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We will describe the orbit closures F = I'x, in the
space X of lattices of R° when the Zariski closure
of the group I is semisimple.

We will need to know that a random walk on X is
recurrent as soon as the support of its transition
law ;. is compact and spans I.

A key point will be the construction of a proper
function f on X which is contracted by the law ..



1. Dynamics of I on G/A.

Let G be a real Lie group,
A C Ga lattice, X = G/A,
[ € G a subgroup such that the Zariski closure
of Ad(l') is semisimple with no compact factor.

i.e. vol(G/N) < .
i.e. the smallest algebraic subgroup of GL(g)
containing Ad().

Example: X = SL(d,R)/SL(d,Z),

i.e. X = { lattices x in R? of covolume 1 },
[ = Zariski dense subgroup in

H =SL(d;,R) x SL(d>, R), d = d; + 0b.



| Orbit closure Theorem 1| For all x in X, the orbit
closure F :=Tx, in X is homogeneous of finite
volume. (Margulis-Shah Conjecture)

i.e. Gr:={g € G| gF = F} is transitive on F.

i.e. F supports a Ge-invariant probability v-.



Let 1 € P(G) be a probability measure on G whose
support is compact and spans I'.

Stationary Measure Theorem 2 | Every ;-ergodic

p~stationary probability measure v on X is -invariant
and homogeneous.

i.e. v is extremal among the ;-stationary ones.
i.e. yuxv=vwhere uxv=[;g.dug).
i.e. G, :={g € G| g.v = v} is transitive on supp(v).

Remark. The set of -invariant, ergodic and homogeneous
probability measures on X is a countable union of L-orbits
where L is the centralizer of I".



Equidistribution Theorem 3\ For all xo in X the
sequence of probability v, := 1 S0
converges to vr with F = Ix,.

Why does Theorem 2 implies Theorems 1 and 3?
Any weak sublimit v, of the sequence v, is
u~stationary and supported on F.

One has to check that

(/) v~ is a probability measure,

(i) voo(LF") = 0 for any l-invariant finite volume
homogeneous set F’ that does not meet Lx.

The end of this talk is devoted to (/) no mass escape.



2. Random walk on X = G/A

| Recurrence Theorem 4| For all x, in X, ¢ > 0, there
exists a compact set K C X such that, foralln > 1,
T 6XO(K°) < e. (Eskin-Margulis Conjecture)

It is enough to check the

|Existence of f| There exists a proper function
f: X — [0, ], finite at xo, and contracted by /..

i.e. forall T > 0, f~'([0, T]) is relatively compact.
i.e. there exist a<1,b>0suchthat P,f <af+ b,
where P, f(x) = [;f(gx)du(g).

When the centralizer L is trivial, Theorem 4 is due to
Eskin-Margulis and the function f is finite everywhere.



A. X =SL(2,R)/SL(2,Z), H=SL(2,R)
Choose a(x) :=min{|lv|| | ve x~ 0} and f = a;".
* f is proper, by Mahler compactness criterion.

* f is contracted by ,/, as soon as ¢ is given by the

‘ General Fact ‘ (Furstenberg, Eskin, Margulis)

When V is an irreducible non-trivial representation of
H, there exist a < 1, ng > 1, 6 > 0 such that
Jollgvl—du*™(g) < a|lv|| =, forall vin V.

Indeed, when the min is almost achieved at two
non-colinear vectors v and w, the value f(x) is
uniformly bounded, because

1< |vawl]<|v]wl.
Hence P,f < af + b.



B. X =SL(3,R)/SL(3,Z), H=SL(3,R)
Choose «a1(x) := min{||v| | v € x \ 0},

az(x) = aq(x*) where x* is the dual lattice,
fi=a h=a,’,and f = f; + f.

One has P,f; < af; + M+/f,, for some M > 0,
and also P,f, < afh+ M/f.

Indeed, when the min is almost achieved at two
non-colinear vectors v and w, the value f;(x) is

bounded by a multiple of /f;(x), because
v Aw|<|v||w|],forall v, win R

Hence P,f < af + b.



C. X =SL(d,R)/SL(d,Z), H = SL(d.R)
Choose a;(x) := min{||u|| | u € N'x < 0 pure tensor},

fi=a' fh=fy=1and f = > 7 {7,

One has P.f; < afi+ M3 i miniig—iy / firifi-jo

Indeed, when the min is almost achieved at two
non-colinear vectors, one uses the inequality

[ullllunvAaw| < flunv|funw],
forall u e A'RY, v € ASRY, w € A'RY pure tensors.

Hence P,f < af + b, for ¢, small.



D. X =SL(3,R)/SL(3,Z), H = SL(2,R)

Write v = v, + v, € R* = R? & R and fix s, > 0.
Choose «a;(x) := min{||v. || | v € x ~ 0 with ||| < &0},
az(X) == aq(x*), fi = a?‘s, frb = ag‘s, and f = f; + .

One has P,f; < af + M) f, + b, for some M > 0,
and also P.f, < af, + Medfy + b.

Indeed, when the min is almost achieved at two
non-colinear vectors v and w, one uses the inequality

I(v Aw) | < [[voll [ || + [[ve [ [ woll-

Hence P,f < af + b, for ¢, small.



E. X —SL(d,R)/SL(d,Z), H = SL(d, R) x SL(dh, R)
For \ = ()\1 , )\2) write |)\| ( )\1))\1 + (dz — /\2)/\2

For vin A'R? set v = " vy, with v, € AMRY @ A\2R%,

(d=nr

and set o(v) = max)\ 0, " ||all 7. Choose
a(x) == min{p(v) | v € x ~ 0 with ||v| < g0}, f = a°.

One has P,f < af + b, for ¢, small. Indeed, when the
min is almost achieved at two non-colinear vectors ,
one uses the |Mother inequality for SL,, x SL,,

lusllitunvaw)l < max = fl(uAv)fiuAw),l,
min(v;, /Jl)>m|n(/\/ i)

for all u, v, w in A°RY pure tensors and all ), ;.



This inequality is proven using representation theory.
Indeed, its statement is simpler for a general
semisimple Lie group H C SL(d,R). Let P be the set
of dominant weights of H.

Mother inequality |

leallitu A v aw)l < max - ji(uA v li(unw),l,

Vp> At p
for all u, v, w pure tensors and all \, . in P'.

Here u, means the projection of u on the sum of irreducible
subrepresentations with highest weight ),

and > means that the difference is a sum of positive root.



