
Five lectures on lattices in semisimple Lie groups

Yves Benoist

Introduction

This text is an introduction to lattices in semisimple Lie groups, in five
independent lectures. It was given during the first week of the 2004 Summer
School at the Fourier Institute in Grenoble. We hope that it will attract young
students to this topic and convince them to read some of the many textbooks
cited in the references. We illustrate five important methods of this subject:
geometry, arithmetics, representations, boundaries, and local fields. One for
each lecture.

A lattice Γ in a real semisimple Lie group G is a discrete subgroup for which the quotient
G/Γ supports a G-invariant measure of finite volume. One says that Γ is cocompact if
this quotient is compact. We will often suppose that the Lie algebra g is semisimple. This
is the case for g = sl(d,R) or g = so(p, q). The two main sources of lattices are

- the geometric method: One constructs a periodic tiling of the symmetric space X =
G/K, where K is a maximal compact subgroup of G, with a tile P of finite volume. The
group of isometries of this tiling is then the required lattice. This very intuitive method,
initiated by Poincaré, seems to work only in low dimension: even if one knows by theorical
arguments that it does exist, the explicit description of such a tile P in any dimension is
still a difficult question. The aim of the first lecture is to construct one for G = SO(p, 1),
where p ≤ 9.

- the arithmetic method: One thinks of G (or better of some product of G by a compact
group) as being a group of real matrices defined by polynomial equations with integral
coefficients. The subgroup Γ of matrices with integral entries is then a lattice in G. This
fact, due to Borel and Harish-Chandra, implies that G always contains a cocompact and
a noncocompact lattice. The aim of the second lecture is to construct some of them for
the groups G = SL(d,R) and G = SO(p, q).

According to theorems of Margulis and Gromov-Schoen, if g is simple and different from
so(p, 1) or su(p, 1), then all lattices in G can be constructed by the arithmetic method.
When g = so(p, 1) or su(p, 1), quite a few other methods have been developed in order to
construct new lattices. Even though we will not discuss them here, let us quote:
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? for G = SO(p, 1):
- p = 2: gluing trousers (Fenchel-Nielsen); uniformization (Poincaré);
- p = 3: gluing ideal tetrahedra and Dehn surgery (Thurston);
- all p: hybridation of arithmetic groups (Gromov, Piatetski-Shapiro).

? for G = SU(p, 1):
- p = 2: groups generated by pseudoreflections (Mostow); fundamental group of algebraic
surfaces (Yau, Mumford);
- p ≤ 3: moduli spaces of weighted points on the line; holonomy groups of local systems
(Deligne, Mostow, Thurston).

- all p: unknown yet.

One of the main successes of the theory of lattices is that it gave in a unified way many
new properties of arithmetic groups. One does not use the way in which Γ has been
constructed but just the existence of the finite invariant measure. A key tool is the theory
of unitary representations, and more precisely the asymptotic behavior of coefficients of
vectors in unitary representations. We will explain this in the third lecture.

Another important tool are the boundaries associated to Γ. We will see in the fourth
lecture how they are used in the proof of the Margulis normal subgroup theorem, which
says that lattices in real simple Lie groups of real rank at least 2 are quasisimple, i.e. their
normal subgroups are either finite or of finite index.

The general theory we described so far gives information on arithmetic groups like
SL(d,Z), SO(d,Z[i]), or Sp(d,Z[

√
2]). It can be extended to S-arithmetic groups like

SL(d,Z[i/N ]), SO(d,Z[1/N ]), or SU(p, q,Z[
√

2/N ])... The only thing one has to do is
to replace the real Lie group G by a product of real and p-adic groups. The aim of the
last lecture is to explain how to adapt the results of the previous lectures to that setting.
For instance, we will construct cocompact lattices in SL(d,Qp) and see that they are
quasisimple for d ≥ 3.

This text is slightly longer than the oral lecture, parce qu’au tableau il est plus facile de
remplacer une démonstration technique par un magnifique crobard, un principe général,
un exemple insignifiant, un exercice intordable voire une grimace évocatrice. One for
each lecture. Nevertheless, there are still many important classical themes in this subject
which will not be discussed here. Let us just quote a few: cohomological dimension
and cohomology, universal extension and the congruence subgroup property, rigidity and
superigidity, counting points and equirepartition, Shimura varieties, quasiisometries...

Un grand merci aux auditeurs de l’École d’été qui par leurs critiques m’ont permis
d’améliorer ce texte: Nir Avni, Uri Bader, Pierre Emmanuel Caprace, Yves de Cornulier,
Damien Ferté, Francois Guéritaud, Francois Maucourant, Barbara Schapira, et aussi Gae-
tan Chenevier, Fanny Kassel, Vincent Lafforgue, Bertrand Remy et le referee.

For an undergraduate introduction to tilings and lattices, one can read [2].
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1 Lecture on Coxeter Groups

In the first lecture, we construct a few lattices in SO(p, 1) by the geometric
method, when p ≤ 9.

1.1 Introduction

The geometric method of construction of lattices has been initiated by Poincaré in 1880. In
his construction, the group G is the group PO+(2, 1) of isometries of the hyperbolic plane
H2. One begins with a polygon P ⊂ H2 and with a family of isometries which identify
the edges of P two by two. When these isometries satisfy some compability conditions
saying that “the first images of P give a tiling around each vertex”, the Poincaré theorem
says that the group Γ generated by these isometries acts properly on H2, with P as a
fundamental domain. In particular, when P has finite volume, the group Γ is a lattice in
G.

There exists a higher-dimensional extension of Poincaré’s theorem. One replaces H2

by the d-dimensional hyperbolic space Hd, the polygon P by a polyhedron, the edges
by the (d − 1)-faces, and the vertices by the (d − 2)-faces (see [16]). In most of the
explicitly-known examples, one chooses Γ to be generated by the symmetries with respect
to the (d − 1)-faces of P . The aim of this lecture is to present a proof, due to Vinberg,
of this extension of Poincaré’s theorem and to describe some of these explicit polyhedra
for d ≤ 9. In this case, the group Γ is a Coxeter group. As a by-product, we will obtain
geometric proofs of some of the basic properties of Coxeter groups.

Even though the geometric construction may seem less efficient than the arithmetic
one, it is still an important tool.

1.2 Projective transformations

Let us begin with a few basic definitions and properties. Let V := Rd+1, Sd = S(V ) :=
(V −0)/R×

+ be the projective sphere, and SL±(d+ 1,R) be the group of projective trans-
formations of Sd.

Definition 1.1 A reflection σ is an element of order 2 of SL±(d + 1,R) which is the
identity on an hyperplane. All reflections are of the form σ = σα,v := Id−α⊗ v for some
α ∈ V ∗ and v ∈ V with α(v) = 2.
- A rotation ρ is an element of SL±(d + 1,R) which is the identity on a subspace of

codimension 2 and is given by a matrix
(

cos θ − sin θ
sin θ cos θ

)
in a suitable supplementary

basis. The real θ ∈ [0, π] is the angle of the rotation.

