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Abstract

We will describe equidistribution results for random
walks on projective spaces when the linear action is
semisimple.

The main question will be:

Which algebraic homogeneous spaces support
stationary probability measures?



1. Stationary measures

2. Random trajectories

3. Homogeneous spaces

4. Flag varieties



1. Stationary measures

Notation

Let k = R or Qp, V = kd , X = P(V ),
G ⊂ SL(V ) connected semisimple algebraic group,
µ probability measure on G,
Γ ⊂ G the semigroup spanned by the support of µ.

We assume that Γ is Zariski dense in G,
i.e. G is the smallest algebraic group containing Γ.



Definition

A probability ν on X is
• µ-stationary if ν = µ ∗ ν :=

∫
G g∗ν dµ(g),

• ergodic it it is extremal among µ-stationary.

A compact subset F ⊂ X is
• Γ-invariant if, for all g in Γ, gF ⊂ F ,
• minimal if it contains no Γ-invariant closed subset.



Theorem 1

A. The maps ν 7→ F := suppν is a bijection between{
ergodic µ-stationary
probability ν on X

}
←→

{
minimal Γ-invariant
compact F in X

}
.

B. When k = R, the map F 7→ O := G F is a bijection{
minimal Γ-invariant
compact F in X

}
←→

{
compact G-orbit
O in X

}
.



What is easy?
• suppν is Γ-invariant: by definition.
• surjectivity: for x in F , a weak limit measure of
1
n

∑n
`=1 µ

∗` ∗ δx is µ-stationary.

What has to be proven?
• suppν is minimal + injectivity.

Remember: there exist homeomorphisms of T2

• ergodic and not minimal,
• minimal and not uniquely ergodic.



What is known?

Say Γ is proximal if kΓ contains rank one matrices.

Fact (Furstenberg) When V is irreducible and Γ is
proximal, then ν is unique.

Remark One can find V irreducible with uncountably
many ergodic µ-stationary probability ν on X = P(V ).



2. Motivations: random trajectories

Let g1, . . . ,g`, . . . be independant G-valued random
variables of law µ on a probability space (Ω,B,P).

Theorem 2 Assume V is irreducible. For all x in X ,

νx = lim
n→∞

1
n

∑n
`=1 µ

∗` ∗ δx exists and is µ-stationary,

νx ,ω = lim
n→∞

1
n

∑n
`=1 δg`···g1x exists and is ergodic

µ-stationary.

One has νx = E(νx ,ω).



Sketch of proof of Theorem 2

Let P : C0(X )→ C0(X ) given by

Pϕ(x) =
∫

G ϕ(gx) dµ(g).

Definition P is equicontinuous if, for all ϕ in C0(X ),
the family (Pnϕ)n≥1 is equicontinuous in C0(X ).

Fact (Raugi) When P is equicontinuous, Theorems
1.A and 2 are satisfied.

Key lemma If V is irreducible, P is equicontinuous.

Idea of proof: Pnϕ(x) is the average of ϕ(gn · · · g1x).
Check ∀ε > 0, ∃Mε > 0, for all x , x ′ in X , n ≥ 1

P(d(gn · · · g1x ,gn · · · g1x ′) ≤ Mεd(x , x ′)) ≥ 1− ε.



3. Homogeneous spaces

The G-orbits are locally closed. One reformulates

Theorem 1 Let H be an algebraic subgroup of G. The
map ν 7→ F := suppν is a bijection between{

ergodic µ-stationary
probability ν on G/H

}
←→

{
minimal Γ-invariant
compact F in G/H

}
.

When k = R, these sets
(i) are empty when G/H is not compact,
(ii) have only one element when G/H is compact.



Proof of Theorem 1 when k = R

Write the Iwasawa decomposition G = KAN.

Fact (Guivarch-Raugi) P is equicontinuous on G/AN.

Key Lemma If Y = G/H supports a µ-stationary
probability ν, then H contains a conjugate of AN.



First step H contains a conjugate N ′ of N i.e. Y N′ 6= ∅.

By Chevalley, assume G/H ↪→ P(V ).

Write a random word gn · · · g1 = k1,nank2,n in the Cartan
decomposition G = KA+K . By Goldsheid, Margulis
and Furstenberg, an goes away from the walls of A+.
Hence the image of any limit π in End(V ) of gn···g1

‖gn···g1‖
is

in some P(V )N′.

The probability β ⊗ ν on B × Y is invariant by
(b, y) 7→ (Sb,g1y), where B = GN, β = µ⊗N, S = shift.

By Poincare recurrence, for ν-almost all y in Y ,
gn · · · g1y has limit points y∞ ∈ Y . Hence y∞ ∈ Imπ ∩ Y
is N ′-invariant.



Second step H contains a conjugate of A.

Let P = MAN be a minimal parabolic subgroup.
We can assume H = MA′N with a/a′ ' R. Then
Y = G/H → Z = G/P is a line bundle.

The action of G on Y ' Z × R is given by

g.(z, t) = (gz, t + σ(g, z))

where σ is the Iwasawa cocycle σ : G × Z → a.

Assume there exists an ergodic µ-stationary ν on Y .
We want a contradiction.



Let κ : G→ a+ be the projection given by the Cartan
decomposition G = KA+K . For z in Z , the difference
κ(gn · · · g1)− σ(gn · · · g1, z) is bounded by a constant Mε

outside a set of trajectories of mass ε.

Fix an interval J0 with ν(Z × J0) > 1
2 . Apply Birkhoff

theorem to the same ergodic dynamical system
(B × Y , β ⊗ ν,T ): for ν almost all (z, t) in Y , one has

lim
n→∞

1
n |{` ≤ n | σ(g` · · · g1, z) + t ∈ J0}| = ν(Z × J0).

Hence these t ’s are bounded and ν has compact
support. This contradicts the fact:

Fact Y contains no compact Γ-invariant subsets.



4. Flag variety Let P ⊂ G be a minimal parabolic,

Theorem 3 There are only finitely many ergodic
µ-stationary probability on the flag variety Z := G/P.

Key Lemma There are only finitely many minimal
Γ-invariant subsets of Z .

Remark There exists a G-equivariant embedding
Z ↪→ P(V ) with V irreducible and G proximal.
•When k = R, by Goldsheid–Margulis, Γ is also
proximal and, by Furstenberg, ν is unique.
• when k = Qp, Γ is not always proximal. For instance
Γ could be a compact open subgroup of G.

Ref: Random walk on projective spaces, Compositio Mathematica or www.math.u-psud.fr/˜benoist


