Géométrie différentielle/Differential Geometry

Flots d'Anosov à distributions stable et instable différentiables

Yves Benoist, Patrick Foulon et François Labourie

 $\emph{R\'esum\'e}$ — Nous décrivons les flots d'Anosov sur une variété compacte dont les distributions stable et instable sont différentiables et dont la 1-forme canonique est de contact : à revêtements finis près et après un reparamétrage C^{∞} , ils se réalisent tous comme le flot géodésique sur (le fibré unitaire tangent à) un espace localement symétrique riemannien à courbure strictement négative.

Anosov flows with smooth stable and unstable foliations

Abstract — We describe which Anosov flows have C^{∞} stable and unstable distributions and a contact canonical 1-form: up to finite coverings and up to a C^{∞} change of parameter, each of them is isomorphic to the geodesic flow on (the unit tangent bundle of) a compact locally symmetric space of strictly negative curvature.

1. Introduction. – Soient V une variété compacte (C^{∞} et connexe), X un champ de vecteurs (C^{∞}) sur V et φ_t le flot associé. On munit V d'une métrique riemannienne annexe.

DÉFINITION [1]. — Le flot φ_t est dit d'Anosov s'il existe une décomposition (automatiquement continue) invariante par le flot du fibré tangent $TV = E^+ \oplus E^0 \oplus E^-$ et des constantes a, b > 0 telles que :

- (i) E⁰est le fibré de rang un engendré par X;
- (ii) $\forall Z^+ \in E^+, \forall t \ge 0, \| T \varphi_{-t}(Z^+) \| \le a \| Z^+ \| e^{-bt};$
- (iii) $\forall Z^- \in E^-, \forall t \ge 0, ||T \varphi_t(Z^-)|| \le a ||Z^-||e^{-bt}.$

La distribution E^+ (resp. E^- , $E^0 \oplus E^+$ et $E^0 \oplus E^-$) s'appelle la distribution instable (resp. stable, centrale instable et centrale stable). Elle est intégrable. Les feuilles intégrales qui sont appelées feuilles instables (resp. stables, centrales instables et centrales stables) sont C^{∞} mais la distribution n'est pas en général de classe C^2 [1]. On appelle 1-forme canonique associée au flot, la 1-forme λ donnée par $\lambda(E^{\pm}) = 0$ et $\lambda(X) = 1$.

Le but de cette Note est de classifier les flots d'Anosov pour lesquels les distributions E^+ et E^- sont C^∞ et la 1-forme canonique λ est de contact, i. e. $\lambda \wedge (d\lambda)^{n-1}$ n'est nulle part nulle où dim V=2n-1; à revêtements finis près et après reparamétrage C^∞ ce sont des flots géodésiques sur un espace localement symétrique riemannien à courbure strictement négative (ELSRCSN) compact. Cette classification est due à E. Ghys lorsque n=2 [2], et elle précise [3]. Nous en déduirons le :

COROLLAIRE. — Soit N une variété riemannienne compacte à courbure strictement négative. On suppose que le flot géodésique φ_t^N sur le fibré unitaire tangent $V_N = \{v \in TN \mid ||v|| = 1\}$ a une distribution centrale stable (resp. centrale instable) de classe C^{∞} .

Alors il existe un ELSRCSN compact S et un difféomorphisme F de V_N sur V_S qui échange les flots géodésiques : $\forall t$, $F \circ \phi_t^N = \phi_t^S \circ F$.

Ce corollaire généralise des résultats antérieurs de M. Kanai (pour $n \ge 3$ et N à courbure 4/9-pincée [4]) de E. Ghys (pour n=2 [2]) et de R. Feres et A. Katok (pour n impair, ou N à courbure strictement 1/4-pincée) ([5], [6], [7]).

Note présentée par Marcel BERGER.

0764-4442/90/03110351 \$ 2.00 © Académie des Sciences

2. CLASSIFICATION. – Exemple fondamental : à des revêtements finis près, et après reparamétrage, il s'agit du flot géodésique sur un ELSRCSN compact. – Plus précisément :

Choisissons \tilde{S} un ELSRCSN simplement connexe de dimension n. Soit $\tilde{V} := V_{\tilde{S}}$ le fibré unitaire tangent à \tilde{S} et $G := Is(\tilde{S})$ le groupe des isométries de \tilde{S} [sauf pour n=2 où \tilde{V} (resp. G) est le revêtement universel de $V_{\tilde{S}}$ (resp. $Is(\tilde{S})$)]. Le groupe G agit transitivement sur \tilde{S} et \tilde{V} . Soit $\tilde{\varphi}_t$ le flot géodésique sur \tilde{V} (pour n=2 il s'agit du relevé de ce flot à \tilde{V}).