Let σ1 = σα1,v1 , σ2 = σα2,v2 be two distinct reflections, ∆ be the group they generate,
a12 := α1(v2), a21 := α2(v1), and L := {x ∈ Sd / α1|x ≤ 0, α2|x ≤ 0}. The following
elementary lemma tells us when the images δ(L), δ ∈ ∆, tile a subset C of Sd, i.e. when

the interiors δ(
◦
L), δ ∈ ∆, are disjoints. The set C is then the union C =

⋃
δ∈∆ δ(L).
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Lemma 1.2 a) If a12 > 0 or a21 > 0, the δ(L), δ ∈ ∆, do not tile (any subset of Sd.
b) Suppose now a12 ≤ 0 and a21 ≤ 0. Consider the following four cases :
b1) a12a21 = 0. If both a12 and a21 are equal to 0, then the product σ1σ2 is of order 2, the
group ∆ is Z/2× Z/2, and the δ(L), δ ∈ ∆, tile Sd. Otherwise they do not tile.
b2) 0 < a12a21 < 4. The product σ1σ2 is a rotation of angle θ given by 4 cos(θ/2)2 = a12a21.
If θ = 2π/m for some integer m ≥ 3 then σ1σ2 is of order m, the group ∆ is Z/2×Z/m,
and the δ(L), δ ∈ ∆, tile Sd. Otherwise they do not tile.
b3) a12a21 = 4. The product σ1σ2 is unipotent and the δ(L), δ ∈ ∆, tile a subset C of Sd
whose closure is a half-sphere.
b4) a12a21 > 4. The product σ1σ2 has two distinct positive eigenvalues and the δ(L),
δ ∈ ∆, tile a subset C of Sd whose closure is the intersection of two distinct half-spheres.

Proof This lemma reduces to a 2-dimensional exercise that is left to the reader. ♦

Remark The cross-ratio [α1, α2, v1, v2] := α1(v2)α2(v1)
α1(v1)α2(v2)

= a12a21

4
is a projective invariant.

1.3 Coxeter systems

A Coxeter system (S,M) is the data of a finite set S and a matrix M = (ms,t)s,t∈S with
diagonal coefficients ms,s = 1 and nondiagonal coefficients ms,t = mt,s ∈ {2, 3, . . . ,∞}.
The cardinal r of S is called the rank of the Coxeter system. To such a Coxeter system
one associates the corresponding Coxeter group W = WS defined by the set of generators
S and the relations (st)ms,t = 1, for all s, t ∈ S such that ms,t 6= ∞. For w in W , the
length `(w) is the smallest integer ` such that w is the product of ` elements of S.

A Coxeter group has a natural r-dimensional representation σS, called the geometric
representation, which is defined in the following way. Let (es)s∈S be the canonical basis
of RS. The Tits form on RS is the symmetric bilinear form defined by

BS(es, et) := − cos( π
ms,t

) for all s, t ∈ S .

According to Lemma 1.2, the formula

σS(s)v = v − 2BS(es, v)es ∀ s ∈ S, v ∈ ES

defines a morphism σS of W into the orthogonal group of the Tits form. Let PS be the
simplex in the sphere Sr−1 of the dual space defined by PS := {f ∈ Sr−1 / f(es) ≤
0 / ∀s ∈ S}.

As a special case of the Vinberg theorem stated in the next section, we will see the
following theorem, due to Tits.

Theorem 1.3 (Tits) The representation σS is faithful, its image ΓS is discrete and the
translates tγ(PS), γ ∈ ΓS, tile a convex subset CS of the sphere Sr−1.
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Remarks - The convex CS is called the Tits convex set.
- For a few Coxeter groups with r ≤ 10, called hyperbolic, we will prove that the Tits form
is Lorentzian of signature (r−1, 1) and that the group ΓS is a lattice in the corresponding
orthogonal group.

Corollary 1.4 For every subset S ′ ⊂ S, the natural morphism ρS,S′ : WS′ → WS is
injective.

Proof of Corollary 1.4 The representation σS′ is equal to the restriction of σS ◦ ρS,S′
to the vector space <es, s ∈ S ′>. ♦

1.4 Groups of projective reflections

In this section we study groups generated by projective reflections fixing
the faces of some convex polyhedron P of the sphere Sd.

Let P ⊂ Sd be a d-dimensional convex polyhedron, i.e. the image in Sd of a convex
polyhedral cone of Rd+1 with 0 omitted. A k-face of P is a k-dimensional convex subset
of P obtained as an intersection of P with some hyperspheres which do not meet the

interior
◦
P . A face is a (d− 1)-face and an edge is a 0-face.

Let S be the set of faces of P and for every s in S, one chooses a projective reflection
σs = Id − αs ⊗ vs with αs(vs) = 2 which fixes s. A suitable choice of signs allows us to
suppose that P is defined by the inequalities (αs ≤ 0)s∈S. Let as,t := αs(vt) for s, t ∈ S.
Let Γ be the group generated by the reflections σs.

According to Lemma 1.2, if we want the images γ(P ) to tile some subset of Sd, the
following conditions are necessary: for all faces s, t ∈ S such that the intersection s ∩ t is
a (d− 2)-dimensional face of P , one has

as,t ≤ 0 and ( as,t = 0 ⇐⇒ at,s = 0 ) (1)

as,tat,s ≥ 4 or as,tat,s = 4 cos2( π
ms,t

) with ms,t integer, ms,t ≥ 2 (2)

Conversely, the following theorem states that these conditions are also sufficient.
Let (S,M) be the Coxeter system given by these integers ms,t and completed by ms,t =

∞ when either s∩ t = ∅, codim(s∩ t) 6= 2, or as,tat,s ≥ 4. Note that, when the polyhedron
is the simplex PS of the previous section, the Coxeter system is the one we started with.

Theorem 1.5 (Vinberg) Let P be a convex polyhedron of Sd and, for each face s of P ,
let σs = Id − αs ⊗ vs be a projective reflection fixing the face s. Suppose that conditions
(1) and (2) are satisfied for every s, t such that codim(s ∩ t) = 2. Let Γ be the group
generated by the reflections σs. Then
(a) the polyhedra γ(P ), for γ in Γ, tile some convex subset C of Sd;
(b) the morphism σ : WS → Γ given by σ(s) = σs is an isomorphism;
(c) the group Γ is discrete in SL±(d+ 1,R).
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In other words, to be sure that a convex polyhedron and its images by a group generated
by projective reflections through its faces tile some part of the sphere, it is enough to check
local conditions “around each 2-codimensional face”.

We will still call C the Tits convex set. It may not be open.

Remark The proof of Theorem 1.3 given by Tits in [8] can be adapted to get Theorem
1.5 (see [24], Lemma 1). In this lecture, we will follow Vinberg’s proof, which is more
geometric.

1.5 The universal tiling

To prove Theorem 1.5, one introduces an abstract space X obtained by
gluing copies of P indexed by the Coxeter group W := WS along their faces
and oneproves that this space is convex.

Formally, one defines X := W × P/∼ where the equivalence relation ∼ is generated by

(w, p) ∼ (w′, p′) ⇐⇒ ∃s ∈ S / w′ = ws and p′ = p = σs(p) .

One denotes by P sing the union of the 3-codimensional faces of P , and sets P reg =
P −P sing, Xsing := W ×P sing/∼, Xreg = X −Xsing. The Coxeter group W acts naturally
on X and on Sd. Let π : X → Sd be the map defined by π(w, p) := w p.

