
Young Geometric Group Theory Meeting

Discrete subgroups of Lie groups
and divisible convex sets

Lecture 4: Dimension 3



0 Definition An open subset Ω ⊂ Pm(R) is

? properly convex if it is convex and bounded
in some affine chart,

? strictly convex if moreover ∂Ω does not
contain any segment,

? divisible if there exists a discrete subgroup
Γ ⊂ G := SL(m + 1,R) acting properly
cocompactly on Ω.



1 Question For m ≥ 3, do there exist
discrete Zariski dense subgroups
Γ ⊂ SL(m + 1,R) dividing a properly convex but
non strictly convex open subset Ω of Pm(R)?

Answer YES, in small dimension m=3,4,5...,

For m=3 : Compute
an explicit Coxeter group
with Coxeter graph :
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five faces i.e. is a prism:
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Check Γ is not Gromov hyperbolic since it contains Z2
.
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Let Γ ⊂ SL(4,R) be a discrete subgroup
dividing a properly convex open subset Ω of
P3(R).

PET = properly embedded triangle in Ω.

Theorem 4 A) The union of PETs projects in
M := Γ\Ω onto a finite union of disjoint tori
and Klein bottles.
B) Conversely, every Z2 subgroup of Γ
stabilizes a unique PET.
C) Every segment in ∂Ω is on the boundary of
a unique PET. If Ω is not strictly convex, the
vertices of these triangles are dense in ∂Ω.
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Proof of Theorem 4

Recall (Benzecri)
X = { properly convex open set in Pn(R)},
G = SL(m + 1,R) and Ω ∈ X is divisible. Then
the G -orbit of Ω in X is closed.

Corollary a) Ω non strictly convex =⇒ Ω
contains a PET.
b) Ω indecomposable =⇒ ∂Ω does not contain
open flat subsets.
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Step 1 All Z2 in Γ are diagonal.
(Just exclude the other cases)

Step 2 The PETs are disjoints.
Hence they give a lamination L in M.
Step 3 This L has polynomial growth.
Hence it has a transversal measure µ.
(Plante theorem)
Step 4 Each such µ gives an action of Γ on a
R-tree Tµ (Gillet-Shalen construction).
Step 5 Each π1 of a JSJ-piece of M has a
fixed point on Tµ (Morgan-Shalen theorem).
Step 6 L has compact leaves.
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