Finite Fourier transform

Yves Benoist CNRS and Paris-Saclay University

- Gaussian functions
 Dirichlet characters
 Legendre character
 Open questions
- 2. Using Floer homology
- 4. Jacobi sums
- 6. Finiteness of *H*-functions

Cetraro July 2025

Alex Eskin 60th birthday

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Finite Fourier transform

Yves Benoist CNRS and Paris-Saclay University

- 1. Gaussian functions
- 3. Dirichlet characters
- 7. Open questions

Cetraro July 2025

- 2. Using Floer homology
- 4. Jacobi sums
- 5. Legendre character 6. Finiteness of *H*-functions

Alex Eskin 60th birthday

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1 Gaussian function

Let $p \geq 3$ be prime, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ cyclic group

 $\begin{array}{||c|c|} \hline \textbf{Definition} & f: \mathbb{F}_p \to \mathbb{C} \text{ is unimodular if } |f| = 1_{\mathbb{F}_p} \\ \hline f: \mathbb{F}_p \to \mathbb{C} \text{ is biunimodular if } |f| = |\widehat{f}| = 1_{\mathbb{F}_p} \\ \hline \textbf{where } \widehat{f}(x) = \frac{1}{\sqrt{p}} \sum_{y \in \mathbb{F}_p} e^{\frac{2i\pi}{p} x y} f(y) \end{array}$

Interpretation: *f* is orthogonal to its translates.

Remark If f is biunimodular, then the functions $x \mapsto f(x + x_0)$ are biunimodular, the functions $x \mapsto e^{\frac{2i\pi}{p}x_0x}f(x)$ are biunimodular, for $a \neq 0$, the functions $x \mapsto f(ax)$ are biunimodular.

1/14

1 Gaussian function

Let $p \geq 3$ be prime, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ cyclic group

 $\begin{array}{||c|c|} \hline \textbf{Definition} & f: \mathbb{F}_p \to \mathbb{C} \text{ is unimodular if } |f| = 1_{\mathbb{F}_p} \\ \hline f: \mathbb{F}_p \to \mathbb{C} \text{ is biunimodular if } |f| = |\widehat{f}| = 1_{\mathbb{F}_p} \\ \hline \textbf{where } \widehat{f}(x) = \frac{1}{\sqrt{p}} \sum_{y \in \mathbb{F}_p} e^{\frac{2i\pi}{p} x y} f(y) \end{array}$

Interpretation: *f* is orthogonal to its translates.

Remark If f is biunimodular, then the functions $x \mapsto f(x + x_0)$ are biunimodular, the functions $x \mapsto e^{\frac{2i\pi}{p}x_0x}f(x)$ are biunimodular, for $a \neq 0$, the functions $x \mapsto f(ax)$ are biunimodular.

1/14

Example: Gaussian functions $f(x) = e^{\frac{2i\pi}{p}x^2}$

$$\widehat{f}(x) = rac{G(\chi_0)}{\sqrt{p}} \, \overline{f}(x/4)$$

where $G(\chi_0) = \sum_{x \in \mathbb{F}_p} \chi_0(x) e^{\frac{2i\pi}{p}x} \in \mathbb{Z}[e^{\frac{2i\pi}{p}}]$ is the Gauss sum with χ_0 Legendre character.

 $\chi_0(x) = -1, 0$ or 1, for x non-square, zero or square. $G(\chi_0) = \sqrt{p}$ or $i\sqrt{p}$ for $p \equiv 1$ or 3 mod 4.

This gives p(p-1) biunimodular functions.

Question (Per Enflo 83) Are there other biunimodular functions?

Example: Gaussian functions $f(x) = e^{\frac{2i\pi}{p}x^2}$

$$\widehat{f}(x) = rac{G(\chi_0)}{\sqrt{p}}\,\overline{f}(x/4)$$

where $G(\chi_0) = \sum_{x \in \mathbb{F}_p} \chi_0(x) e^{\frac{2i\pi}{p}x} \in \mathbb{Z}[e^{\frac{2i\pi}{p}}]$ is the Gauss sum with χ_0 Legendre cho

is the Gauss sum with χ_0 Legendre character.

 $\chi_0(x) = -1, 0$ or 1, for x non-square, zero or square. $G(\chi_0) = \sqrt{p}$ or $i\sqrt{p}$ for $p \equiv 1$ or 3 mod 4.

This gives p(p-1) biunimodular functions.

Question (Per Enflo 83) Are there other biunimodular functions?