Lemma 1.6 a) For x in P , let Wx ⊂ W be the subgroup generated by σs for s 3 x. Then
Vx := Wx × P/∼ is a neighborhood of x in X.
b) The map π is W -equivariant, i.e. ∀w ∈ W , ∀x ∈ X, π(w x) = w π(x).
c) For all x in Xreg, there exists a neighborhood Vx of x in X such that π|Vx is a homeo-
morphism onto a convex subset of Sd.

Proof a) Let Px be an open neighborhood of x in P which does not meet the faces of P
not containing x. Then, Wx × Px/∼ is open in X.

b) Easy.
c) This is a consequence of a), b), lemma 1.2 and of hypotheses (1) and (2). ♦

A segment on Sd is a 1-dimensional convex subset which is not a circle. Let us transfer
this notion of segment to X.

Definition 1.7 For every x, y in X, a segment [x, y] is a compact subset of X such that
the restriction of π to [x, y] is a homeomorphism onto some segment of Sd with end-points
π(x) and π(y).

We do not know yet that such a segment does exist. It is precisely what we want to
show now.

Let us denote by ∂P = P −
◦
P the union of the faces of P and ∂X := W × ∂P/∼. The

following lemma is the key lemma. For each point z in P reg one defines its multiplicity
by m(z) := ms,t if z ∈ s ∩ t for some s 6= t, and by m(z) := 1∂P (z) otherwise. We extend
this function on Xreg by the formula m(w z) := m(z).
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Lemma 1.8 Fix w ∈ W . Let S = Sw be the set of all (x, y) ∈
◦
P ×

◦
P ⊂ X ×X such that

π(x) 6= −π(y), and such that the segment [x,w y] exists and is contained in Xreg. Suppose
S 6= ∅. Then
a) the sum

∑
z∈[x,wy]

m(z) is a constant L(w) on S depending only on w;

b) the set S is dense in P × P .

The above sum counts the number of faces crossed by the segment [x,wy]. We will see
later that this number L(w) is equal to the length `(w).

Proof Let L(x, y, w) be the above sum. According to the local analysis given in Lemma 1.2,
when the segment [x,w y] crosses the interior of a 2-codimensional face w′(s∩ t), one has
ms,t < ∞. Moreover, this local analysis proves that the function (x, y) → L(x, y, w) is
locally constant (this is the main point in this proof, see the remark below). Choose
L ≥ 0 such that the set SL := {(x, y) ∈ S / L(x, y, w) = L} is nonempty. One knows

that SL is open in
◦
P ×

◦
P . Notice that, for (x, y) in SL, the only tiles w′P ⊂ X crossed

by the segment [x,w y] satisfy `(w′) ≤ L, they belong to a fixed finite set of tiles. So,
by a compactness argument, for any (x, y) in the closure SL, the segment [x,w y] exists
and is included in the compact

⋃
`(w′)≤Lw

′(P ). Moreover, since P sing is of codimension 3,
removing some subset of codimension 2 in S, one can find an open, connected, and dense

subset S ′ of
◦
P ×

◦
P such that SL∩S ′ ⊂ SL. Hence, successively, SL∩S ′ is open and closed

in S ′, S ′ is included in SL, SL is dense in
◦
P ×

◦
P , and SL = S. ♦

The next statement is a corollary of the previous proof.

Lemma 1.9 For every x, x′ in X, there exists at least one segment [x, x′] joining them.
Moreover, when π(x) 6= −π(x′), this segment is unique.

Proof Keep notations from the previous lemma with x′ = w y.
We know the implication Sw 6= ∅ =⇒ Sw = P × P . This allows to prove by induction
on `(w) that Sw 6= ∅, by letting the point y move continuously through a face. The
uniqueness follows from the uniqueness of the segment joining two non-antipodal points
on the sphere Sd. ♦

Lemma 1.10 The map π : X → C is bijective and C is convex.

Proof Let x, x′ be two points of X. According to Lemma 1.9, there is a segment [x, x′]
joining them. Hence if π(x) = π(x′), one must have x = x′. This proves that π : X → C
is bijective. Two points of C can also be joined by a segment, hence C is convex. ♦

Proof of Theorem 1.5 (a), (b) follow from Lemma 1.10, and (c) follows from (a). ♦

Remark Let us point out how crucial Lemma 1.8 is. Consider the following group Γ
generated by two linear transformations g1 and g2 of R2, which identify the opposite faces
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of a convex quadrilateral P :
- g1 is the homothety of ratio 2,
- g2 is a rotation whose angle α/π irrational, and

- P := {(x, y) ∈ R2 / 1 ≤ x ≤ 2 and
∣∣∣ y
x

∣∣∣ ≤ tan α
2
}.

The successive images γ(P ), γ ∈ Γ, draw a kind of irrational spider web which, instead
of tiling an open set in S2, tile the universal cover of R2−{0}. The group Γ is not discrete.

1.6 Cocompactness

The following corollary tells us when the convex set C is open.

Corollary 1.11 With the same notations as Theorem 1.5, the following conditions are
equivalent:
(i) for every x in P , the Coxeter group WSx is finite, where Sx := {s ∈ S / x ∈ s};
(ii) the convex set C is open.

In this case, W acts properly on C with a compact quotient.

To prove this corollary, we will use the following lemma.

Lemma 1.12 a) The union of the boundaries of the tiles ∪w∈Ww(∂P ) is the intersection

of C with a family of hyperspheres. This family is locally finite in
◦
C.

b) One has L(w) = `(w) for all w in W .
c) For every x in P , WSx is the stabilizer of x. Moreover, the union Ux of w(P ), for
w ∈ WSx, is a neighborhood of x in C.

d) One has the equivalence: x ∈
◦
C ⇐⇒ card(WSx) <∞.

e) The group W acts properly on
◦
C.

Remark Point b) is related to the exchange lemma for Coxeter groups ([8] ch.IV §1).

Proof a) One just has to check that when one walks on a hypersphere containing a face
and passes through a face of codimension 2 then one is still on a face. But this is a
consequence of the local analysis of Lemma 1.2.b2.

b) `(w) is the minimum number of faces a path from
◦
P to w(

◦
P ) has to cross. According

to a), this minimum is achieved when this path is a segment. Hence `(w) = L(w).
c) This a consequence of Lemma 1.6 and 1.10.
d) If the union Ux is a neighborhood of x, by local finiteness of the tiling and by

compactness of a small sphere centered at x, the index set WSx must be finite. Conversely,
if WSx is finite, the intersection of Ux with a small sphere is, by induction, simultaneously
open and closed.

e) This is a consequence of c) and d). ♦

Proof of Corollary 1.11 Use Lemma 1.12 d) and e). ♦
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Let q0 be a quadratic form of signature (d, 1) and Hd ⊂ Sd be the corresponding
hyperbolic space: it is one of the two connected components of the set {x ∈ Sd / q0|x < 0}.

Corollary 1.13 Keep previous notations.

a) If
◦
P ⊂ Hd and if the symmetries σs are orthogonal for q0, then

◦
C = Hd.

b) Moreover, if P ⊂ Hd, then Γ is a cocompact lattice in the orthogonal group O(d, 1)

In case a) P is called an hyperbolic Coxeter polyhedron.

