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1 Gaussian function

Let p ≥ 3 be prime, Fp = Z/pZ cyclic group

Definition f : Fp → C is unimodular if |f | = 1Fp

f : Fp → C is biunimodular if |f | = |f̂ | = 1Fp

where f̂ (x) = 1√
p

∑
y∈Fp

e
2iπ
p
xy f (y)

Interpretation: f is orthogonal to its translates.

Remark If f is biunimodular, then
the functions x 7→ f (x + x0) are biunimodular,

the functions x 7→ e
2iπ
p
x0x f (x) are biunimodular,

for a ̸= 0, the functions x 7→ f (ax) are biunimodular.
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Example: Gaussian functions f (x) = e
2iπ
p
x2

f̂ (x) = G(χ0)√
p

f (x/4)

where G (χ0) =
∑
x∈Fp

χ0(x)e
2iπ
p
x ∈ Z[e

2iπ
p ]

is the Gauss sum with χ0 Legendre character.

χ0(x) = −1, 0 or 1, for x non-square, zero or square.
G (χ0) =

√
p or i

√
p for p ≡ 1 or 3 mod 4.

This gives p(p−1) biunimodular functions.

Question (Per Enflo 83)
Are there other biunimodular functions?
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Answer 1 (Björck 85) YES. There exists a
(F∗

p)
2-invariant biunimodular function.

given by elementary formulas

f = δ0 +
1

1+i
√
p
1F∗

p
+ i

√
p

1+i
√
p
χ0, for p ≡ 3 mod 4.

f = δ0 +
1

1+
√
p
1F∗

p
+ i

√
p+2

√
p

1+
√
p

χ0, for p ≡ 1 mod 4.

This gives 4p2 functions.

Answer 2 (Haagerup 08) There exist only finitely
many biunimodular functions f with f (0) = 1.

Answer 3 (Björck, Haagerup, Gabidulin, Shorin) YES.
There are more functions when p>7, p ≡ 1 mod 3. One
can choose them (F∗

p)
3-invariant, given by explicit formulas.
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2. Using Floer homology

Theorem 1 YES. When p ≥ 11, there exists a
biunimodular function f neither gaussian, nor björckian.
No formulas are expected

X := P(Cn) = projective space
T := {[z1, . . . , zn] ∈ X | |z1| = · · · = |zn|} = Clifford torus
u ∈ U := U(n) = unitary transformation.

Fact (Biran, Entov, Polterovich + Cho 04)
a) T ∩ uT ̸= ∅. Interpretation: U = DVD.

b) If T ∩ uT is transversal, then #T ∩ uT ≥ 2n−1.
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There exists f biunimodular neither gaussian nor björckian

Proof of Theorem 1 Choose
n = p, Cn = {f : Fp → C}, X = P(Cn)
T = {unimodular functions} ⊂ X ,
u = Fourier transform.

Check that T ∩ uT is transversal
at gaussian and björckian functions.
but 2p−1 > p(p − 1) + 4p2.
There must exist another biunimodular function. □
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3. Dirichlet character

Definition f : Fp → C is unimodular on F∗
p if |f | = 1F∗

p

f : Fp → C is biunimodular on F∗
p if |f | = |f̂ | = 1F∗

p

Example: f = χ non trivial multiplicative character
χ(1) = 1, χ(xy) = χ(x)χ(y), for all x , y ∈ Fp.

χ̂ = G(χ)√
p
χ

where G (χ) :=
∑
x∈Fp

χ(x)e
2iπ
p
x ∈ Z[e

2iπ
p−1 , e

2iπ
p ]

One has |G (χ)| = √
p.

6/14



3. Dirichlet character

Definition f : Fp → C is unimodular on F∗
p if |f | = 1F∗

p

f : Fp → C is biunimodular on F∗
p if |f | = |f̂ | = 1F∗

p

Example: f = χ non trivial multiplicative character
χ(1) = 1, χ(xy) = χ(x)χ(y), for all x , y ∈ Fp.

χ̂ = G(χ)√
p
χ

where G (χ) :=
∑
x∈Fp

χ(x)e
2iπ
p
x ∈ Z[e

2iπ
p−1 , e

2iπ
p ]

One has |G (χ)| = √
p.

6/14



3. Dirichlet character

Definition f : Fp → C is unimodular on F∗
p if |f | = 1F∗

p

f : Fp → C is biunimodular on F∗
p if |f | = |f̂ | = 1F∗

p

Example: f = χ non trivial multiplicative character
χ(1) = 1, χ(xy) = χ(x)χ(y), for all x , y ∈ Fp.

χ̂ = G(χ)√
p
χ

where G (χ) :=
∑
x∈Fp

χ(x)e
2iπ
p
x ∈ Z[e

2iπ
p−1 , e

2iπ
p ]

One has |G (χ)| = √
p.

6/14



Question (Harvey Cohn 94)
Are there other biunimodular functions on F∗

p?

Answer 1 (Biro 99) There exist only finitely many
biunimodular functions on F∗

p with f (1) = 1.