Example: Gaussian functions $f(x) = e^{\frac{2i\pi}{p}x^2}$

$$\widehat{f}(x) = rac{G(\chi_0)}{\sqrt{p}}\,\overline{f}(x/4)$$

where $G(\chi_0) = \sum_{x \in \mathbb{F}_p} \chi_0(x) e^{\frac{2i\pi}{p}x} \in \mathbb{Z}[e^{\frac{2i\pi}{p}}]$ is the Gauss sum with χ_0 Legendre cha

is the Gauss sum with χ_0 Legendre character.

 $\chi_0(x) = -1, 0$ or 1, for x non-square, zero or square. $G(\chi_0) = \sqrt{p}$ or $i\sqrt{p}$ for $p \equiv 1$ or 3 mod 4.

This gives p(p-1) biunimodular functions.

Question (Per Enflo 83) Are there other biunimodular functions?

2/14

 $f = \delta_0 + \frac{1}{1 + i\sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p}}{1 + i\sqrt{p}} \chi_0, \text{ for } p \equiv 3 \mod 4.$ $f = \delta_0 + \frac{1}{1 + \sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p + 2\sqrt{p}}}{1 + \sqrt{p}} \chi_0, \text{ for } p \equiv 1 \mod 4.$

This gives $4p^2$ functions.

Answer 2 (Haagerup 08) There exist only finitely many biunimodular functions f with f(0) = 1.

Answer 3 (Björck, Haagerup, Gabidulin, Shorin) YES. There are more functions when p > 7, $p \equiv 1 \mod 3$. One can choose them $(\mathbb{F}_p^*)^3$ -invariant, given by explicit formulas.

3/14

$$\begin{split} f &= \delta_0 + \frac{1}{1 + i\sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p}}{1 + i\sqrt{p}} \chi_0, \quad \text{for } p \equiv 3 \mod 4. \\ f &= \delta_0 + \frac{1}{1 + \sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p + 2\sqrt{p}}}{1 + \sqrt{p}} \chi_0, \text{ for } p \equiv 1 \mod 4. \end{split}$$

This gives $4p^2$ functions.

Answer 2 (Haagerup 08) There exist only finitely many biunimodular functions f with f(0) = 1.

Answer 3 (Björck, Haagerup, Gabidulin, Shorin) YES. There are more functions when p > 7, $p \equiv 1 \mod 3$. One can choose them $(\mathbb{F}_p^*)^3$ -invariant, given by explicit formulas.

3/14

(日)((1))

$$f = \delta_0 + \frac{1}{1 + i\sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p}}{1 + i\sqrt{p}} \chi_0, \quad \text{for } p \equiv 3 \mod 4.$$

$$f = \delta_0 + \frac{1}{1 + \sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p + 2\sqrt{p}}}{1 + \sqrt{p}} \chi_0, \text{ for } p \equiv 1 \mod 4.$$

This gives $4p^2$ functions.

Answer 2 (Haagerup 08) There exist only finitely many biunimodular functions f with f(0) = 1.

Answer 3 (Björck, Haagerup, Gabidulin, Shorin) YES. There are more functions when p > 7, $p \equiv 1 \mod 3$. One can choose them $(\mathbb{F}_p^*)^3$ -invariant, given by explicit formulas.

3/14

$$f = \delta_0 + \frac{1}{1 + i\sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p}}{1 + i\sqrt{p}} \chi_0, \quad \text{for } p \equiv 3 \mod 4.$$

$$f = \delta_0 + \frac{1}{1 + \sqrt{p}} \mathbb{1}_{\mathbb{F}_p^*} + i \frac{\sqrt{p + 2\sqrt{p}}}{1 + \sqrt{p}} \chi_0, \text{ for } p \equiv 1 \mod 4.$$

This gives $4p^2$ functions.

Answer 2 (Haagerup 08) There exist only finitely many biunimodular functions f with f(0) = 1.

Answer 3 (Björck, Haagerup, Gabidulin, Shorin) YES. There are more functions when p > 7, $p \equiv 1 \mod 3$. One can choose them $(\mathbb{F}_p^*)^3$ -invariant, given by explicit formulas.

3/14

2. Using Floer homology

Theorem 1 YES. When $p \ge 11$, there exists a biunimodular function f neither gaussian, nor björckian. No formulas are expected

 $X := \mathbb{P}(\mathbb{C}^n) =$ projective space $T := \{[z_1, \dots, z_n] \in X \mid |z_1| = \dots = |z_n|\} =$ Clifford torus $u \in U := U(n) =$ unitary transformation.

Fact (Biran, Entov, Polterovich + Cho 04) *a*) $T \cap uT \neq \emptyset$. Interpretation: $\theta = \theta \vee \theta$. *b*) If $T \cap uT$ is transversal, then $\#T \cap uT \ge 2^{n-1}$.