Proof a) By contradiction, let x0 be a point of
◦
P , y a point of Hd−

◦
C minimizing

the distance to x0 and s a face of P crossed by the segment [x0, y]. Then, one has
d(x0, σs(y)) < d(x0, y). Contradiction.

b) Note that C = Hd is open and use Corollary 1.11. ♦

1.7 Examples

a) Consider a convex polygon in H2 whose angles between the edges are equal to π/m
for some m ≤ 2.

Then the group generated by the orthogonal reflections with respect to the faces is a
cocompact lattice in O(2, 1).

b) Consider a tetrahedron in H3 whose group of isometries is S4 and whose vertices are
on the boundary of H3. The angles between the faces are π/3.

Then the group generated by the orthogonal reflections with respect to the faces is a
noncocompact lattice in O(3, 1).

c) Consider a dodecahedron in H3 whose group of isometries is A5 such that the angles
between the faces are π/2.

Then the group generated by the orthogonal reflections with respect to the faces is a
cocompact lattice in O(3, 1).

d) Let k ≥ 5. Consider a convex k-gon P in R2, with vertices x1,..., xk = x0 and sides
s1 = [x1, x2],..., sk = s0 = [xk, x1]. Let `i be the lines containing si. Assume that the
points vi on the intersection `i−1 ∩ `i+1 are in R2 and that P is in the convex hull of the
points vi. Denote by σi = Id− αi ⊗ vi the projective reflections such that Ker(αi) = `i.

Then the group generated by σi acts cocompactly on some bounded open convex subset
of R2 whose boundary is in general non C2. This kind of groups has been introduced first
in [14]. See [3] for more information on these examples and their higher-dimensional
analogs.

e) Consider the convex polyhedron PS ⊂ Rr−1 associated to the geometrical represen-
tation of a Coxeter group WS given by some Coxeter system (S,M). Consider also the
Tits convex set CS tiled by the images of PS and the Tits form BS, as in Section 1.3.
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To each Coxeter system (S,M), one associates its Coxeter diagram. It is a graph whose
set of vertices is S and whose edges are weighted by the number ms,t, with the convention
that an edge is omitted when the weight is is equal to 2 and the weight is not specified
when it is equal to 3. The Coxeter system is said to be irreducible if the corresponding
graph is connected.

The following proposition gives the list of hyperbolic Coxeter simplices which are com-
pact (resp. of finite volume).

Proposition 1.14 Let (S,M) be an irreducible Coxeter system.
a) One has the equivalences: BS is positive definite ⇐⇒ CS = Sr−1 ⇐⇒ card(WS) <∞.
In this case, (S,M) is said to be elliptic.
(S,M) is said to be parabolic if BS is positive and degenerate.
b) Suppose BS is Lorentzian. Then one has the equivalences:
b1) all Coxeter subsystems are elliptic ⇐⇒ WS is a cocompact lattice in O(BS);
b2) all Coxeter subsystems are either elliptic or irreducible parabolic ⇐⇒ WS is a lattice
in O(BS).

Proof We will just prove the implications ⇒ we need for our examples.
a) and b1) are easy consequences of Theorem 1.5 and corollaries 1.11, 1.13.

b2) Use the fact that for d ≥ 2, for any simplex S with
◦
S ⊂ Hd, the hyperbolic volume

of
◦
S is finite. ♦

The lists of Coxeter diagrams satisfying these properties are due to Coxeter in cases a)
and to Lanner in cases b). They can be found, for instance, in [26] p.202-208. There are
only finitely many of them with rank r ≤ 5 in case b1) and r ≤ 10 in case b2). Here are
two examples.

The Coxeter diagram obtained as a pentagone with one edge of weight 4, gives a
cocompact lattice in 0(4, 1).

The Coxeter diagram E10 (which is a segment with 9 points and a last edge starting
from the third point of the segment) gives a noncocompact lattice in 0(9, 1).

f) The description of all compact (resp. finite volume) hyperbolic Coxeter polyhedra
in Hd is known only in dimensions 2 and 3. The highest dimension of known examples is
d = 5 (resp. d = 21) and one knows that one must have d ≤ 29 (resp. d ≤ 995).
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2 Lecture on Arithmetic groups

The aim of this second lecture is to give explicit constructions of lattices in
the real Lie groups SL(d,R) and SO(p, q). These examples are particular cases
of a general arithmetic construction of lattices in any semisimple group G, due
to Borel and Harish-Chandra. In fact, Margulis showed that all “irreducible”
lattices of G are obtained in this way when the real rank of G is at least 2.

2.1 Examples

Here are a few explicit examples of lattices.

Write d = p+ q with p ≥ q ≥ 1. For any commutative ring A, let
SL(d,A) := {g ∈M(d,A) / det(A) = 1}.

Denote by Id the d× d identity matrix, Ip,q :=
(

Ip 0
0 −Iq

)
, Jp,q :=

(
Ip 0
0 −

√
2 Iq

)
, and

let SO(p, q) := {g ∈ SL(d,R)/g Ip,q
tg = Ip,q}.

Example 1 The group Γ := SL(d,Z) is a noncocompact lattice in SL(d,R).

Example 2 The group Γ := SO(p, q) ∩ SL(d,Z) is a noncocompact lattice in SO(p, q).

Example 3 Let σ be the automorphism of order 2 of Q[
√

2]. The group
Γ := {g ∈ SL(d,Z[

√
2]) / g Ip,q

tgσ = Ip,q} is a noncocompact lattice in SL(d,R).

Example 4 Let O be a subring in M(d,R) which is also a lattice in this real vector
space. Suppose that O ⊂ GL(d,R) ∪ {0}. We will see that such a subring does exist
for every d ≥ 2: in fact O is an “order in a central division algebra over Q such that
D ⊗Q R 'M(d,R)”. The group Γ := O ∩ SL(d,R) is a cocompact lattice in SL(d,R).

Example 5 Let σ be the automorphism of order 2 of Q[
√

2]. The group
Γ := {(g, gσ) / g ∈ SL(d,Z[

√
2])} is a noncocompact lattice in SL(d,R)× SL(d,R).

Example 6 The group Γ := SL(d,Z[i]) is a noncocompact lattice in SL(d,C).

Example 7 Let τ be the automorphism of order 2 of Q[ 4
√

2]. The group
Γ := {g ∈ SL(d,Z[ 4

√
2]) / g Jp,q

tgτ = Jp,q} is a cocompact lattice in SL(d,R).

Example 8 The group Γ := {g ∈ SL(d,Z[
√

2]) / g Jp,q
tg = Jp,q} is a cocompact lattice

in {g ∈ SL(d,R) / g Jp,q
tg = Jp,q} ' SO(p, q).

The aim of this lecture is to give a complete proof for Examples 1, 4, 7 and 8, a sketch
of a proof for the other examples, and a short survey of the general theory.
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2.2 The space of lattices in Rd

We study in this section the space X of lattices in Rd and the subset
X1 of lattices of covolume 1 in Rd. As homogeneous spaces, one has X =
GL(d,R)/SL±(d,Z) and X1 = SL(d,R)/SL(d,Z). We will prove that X1 has
finite volume.

Proposition 2.1 (Minkowski) The group SL(d,Z) is a lattice in SL(d,R).

