Recurrence on the space of lattices

Yves Benoist joint work with J.F. Quint

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Seoul ICM 2014

Abstract

We will describe the orbit closures $F = \overline{\Gamma x_0}$ in the space X of lattices of \mathbb{R}^d when the Zariski closure of the group Γ is semisimple.

We will need to know that a random walk on X is recurrent as soon as the support of its transition law μ is compact and spans Γ .

A key point will be the construction of a proper function f on X which is contracted by the law μ .

(日) (日) (日) (日) (日) (日) (日)

1. Dynamics of Γ on G/Λ .

Let G be a real Lie group, $\Lambda \subset G$ a lattice, $X = G/\Lambda$, $\Gamma \subset G$ a subgroup such that the Zariski closure of Ad(Γ) is semisimple with no compact factor.

i.e. $vol(G/\Lambda) < \infty$. i.e. the smallest algebraic subgroup of $GL(\mathfrak{g})$ containing $Ad(\Gamma)$.

Example: $X = SL(d, \mathbb{R})/SL(d, \mathbb{Z})$, i.e. $X = \{$ lattices x in \mathbb{R}^d of covolume 1 $\}$, $\Gamma =$ Zariski dense subgroup in $H = SL(d_1, \mathbb{R}) \times SL(d_2, \mathbb{R})$, $d = d_1 + d_2$.

(日) (日) (日) (日) (日) (日) (日)

Orbit closure Theorem 1 For all x_0 in X, the orbit closure $F := \overline{\Gamma x_0}$ in X is homogeneous of finite volume. (Margulis-Shah Conjecture)

A D F A 同 F A E F A E F A Q A

i.e. $G_F := \{g \in G \mid gF = F\}$ is transitive on *F*.

i.e. *F* supports a G_F -invariant probability ν_F .

Let $\mu \in \mathcal{P}(G)$ be a probability measure on G whose support is compact and spans Γ .

Stationary Measure Theorem 2 Every μ -ergodic μ -stationary probability measure ν on X is Γ -invariant and homogeneous. (Furstenberg Conjecture)

i.e. ν is extremal among the μ -stationary ones. i.e. $\mu * \nu = \nu$ where $\mu * \nu = \int_G g_* \nu d\mu(g)$. i.e. $G_{\nu} := \{g \in G \mid g_* \nu = \nu\}$ is transitive on $\operatorname{supp}(\nu)$.

Remark. The set of Γ -invariant, ergodic and homogeneous probability measures on *X* is a countable union of *L*-orbits where *L* is the centralizer of Γ .

Equidistribution Theorem 3 For all x_0 in X, the sequence of probability $\nu_n := \frac{1}{n} \sum_{k=1}^n \mu^{*k} * \delta_{x_0}$ converges to ν_F with $F = \overline{\Gamma x_0}$.

Why does Theorem 2 implies Theorems 1 and 3? Any weak sublimit ν_{∞} of the sequence ν_n is μ -stationary and supported on F. One has to check that (*i*) ν_{∞} is a probability measure, (*ii*) $\nu_{\infty}(LF') = 0$ for any Γ -invariant finite volume homogeneous set F' that does not meet Lx.

The end of this talk is devoted to (*i*) no mass escape.

(日) (日) (日) (日) (日) (日) (日)

2. Random walk on $X = G/\Lambda$

Recurrence Theorem 4 For all x_0 in X, $\varepsilon > 0$, there exists a compact set $K \subset X$ such that, for all $n \ge 1$, $\mu^{*n} * \delta_{x_0}(K^c) \le \varepsilon$. (Eskin-Margulis Conjecture)

It is enough to check the

Existence of f There exists a proper function $f: X \to [0, \infty]$, finite at x_0 , and contracted by μ .

i.e. for all T > 0, $f^{-1}([0, T])$ is relatively compact. i.e. there exist a < 1, b > 0 such that $P_{\mu}f \le af + b$, where $P_{\mu}f(x) = \int_{G} f(gx) d\mu(g)$.

When the centralizer L is trivial, Theorem 4 is due to Eskin-Margulis and the function f is finite everywhere.

A. $X = SL(2, \mathbb{R})/SL(2, \mathbb{Z}), H = SL(2, \mathbb{R})$

Choose $\alpha_1(x) := \min\{\|v\| \mid v \in x \setminus 0\}$ and $f = \alpha_1^{-\delta}$.

* *f* is proper, by Mahler compactness criterion.

 \star *f* is contracted by μ , as soon as δ is given by the

General Fact (Furstenberg, Eskin, Margulis) When V is an irreducible non-trivial representation of H, there exist a < 1, $n_0 \ge 1$, $\delta > 0$ such that $\int_G \|gv\|^{-\delta} d\mu^{*n_0}(g) \le a \|v\|^{-\delta}$, for all v in V.

Indeed, when the min is almost achieved at two non-colinear vectors v and w, the value f(x) is uniformly bounded, because

 $1 \leq \| \boldsymbol{v} \wedge \boldsymbol{w} \| \leq \| \boldsymbol{v} \| \| \boldsymbol{w} \|.$ Hence $P_{\mu} f \leq a f + b$.

B. $X = SL(3, \mathbb{R})/SL(3, \mathbb{Z}), H = SL(3, \mathbb{R})$

Choose $\alpha_1(x) := \min\{\|v\| \mid v \in x \smallsetminus 0\},\$

 $\alpha_2(x) := \alpha_1(x^*)$ where x^* is the dual lattice,

 $f_1 = \alpha_1^{-\delta}, f_2 = \alpha_2^{-\delta}, \text{ and } f = f_1 + f_2.$

One has $P_{\mu}f_1 \leq af_1 + M\sqrt{f_2}$, for some M > 0,

and also $P_{\mu}f_2 \leq af_2 + M\sqrt{f_1}$.

