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Abstract Let I' be a polycyclic-by-finite group. It is proved
in [8] that I' admits a polynomial action of bounded degree on
R™ which is properly discontinuous and such that the quotient
'\R" is compact. We prove here that such an action is unique
up to conjugation by a polynomial transformation of R™.

1 Introduction

Notations Let P(R") be the group of polynomial bijections of R" with
polynomial inverse and P¢(R™) be the subset of polynomial bijections p such
that the degrees of p and p~! are bounded by d.

Let " be a group. A polynomial action of I' on R" is a morphism
p: ' = P(R™). The action is said to be of bounded degree if p(I") is included
in P¢(R") for some d. The action is said to be affine if p(I') C P}(R?). The
action is said to be crystallographic if the action of I' on R™ is properly
discontinuous and if the quotient I'\R" is compact. If I is a subgroup of
P(R™), and p is the inclusion, we will say in short, that I' (instead of p) is
of bounded degree, affine or crystallographic.

Two polynomial actions p; and py of I' are said to be polynomially
conjugated if there exists p in P(R™) such that, for all g in I, one has
popi(g) = pa(g) op.

The group I is said to be polycyclic-by-finite if one can find an increasing
finite sequence I'y = {1} C --- C I'; C --- C I';, = I' of normal subgroups
such that, for all 1 <4 <mn, I';/T';_; is either finite or abelian of finite rank.

Motivations The affine crystallographic actions have been studied for a
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long time. It is widely believed that any group admitting an affine crystal-
lographic action is polycyclic-by-finite.

(This is sometimes refered to as the Auslander conjecture, see [1] for the
latest results on this conjecture.) Let us quote a few known results in this
subject:

- Not all polycyclic-by-finite group admit an affine crystallographic action
on some R" ([3],[5]).

- All polycyclic-by-finite groups admit a polynomial crystallographic action
of bounded degree on some R" ([8]).

- Two affine crystallographic actions on R"” of a polycyclic-by-finite group
are polynomially conjugated ([9]).

Main result The following theorem which generalizes this last statement
completes nicely this list.

Theorem 1.1 Let I' be a polycyclic-by-finite group. Then any two polyno-
mial crystallographic actions of T' of bounded degree on some R" are poly-
nomially conjugated.

The main tool in the proof is the notion of algebraic hull of a polynomial
action of bounded degree.

Notice that both our main result and the last one in the list above are
generalizations of the second Bieberbach theorem stating that any isomor-
phism between two (Euclidean) crystallographic groups can be obtained as
a conjugation with an affine map. See [13, Theorem 3.2.2] or [6, Theorem
4.1] for more details.
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2 Polynomial and linear actions

Let P(R™,R™) be the vector space of polynomial maps from R™ to R” and
P¢(R™,R") be the subspace of polynomial maps of degree bounded by d.
The map p + (p,p~!) is an injection of P4(R") into P4(R™, R") x P4(R" | R™).
Its image {(p,q) | poq = qop = 1} is Zariski closed. In this way P4(R") is
a real algebraic variety? and the injections P¢(R") — P4t1(R"?) are closed

*We will use abusively the terminology real algebraic variety for the set X of real points
of an affine algebraic variety defined over R. We will denote by R[X] the algebra of real



immersions®.

The following lemma, asserts that every polynomial action of bounded
degree can be seen as part of a linear action.

Lemma 2.1 Let I' be a group and p : I' — P(R™) be a polynomial action
on R™ of degree bounded by d. Then

a) there ezxist an integer m > 1, a closed immersion i € P(R*,R™) and a
linear action T of I' on R™ such that, for every v in I', 7(7y) o1 =i 0 p(7).
b) The Zariski closure G := A(p(T)) of p(T') in P4R") is a subgroup of
P(R™) which does not depend on the choice of d.

Definition 2.2 The real algebraic group A(p(T')) is called the algebraic hull
of p(T).

A subgroup of P(R™) is said to be Zariski-closed if it is of bounded degree
and equal to its algebraic hull.

Proof: a) One can suppose that I' is a subgroup of P(R") and that p is
just the inclusion. The group I' acts linearly on the vector space P(R",R)
as follows:

Vye,VF e PR"R): v-F =Foqy !

Moreover, if F' is of degree < d’, then deg(y - F') < dd'. This shows that the
action of I on P(R", R) is locally finite. Let V' C P(R",R) be a I-invariant
finite dimensional subspace of P(R",R) containing P!(R",R) and 7 be the
linear representation of I" in the dual space V*:

7:T'— GL(V"), given by (7(7)®)(F') = ®(F o).