Let us denote by gi,j the entries of an element g in G := GL(d,R) and let
K := O(d) = {g ∈ G / g tg = 1},
A := {g ∈ G / g is diagonal with positive entries},
As := {a ∈ A / ai,i ≤ s ai+1,i+1 , for i = 1, . . . , d− 1 } for s ≥ 1,
N := {g ∈ G / g − 1 is strictly upper triangular}, and
Nt := {n ∈ N / |ni,j| ≤ t , for 1 ≤ i < j ≤ d } for t ≥ 0.

According to the Iwasawa decomposition, the multiplication induces a diffeomorphism
K × A×N ' G. Let us define the Siegel domain Ss,t := KAsNt, and Γ := SL(d,Z).

Lemma 2.2 For s ≥ 2√
3
, t ≥ 1

2
, one has G = Ss,tΓ.

Proof Let g be in G and Λ := g(Zd). One argues by induction on d. A family (f1, . . . , fd)
of vectors of Λ is said to be admissible if
- the vector f1 is of minimal norm in Λ− {0};
- the images ḟ2, . . . , ḟd of f2, . . . , fd in the lattice Γ̇ := Γ/Zf1 of the Euclidean space
Rd/Rf1 form an admissible family of Γ̇;
- each fi with i ≥ 2 is of minimal norm among the vectors of Γ whose image in Γ̇ is ḟi.

It is clear that Λ contains an admissible family (f1, . . . , fd) and that such a family is a
basis of Λ. After right multiplication of g by some element of Γ, one may suppose that
this family is the image of the standard basis (e1, . . . , ed) of Zd, i.e. for all i = 1, . . . , d,
one has g ei = fi.

Let us show that g ∈ S 2√
3
, 1
2
. Write g = kan. Since (k−1f1, . . . , k

−1fd) is an admissible

basis of k−1(Λ), one may suppose that k = 1 i.e. g = an. Hence

f1 = a1,1e1,

f2 = a2,2 e2 + a1,1n1,2 e1,

...

fd = ad,d ed + ad−1,d−1nd−1,d ed−1 + · · ·+ a1,1n1,d e1.

By induction hypothesis, one knows that

|ni,j| ≤ 1

2
for 2 ≤ i < j ≤ d and

ai,i ≤ 2√
3
ai+1,i+1 for 2 ≤ i ≤ d− 1 .

12



It remains to prove these inequalities for i = 1.
The first ones are a consequence of the inequalities ‖fj‖ ≤ ‖fj + p f1‖, ∀p ∈ Z.
The last inequality is a consequence of the inequality ‖f1‖ ≤ ‖f2‖, because this one

implies a2
1,1 ≤ a2

2,2 + a2
1,1n

2
1,2 ≤ a2

2,2 +
1

4
a2

1,1. ♦

Let G′ := SL(d,R), K ′ := K∩G′, A′ := A∩G′. One still has the Iwasawa decomposition
G′ = K ′A′N . One denote Rs,t := Ss,t∩G′. One still has, thanks to Lemma 2.2, G′ = Rs,tΓ.

Proposition 2.1 is now a consequence of the following lemma.

Lemma 2.3 The volume of Rs,t for the Haar measure is finite.

Let us first compute the Haar measure in the Iwasawa decomposition. Let dg′, dk′, da′

and dn be right Haar measures on the groups G′, K ′, A′, and N respectively. These are
also left Haar measure, since these groups are unimodular. The modulus function of the
group A′N is

a′n −→ ρ(a′n) = ρ(a′) = |detn(Ad a′)| =
∏
i<j

a′i,i
a′j,j

,

where n is the Lie algebra of N .
A left Haar measure on A′N is left A′-invariant and right N -invariant, hence is equal

to the product measure da′dn, up to a multiplicative constant. Therefore, the measure
ρ(a′)da′dn is a right Haar measure on A′N .

In the same way, the measures dg′ and ρ(a′)dk′da′dn on G′ are both left K-invariant
and right A′N -invariant. They must be equal, up to a multiplicative constant. Hence

dg′ = ρ(a′)dk′da′dn .

Proof of Lemma 2.3 Let bi :=
a′i,i

a′i+1,i+1

. The functions b1, . . . , bd−1 give a coordinate

system on A′ for which da′ = db1
b1
· · · dbd−1

bd−1
and ρ(a′) =

∏
1≤i<d b

ri
i with ri ≥ 1. Hence one

has ∫
Rs,t

dg′ =
(∫

K′
dk′
) ∏

1≤i<d

∫ s

0
bri−1
i dbi

(∫
Nt

dn
)
,

which is finite because K ′ and Nt are compact and ri ≥ 1. ♦

2.3 Mahler compactness criterion

Let us prove a simple and useful criterion, which tells us when some subset
of the set X of lattices in Rd in compact.

The set X of lattices in Rd is a manifold as it identifies with the quotient space
GL(d,R)/SL±(d,Z). By definition of the quotient topology, a sequence (Λn) of lattices in
Rd converges to some lattice Λ of Rd if and only if there exists a basis (fn,1, . . . , fn,d) of
Λn which converges to a basis (f1, . . . , fd) of Λ.
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For any lattice Λ in Rd, one denotes by d(Λ) the volume of the torus Rd/Λ. It is given
by the formula d(Λ) = |det(f1, . . . , fd)| where (f1, . . . , fd) is any basis of Λ.

Lemma 2.4 (Hermite) Any lattice Λ in Rd contains a nonzero vector v of norm ‖v‖ ≤
(4

3
)

d−1
4 d(Λ)

1
d .

Proof This is a consequence of Lemma 2.2, with the inequality ad1,1 ≤ s
d(d−1)

2
∏
ai,i. ♦

Proposition 2.5 (Mahler) A subset Y ⊂ X is relatively compact in X if and only if
there exist constants α, β > 0 such that for all Λ ∈ Y , one has

d(Λ) ≤ β and inf
v∈Λ−0

‖v‖ ≥ α .

In other words, a set of lattices is relatively compact if and only if their volumes are
bounded and they avoid a small ball.

Proof Let us fix s > 2√
3

and t > 1
2

and set Λ0 := Zd ∈ X. Note that a subset Y ⊂ X
is relatively compact if and only if there exists a compact subset S ⊂ Ss,t such that
Y ⊂ {gΛ0 / g ∈ S}.

=⇒ Let us fix 0 < r < R such that, for all g = kan in S and all i = 1, . . . , d, one has
r ≤ ai,i ≤ R. One has then |detg| ≤ Rd and infv0∈Λ0−0 ‖g v0‖ ≥ r, because if one writes
v0 =

∑
1≤i≤`miei with m` 6= 0, one has

‖g v0‖ ≥ |<ke`, g v0> | = |<e`, an v0> | ≥ a`,`|m`| ≥ r .

⇐= Let S := {g ∈ Ss,t / gΛ0 ∈ Y }. For all g = kan in S and all i = 1, . . . , d, one has

a1,1 ≥ α , ai,i ≤ s ai+1,i+1 and
∏

1≤j≤d
aj,j ≤ β .

As a consequence, there exist 0 < r < R such that, for all g = kan in S and all i = 1, . . . , d,
one has r ≤ ai,i ≤ R. Hence S is compact and Y too. ♦

The same proof can be easily adapted for Examples 5 and 6. The same strategy can
also be used for Examples 2 and 3: using the Iwasawa decomposition of G, one introduces
the Siegel domains and proves that they are of finite volume and that a finite union of
them surjects on G/Γ.