4/14

2. Using Floer homology

Theorem 1 YES. When $p \ge 11$, there exists a biunimodular function f neither gaussian, nor björckian. No formulas are expected

 $X := \mathbb{P}(\mathbb{C}^n)$ = projective space $T := \{[z_1, \dots, z_n] \in X \mid |z_1| = \dots = |z_n|\}$ = Clifford torus $u \in U := U(n)$ = unitary transformation.

Fact (Biran, Entov, Polterovich + Cho 04) *a*) $T \cap uT \neq \emptyset$. Interpretation: U = DVD. *b*) If $T \cap uT$ is transversal, then $\#T \cap uT \ge 2^{n-1}$.

4/14

2. Using Floer homology

Theorem 1 YES. When $p \ge 11$, there exists a biunimodular function f neither gaussian, nor björckian. No formulas are expected

 $X := \mathbb{P}(\mathbb{C}^n)$ = projective space $T := \{[z_1, \dots, z_n] \in X \mid |z_1| = \dots = |z_n|\}$ = Clifford torus $u \in U := U(n)$ = unitary transformation.

Fact (Biran, Entov, Polterovich + Cho 04) *a*) $T \cap uT \neq \emptyset$. Interpretation: U = DVD. *b*) If $T \cap uT$ is transversal, then $\#T \cap uT \ge 2^{n-1}$.

4/14

There exists f biunimodular neither gaussian nor björckian

Proof of Theorem 1 Choose $n = p, \mathbb{C}^n = \{f : \mathbb{F}_p \to \mathbb{C}\}, X = \mathbb{P}(\mathbb{C}^n)$ $T = \{\text{unimodular functions}\} \subset X,$ u = Fourier transform.

Check that $T \cap uT$ is transversal at gaussian and björckian functions. but $2^{p-1} > p(p-1) + 4p^2$. There must exist another biunimodular function.

5/14

There exists f biunimodular neither gaussian nor björckian

Proof of Theorem 1 Choose $n = p, \mathbb{C}^n = \{f : \mathbb{F}_p \to \mathbb{C}\}, X = \mathbb{P}(\mathbb{C}^n)$ $T = \{\text{unimodular functions}\} \subset X,$ u = Fourier transform.

Check that $T \cap uT$ is transversal at gaussian and björckian functions. but $2^{p-1} > p(p-1) + 4p^2$. There must exist another biunimodular function.

5/14

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3. Dirichlet character

 $\begin{array}{||c|c|} \hline \textbf{Definition} & f : \mathbb{F}_p \to \mathbb{C} \text{ is unimodular on } \mathbb{F}_p^* \text{ if } |f| = 1_{\mathbb{F}_p^*} \\ \hline f : \mathbb{F}_p \to \mathbb{C} \text{ is biunimodular on } \mathbb{F}_p^* \text{ if } |f| = |\widehat{f}| = 1_{\mathbb{F}_p^*} \end{array}$

Example: $f = \chi$ non trivial multiplicative character $\chi(1) = 1$, $\chi(xy) = \chi(x)\chi(y)$, for all $x, y \in \mathbb{F}_p$.

$$\begin{split} \widehat{\chi} &= \frac{G(\chi)}{\sqrt{p}} \, \overline{\chi} \\ \text{where } G(\chi) &:= \sum_{x \in \mathbb{F}_p} \chi(x) e^{\frac{2\pi}{p}x} \in \mathbb{Z}[e^{\frac{2\pi}{p-1}}, e^{\frac{2\pi}{p}}] \\ \text{One has } |G(\chi)| &= \sqrt{p}. \end{split}$$

6/14

3. Dirichlet character

 $\begin{array}{||c|c|} \hline \textbf{Definition} & f: \mathbb{F}_{\rho} \to \mathbb{C} \text{ is unimodular on } \mathbb{F}_{\rho}^{*} \text{ if } |f| = 1_{\mathbb{F}_{\rho}^{*}} \\ \hline f: \mathbb{F}_{\rho} \to \mathbb{C} \text{ is biunimodular on } \mathbb{F}_{\rho}^{*} \text{ if } |f| = |\widehat{f}| = 1_{\mathbb{F}_{\rho}^{*}} \end{array}$

Example: $f = \chi$ non trivial multiplicative character $\chi(1) = 1$, $\chi(xy) = \chi(x)\chi(y)$, for all $x, y \in \mathbb{F}_p$.

 $\chi = \frac{1}{\sqrt{p}} \chi$ where $G(\chi) := \sum_{x \in \mathbb{F}_p} \chi(x) e^{\frac{2i\pi}{p}x} \in \mathbb{Z}[e^{\frac{2i\pi}{p-1}}, e^{\frac{2i\pi}{p}}]$ One has $|G(\chi)| = \sqrt{p}$.