Choisissons Γ_0 un sous-groupe discret de G tel que $V_0:=\Gamma_0\setminus \widetilde{V}$ soit une variété compacte. Soient φ_t^0 le flot sur V_0 image de $\widetilde{\varphi}_t$ et X^0 le champ de vecteurs associé. A des revêtements finis près, il s'agit du flot géodésique sur un ELSRCSN compact. Soit Ω_{V_0} l'ouvert convexe symétrique et borné de l'espace vectoriel $E=\hom\left(\Gamma_0,\mathbf{R}\right)=H^1(V_0,\mathbf{R}):\Omega_{V_0}:=\left\{h_0\in E\,\middle|\, \text{il existe une 1-forme fermée }\alpha_0\text{ représentant }h_0\text{ telle que }\alpha_0\left(X^0\right)+1>0\text{ en tout point de }V_0\right\}.$

Choisissons h_0 dans Ω_{V_0} . Soit $\Gamma_1 := \{ (\gamma_0, h_0(\gamma_0)) | \gamma_0 \in \Gamma_0 \} \subset G \times \mathbb{R}$. Le groupe $G' = G \times \mathbb{R}$ agit transitivement sur \widetilde{V} par : $(g, t) \cdot \widetilde{v} = \widetilde{\phi}_t(g \cdot \widetilde{v})$. Le quotient $V_1 := \Gamma_1 \setminus \widetilde{V}$ est encore une variété compacte. Soit ϕ_t^1 le flot sur V_1 image de $\widetilde{\phi}_t$ et X^1 le champ de vecteurs associé. Il est d'Anosov, ses distributions stable et instable sont C^{∞} et la 1-forme canonique est de contact.

A reparamétrage près, il s'agit du flot φ_t^0 : en effet, soient π_0 la projection de \widetilde{V} sur V_0 , $f \in C^{\infty}(\widetilde{V})$ telle que $df = \pi_0^*(\alpha_0)$ où α_0 est un représentant de h_0 satisfaisant $\alpha_0(X^0) + 1 > 0$ et $\psi : \widetilde{V} \to \widetilde{V}$ le difféomorphisme donné par $\widetilde{\psi}(\widetilde{v}) = \widetilde{\varphi}_{f(\widetilde{v})}(\widetilde{v})$. On a l'égalité $\widetilde{\psi}(\gamma_0 \widetilde{v}) = (\gamma_0, h_0(\gamma_0))\widetilde{\psi}(\widetilde{v}), \ \forall \gamma_0 \in \Gamma_0$. Donc $\widetilde{\psi}$ passe au quotient en un difféomorphisme $\psi : V_0 \to V_1$ et on a $X^1 = T \psi((\alpha_0(X^0) + 1)^{-1} X^0)$.

Théorème. — Soit φ_t un flot d'Anosov C^{∞} sur une variété compacte V de dimension 2n-1 tel que :

- (i) les distributions stable et instable sont C^{∞} ;
- (ii) la 1-forme canonique λ est de contact.

Alors, il existe un triplet $(\widetilde{S}, \Gamma_0, h_0)$, comme ci-dessus, tel que le flot φ_t^1 sur V_1 associé soit isomorphe à φ_t : c'est-à-dire qu'il existe un difféomorphisme $C^{\infty} F: V \stackrel{\cong}{\Rightarrow} V_1$ tel que $\forall t$, $F \circ \varphi_t = \varphi_t^1 \circ F$. Ce triplet est unique (à isomorphisme près).

Remarques. – (1) Si on ne suppose pas que la 1-forme canonique est de contact, la conclusion est fausse : prendre la suspension du difféomorphisme du tore $\mathbf{T}^2 = \mathbf{R}^2/\mathbf{Z}^2$ donné par la matrice $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

- (2) Si on suppose seulement E^{\pm} de classe C^k avec $k \ge 2(2n^2 n + 1)$ le résultat est encore vrai avec F de classe C^k .
- 3. DÉMONSTRATION DU THÉORÈME. Pour une démonstration complète du théorème, on renvoie à [8]. En voici les principales étapes :

PROPOSITION 1. – Soient \tilde{V} le revêtement universel de V, $\tilde{\phi}_t$ et \tilde{E}^{\pm} les relevés de ϕ_t et E^{\pm} à \tilde{V} . Soit G' le groupe des difféomorphismes de \tilde{V} qui préservent \tilde{X} , \tilde{E}^+ et \tilde{E}^- .

Alors, G' est un groupe de Lie qui agit transitivement sur \tilde{V} . On peut donc écrire $\tilde{V} = G'/H'$.

Démonstration. — La 2-forme $d\lambda$ met en dualité non dégénérée les fibrés \tilde{E}^+ et \tilde{E}^- , elle permet donc de construire une structure pseudoriemannienne sur \tilde{V} invariante par G' qui est donc un groupe de Lie.