2.4 Algebraic groups

In this section we recall a few definitions from the theory of algebraic
groups.
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Let K be an algebraically closed field of characteristic 0, k a subfield of K, Vk ' kd a
k-vector space, V = K ⊗k Vk, and k[V ] the ring of k-valued polynomials on Vk.

A variety Z ⊂ V is a subset consisting of the zeros of a family of polynomials on V . Let
I(Z) ⊂ K[V ] be the ideal of polynomials on V which are zero on Z. One says that Z is a
k-variety, or is defined over k, if I(Z) is generated by the intersection Ik(Z) := I(Z)∩k[V ].
Let k[Z] := k[V ]/Ik(Z) be the ring of regular functions of Z. A k-morphism of k-varieties
ϕ : Z1 → Z2 is a map such that, for all f in k[Z2], f ◦ ϕ is in k[Z1].

A k-group is a k-variety G ⊂ GL(V ) ⊂ End(V ) which is a group for the composition
of endomorphisms. For instance, the k-groups

Ga := {
(

1 x
0 1

)
/ x ∈ K} and Gm := {

(
y 0
0 z

)
/ y, z ∈ K, xy = 1}

are called the additive and the multiplicative k-groups. One has k[Ga] = k[x] and k[Gm] =
k[y, y−1]. Another example is given by GL(V ) which can be seen as a k-group thanks to
the identification

GL(V ) ' {(g, δ) ∈ End(V )×K / δdetg = 1} .

Note that Gk := G∩GL(d, k) is a subgroup of G and, more generally, for any subring A
of K, GA := G∩GL(d,A) is a subgroup of G. A k-morphism of k-groups ϕ : G1 → G2 is a
k-morphism of k-varieties which is also a morphism of groups. A k-isogeny is a surjective
k-morphism with finite kernel. A k-character of G is a k-morphism χ : G → Gm. A
k-cocharacter of G is a k-morphism χ : Gm → G. A k-representation of G in a k-vector
space Wk is a k-morphism ρ : G → GL(W ). The k-representation is irreducible if 0 and
W are the only invariant subspaces. It is semisimple if it is a direct sum of irreducible
representations. A K-group G is reductive if all its K-representations are semisimple.
A reductive K-group is semisimple if all its K-characters are trivial. This definition is
well-suited for the groups we are dealing with since we have the following lemma.

This lemma will not be used later on. The reader may skip its proof.

Lemma 2.6 The k-groups SL(d) and SO(p, q) are semisimple.

Proof Say for G = SL(d,C). Since G = [G,G], one only has to prove the semisimplicity
of the representations of the group G in a C-vector space V . So one has to prove that any
G-invariant subspace W has a G-invariant supplementary subspace. To prove this fact,
we will use Weyl’s unitarian trick: let K = SU(n,C) be the maximal compact subgroup of
G. By averaging with respect to the Haar measure on K, one can construct a K-invariant
hermitian scalar product on V . The orthogonal W⊥ of W is then K-invariant and, since
the Lie algebra of G is the complexification of the Lie algebra of K, it is also G-invariant.
♦

2.5 Arithmetic groups

We check that for a Q-group G the subgroup GZ := G ∩ GL(d,Z) does
not depend, up to commensurability, on the realization of G as a group of
matrices.
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Lemma 2.7 Let ρ be a Q-representation of a Q-group G in a Q-vector space VQ. Then
a) the group GZ preserves some lattice Λ ⊂ VQ;
b) any lattice Λ0 ⊂ VQ, is preserved by some subgroup of finite index of GZ.

Proof a) Choose a basis of VQ. The entries of the matrices ρ(g)− 1 can be expressed as
polynomials with rational coefficients in the entries of the matrices g − 1. The constant
coefficient of these polynomials is zero. Hence there is an integer m ≥ 1 such that, if g
is in the congruence subgroup Γm := {g ∈ GZ / g = 1 mod m}, then ρ(g) has integral
entries. Since Γm is of finite index in GZ, the group GZ also preserves a lattice in VQ.

b) This is a consequence of a), because one can find integers N,N0 ≥ 1 such that
NΛ ⊂ N0Λ0 ⊂ Λ. ♦

One easily deduces the following corollary.

Corollary 2.8 Let ϕ : G1 → G2 be a Q-isomorphism of Q-groups. Then the groups
ϕ(G1,Z) and G2,Z are commensurable.

2.6 The embedding

The following embedding will allow us to reduce the proof of the compact-
ness of G/Γ to Mahler’s criterion.

Proposition 2.9 Let G ⊂ H = GL(d,C) be a Q-group without nontrivial Q-characters.
Then the injection GR/GZ ↪→ X = HR/HZ is a homeomorphism onto a closed subset of
X.

We will need the following proposition.

Proposition 2.10 (Chevalley) Let G be a k-group and H ⊂ G a k-subgroup. There
exist a k-representation of G on some vector space Vk and a point x ∈ P(Vk) whose
stabilizer is H, i.e. H = {g ∈ G / g x = x}.

Proof We will need the following notations.
- I(H) := {P ∈ K[G] / P |H = 0},
- Km[G] := {P ∈ K[G] / d◦P ≤ m}, and
- Im(H) := I(H) ∩Km[G].
Since K[G] is noetherian, one can choose m such that Im(H) generates the ideal I(H) of
K[G]. The action of G on Km[G] given by (π(g)P )(g′) := P (g′g) is a k-representation.
The k-representation we are looking for is the representation in the pth exterior product
V := Λp(Km[G]), where p := dim Im(H) and x is the line in V defined by x := Λp(Im(H)).
By construction, one has the required equality H = {g ∈ G / g x = x}. ♦

Corollary 2.11 Let G be a k-group and H ⊂ G a k-subgroup. Suppose H does not have
any nontrivial k-character. Then there exist a k-representation of G on some vector space
Vk and a point v ∈ Vk whose stabilizer is H, i.e. H = {g ∈ G / g v = v}.
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Proof The action of H on the line x is trivial since all the k-characters of H are trivial.
Just choose v on this line. ♦

Proof of Proposition 2.9 We have to show that
∀gn ∈ GR, h ∈ HR such that lim

n→∞
gnHZ = hHZ in HR/HZ

∃g ∈ GR, such that lim
n→∞

gnGZ = gGZ in GR/GZ.

Since all Q-characters of G are trivial, according to Corollary 2.11 (with H for G and
G for H), there exists a Q-representation of H in some Q-vector space VQ and a vector
v ∈ VQ whose stabilizer in H is G. By Lemma 2.7, the group HZ stabilizes some lattice
Λ in VQ. One can choose Λ containing v. Hence the HZ-orbit of v is discrete in VR.

Let hn ∈ HZ such that lim
n→∞

gnhn = h. The sequence h−1
n v converges to h−1v hence is

equal to h−1v for n large. Therefore one can write hn = γng
−1h with g ∈ GR, γn ∈ GZ,

and the sequence gnγn converges to g. ♦

2.7 Construction of cocompact lattices

We check that the groups Γ in Examples 4 and 8 of Section 2.1 are cocom-
pact lattices in SL(d,R) and SO(p, q) respectively.

The following lemma can be applied directly to these examples and enlightens the
strategy of the proof in the general case.

