Random walk on p-adic flag varieties

Yves Benoist joint work with J.F. Quint

Paris, March 24nd 2014

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Abstract

We will describe equidistribution results for random walks on projective spaces when the linear action is semisimple.

The main question will be:

Which algebraic homogeneous spaces support stationary probability measures?

(ロ) (同) (三) (三) (三) (○) (○)

- 1. Stationary measures
- 2. Random trajectories
- 3. Homogeneous spaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

4. Flag varieties

1. Stationary measures

Notation

Let $k = \mathbb{R}$ or \mathbb{Q}_p , $V = k^d$, $X = \mathbb{P}(V)$, $G \subset SL(V)$ connected semisimple algebraic group, μ probability measure on *G*, $\Gamma \subset G$ the semigroup spanned by the support of μ .

We assume that Γ is Zariski dense in *G*, i.e. *G* is the smallest algebraic group containing Γ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

- A probability ν on X is
- μ -stationary if $\nu = \mu * \nu := \int_G g_* \nu \ d\mu(g)$,
- ergodic it it is extremal among μ -stationary.

A compact subset $F \subset X$ is

- Γ -invariant if, for all g in Γ , $gF \subset F$,
- minimal if it contains no Γ-invariant closed subset.

(日) (日) (日) (日) (日) (日) (日)

Theorem 1

- A. The maps $\nu \mapsto F := supp\nu$ is a bijection between
- $\left\{\begin{array}{l} \operatorname{ergodic} \mu\operatorname{-stationary} \\ \operatorname{probability} \nu \text{ on } X \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \operatorname{minimal} \Gamma\operatorname{-invariant} \\ \operatorname{compact} F \text{ in } X \end{array}\right\}.$
- **B.** When $k = \mathbb{R}$, the map $F \mapsto O := GF$ is a bijection

 $\left\{\begin{array}{l} \text{minimal } \Gamma\text{-invariant} \\ \text{compact } F \text{ in } X\end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{compact } G\text{-orbit} \\ O \text{ in } X\end{array}\right\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is easy?

- supp ν is Γ -invariant: by definition.
- surjectivity: for x in F, a weak limit measure of $\frac{1}{n} \sum_{\ell=1}^{n} \mu^{*\ell} * \delta_x$ is μ -stationary.

What has to be proven?

• supp ν is minimal + injectivity.

Remember: there exist homeomorphisms of \mathbb{T}^2

(日) (日) (日) (日) (日) (日) (日)

- ergodic and not minimal,
- minimal and not uniquely ergodic.

What is known?

Say Γ is proximal if $\overline{k\Gamma}$ contains rank one matrices.

Fact (Furstenberg) When V is irreducible and Γ is proximal, then ν is unique.

Remark One can find *V* irreducible with uncountably many ergodic μ -stationary probability ν on $X = \mathbb{P}(V)$.

A D F A 同 F A E F A E F A Q A

2. Motivations: random trajectories

Let $g_1, \ldots, g_\ell, \ldots$ be independent *G*-valued random variables of law μ on a probability space $(\Omega, \mathcal{B}, \mathbb{P})$.

Theorem 2 Assume *V* is irreducible. For all *x* in *X*, $\nu_x = \lim_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^n \mu^{*\ell} * \delta_x$ exists and is μ -stationary,

$$u_{x,\omega} = \lim_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} \delta_{g_{\ell} \cdots g_1 x}$$
 exists and is ergodic μ -stationary.

One has $\nu_{x} = \mathbb{E}(\nu_{x,\omega})$.

Sketch of proof of Theorem 2

Let $P : \mathcal{C}^0(X) \to \mathcal{C}^0(X)$ given by $P\varphi(x) = \int_G \varphi(gx) \ d\mu(g).$

Definition *P* is equicontinuous if, for all φ in $C^0(X)$, the family $(P^n \varphi)_{n \ge 1}$ is equicontinuous in $C^0(X)$.

Fact (Raugi) When *P* is equicontinuous, Theorems 1.*A* and 2 are satisfied.

Key lemma If *V* is irreducible, *P* is equicontinuous.