6/14

A D N A 目 N A E N A E N A B N A C N

3. Dirichlet character

 $\begin{array}{||c|c|} \hline \textbf{Definition} & f: \mathbb{F}_{\rho} \to \mathbb{C} \text{ is unimodular on } \mathbb{F}_{\rho}^{*} \text{ if } |f| = 1_{\mathbb{F}_{\rho}^{*}} \\ \hline f: \mathbb{F}_{\rho} \to \mathbb{C} \text{ is biunimodular on } \mathbb{F}_{\rho}^{*} \text{ if } |f| = |\widehat{f}| = 1_{\mathbb{F}_{\rho}^{*}} \end{array}$

Example: $f = \chi$ non trivial multiplicative character $\chi(1) = 1$, $\chi(xy) = \chi(x)\chi(y)$, for all $x, y \in \mathbb{F}_p$.

$$\widehat{\chi} = \frac{G(\chi)}{\sqrt{p}} \overline{\chi}$$

where $G(\chi) := \sum_{x \in \mathbb{F}_p} \chi(x) e^{\frac{2i\pi}{p}x} \in \mathbb{Z}[e^{\frac{2i\pi}{p-1}}, e^{\frac{2i\pi}{p}}]$ One has $|G(\chi)| = \sqrt{p}$.

6/14

A D N A 目 N A E N A E N A B N A C N

Answer 1 (Biro 99) There exist only finitely many biunimodular functions on \mathbb{F}_{ρ}^{*} with f(1) = 1.

Answer 2 (Kurlberg 02) All biunimodular functions f on \mathbb{F}_p^* for which $f^N = \mathbb{1}_{\mathbb{F}_p^*}$ for some $N \ge 1$ and f(1) = 1 are Dirichlet characters.

Difficulty: the condition f(0) = 0 is not Fourier invariant.

Trick : look for an Odd biunimodular function on \mathbb{F}_p^* . There are only $rac{p-1}{2}$ odd Dirichlet characters.

7/14

Answer 1 (Biro 99) There exist only finitely many biunimodular functions on \mathbb{F}_p^* with f(1) = 1.

Answer 2 (Kurlberg 02) All biunimodular functions f on \mathbb{F}_p^* for which $f^N = \mathbb{1}_{\mathbb{F}_p^*}$ for some $N \ge 1$ and f(1) = 1 are Dirichlet characters.

Difficulty: the condition f(0) = 0 is not Fourier invariant.

Trick : look for an odd biunimodular function on \mathbb{F}_{p}^{*} . There are only $\frac{p-1}{2}$ odd Dirichlet characters.

7/14

Answer 1 (Biro 99) There exist only finitely many biunimodular functions on \mathbb{F}_p^* with f(1) = 1.

Answer 2 (Kurlberg 02) All biunimodular functions f on \mathbb{F}_p^* for which $f^N = \mathbb{1}_{\mathbb{F}_p^*}$ for some $N \ge 1$ and f(1) = 1 are Dirichlet characters.

Difficulty: the condition f(0) = 0 is not Fourier invariant.

Trick : look for an **odd** biunimodular function on \mathbb{F}_p^* . There are only $rac{p-1}{2}$ odd Dirichlet characters.

7/14

Answer 1 (Biro 99) There exist only finitely many biunimodular functions on \mathbb{F}_p^* with f(1) = 1.

Answer 2 (Kurlberg 02) All biunimodular functions f on \mathbb{F}_p^* for which $f^N = \mathbb{1}_{\mathbb{F}_p^*}$ for some $N \ge 1$ and f(1) = 1 are Dirichlet characters.

Difficulty: the condition f(0) = 0 is not Fourier invariant.

Trick : look for an **odd** biunimodular function on \mathbb{F}_{p}^{*} . There are only $\frac{p-1}{2}$ odd Dirichlet characters.

7/14

Theorem 2 YES. When $p \ge 11$, there exists an odd biunimodular function f on \mathbb{F}_p^* which is not a Dirichlet character.

No formulas are expected

Proof of Theorem 2 Choose $n = \frac{p-1}{2}, \mathbb{C}^n = \{f : \mathbb{F}_p \to \mathbb{C} \mid \text{odd }\}, X = \mathbb{P}(\mathbb{C}^n),$ $T = \{\text{odd unimodular functions on } \mathbb{F}_p^*\} \subset X,$ u = Fourier transform.

One has $2^{n-1} > n$. This looks good!

Difficulty $T \cap uT$ is not always transversal.

8/14

Theorem 2 YES. When $p \ge 11$, there exists an odd biunimodular function f on \mathbb{F}_p^* which is not a Dirichlet character.