Il résulte de [9] (corollaire 3.1 A, p. 96) que toute orbite dense du pseudogroupe des difféomorphismes locaux de V qui préservent \tilde{X} , E^+ et E^- , est ouverte. Comme ce pseudogroupe contient le flot, il a une orbite dense Ω qui est donc ouverte. On montre ensuite que $\Omega = V$.

Si K est un groupe de Lie, on note K_e sa composante connexe et \mathcal{K} son algèbre de Lie.

PROPOSITION 2. – (a) On a $G' = G \times \mathbf{R}$ où G est simple et \mathbf{R} est le sous-groupe de G' donné par le flot. Le groupe G agit transitivement sur V. On peut donc écrire $V = \Gamma \setminus G/H$ où $H = H' \cap G$ et Γ est un sous-groupe discret de G'.

(b) On a $H_e = M_e$ où M est le « facteur M » dans le décomposition de Langlands d'un sous-groupe parabolique maximal de G_e : $P^+ = MAN^+$. Le flot φ_t est donné par l'action à droite de A sur V.

Démonstration. – (a) Le point crucial est de construire une connexion sur \tilde{V} , pour laquelle \tilde{E}^+ et \tilde{E}^- sont parallèles et de montrer que $\Lambda^{\max}(\tilde{E}^+)$ est plat (cf. [3]).

(b) On prouve que \mathscr{H} est de codimension un dans la partie réductive d'une sous-algèbre parabolique \mathscr{P}^+ . Le raisonnement du (a), appliqué à des sous-fibrés de $\widetilde{\mathbb{E}}^+$ construits à l'aide d'un élément hyperbolique du centre de \mathscr{H} , prouve que \mathscr{P}^+ est maximal.

Proposition 3. – Le rang réel de G est égal à 1.

Démonstration. — On veut éliminer les cas où ce rang est supérieur ou égal à 2. On peut supposer $\Gamma \subset G_e$ et $Ad(\Gamma)$ sans torsion. Soit $p = \#(P^+/P_e^+)$.

Supposons $p < \infty$. En étudiant l'action d'un élément γ de Γ sur l'espace G_e/P_e^+ des feuilles centrales instables du flot $\widetilde{\varphi}_t$ et sur l'espace G_e/M_e A des orbites de $\widetilde{\varphi}_t$, on montre que Ad (γ) est un élément non semi-simple ou est l'identité. D'autre part, en étudiant l'adhérence de Zariski du groupe adjoint de Γ , on montre que Ad (Γ) contient forcément des éléments semi-simples.

On peut dresser la courte liste des cas où $p = \infty$. On les élimine en reprenant les idées précédentes et en étudiant cas par cas l'action des éléments non semi-simples de $M_e A \operatorname{sur} G_e/P^+$.

Note remise le 1er juin 1990, acceptée le 7 juin 1990.

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, *Proc. Stekl. Inst. Math.*, 90, 1967.
- [2] E. Ghys, Flots d'Anosov dont les feuilletages sont différentiables, Ann. Sc. Ec. Norm. Sup. Paris, 20, 1987, p. 251-270.
- [3] P. FOULON et F. LABOURIE, Flots d'Anosov à distribution de Liapounov différentiables, C. R. Acad. Sci. Paris, 309, série I, 1989, p. 255-260.
- [4] M. KANAI, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Erg. Th. Dyn. Syst., 8, 1988, p. 215-240.
- [5] R. FERES et A. KATOK, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Erg. Th. Dyn. Syst., 9, 1989, p. 427-432.
- [6] R. Feres et A. Katok, Anosov flows with smooth foliations and rigidity of geodesic flows in three dimensional manifolds of negative curvature, Preprint, Caltech, 1989.

- [7] R. Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, Preprint, Berkeley, CA 94720, U.S.A.
- [8] Y. Benoist, P. Foulon et F. Labourie, Flots d'Anosov à distributions stable et instable différentiables (à paraître).
- [9] M. GROMOV, Rigid transformation groups, in Géométrie différentielle, D. BERNARD et Y. CHOQUET-BRUHAT éd., Travaux en cours, Hermann, Paris, 33, 1988, p. 65-139.

Y. B.: U.A. 748 du C.N.R.S., Univ. Paris-VII, U.F.R. de Mathématiques, 2, place Jussieu, 75251 Paris Cedex 05;

> P. F.: L.P. n° 014 du C.N.R.S., École polytechnique, Centre de Phys. théorique, 91128 Palaiseau Cedex;

F. L.: U.R.A. D 0169 du C.N.R.S., École polytechnique, Centre de Mathématiques, 91128 Palaiseau Cedex.