Young Geometric Group Theory Meeting

Discrete subgroups of Lie groups and divisible convex sets

Lecture 4: Dimension 3

0 Definition An open subset $\Omega \subset \mathbb{P}^m(\mathbb{R})$ is

 \star properly convex if it is convex and bounded in some affine chart,

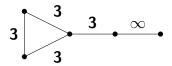
 \star strictly convex if moreover $\partial\Omega$ does not contain any segment,

* <u>divisible</u> if there exists a discrete subgroup $\Gamma \subset G := SL(m+1, \mathbb{R})$ acting properly cocompactly on Ω .

Answer YES, in small dimension m=3,4,5...,

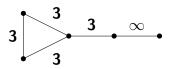
Answer YES, in small dimension m=3,4,5...,

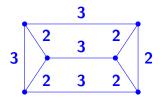
For m=3 : Compute an explicit Coxeter group with Coxeter graph :



Answer YES, in small dimension m=3,4,5...,

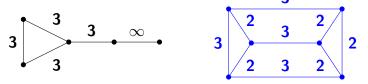
For m=3 : Compute an explicit Coxeter group with Coxeter graph : The polyhedron *P* has five faces i.e. is a prism:





Answer YES, in small dimension m=3,4,5...,

For m=3 : Compute an explicit Coxeter group with Coxeter graph : The polyhedron *P* has five faces i.e. is a prism:



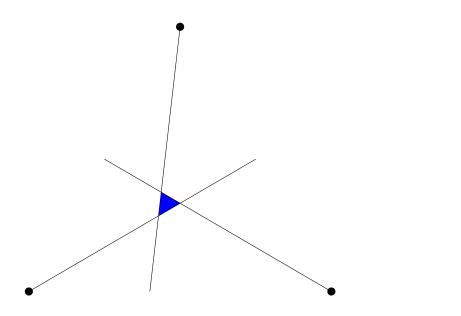
Check Γ is not Gromov hyperbolic since it contains \mathbb{Z}^2 .

Answer YES, in small dimension m=3,4,5...,

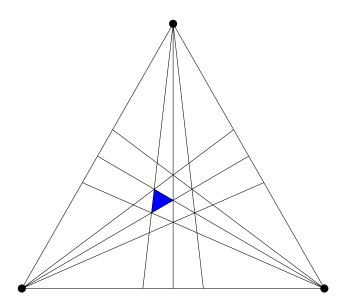
For m=3 : Compute an explicit Coxeter group with Coxeter graph : The polyhedron *P* has five faces i.e. is a prism:

Check Γ is not Gromov hyperbolic since it contains \mathbb{Z}^2 .

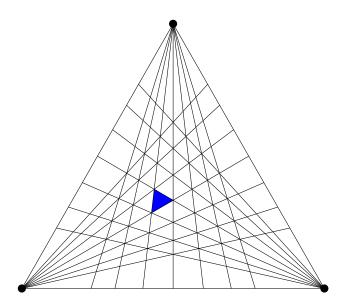
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの



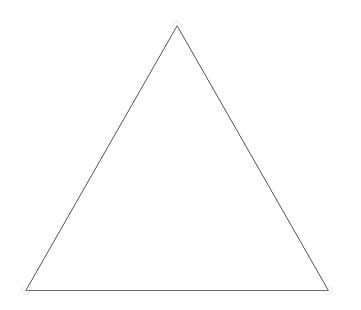
▲ロト ▲理ト ▲ヨト ▲ヨト 三ヨー 釣んぐ



▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Let $\Gamma \subset SL(4, \mathbb{R})$ be a discrete subgroup dividing a properly convex open subset Ω of $\mathbb{P}^{3}(\mathbb{R})$.

PET = properly embedded triangle in Ω .

Let $\Gamma \subset SL(4,\mathbb{R})$ be a discrete subgroup dividing a properly convex open subset Ω of $\mathbb{P}^{3}(\mathbb{R})$.

PET = properly embedded triangle in Ω .

Theorem 4 A) The union of PETs projects in $M := \Gamma \setminus \Omega$ onto a finite union of disjoint tori and Klein bottles.

Let $\Gamma \subset SL(4,\mathbb{R})$ be a discrete subgroup dividing a properly convex open subset Ω of $\mathbb{P}^{3}(\mathbb{R})$.

PET = properly embedded triangle in Ω .