Lemma 2.12 Let VQ be a Q-vector space and G ⊂ GL(V ) a Q-subgroup without non-
trivial Q-character. Suppose that there exists a G-invariant polynomial P ∈ Q[V ] such
that

∀v ∈ VQ , P (v) = 0 ⇐⇒ v = 0 .

Then the quotient GR/GZ is compact.

Proof Let Λ0 be a lattice in VQ. One can suppose that P (Λ0) ⊂ Z.
By Propositions 2.5 and 2.9, we only have to show that no sequence gnvn with gn ∈ GR

and vn ∈ Λ0 − {0} can converge to zero.
This is a consequence of the minoration |P (gnvn)| = |P (vn)| ≥ 1. ♦

Corollary 2.13 a) In Example 2.1.4, Γ is cocompact in SL(d,R).
b) In Example 2.1.8, Γ is cocompact in SO(p, q).

Proof a) Take VQ = D and P (v) = detD(ρv) where ρv is the left multiplication by v.
b) We will apply Weil’s recipe called “restriction of scalars”. Let us denote by SO(Jp,q,C)
the special orthogonal group for the quadratic form q0 whose matrix is Jp,q. The algebraic
group

H :=
{(

a 2 b
b a

)
∈ GL(2d,C) / a+

√
2 b ∈ SO(Jp,q,C) , a−

√
2 b ∈ SO(Jσp,q,C)

}
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is defined over Q, because the family of equations is σ-invariant.
The map (a, b) → a+

√
2 b gives an isomorphism

HZ ' Γ

and the map (a, b) → (a+
√

2 b, a−
√

2 b) gives an isomorphism

HR ' SO(Jp,q,R)× SO(Jσp,q,R) .

One applies Lemma 2.12 with the natural Q-representation in VQ = Qd × Qd and with
P : (u, v) → q0(u +

√
2 v) qσ0 (u −

√
2 v). This proves that HZ is cocompact in HR. Since

SO(Jσp,q,R) is compact, Γ is a cocompact lattice in SO(Jp,q,R). ♦

Remark To convince the reader that Examples a) do exist in any dimension d ≥ 2, we
will give a construction of

a central division algebra D over Q such that D ⊗Q R 'M(d,R),
without using the well-known description of the Brauer group of Q.

Let L be a Galois real extension of Q with Galois group Gal(L/Q) = Z/dZ and σ be

a generator of the Galois group. One can take L = Q[η] with η =
∑

1≤i≤q/2d
cos

(
2πgid/q

)
where q is a prime number q ≡ 1 mod 2d and g is a generator of the cyclic group (Z/qZ)×

(for d = 3, 4 and 5, take L = Q[cos 2π
7

], L = Q[cos π
17

+ cos 2π
17

] and L = Q[cos 2π
11

]).
We will construct D as a d-dimensional left L-vector space D = L⊕ La⊕ · · · ⊕ Lad−1,

with the following multiplication rules: ∀` ∈ L, a`a−1 = σ(`) and ad = p where p is
another prime number which is inert in L (such a p does exist by Cebotarev theorem).
By construction D is an algebra with center Q. It remains to show that every nonzero
element v = `0 + `1a + . . . + `d−1a

d−1 ∈ D is invertible. One may suppose that all `i are
in the ring R of integers of L but that `0 6∈ pR. One computes the determinant ∆v of the
right multiplication by v as an endomorphism of the left L-vector space D. One gets

∆v = det


`0 p`σ

d−1 · · · p`σd−1

1

`1 `σ
0 · · · p`σd−1

2
...

...
...

`d−1 `σ
d−2 · · · `σd−1

0

 ≡ `0`
σ
0 · · · `σ

d−1

0 mod pR .

Since p is inert, this determinant is nonzero and v is invertible. ♦

2.8 Godement compactness criterion

In this section, we state a general criterion for the cocompactness of an
arithmetic subgroup and show how to adapt the previous arguments to prove
it.

Let us first recall the definitions of semisimple and unipotent elements and some of
their properties. An element g in End(V ) is semisimple if it is diagonalizable over K and
unipotent if g−1 is nilpotent. The following lemma is the classical Jordan decomposition.
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Lemma 2.14 Let g ∈ GL(V ) and G ⊂ GL(V ) be a k-group.
i) g can be written in a unique way as g = su = us with s semisimple and u unipotent.
ii) Every subspace W ⊂ V invariant by g is also invariant by s and u.
iii) g ∈ G =⇒ s, u ∈ G.
iv) g ∈ Gk =⇒ s, u ∈ Gk.

Proof i) Classical.
ii) s and u can be expressed as polynomials in g.
iii) Consider the action of G on Km[EndV ] := {P ∈ K[EndV ] / d◦P ≤ m} given by
(π(g)P )(x) := P (xg). The subspace Id[G] := I[G]∩Kd[EndV ] is invariant by g. Hence it
is also invariant by its semisimple and unipotent part which are nothing else than π(s) and
π(u). So for all P ∈ Id[G], one has P (s) = (π(s)P )(1) = 0 and P (u) = (π(u)P )(1) = 0.
Therefore s and u are in G.
iv) By unicity, s and u are invariant under the Galois group Gal(K/k). ♦

Lemma 2.15 Let ρ : G→ H be a k-morphism of k-groups and g ∈ G.
a) g is semisimple =⇒ ρ(g) is semisimple.
b) g is unipotent =⇒ ρ(g) is unipotent.

Proof One can suppose that k = K and that G is the smallest K-group containing g.
The main point then is to prove that all k-morphisms ϕ : Ga → Gm and ψ : Gm → Ga

are trivial. But y ◦ ϕ is an invertible element of k[x], hence is a constant, and x ◦ ψ is an
element F (y) ∈ k[y, y−1] such that F (y) = F (yn)/n for all n ≥ 1, hence is a constant. ♦

Note that the Lie algebra g of a Q-group G is defined over Q, because it is invariant
under Gal(C/Q).

Theorem 2.16 (Godement) Let G ⊂ GL(d,C) be a semisimple Q-group and g its Lie
algebra. The following conditions are equivalent:
(i) GR/GZ is compact.
(ii) Every element g of GQ is semisimple.
(iii) The only unipotent element of GZ is 1.
(iv) The only nilpotent element of gQ is 0.

Remark See Section 2.9 for the general formulation of this theorem.

Sketch of proof of Theorem 2.16 (i) ⇒ (iii) Let u ∈ GZ be a unipotent element.
According to Jacobson-Morozov, there exists a Lie subgroup S of GR containing u whose
Lie algebra s is iso;orphic to sl(2,R). There exists then an element a ∈ S such that
lim
n→∞

anua−n = e. Since GR/GZ is compact, one can write an = knγn with kn bounded

and γn ∈ GZ. But then γnuγ
−1
n is a sequence of elements of GZ−{e} converging to e.