No formulas are expected

Proof of Theorem 2 Choose $n = \frac{p-1}{2}, \mathbb{C}^n = \{f : \mathbb{F}_p \to \mathbb{C} \mid \text{odd }\}, X = \mathbb{P}(\mathbb{C}^n),$ $T = \{\text{odd unimodular functions on } \mathbb{F}_p^*\} \subset X,$ u = Fourier transform.

One has $2^{n-1} > n$. This looks good!

Difficulty $T \cap uT$ is not always transversal.

8/14

Theorem 2 YES. When $p \ge 11$, there exists an odd biunimodular function f on \mathbb{F}_p^* which is not a Dirichlet character.

No formulas are expected

Proof of Theorem 2 Choose $n = \frac{p-1}{2}, \mathbb{C}^n = \{f : \mathbb{F}_p \to \mathbb{C} \mid \text{odd }\}, X = \mathbb{P}(\mathbb{C}^n),$ $T = \{\text{odd unimodular functions on } \mathbb{F}_p^*\} \subset X,$ u = Fourier transform.

One has $2^{n-1} > n$. This looks good!

Difficulty $T \cap uT$ is not always transversal.

8/14

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

4. Jacobi sums

 $\begin{array}{|c|c|} \hline \textbf{Proposition} & \textbf{Let } \chi : \mathbb{F}_{p} \to \mathbb{C} \textbf{ odd Dirichlet character.} \\ \hline \textbf{One has} & (i) \Leftrightarrow (ii) \Rightarrow (iii). \\ (i) & T \cap uT \textbf{ is not transversal at } [\chi]. \\ (ii) & \textbf{There exists an even Dirichlet character } \psi \\ \textbf{such that} & J(\chi, \psi) = J(\overline{\chi}, \psi). \\ (iii) & \chi \textbf{ has order 2 or 4, this means } \chi^{4} = 1_{\mathbb{F}_{p}^{*}}. \\ \hline \textbf{Here } J(\chi, \psi) \coloneqq \sum_{x \in \mathbb{F}_{p}} \chi(x)\psi(1-x) \in \mathbb{Z}[e^{\frac{2i\pi}{p-1}}]. \end{array}$

The character of order 2 is the Legendre character χ_0 . When $p \equiv 3 \mod 4$, T and uT are tangent at $[\chi_0]$. When $p \equiv 1 \mod 8$, $T \cap uT$ is transversal at all $[\chi]$.

> 9/14 <□> <@> <≥> <≥> ≥ ∽۹ペ

4. Jacobi sums

 $\begin{array}{|c|c|} \hline \textbf{Proposition} & \textbf{Let } \chi : \mathbb{F}_{p} \to \mathbb{C} \textbf{ odd Dirichlet character.} \\ \hline \textbf{One has} & (i) \Leftrightarrow (ii) \Rightarrow (iii). \\ (i) & T \cap uT \textbf{ is not transversal at } [\chi]. \\ (ii) & \textbf{There exists an even Dirichlet character } \psi \\ \textbf{such that} & J(\chi, \psi) = J(\overline{\chi}, \psi). \\ (iii) & \chi \textbf{ has order 2 or 4, this means } \chi^{4} = \mathbb{1}_{\mathbb{F}_{p}^{*}}. \\ \hline \textbf{Here } J(\chi, \psi) \coloneqq \sum_{x \in \mathbb{F}_{p}} \chi(x)\psi(1-x) \in \mathbb{Z}[e^{\frac{2i\pi}{p-1}}]. \end{array}$

The character of order 2 is the Legendre character χ_0 . When $p \equiv 3 \mod 4$, T and uT are tangent at $[\chi_0]$. When $p \equiv 1 \mod 8$, $T \cap uT$ is transversal at all $[\chi]$.

9/14

4. Jacobi sums

PropositionLet $\chi : \mathbb{F}_p \to \mathbb{C}$ odd Dirichlet character.One has $(i) \Leftrightarrow (ii) \Rightarrow (iii)$. $(i) T \cap uT$ is not transversal at $[\chi]$.(ii) There exists an even Dirichlet character ψ such that $J(\chi, \psi) = J(\overline{\chi}, \psi)$. $(iii) \chi$ has order 2 or 4, this means $\chi^4 = \mathbb{1}_{\mathbb{F}_p^*}$.Here $J(\chi, \psi) := \sum_{x \in \mathbb{F}_p} \chi(x)\psi(1-x) \in \mathbb{Z}[e^{\frac{2i\pi}{p-1}}]$.

The character of order 2 is the Legendre character χ_0 . When $p \equiv 3 \mod 4$, T and uT are tangent at $[\chi_0]$. When $p \equiv 1 \mod 8$, $T \cap uT$ is transversal at all $[\chi]$.

9/14

Why does $\chi^4 \neq 1_{\mathbb{F}_p^*} \Longrightarrow J(\chi, \psi) \neq J(\overline{\chi}, \psi)$?

