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Abstract

We will describe the orbit closures F = Γx0 in the
space X of lattices of Rd when the Zariski closure
of the group Γ is semisimple.

We will need to know that a random walk on X is
recurrent as soon as the support of its transition
law µ is compact and spans Γ.

A key point will be the construction of a proper
function f on X which is contracted by the law µ.



1. Dynamics of Γ on G/Λ.

Let G be a real Lie group,
Λ ⊂ G a lattice, X = G/Λ,
Γ ⊂ G a subgroup such that the Zariski closure
of Ad(Γ) is semisimple with no compact factor.

i.e. vol(G/Λ) <∞.
i.e. the smallest algebraic subgroup of GL(g)
containing Ad(Γ).

Example: X = SL(d ,R)/SL(d ,Z),
i.e. X = { lattices x in Rd of covolume 1 },
Γ = Zariski dense subgroup in
H = SL(d1,R)× SL(d2,R), d = d1 + d2.



Orbit closure Theorem 1 For all x0 in X , the orbit
closure F := Γx0 in X is homogeneous of finite
volume. (Margulis-Shah Conjecture)

i.e. GF := {g ∈ G | gF = F} is transitive on F .

i.e. F supports a GF -invariant probability νF .



Let µ ∈ P(G) be a probability measure on G whose
support is compact and spans Γ.

Stationary Measure Theorem 2 Every µ-ergodic
µ-stationary probability measure ν on X is Γ-invariant
and homogeneous. (Furstenberg Conjecture)

i.e. ν is extremal among the µ-stationary ones.
i.e. µ ∗ ν = ν where µ ∗ ν =

∫
G g∗ν dµ(g).

i.e. Gν := {g ∈ G | g∗ν = ν} is transitive on supp(ν).

Remark. The set of Γ-invariant, ergodic and homogeneous
probability measures on X is a countable union of L-orbits
where L is the centralizer of Γ.



Equidistribution Theorem 3 For all x0 in X , the
sequence of probability νn := 1

n

∑n
k=1 µ

∗k ∗ δx0

converges to νF with F = Γx0.

Why does Theorem 2 implies Theorems 1 and 3?
Any weak sublimit ν∞ of the sequence νn is
µ-stationary and supported on F .
One has to check that
(i) ν∞ is a probability measure,
(ii) ν∞(LF ′) = 0 for any Γ-invariant finite volume
homogeneous set F ′ that does not meet Lx .

The end of this talk is devoted to (i) no mass escape.



2. Random walk on X = G/Λ

Recurrence Theorem 4 For all x0 in X , ε > 0, there
exists a compact set K ⊂ X such that, for all n ≥ 1,
µ∗n ∗ δx0

(K c) ≤ ε. (Eskin-Margulis Conjecture)

It is enough to check the

Existence of f There exists a proper function
f : X → [0,∞], finite at x0, and contracted by µ.

i.e. for all T > 0, f−1([0,T ]) is relatively compact.
i.e. there exist a < 1, b > 0 such that Pµf ≤ a f + b,
where Pµf (x) =

∫
G f (gx) dµ(g).

When the centralizer L is trivial, Theorem 4 is due to
Eskin-Margulis and the function f is finite everywhere.



A. X = SL(2,R)/SL(2,Z), H = SL(2,R)

Choose α1(x) := min{‖v‖ | v ∈ x r 0} and f = α−δ1 .

? f is proper, by Mahler compactness criterion.

? f is contracted by µ, as soon as δ is given by the

General Fact (Furstenberg, Eskin, Margulis)
When V is an irreducible non-trivial representation of
H, there exist a < 1, n0 ≥ 1, δ > 0 such that∫

G ‖gv‖−δdµ∗n0(g) ≤ a ‖v‖−δ , for all v in V .

Indeed, when the min is almost achieved at two
non-colinear vectors v and w , the value f (x) is
uniformly bounded, because

1 ≤ ‖v ∧ w‖ ≤ ‖v‖ ‖w‖.
Hence Pµf ≤ a f + b.