Theorem 4 A) The union of PETs projects in $M := \Gamma \setminus \Omega$ onto a finite union of disjoint tori and Klein bottles. B) Conversely, every \mathbb{Z}^2 subgroup of Γ

stabilizes a unique PET.

Let $\Gamma \subset SL(4,\mathbb{R})$ be a discrete subgroup dividing a properly convex open subset Ω of $\mathbb{P}^{3}(\mathbb{R})$.

PET = properly embedded triangle in Ω .

Theorem 4 A) The union of PETs projects in $M := \Gamma \setminus \Omega$ onto a finite union of disjoint tori and Klein bottles.

B) Conversely, every \mathbb{Z}^2 subgroup of Γ stabilizes a unique PET.

C) Every segment in $\partial \Omega$ is on the boundary of a unique PET. If Ω is not strictly convex, the vertices of these triangles are dense in $\partial \Omega$.

Proof of Theorem 4

Recall (Benzecri) $X = \{ \text{ properly convex open set in } \mathbb{P}^n(\mathbb{R}) \},\$ $G = \operatorname{SL}(m+1,\mathbb{R}) \text{ and } \Omega \in X \text{ is divisible. Then }$ the *G*-orbit of Ω in *X* is closed.

Proof of Theorem 4

Recall (Benzecri) $X = \{ \text{ properly convex open set in } \mathbb{P}^n(\mathbb{R}) \},\$ $G = \operatorname{SL}(m+1, \mathbb{R}) \text{ and } \Omega \in X \text{ is divisible. Then}$ the *G*-orbit of Ω in *X* is closed.

Corollary a) Ω non strictly convex $\Longrightarrow \Omega$ contains a PET.

Proof of Theorem 4

Recall (Benzecri) $X = \{ \text{ properly convex open set in } \mathbb{P}^n(\mathbb{R}) \},\$ $G = \operatorname{SL}(m+1, \mathbb{R}) \text{ and } \Omega \in X \text{ is divisible. Then}$ the *G*-orbit of Ω in *X* is closed.

Corollary a) Ω non strictly convex $\Longrightarrow \Omega$ contains a PET.

b) Ω indecomposable $\implies \partial \Omega$ does not contain open flat subsets.

Step 1 All \mathbb{Z}^2 in Γ are diagonal. (Just exclude the other cases)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Step 1All \mathbb{Z}^2 in Γ are diagonal.(Just exclude the other cases)Step 2The PETs are disjoints.Hence they give a lamination \mathcal{L} in M.

Step 1All \mathbb{Z}^2 in Γ are diagonal.(Just exclude the other cases)Step 2The PETs are disjoints.Hence they give a lamination \mathcal{L} in M.Step 3This \mathcal{L} has polynomial growth.Hence it has a transversal measure μ .(Plante theorem)

Step 1 All \mathbb{Z}^2 in Γ are diagonal. (Just exclude the other cases) Step 2 The PETs are disjoints. Hence they give a lamination \mathcal{L} in M. Step 3 This \mathcal{L} has polynomial growth. Hence it has a transversal measure μ . (Plante theorem) Step 4 Each such μ gives an action of Γ on a **\mathbb{R}-tree** \mathcal{T}_{μ} (Gillet-Shalen construction).

Step 1 All \mathbb{Z}^2 in Γ are diagonal. (Just exclude the other cases) Step 2 The PETs are disjoints. Hence they give a lamination \mathcal{L} in M. Step 3 This \mathcal{L} has polynomial growth. Hence it has a transversal measure μ . (Plante theorem) Step 4 Each such μ gives an action of Γ on a **\mathbb{R}-tree** \mathcal{T}_{μ} (Gillet-Shalen construction). **Step 5** Each π_1 of a JSJ-piece of *M* has a fixed point on \mathcal{T}_{μ} (Morgan-Shalen theorem).

Step 1 All \mathbb{Z}^2 in Γ are diagonal. (Just exclude the other cases) Step 2 The PETs are disjoints. Hence they give a lamination \mathcal{L} in M. Step 3 This \mathcal{L} has polynomial growth. Hence it has a transversal measure μ . (Plante theorem) Step 4 Each such μ gives an action of Γ on a \mathbb{R} -tree \mathcal{T}_{μ} (Gillet-Shalen construction). **Step 5** Each π_1 of a JSJ-piece of *M* has a fixed point on \mathcal{T}_{μ} (Morgan-Shalen theorem). **Step 6** | \mathcal{L} has compact leaves.