Remark a) $\chi * \psi = J(\chi, \psi) \chi \psi$. b) For χ , ψ , $\chi \psi \neq 1_{\mathbb{F}_{p}^{*}}$, one has $J(\chi, \psi) = \frac{G(\chi)G(\psi)}{G(\chi\psi)}$, c) In that case $|J(\chi, \psi)| = \sqrt{p}$.

How to distinguish Jacobi sums? By reducing modulo an ideal \mathfrak{p} over p. Fix x_0 a generator of \mathbb{F}_p^* . Choose $\mathfrak{p} = (p, x_0 - \zeta) \subset \mathbb{Z}[\zeta]$ where $\zeta = e^{\frac{2i\pi}{p-1}}$.

Definition The Teichmüller character is the Dirichlet character $\omega : \mathbb{F}_p \to \mathbb{C}$ such that $\omega(x) = x \mod \mathfrak{p}$.

One has $\chi = \omega^j$, $\overline{\chi} = \omega^{-j}$ and $\psi = \omega^k$ where $j, k \in \mathbb{Z}/(p-1)\mathbb{Z}$.

10/14

Why does $\chi^4 \neq 1_{\mathbb{F}_p^*} \Longrightarrow J(\chi, \psi) \neq J(\overline{\chi}, \psi)$?

Remark a) $\chi * \psi = J(\chi, \psi) \chi \psi$. b) For χ , ψ , $\chi \psi \neq 1_{\mathbb{F}_{p}^{*}}$, one has $J(\chi, \psi) = \frac{G(\chi)G(\psi)}{G(\chi\psi)}$, c) In that case $|J(\chi, \psi)| = \sqrt{p}$.

How to distinguish Jacobi sums? By reducing modulo an ideal \mathfrak{p} over p. Fix x_0 a generator of \mathbb{F}_p^* . Choose $\mathfrak{p} = (p, x_0 - \zeta) \subset \mathbb{Z}[\zeta]$ where $\zeta = e^{\frac{2i\pi}{p-1}}$.

Definition The Teichmüller character is the Dirichlet character $\omega : \mathbb{F}_p \to \mathbb{C}$ such that $\omega(x) = x \mod \mathfrak{p}$. One has $\chi = \omega^j$, $\overline{\chi} = \omega^{-j}$ and $\psi = \omega^k$ where $j, k \in \mathbb{Z}/(p-1)\mathbb{Z}$.

10/14

Why does $\chi^4 \neq 1_{\mathbb{F}_p^*} \Longrightarrow J(\chi, \psi) \neq J(\overline{\chi}, \psi)$?

Remark a) $\chi * \psi = J(\chi, \psi) \chi \psi$. b) For χ , ψ , $\chi \psi \neq 1_{\mathbb{F}_{p}^{*}}$, one has $J(\chi, \psi) = \frac{G(\chi)G(\psi)}{G(\chi\psi)}$, c) In that case $|J(\chi, \psi)| = \sqrt{p}$.

How to distinguish Jacobi sums? By reducing modulo an ideal \mathfrak{p} over p. Fix x_0 a generator of \mathbb{F}_p^* . Choose $\mathfrak{p} = (p, x_0 - \zeta) \subset \mathbb{Z}[\zeta]$ where $\zeta = e^{\frac{2i\pi}{p-1}}$.

Definition The Teichmüller character is the Dirichlet character $\omega : \mathbb{F}_p \to \mathbb{C}$ such that $\omega(x) = x \mod \mathfrak{p}$. One has $\chi = \omega^j$, $\overline{\chi} = \omega^{-j}$ and $\psi = \omega^k$ where $j, k \in \mathbb{Z}/(p-1)\mathbb{Z}$.

10/14

Why does $\chi^4 \neq 1_{\mathbb{F}_p^*} \Longrightarrow J(\chi, \psi) \neq J(\overline{\chi}, \psi)$?

Lemma (Stickelberger 1890) For 0 < j, k < p-1, let $J_{-j,-k} := \sum_{x \in \mathbb{F}_p^* \setminus \{1\}} x^{-j} (1-x)^{-k} \in \mathbb{F}_p$. a) One has $J_{-j,-k} = -\frac{(j+k)!}{j! \, k!}$. b) Hence $J_{-j,-k} = 0 \iff j+k \ge p$. **Proof** Expand and use $\sum x^m = 0$ when $m \ne 0$:

$$J_{-j,-k} = \sum_{x \in \mathbb{F}_p^*} x^{-j} (1-x)^{p-1-k} = -(-1)^j {p-1-k \choose j} = -{j+k \choose j}$$

Need to check $J_{j,k} \neq J_{-j,k}$. Use *b*). If it does not work... apply Galois. This replaces *j* by *aj* and *k* by *ak* mod *p*-1, where $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$.