Now let ¢z : R* — V* be the map given by the formula:

This map is a closed immersion because, for all f in (R*)*, f is in V and
(¢(v))(f) = f(v). Moreover, by construction 7 satisfies the required inter-
twining property: 7(y)oi =1o07.

regular (i.e. polynomial) functions on X when no confusion is possible. Idem with real
algebraic group

3A regular map i : X — Y between two real algebraic varieties is said to be a closed
immersion if the image #(X) is Zariski closed and if the map ¢* : R[Y] 5> R[X]: ¢ — do1
is surjective.



b) It is clear that G does not depend on d. It remains to prove that G is
a group. The multiplication x : P4(R?, R*) x P4(R* , R*) — P2¢(R*,R") is a
polynomial map. Hence the inclusion 4(G x G) C G is just a consequence of
the corresponding inclusion (I’ x I') C G. Similarly, the inclusion G C G
is a consequence of the corresponding inclusion I'' C G. O

Remark 2.3 Let us also denote by 7 : G — GL(V*) the linear action of
G on V* given by the same formula. The image 7(G) is Zariski closed in
GL(V) and 7 is an isomorphism of algebraic groups between G and 7(QG).

3 Polynomial actions of nilpotent Lie groups

Let N be an n-dimensional real (resp. complex) connected and simply con-

nected nilpotent Lie group. The exponential map exp : n — N is bijective
. . . . basi
and so by chosing a basis we can identify R" a2 N Therefore, we

can speak about a polynomial map of N, by which we mean a map which
is expressed via polynomials after this identification of N with R”. For in-
stance the multiplication g : N X N — N is a polynomial map. It is well
known that we define this way, the unique structure of unipotent real (resp.
complex) algebraic group on the Lie group N (cf [7]).

Lemma 3.1 Let N be a connected and simply connected nilpotent Lie group
and assume that 0 : N X R* — R" is an action which is polynomial in both
variables. Let vy be a point in R™. Then

a) the isotropy group of vy is a closed connected subgroup of N and therefore
Ny, 1is diffeomorphic to a vector space.

b) The orbit N.vg is closed.

¢) If the action of N on R is simply transitive, then the map 0,, : N —
R™ : z — x - vy has a polynomial inverse.

Proof: Points a) and b) are well known when the action of N on R" is
linear (cf [7] §3.1). The general case is then a consequence of the Lemma
2.1.a. with I' = N, if one notices that the linear action 7 of N constructed
in this lemma is still polynomial in both variables. Note that the state-
ment that N, is diffeomorphic to a vector space follows from the fact that
any connected subgroup of a simply connected nilpotent Lie group, is itself
simply connected.

c) Let N¢ be the complexification of N. Then N¢ acts on C”, say via
the map 6, which is given by the same expression as 6, but now seen as a



map from N¢ x C* to C*. In order to prove the lemma it suffices to show
that the map 0§0 : Nc - C" : £ — z - vg has a polynomial inverse.

Since the orbit N.vg is open in R", the orbit Nc.vg is open in C" (note
that the Jacobian of 9;(,:0 at the neutral element of N¢ is given by the same
matrix as the Jacobian of ,,). We conclude that the isotropy group of vy
in Nc is discrete, hence trivial by a). This proves that 9;?0 is injective. We
also know by b), that the orbit Nc.vg is closed in C". This proves that 0530
is surjective. Since 0;‘}0 is bijective it has a polynomial inverse ([11]). O

4 The algebraic hull of a crystallographic group

For our purposes we need to understand the action of A(T"), in the case where
I' C P(R") is a polycyclic-by-finite crystallographic subgroup of bounded de-
gree and in the situation where I is a solvable Lie group acting continuously
and simply transitively on R™. A crucial observation in this context is the
following lemma.

Lemma 4.1 Let T be a real algebraic torus acting algebraically on R™, then
the set of fized points (R™)T is non-empty.

Proof: Let T¢ be the complexified torus acting algebraically on C”.
Moreover, we let Zo act on C* by complex conjugation. In order to prove
the proposition, it suffices to show that (C*)%2*7¢ is non-empty. The ele-
ments of T¢ of order dividing 2¢ form a finite 2-group 7. By noetherianity
of the Zariski topology, the descending sequence of Zariski closed subsets
((C)1e) 4>, stabilizes. Moreover, as the union T of the subgroups Ty is
Zariski dense in T¢, there exists an integer £y for which (C*)T¢ = (C*)%%.
Hence, we find that (R?)T = (C*)22T. As Zy x Ty, is a 2-group, we can
use [4, Theorem 7.11] to conclude that the set (R*)? is non-empty. O

The following proposition generalizes a theorem of L.Auslander ([2]).
Proposition 4.2 Let G C P(R") be a solvable Lie group acting continu-

ously and simply transitively on R", then, the unipotent radical U(G) of
A(Q) also acts simply transitively on R™.

Notice that a connected Lie group included in P(R™) whose action on
R™ is continuous, is automatically of bounded degree ([8]).