Indeed, when the min is almost achieved at two non-colinear vectors *v* and *w*, the value $f_1(x)$ is bounded by a multiple of $\sqrt{f_2(x)}$, because

 $\|v \wedge w\| \leq \|v\| \|w\|$, for all v, w in \mathbb{R}^3 .

Hence $P_{\mu}f \leq af + b$.

C. $X = \operatorname{SL}(d, \mathbb{R}) / \operatorname{SL}(d, \mathbb{Z}), H = \operatorname{SL}(d, \mathbb{R})$

Choose $\alpha_i(x) := \min\{||u|| \mid u \in \Lambda^i x \smallsetminus 0 \text{ pure tensor}\},\$

$$f_i = \alpha_i^{-\delta}$$
, $f_0 = f_d = 1$ and $f = \sum_{i=1}^{d-1} \varepsilon_0^{(d-i)i} f_i$.

One has
$$P_{\mu}f_i \leq af_i + M \sum_{0 < j \leq \min(i,d-i)} \sqrt{f_{i+j}f_{i-j}}$$
.

Indeed, when the min is almost achieved at two non-colinear vectors, one uses the inequality

 $\|\boldsymbol{u}\| \|\boldsymbol{u} \wedge \boldsymbol{v} \wedge \boldsymbol{w}\| \leq \|\boldsymbol{u} \wedge \boldsymbol{v}\| \|\boldsymbol{u} \wedge \boldsymbol{w}\|,$

for all $u \in \Lambda^{r} \mathbb{R}^{d}$, $v \in \Lambda^{s} \mathbb{R}^{d}$, $w \in \Lambda^{t} \mathbb{R}^{d}$ pure tensors.

Hence $P_{\mu}f \leq af + b$, for ε_0 small.

D. $X = SL(3, \mathbb{R})/SL(3, \mathbb{Z}), H = SL(2, \mathbb{R})$

Write $v = v_+ + v_0 \in \mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$ and fix $\varepsilon_0 > 0$.

Choose $\alpha_1(x) := \min\{\|v_+\| \mid v \in x \smallsetminus 0 \text{ with } \|v_0\| < \varepsilon_0\}$,

$$lpha_2(x) := lpha_1(x^*)$$
, $f_1 = lpha_1^{-\delta}$, $f_2 = lpha_2^{-\delta}$, and $f = f_1 + f_2$.

One has $P_{\mu}f_1 \leq af_1 + M\varepsilon_0^{\delta}f_2 + b$, for some M > 0,

and also $P_{\mu}f_2 \leq af_2 + M\varepsilon_0^{\delta}f_1 + b$.

Indeed, when the min is almost achieved at two non-colinear vectors v and w, one uses the inequality

 $\|(v \wedge w)_+\| \le \|v_0\| \|w_+\| + \|v_+\| \|w_0\|.$

Hence $P_{\mu}f \leq af + b$, for ε_0 small.

E. $X = SL(d, \mathbb{R})/SL(d, \mathbb{Z}), H = SL(d_1, \mathbb{R}) \times SL(d_2, \mathbb{R})$ For $\lambda = (\lambda_1, \lambda_2)$, write $|\lambda| = (d_1 - \lambda_1)\lambda_1 + (d_2 - \lambda_2)\lambda_2$. For v in $\Lambda^r \mathbb{R}^d$ set $v = \sum v_\lambda$, with $v_\lambda \in \Lambda^{\lambda_1} \mathbb{R}^{d_1} \otimes \Lambda^{\lambda_2} \mathbb{R}^{d_2}$,

and set $\varphi(\mathbf{v}) = \max_{|\lambda| \neq 0} \varepsilon_0^{\frac{(d-r)r}{|\lambda|}} \|\mathbf{v}_{\lambda}\|^{\frac{1}{|\lambda|}}$. Choose

 $\alpha(\mathbf{x}) := \min\{\varphi(\mathbf{v}) \mid \mathbf{v} \in \mathbf{x} \smallsetminus \mathbf{0} \text{ with } \|\mathbf{v}_0\| < \varepsilon_0\}, \, \mathbf{f} = \alpha^{-\delta}.$

One has $P_{\mu}f \leq af + b$, for ε_0 small. Indeed, when the min is almost achieved at two non-colinear vectors , one uses the Mother inequality for $SL_{d_1} \times SL_{d_2}$

 $\|u_{\lambda}\| \|(u \wedge v \wedge w)_{\mu}\| \ll \max_{\substack{\nu+\rho=\lambda+\mu\\\min(\nu_i,\rho_i) \geq \min(\lambda_i,\mu_i)}} \|(u \wedge v)_{\nu}\| \|(u \wedge w)_{\rho}\|,$

(ロ) (同) (三) (三) (三) (○) (○)

for all u, v, w in $\Lambda^{\bullet}\mathbb{R}^{d}$ pure tensors and all λ , μ .

This inequality is proven using representation theory. Indeed, its statement is simpler for a general semisimple Lie group $H \subset SL(d, \mathbb{R})$. Let P^+ be the set of dominant weights of H.

Mother inequality

 $\|u_{\lambda}\| \|(u \wedge v \wedge w)_{\mu}\| \ll \max_{\substack{
u,
ho \in \mathcal{P}^+ \\
u+
ho \geq \lambda+\mu}} \|(u \wedge v)_{
u}\| \|(u \wedge w)_{
ho}\|,$

for all u, v, w pure tensors and all λ , μ in P^+ .

Here u_{λ} means the projection of u on the sum of irreducible subrepresentations with highest weight λ ,

and \geq means that the difference is a sum of positive root.

Thank you!