11/14 (D) (A) (E) (E) E (O)

Why does $\chi^4 \neq 1_{\mathbb{F}_p^*} \Longrightarrow J(\chi, \psi) \neq J(\overline{\chi}, \psi)$?

Lemma (Stickelberger 1890) For
$$0 < j, k < p-1$$
,
let $J_{-j,-k} := \sum_{x \in \mathbb{F}_p^* \setminus \{1\}} x^{-j} (1-x)^{-k} \in \mathbb{F}_p$.
a) One has $J_{-j,-k} = -\frac{(j+k)!}{j! \, k!}$.
b) Hence $J_{-j,-k} = 0 \iff j+k \ge p$.

Proof Expand and use
$$\sum_{x \in \mathbb{F}_p^*} x^m = 0$$
 when $m \neq 0$:

$$J_{-j,-k} = \sum_{x \in \mathbb{F}_p^*} x^{-j} (1-x)^{p-1-k} = -(-1)^j {p-1-k \choose j} = -{j+k \choose j}.$$

Need to check $J_{j,k} \neq J_{-j,k}$. Use *b*). If it does not work... apply Galois. This replaces *j* by *aj* and *k* by *ak* mod *p*-1, where $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$.

11/14 イロト イヨト イミト ミー のへで

Why does $\chi^4 \neq 1_{\mathbb{F}_p^*} \Longrightarrow J(\chi, \psi) \neq J(\overline{\chi}, \psi)$?

Lemma (Stickelberger 1890) For
$$0 < j, k < p-1$$
,
let $J_{-j,-k} := \sum_{x \in \mathbb{F}_p^* \setminus \{1\}} x^{-j} (1-x)^{-k} \in \mathbb{F}_p$.
a) One has $J_{-j,-k} = -\frac{(j+k)!}{j!\,k!}$.
b) Hence $J_{-j,-k} = 0 \iff j+k \ge p$.
Proof Expand and use $\sum x^m = 0$ when $m \neq 0$:

Proof Expand and use
$$\sum_{x \in \mathbb{F}_p^*} x^m = 0$$
 when $m \neq 0$:

$$J_{-j,-k} = \sum_{x \in \mathbb{F}_p^*} x^{-j} (1-x)^{p-1-k} = -(-1)^j {p-1-k \choose j} = -{j+k \choose j}.$$

Need to check $J_{j,k} \neq J_{-j,k}$. Use *b*). If it does not work... apply Galois. This replaces *j* by *aj* and *k* by *ak* mod p-1, where $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$.

> 11/14 (= > (= > (= >) (= >) ()

5. Legendre character

Let χ_0 be the Legendre character and $p \equiv 3 \mod 4$.

Lemma a) The tori T and uT are tangent at $[\chi_0]$. b) The algebraic multiplicity at $[\chi_0]$ of $T \cap uT$ is 2^{n-1} .

c) There exists a continuous family $u_t \in U(n)$ with $u_0 = u$ so that, for $t \neq 0$, near $[\chi_0]$, $T \cap u_t T$ is transversal and contains at most 2^{n-2} points.

End of proof of Theorem 2

One still has $2^{n-1} > 2^{n-2} + n-1$. There must exist another odd biunimodular function on \mathbb{F}_p^* .

12/14 《ロ》《团》《토》《토》 토 - 카이이아

5. Legendre character

Let χ_0 be the Legendre character and $p \equiv 3 \mod 4$.

Lemma a) The tori T and uT are tangent at $[\chi_0]$. b) The algebraic multiplicity at $[\chi_0]$ of $T \cap uT$ is 2^{n-1} .

c) There exists a continuous family $u_t \in U(n)$ with $u_0 = u$ so that, for $t \neq 0$, near $[\chi_0]$, $T \cap u_t T$ is transversal and contains at most 2^{n-2} points.

One still has $2^{n-1} > 2^{n-2} + n - 1$. There must exist another odd biunimodular function on \mathbb{F}_p^* .

12/14 《口》《图》《言》《言》 言 约Q@

5. Legendre character

Let χ_0 be the Legendre character and $p \equiv 3 \mod 4$.

Lemma a) The tori T and uT are tangent at $[\chi_0]$. b) The algebraic multiplicity at $[\chi_0]$ of $T \cap uT$ is 2^{n-1} .

c) There exists a continuous family $u_t \in U(n)$ with $u_0 = u$ so that, for $t \neq 0$, near $[\chi_0]$, $T \cap u_t T$ is transversal and contains at most 2^{n-2} points.

End of proof of Theorem 2 One still has $2^{n-1} > 2^{n-2} + n - 1$. There must exist another odd biunimodular function on \mathbb{F}_p^* .