Proof: The group A(G) is a Zariski connected algebraic group, and there-
fore it splits as a semidirect product A(G) = U(G)XT where T is a real al-
gebraic torus. As G C A(G) already acts transitively on R", the group A(G)
acts transitively on R™. Moreover, by Lemma 4.1, the group U(G) acts tran-
sitively on R". By [10, Lemma 4.36], we know that dimU(G) < dim G, and
as U(G) acts transitively on R” we have that dimU(G) = dim G = n. It fol-
lows that U(G) acts with discrete isotropy groups, and so by Lemma 3.1.a,
with trivial isotropy groups. This allows us to conclude that U(G) acts
simply transitively on R". O

Let us now give the corresponding statement for discrete groups.

Proposition 4.3 Let I' C P(R") be a polycyclic-by-finite crystallographic
subgroup of bounded degree. Then the unipotent radical U(T') of A(T') acts
simply transitively on R™.

Proof: Replacing I' by a subgroup of finite index, we can assume that
A(T") is a Zariski connected solvable algebraic group. In this case we have
again a semidirect product decomposition A(I') = U(I')xT for some real
algebraic torus 7. Let vy € R" be a fixed point for the action of 7. By
Lemma 3.1, the orbit U(I") - vy is closed and is diffeomorphic to some vector
space RP with p < d where d is the dimension of U(T"). As U(T') vy is A(T)-
invariant, it is also ['—invariant. Moreover, by [10, Lemma 4.36] we have the
inequality d < h(I') where h(I") is the Hirsch length of I'. Notice that, since
I is crystallographic, one has h(I') = n. The action of I" on U(T) - v is also
properly discontinuous. This implies that h(I") < p. This discussion proves
that d = p = n and that U(T") - vg = R". We deduce from Lemma 3.1.a that
the action of U(I") on R™ is simply transitive as claimed. |

As a conclusion of this section, we will prove one more property concern-
ing the algebraic hull of a group of polynomial diffeomorphisms, which will
be needed in the sequel of this paper.

Lemma 4.4 Let G C P(R") be a solvable Lie group acting simply transi-
tively on R or a polycyclic-by-finite crystallographic subgroup of bounded
degree and let U(G)c be the unipotent radical of A(G)c. Then, the central-
izer of U(G)c in A(G)c coincides with the center of U(G)c.

Proof: ;jFrom Propositions 4.2, 4.3 and the proof of Lemma 3.1.c, we
know that U(G)c acts simply transitively on C". The centralizer C' of



U(G)c in A(G)c is an algebraic group and therefore, for any element ¢ in C,
the unipotent part ¢, and the semisimple part ¢, of ¢ are also in C'. Assume
that there is an element ¢ of C' which does not belong to U(G)c. Then,
¢s # 1 and ¢, also belongs to C'. Now, there are two possibilities:
- ¢ is of finite order. In this case, we can assume that the order of ¢, is a
prime number p. It then follows, again from [4, Theorem 7.11], that (C™)%
is a non-empty proper Zariski closed subset of C".
- ¢ is of infinite order. In this case, we can assume that c¢; belongs to an
algebraic torus of A(G)c. As in Lemma 4.1, we can conclude also in this
case that (C")% is a non-empty proper Zariski closed subset of C".
However, as ¢, centralizes U(G)c, the set (C")% is U(G)c-invariant. This
contradicts the transitivity of U(G)c on C". It follows that C' is included in
U(G)c. |

Remark 4.5 The properties above show that A(G), for G a simply transi-
tive subgroup of P(R™) or a crystallographic subgroup of bounded degree, is
an R-algebraic hull in the language of [10].

5 Uniqueness of simply transitive polynomial ac-
tions of nilpotent groups

It was already known for a long time ([12]) that any simply transitive nilpo-
tent subgroup of Aff(R™) is unipotent. Let us remark that the analogous
statement for polynomial actions is also correct even though we will not use
it in this article:

Lemma 5.1 Let N C P(R") be a nilpotent Lie group acting simply transi-
tively on R". Then N = A(N) =U(N).

Proof: As N is nilpotent, its algebraic closure A(N) is also nilpotent.
It follows that A(N) = U(N) x S(N), where S(N) denotes the set of
semi-simple elements of A(N). So S(N) centralizes U(N). However, by
Lemma 4.4, we know that the centralizer of U(N) equals the center of U(N),
showing that S(INV) has to be trivial. a

Remark 5.2 For a nilpotent crystallographic subgroup N C P(R"™) of boun-
ded degree one analogously shows that A(N) = U(N) and thus N C U(N).