B. X = SL(3,R)/SL(3,Z), H = SL(3,R)

Choose α1(x) := min{‖v‖ | v ∈ x r 0},

α2(x) := α1(x∗) where x∗ is the dual lattice,

f1 = α−δ1 , f2 = α−δ2 , and f = f1 + f2.

One has Pµf1 ≤ a f1 + M
√

f2, for some M > 0,

and also Pµf2 ≤ a f2 + M
√

f1.

Indeed, when the min is almost achieved at two
non-colinear vectors v and w , the value f1(x) is
bounded by a multiple of

√
f2(x), because

‖v ∧ w‖ ≤ ‖v‖ ‖w‖ , for all v , w in R3.

Hence Pµf ≤ a f + b.



C. X = SL(d ,R)/SL(d ,Z), H = SL(d ,R)

Choose αi(x) := min{‖u‖ | u ∈ Λix r 0 pure tensor},

fi = α−δi , f0 = fd = 1 and f =
∑d−1

i=1 ε
(d−i)i
0 fi .

One has Pµfi ≤ a fi + M
∑

0<j≤min(i,d−i)

√
fi+j fi−j .

Indeed, when the min is almost achieved at two
non-colinear vectors, one uses the inequality

‖u‖ ‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖ ‖u ∧ w‖,

for all u ∈ ΛrRd , v ∈ ΛsRd , w ∈ ΛtRd pure tensors.

Hence Pµf ≤ a f + b , for ε0 small.



D. X = SL(3,R)/SL(3,Z), H = SL(2,R)

Write v = v+ + v0 ∈ R3 = R2 ⊕ R and fix ε0 > 0.

Choose α1(x) := min{‖v+‖ | v ∈ x r 0 with ‖v0‖ < ε0},

α2(x) := α1(x∗), f1 = α−δ1 , f2 = α−δ2 , and f = f1 + f2.

One has Pµf1 ≤ a f1 + Mεδ0 f2 + b, for some M > 0,

and also Pµf2 ≤ a f2 + Mεδ0f1 + b.

Indeed, when the min is almost achieved at two
non-colinear vectors v and w , one uses the inequality

‖(v ∧ w)+‖ ≤ ‖v0‖ ‖w+‖+ ‖v+‖ ‖w0‖.

Hence Pµf ≤ a f + b , for ε0 small.



E. X = SL(d ,R)/SL(d ,Z), H = SL(d1,R)× SL(d2,R)

For λ = (λ1, λ2), write |λ| = (d1 − λ1)λ1 + (d2 − λ2)λ2.

For v in ΛrRd set v =
∑

vλ, with vλ ∈ Λλ1Rd1⊗Λλ2Rd2,

and set ϕ(v) = max|λ|6=0 ε
(d−r)r
|λ|

0 ‖vλ‖
1
|λ| . Choose

α(x) := min{ϕ(v) | v ∈ x r 0 with ‖v0‖ < ε0}, f = α−δ.

One has Pµf ≤ a f + b, for ε0 small. Indeed, when the
min is almost achieved at two non-colinear vectors ,
one uses the Mother inequality for SLd1 × SLd2

‖uλ‖ ‖(u ∧ v ∧w)µ‖ � max
ν+ρ=λ+µ

min(νi ,ρi )≥min(λi ,µi )

‖(u ∧ v)ν‖ ‖(u ∧w)ρ‖,

for all u, v , w in Λ•Rd pure tensors and all λ, µ.



This inequality is proven using representation theory.
Indeed, its statement is simpler for a general
semisimple Lie group H ⊂ SL(d ,R). Let P+ be the set
of dominant weights of H.

Mother inequality

‖uλ‖ ‖(u ∧ v ∧ w)µ‖ � max
ν,ρ∈P+

ν+ρ≥λ+µ

‖(u ∧ v)ν‖ ‖(u ∧ w)ρ‖,

for all u, v , w pure tensors and all λ, µ in P+.

Here uλ means the projection of u on the sum of irreducible
subrepresentations with highest weight λ,
and ≥ means that the difference is a sum of positive root.

Thank you!


