified by Koecher and Vinberg (1965).

Theorem (Borel 1965) Every symmetric convex open set Ω is divisible.

Question: For $m \ge 2$, do there exist discrete subgroups $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a strictly convex open subset $\Omega \not\simeq \mathbb{H}^m$ of $\mathbb{P}^m(\mathbb{R})$?

Question: For $m \ge 2$, do there exist discrete subgroups $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a strictly convex open subset $\Omega \not\simeq \mathbb{H}^m$ of $\mathbb{P}^m(\mathbb{R})$?

Answer 1 (Kac-Vinberg, 1970): YES, in small dimension m=2,3,4..., thanks to Coxeter groups.

Question: For $m \ge 2$, do there exist discrete subgroups $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a strictly convex open subset $\Omega \not\simeq \mathbb{H}^m$ of $\mathbb{P}^m(\mathbb{R})$?

Answer 1 (Kac-Vinberg, 1970): YES, in small dimension m=2,3,4..., thanks to Coxeter groups.

Answer 2 (Koszul, Johnson-Millson, 1970-80) YES, for all m, thanks to a deformation process starting with a tiling of \mathbb{H}^m .

Tits-Vinberg Construction with Coxeter groups

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tits-Vinberg Construction with Coxeter groups

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Tits-Vinberg Construction with Coxeter groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 Let $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a properly convex open subset $\Omega \not\simeq \mathbb{H}^m$ of $\mathbb{P}^m(\mathbb{R})$.

Theorem (Benzecri 1960) $\partial \Omega$ is not C².

1 Let $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a properly convex open subset $\Omega \not\simeq \mathbb{H}^m$ of $\mathbb{P}^m(\mathbb{R})$.

Theorem (Benzecri 1960) $\partial \Omega$ is not C².

Theorem 1 $\partial \Omega$ is C¹

- iff Ω is strictly convex
- iff Γ is Gromov hyperbolic.

1 Let $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a properly convex open subset $\Omega \not\simeq \mathbb{H}^m$ of $\mathbb{P}^m(\mathbb{R})$.

Theorem (Benzecri 1960) $\partial \Omega$ is not C².

Theorem 1 $\partial \Omega$ is C¹

- iff Ω is strictly convex
- iff Γ is Gromov hyperbolic.

Corollary If Ω is strictly convex, then the geodesic flow on $M := \Gamma \setminus \Omega$ is Anosov.

Corollary If Ω is strictly convex, then $\partial \Omega$ has a

 $C^{1+Holder}$ regularity but its curvature is concentrated on a subset of measure zero.

2 Let $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a properly convex open subset Ω of $\mathbb{P}^m(\mathbb{R})$.

Theorem (Vey 1970) The action of Γ on \mathbb{R}^{m+1} is semisimple.

2 Let $\Gamma \subset SL(m+1,\mathbb{R})$ dividing a properly convex open subset Ω of $\mathbb{P}^m(\mathbb{R})$.

Theorem (Vey 1970) The action of Γ on \mathbb{R}^{m+1} is semisimple.

Theorem 2 If Ω is indecomposable and non symmetric, Γ is Zariski dense in $SL(m+1, \mathbb{R})$.

3 Let Γ_0 be a group, $G := \operatorname{SL}(m+1, \mathbb{R})$ and let \mathcal{E}_{Γ_0} be the space of "discrete faithful morphisms $\rho : \Gamma_0 \longrightarrow G$ dividing some properly convex open subset Ω_ρ in $\mathbb{P}^m(\mathbb{R})$ "

3 Let Γ_0 be a group, $G := SL(m+1, \mathbb{R})$ and let \mathcal{E}_{Γ_0} be the space of "discrete faithful morphisms $\rho : \Gamma_0 \longrightarrow G$ dividing some properly convex open subset Ω_ρ in $\mathbb{P}^m(\mathbb{R})$ "

Theorem (Koszul 1970) \mathcal{E}_{Γ_0} is open.

3 Let Γ_0 be a group, $G := SL(m+1, \mathbb{R})$ and let \mathcal{E}_{Γ_0} be the space of "discrete faithful morphisms $\rho : \Gamma_0 \longrightarrow G$ dividing some properly convex open subset Ω_ρ in $\mathbb{P}^m(\mathbb{R})$ "

Theorem (Koszul 1970) \mathcal{E}_{Γ_0} is open.

Theorem 3 If the virtual center of Γ_0 is trivial, \mathcal{E}_{Γ_0} is closed.

3 Let Γ_0 be a group, $G := SL(m+1, \mathbb{R})$ and let \mathcal{E}_{Γ_0} be the space of "discrete faithful morphisms $\rho : \Gamma_0 \longrightarrow G$ dividing some properly convex open subset Ω_ρ in $\mathbb{P}^m(\mathbb{R})$ "

Theorem (Koszul 1970) \mathcal{E}_{Γ_0} is open.

Theorem 3 If the virtual center of Γ_0 is trivial, \mathcal{E}_{Γ_0} is closed.

Hence \mathcal{E}_{Γ_0} is a union of components of Hom (Γ_0, G) .

Theorem (Goldman 1990) Let $\Gamma_0 = \pi_1(\Sigma_g)$. If g = 1, Ω is a triangle. If $g \ge 2$, $\mathcal{E}_{\Gamma_0}/G \simeq \mathbb{R}^{16(g-1)}$.