Corollary 5.3 Let p : N x R* — R" be a simply transitive action of a
nilpotent Lie group N by means of polynomial diffeomorphisms, then p is
polynomial in both variables

Proof: By Lemma 5.1, we know that the action of N is the same as the
algebraic action of U(N). O

The following proposition is the starting point for our uniqueness state-
ments.

Proposition 5.4 Let N be a connected and simply connected nilpotent Lie
group and py,p2 : N — P(R™) be two continuous and simply transitive
polynomial actions of N on R". Then for every v, w in R there exists a
unique element p in P(R™) conjugating p1 and pa and such that p(v) = w.

Proof: One must have p(p1(n)v) = p2(n)w. Hence p is unique. By the
Lemma 3.1.c, the bijective map 6, : N = R* : n — pi(n)v is polynomial
with polynomial inverse. Same for the map 6, : N = R* : n — pa(n)w.
Hence p := 634, 0 07 11) is in P(R") and conjugates p; and ps. O

6 Polynomial conjugacy of polynomial actions

Proposition 6.1 Fori=1,2, let G; be a Zariski closed subgroup of P(R™),
suppose that the Zariski connected component of G; is solvable and that the
unipotent radical U; of G; acts simply transitively on R™.

Then, for any isomorphism of algebraic groups F' : G1 — G, there exists
an element p in P(R"™) such that, for all g1 in G1, po g1 = F(g1) o p.

Proof: a) Suppose first that Gy is Zariski connected. Then G; decom-
poses as a semi-direct product G1 = Uy T}, where T} is an algebraic torus in
G1. As F is an isomorphism of algebraic groups, we have that F(U;) = Us.
Letting T» = F(T1), we also have that Gy = UyxT,. As T; is an algebraic
torus, for 7 = 1,2, there exists an element v; in R” which is fixed for the
action of T; (Lemma 4.1). By Proposition 5.4, there exists an element p in
P(R™) such that for all u; in Uy, one has p(u;-v1) = F(u1)-ve. Hence for all
g1 in G1, one has p(g1 - v1) = F(g1) - v2. (From that we get our conclusion
pogr=F(g1)op.

b) Let us now deal with the general case. One can still write, for i = 1,2,
G; = U;»S; where S; is the stabilizer in G; of a point v; of R”. As in a),
it is enough to prove that the group S5 := F(S;) has a fixed point in



R™. Otherwise stated, it is enough to prove that S, and S} are conjugated
subgroups of Gs.

The Zariski connected component 7% of S% is a maximal torus of G2 and,
by Lemma 4.1, has a fixed point in R”. We can suppose that this point is
v9 s0 that Th is also the Zariski connected component of S5. Let Ny be the
normalizer in G5 of T5. The group V5 := NyNUs is a unipotent group. Since
Ny contains both Sy and S5, one has the equalities No = VxS = VoxS).
Let us divide these equalities by the normal subgroup T5. The groups Sa/T»
and S%/T, are maximal compact subgroups of Ny/T and hence they are
conjugated. We conclude that Sy and S5 are conjugated inside No. ]

In the following theorem we show that any isomorphism between simply
transitive subgroups of P(R") is induced by an inner automorphism.

Theorem 6.2 Let G be a Lie group. Any two continuous and transitive
polynomial actions p1,pe of G with finite isotropy groups are polynomially
conjugated.

Proof: First notice that, by Lemma 2.1, the connected component G, of
G is a linear group and, since G, is homeomorphic to R*, G, is solvable.
Then notice that the kernels of p; and ps coincide with the maximal finite
normal subgroup of GG, hence we can assume that p; and p; are injective.
The subgroups p1(G) and py(G) are isomorphic via the map pop;’. By [10,
Lemma 4.41], this isomorphism extends to an isomorphism F : A(p;(G)) —
A(p2(@Q)) of their algebraic hulls (notice that in [10], this assertion is proved
only for solvable groups but that it extends directly to virtually solvable
groups). By Propositions 4.2 and 6.1, there exists an element p in P(R")
such that, for all @ in A(p1(G)), one has F(a) op = poa. This map p is the
conjugation we are looking for. O

The same proof works for polynomial crystallographic actions of bounded
degree of polycyclic-by-finite groups:

Proof of the Theorem 1.1 : Let us denote by p1,p2 : I' = P(R") these
two actions. First of all recall that the kernel of p; (i = 1,2) is the unique
maximal finite normal subgroup Fr of I'. Therefore, we can assume, without
loss of generality, that F = 1 and that p; and ps are injective. Moreover, by
[10, Lemma 4.41], we know that the isomorphism py o p7! : p1(T') = po(T)
extends to an isomorphism of algebraic groups F : A(p1(I')) — A(p2(T)).
By Propositions 4.3 and 6.1, there exists an element p in P(R") such that,
for all a in A(p1(T')), one has F(a) op = poa. This map p is again the one
we are looking for. O
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