> 12/14 《口》《图》《言》《言》 言 - 9000

6. Finiteness of biunimodular functions

A pair of functions $f, g : \mathbb{F}_p \to \mathbb{C}$ is a *H*-pair if $f(x)g(x) = \widehat{f}(x)\widehat{g}(-x) = 1$ for all $x \in \mathbb{F}_p$.

Proposition (Haagerup 08) There are finitely many *H*-pairs with f(0) = g(0) = 1.

Lemma(Cebotarev 1920)Let $f : \mathbb{F}_p \to \mathbb{C}$ $f \neq 0$ one has $\# \operatorname{supp}(f) + \# \operatorname{supp}(\widehat{f}) \geq p + 1.$

Proof of Proposition Choose (f_n, g_n) going to ∞ . Set $u_n = \frac{f_n}{\|f_n\|_{\infty}}$, $v_n = \frac{g_n}{\|g_n\|_{\infty}}$, $u_{\infty} = \lim_{n \infty} u_n$, $v_{\infty} = \lim_{n \infty} v_n$. They satisfy $u_{\infty}v_{\infty} = \widehat{u_{\infty}v_{\infty}} = 0$. Contradiction with Lemma.

13/14

6. Finiteness of biunimodular functions

A pair of functions $f, g : \mathbb{F}_p \to \mathbb{C}$ is a *H*-pair if $f(x)g(x) = \widehat{f}(x)\widehat{g}(-x) = 1$ for all $x \in \mathbb{F}_p$.

Proposition (Haagerup 08) There are finitely many *H*-pairs with f(0) = g(0) = 1.

Lemma(Cebotarev 1920)Let $f : \mathbb{F}_p \to \mathbb{C}$ $f \neq 0$ one has $\# \operatorname{supp}(f) + \# \operatorname{supp}(\widehat{f}) \geq p + 1.$

Proof of Proposition Choose (f_n, g_n) going to ∞ . Set $u_n = \frac{f_n}{\|f_n\|_{\infty}}$, $v_n = \frac{g_n}{\|g_n\|_{\infty}}$, $u_{\infty} = \lim_{n \infty} u_n$, $v_{\infty} = \lim_{n \infty} v_n$. They satisfy $u_{\infty}v_{\infty} = \widehat{u_{\infty}v_{\infty}} = 0$. Contradiction with Lemma.

13/14

6. Finiteness of biunimodular functions

A pair of functions $f, g : \mathbb{F}_p \to \mathbb{C}$ is a *H*-pair if $f(x)g(x) = \widehat{f}(x)\widehat{g}(-x) = 1$ for all $x \in \mathbb{F}_p$.

Proposition (Haagerup 08) There are finitely many *H*-pairs with f(0) = g(0) = 1.

Lemma(Cebotarev 1920) Let $f : \mathbb{F}_p \to \mathbb{C}$ $f \neq 0$ one has $\# \operatorname{supp}(f) + \# \operatorname{supp}(\widehat{f}) \geq p + 1.$

Proof of Proposition Choose (f_n, g_n) going to ∞ . Set $u_n = \frac{f_n}{\|f_n\|_{\infty}}$, $v_n = \frac{g_n}{\|g_n\|_{\infty}}$, $u_{\infty} = \lim_{n \infty} u_n$, $v_{\infty} = \lim_{n \infty} v_n$. They satisfy $u_{\infty}v_{\infty} = \widehat{u_{\infty}}\widehat{v_{\infty}} = 0$. Contradiction with Lemma.

13/14

7. Open questions

Question A Is there a non gaussian even biunimodular function f on \mathbb{F}_p ?

Question B Is there a biunimodular function f on \mathbb{F}_{ρ} such that $x \mapsto f(x)^{\rho}$ is one-to-one?

Question C For *n* square-free, are there finitely many biunimodular functions on $\mathbb{Z}/n\mathbb{Z}$ with f(0) = 1?

14/14

7. Open questions

Question A Is there a non gaussian even biunimodular function f on \mathbb{F}_p ?

Question B Is there a biunimodular function f on \mathbb{F}_p such that $x \mapsto f(x)^p$ is one-to-one?

Question C For *n* square-free, are there finitely many biunimodular functions on $\mathbb{Z}/n\mathbb{Z}$ with f(0) = 1?

14/14

7. Open questions

Question A Is there a non gaussian even biunimodular function f on \mathbb{F}_p ?

Question B Is there a biunimodular function f on \mathbb{F}_p such that $x \mapsto f(x)^p$ is one-to-one?

Question C For *n* square-free, are there finitely many biunimodular functions on $\mathbb{Z}/n\mathbb{Z}$ with f(0) = 1?

14/14

ふして 山田 ふぼやえばや 山下