Idea of proof: $P^n \varphi(x)$ is the average of $\varphi(g_n \cdots g_1 x)$. Check $\forall \varepsilon > 0$, $\exists M_{\varepsilon} > 0$, for all x, x' in $X, n \ge 1$

 $\mathbb{P}(d(g_n \cdots g_1 x, g_n \cdots g_1 x') \leq M_{\varepsilon} d(x, x')) \geq 1 - \varepsilon.$

3. Homogeneous spaces

The G-orbits are locally closed. One reformulates

Theorem 1 Let *H* be an algebraic subgroup of *G*. The map $\nu \mapsto F := supp\nu$ is a bijection between

 $\left\{\begin{array}{l} \text{ergodic } \mu\text{-stationary} \\ \text{probability } \nu \text{ on } G/H \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{minimal } \Gamma\text{-invariant} \\ \text{compact } F \text{ in } G/H \end{array}\right\}.$

(日) (日) (日) (日) (日) (日) (日)

When $k = \mathbb{R}$, these sets (*i*) are empty when G/H is not compact, (*ii*) have only one element when G/H is compact.

Proof of Theorem 1 when $k = \mathbb{R}$

Write the Iwasawa decomposition G = KAN.

Fact (Guivarch-Raugi) *P* is equicontinuous on G/AN.

A D F A 同 F A E F A E F A Q A

Key Lemma If Y = G/H supports a μ -stationary probability ν , then H contains a conjugate of AN.

First step *H* contains a conjugate *N'* of *N* i.e. $Y^{N'} \neq \emptyset$.

By Chevalley, assume $G/H \hookrightarrow \mathbb{P}(V)$.

Write a random word $g_n \cdots g_1 = k_{1,n} a_n k_{2,n}$ in the Cartan decomposition $G = KA^+K$. By Goldsheid, Margulis and Furstenberg, a_n goes away from the walls of A^+ . Hence the image of any limit π in End(V) of $\frac{g_n \cdots g_1}{\|g_n \cdots g_1\|}$ is in some $\mathbb{P}(V)^{N'}$.

The probability $\beta \otimes \nu$ on $B \times Y$ is invariant by $(b, y) \mapsto (Sb, g_1 y)$, where $B = G^{\mathbb{N}}$, $\beta = \mu^{\otimes \mathbb{N}}$, S = shift.

By Poincare recurrence, for ν -almost all y in Y, $g_n \cdots g_1 y$ has limit points $y_{\infty} \in Y$. Hence $y_{\infty} \in Im\pi \cap Y$ is N'-invariant. Second step *H* contains a conjugate of *A*.

Let P = MAN be a minimal parabolic subgroup. We can assume H = MA'N with $\mathfrak{a}/\mathfrak{a}' \simeq \mathbb{R}$. Then $Y = G/H \rightarrow Z = G/P$ is a line bundle.

The action of *G* on $Y \simeq Z \times \mathbb{R}$ is given by

$$g.(z,t) = (gz, t + \overline{\sigma}(g,z))$$

where σ is the Iwasawa cocycle $\sigma: G \times Z \rightarrow \mathfrak{a}$.

Assume there exists an ergodic μ -stationary ν on *Y*. We want a contradiction.

Let $\kappa : G \to \mathfrak{a}^+$ be the projection given by the Cartan decomposition $G = KA^+K$. For z in Z, the difference $\kappa(g_n \cdots g_1) - \sigma(g_n \cdots g_1, z)$ is bounded by a constant M_ϵ outside a set of trajectories of mass ϵ .

Fix an interval J_0 with $\nu(Z \times J_0) > \frac{1}{2}$. Apply Birkhoff theorem to the same ergodic dynamical system $(B \times Y, \beta \otimes \nu, T)$: for ν almost all (z, t) in Y, one has

 $\lim_{n\to\infty}\frac{1}{n}|\{\ell\leq n\mid \overline{\sigma}(g_\ell\cdots g_1,z)+t\in J_0\}|=\nu(Z\times J_0).$

Hence these *t*'s are bounded and ν has compact support. This contradicts the fact:

Fact | Y contains no compact Γ -invariant subsets.

4. Flag variety Let $P \subset G$ be a minimal parabolic,

Theorem 3 There are only finitely many ergodic μ -stationary probability on the flag variety Z := G/P.

Key Lemma There are only finitely many minimal Γ -invariant subsets of Z.

Remark There exists a *G*-equivariant embedding $Z \hookrightarrow \mathbb{P}(V)$ with *V* irreducible and *G* proximal. • When $k = \mathbb{R}$, by Goldsheid–Margulis, Γ is also proximal and, by Furstenberg, ν is unique. • when $k = \mathbb{Q}_p$, Γ is not always proximal. For instance Γ could be a compact open subgroup of *G*.

Ref: Random walk on projective spaces, Compositio Mathematica or www.math.u-psud.fr/ benoist