Answer 2 (Kurlberg 02) All biunimodular functions f
on F∗

p for which f N = 1F∗
p
for some N ≥ 1 and f (1) = 1

are Dirichlet characters.

Difficulty: the condition f (0) = 0 is not Fourier invariant.

Trick : look for an odd biunimodular function on F∗
p.

There are only p−1
2 odd Dirichlet characters.
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Theorem 2 YES. When p ≥ 11,
there exists an odd biunimodular function f on F∗

p

which is not a Dirichlet character.

No formulas are expected

Proof of Theorem 2 Choose
n = p−1

2
, Cn = {f : Fp → C | odd }, X = P(Cn),

T = {odd unimodular functions on F∗
p} ⊂ X ,

u = Fourier transform.

One has 2n−1 > n. This looks good!

Difficulty T ∩ uT is not always transversal.
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There exists f biunimodular on F∗
p not a Dirichlet character.

4. Jacobi sums

Proposition Let χ : Fp → C odd Dirichlet character.

One has (i) ⇔ (ii) ⇒ (iii).
(i) T ∩ uT is not transversal at [χ].
(ii) There exists an even Dirichlet character ψ
such that J(χ, ψ) = J(χ, ψ).
(iii) χ has order 2 or 4, this means χ4 = 1F∗

p
.

Here J(χ, ψ) :=
∑

x∈Fp

χ(x)ψ(1− x) ∈ Z[e
2iπ
p−1 ].

The character of order 2 is the Legendre character χ0.
When p ≡ 3 mod 4, T and uT are tangent at [χ0].
When p ≡ 1 mod 8, T ∩ uT is transversal at all [χ].

9/14
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Why does χ4 ̸= 1F∗
p
=⇒ J(χ, ψ) ̸= J(χ, ψ) ?

Remark a) χ ∗ ψ = J(χ, ψ)χψ.

b) For χ, ψ, χψ ̸= 1F∗
p
, one has J(χ, ψ) = G(χ)G(ψ)

G(χψ)
,

c) In that case |J(χ, ψ)| = √
p.

How to distinguish Jacobi sums? By reducing modulo
an ideal p over p. Fix x0 a generator of F∗

p. Choose

p = (p, x0 − ζ) ⊂ Z[ζ] where ζ = e
2iπ
p−1 .

Definition The Teichmüller character is the Dirichlet
character ω : Fp → C such that ω(x) = x mod p.

One has χ = ωj , χ = ω−j and ψ = ωk where
j , k ∈ Z/(p−1)Z.

10/14
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Why does χ4 ̸= 1F∗
p
=⇒ J(χ, ψ) ̸= J(χ, ψ) ?

Lemma (Stickelberger 1890) For 0 < j , k < p−1,

let J−j ,−k :=
∑

x∈F∗
p∖{1}

x−j(1− x)−k ∈ Fp.

a) One has J−j ,−k = − (j+k)!
j! k!

.

b) Hence J−j ,−k = 0 ⇐⇒ j + k ≥ p.

Proof Expand and use
∑

x∈F∗
p

xm = 0 when m ̸= 0:

J−j,−k =
∑

x∈F∗
p

x−j(1− x)p−1−k = −(−1)j
(
p−1−k

j

)
= −

(
j+k
j

)
.

Need to check Jj ,k ̸= J−j ,k . Use b).
If it does not work... apply Galois. This replaces
j by aj and k by ak mod p−1, where a ∈ (Z/(p−1)Z)∗.
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There exists f biunimodular on F∗
p not a Dirichlet character.

5. Legendre character

Let χ0 be the Legendre character and p ≡ 3 mod 4.

Lemma a) The tori T and uT are tangent at [χ0].
b) The algebraic multiplicity at [χ0] of T ∩ uT is 2n−1.

c) There exists a continuous family ut ∈ U(n) with
u0 = u so that, for t ̸= 0, near [χ0], T ∩ utT is transversal
and contains at most 2n−2 points.

End of proof of Theorem 2

One still has 2n−1 > 2n−2 + n−1. There must exist
another odd biunimodular function on F∗

p. □

12/14
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6. Finiteness of biunimodular functions

A pair of functions f , g : Fp → C is a H-pair if

f (x) g(x) = f̂ (x) ĝ(−x) = 1 for all x ∈ Fp.

Proposition (Haagerup 08) There are finitely many

H-pairs with f (0) = g(0) = 1.

Lemma (Cebotarev 1920) Let f : Fp → C f ̸= 0

one has #supp(f ) + #supp(f̂ ) ≥ p + 1.

Proof of Proposition Choose (fn, gn) going to ∞. Set

un =
fn
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satisfy u∞v∞ = û∞v̂∞ = 0. Contradiction with Lemma.□

13/14



6. Finiteness of biunimodular functions

A pair of functions f , g : Fp → C is a H-pair if
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7. Open questions

Question A Is there a non gaussian even biunimodular
function f on Fp?

Question B Is there a biunimodular function f on Fp

such that x 7→ f (x)p is one-to-one?

Question C For n square-free, are there finitely many
biunimodular functions on Z/nZ with f (0) = 1?
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