Therefore u = e.
(ii) ⇔ (iii) This follows from Lemma 2.14 and the fact that if u ∈ GQ is unipotent, then
un is in GZ for some positive integer n.
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(iii) ⇒ (iv) The exponential of a nilpotent element of gQ is a well-defined unipotent
element which is in GQ. As above, this element has a power in GZ.
(iv) ⇒ (i) The group Aut(g) is a Q-group and the adjoint map Ad : G → Aut(g) is a
Q-isogeny, i.e. it is a Q-morphism with finite kernel and cofinite image. Thanks to the
following lemma, one can suppose that G = Aut(g). We can then apply Lemma 2.12 with
P as the G-invariant polynomial on g given by P (X) = (tr X)2 +(tr X2)2 + · · ·+(tr Xd)2,
where d := dim g, since one has the equivalence: P (X) = 0 ⇐⇒ X is nilpotent. ♦

In this proof, we have used the following lemma.

Lemma 2.17 Let ϕ : G → H be a Q-isogeny between two semisimple Q-groups. Then
ϕ(GZ) and HZ are commensurable.

Remark One must be aware that, even though ϕ is surjective, ϕ(GQ) and HQ are not
commensurable. Take for instance G = SL(2) and H = PGL(2), and look at the elements

of HQ given by
(

p 0
0 1

)
.

Proof One may suppose that H = G/C where C is the center of G. Let G ⊂ End(V )
be this Q-group, A := EndC(V ) the commutator of C in End(V ), AZ = A ∩ End(VZ),
Γ := GZ = {g ∈ G / gAZ = AZ}, and ∆ := {g ∈ G / gAZg

−1 = AZ}. Using the fact that
a bijective Q-morphism is a Q-isomorphism, one only has to show that ∆/Γ is finite.

According to Propositions 2.5 and 2.9, we only have to show that no sequence dnan with
dn ∈ ∆ and an ∈ AZ−{0} can converge to zero. Since the semisimple associative algebra
A is the direct sum of its minimal bilateral ideals B, one may suppose that an is in some
BZ−{0}. Let bi be a basis of B. Since detBdn = 1, according to Minkowski’s lemma 2.4,
one can find a constant C0 and nonzero elements cn ∈ BZ such that ‖cnd−1

n ‖ ≤ C0. Since
the elements anbicn are in BZ, the elements dnanbicnd

−1
n are also in BZ and converge to

zero. Hence, successively, for n � 0, one has anbicn = 0, anBcnB = 0, anB = 0, and
an = 0. Contradiction. ♦

Corollary 2.18 In Example 2.1.7, Γ is cocompact in SL(d,R).

Proof The proof is similar to that of Corollary 2.13, using “restriction of scalar”.
The algebraic group

G :=
{(

a
√

2 b
b a

)
∈ GL(2d,C)/(a+

4
√

2 b) Jp,q (ta− 4
√

2 tb) = Jp,q , det(a+
4
√

2 b) = 1
}

is defined over k0 = Q[
√

2], because the family of equations is τ -invariant. The “image”
of G by the Galois involution σ of k0 is the algebraic group

Gσ :=
{(

a −
√

2 b
b a

)
∈GL(2d,C)/(a+i

4
√

2 b)Jσp,q(
ta−i 4

√
2 tb) = Jσp,q , det(a+i

4
√

2 b) = 1
}

which is also defined over k0 = Q[
√

2].
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Using the diagonal embedding x→ (x, xσ) of Q[
√

2] in R×R, one constructs a semisim-
ple Q-group

H :=
{(

c 2 d
d c

)
∈ GL(4d,C) / c+

√
2 d ∈ G , c−

√
2 d ∈ Gσ

}
The maps (c, d) → c+

√
2 d and (a, b) → a+ 4

√
2 b give isomorphisms

HZ ' GZ[
√

2] ' Γ

and the map (c, d) → (c+
√

2 d, c−
√

2 d) gives an isomorphism

HR ' GR × (Gσ)R ' SL(d,R)× SU(d,R) .

Since 4
√

2 ∈ R, the group GR is isomorphic to SL(d,R). Since the hermitian form h0 on Cd

whose matrix is Jσp,q is positive definite, the group (Gσ)R is compact. To apply Theorem
2.16, one uses Lemma 2.15 and notices that HQ does not contain any unipotent element,
since its image by (c, d) → c −

√
2 d lies in the compact group (Gσ)R. This proves that

HZ is cocompact in HR. Since (Gσ)R is compact, Γ is a cocompact lattice in SL(d,R). ♦

2.9 A general overview

Let us now describe, without proof, the general theory that these examples
illustrate. Roughly speaking, this theory says that for d ≥ 3 and q ≥ 2 all
lattices in SL(d,R) and SO(p, q) are constructed in a similar way.

More precisely, let H ⊂ GL(d,C) be a Q-group. Then one has the equivalences:

vol(HR/HZ) <∞ ⇐⇒ H has no nontrivial Q− character;

HR/HZ is compact ⇐⇒ H has no nontrivial Q− cocharacter.

One says that H is Q-anisotropic when it does not have any nontrivial cocharacter, i.e.
when it does not contain any Q-subgroups Q-isomorphic to Gm.

These facts, due to Borel and Harish-Chandra, are the main motivations of Borel’s
book [4], and are illustrated by Examples 1 to 4.

There is a very important construction of lattices which is simultaneously an exten-
sion and a by-product of the previous construction: let L ⊂ GL(d,C) be a semisimple
algebraic group defined over a number field k, O the ring of integers of k, σ1, .., σr1 the
real embeddings of k, and σr1+1, .., σr1+r2 the complex embeddings of k up to complex
conjugation. Recall that the image of the diagonal map σ : O → Rr1 × Cr2 is a lattice
in this real vector space. Thus the diagonal image of the group LO := L ∩ SL(d,O) in
the product Lσ1

R × · · · ×Lσr1
R ×Lσr1+1

C × · · · ×Lσr1+r2
C is also a lattice. According to Weil’s

trick of “restriction of scalars” this construction with LO can be seen as a special case of
the previous construction of HZ for some suitable algebraic group H defined over Q for
which HQ ' Lk (this is illustrated by Examples 5 and 6).
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Suppose that r1 + r2 > 2 and that, in the above product, all the factors are compact
except one. Then LO is a cocompact lattice in the noncompact factor (this is illustrated
by Examples 7 and 8).

These examples are the main motivation for the following definition.

Definition 2.19 A subgroup Γ of a real linear semisimple Lie group G is said to be
arithmetic if there exist an algebraic group H defined over Q and a surjective morphism
π : HR → G with compact kernel such that the groups Γ and π(HZ) are commensurable
(i.e. their intersection is of finite index in both of them).

The classification of all arithmetic groups Γ of a given real linear semisimple Lie group
G, up to commensurability, relies on the classification of all algebraic absolutely simple
groups defined over a number field k (see [23] for a reduction of this classification to the
anisotropic case). For groups G of classical type different from D4, this classification is
due to Weil ([28]) and is equivalent to the classification of all central simple algebras D
with antiinvolution ∗ over k (i.e (a∗1)

∗ = a1 and (a1a2)
∗ = a∗2a

∗
1 ∀a1, a2 ∈ D).

Since k is a number field, this is a classical topic in arithmetic, which contains
- the classification of central division algebras over k;
- the classification of bilinear symmetric or antisymmetric forms over k;
- the classification of hermitian forms over a quadratic extension k ⊃ k0.
The main tool in this classification is the local-to-global principle (see [19] or [29]).

According to a theorem of Borel ([4]), all linear real semisimple Lie groups contain at
least one cocompact and one noncocompact lattice.

For an arithmetic subgroup Γ of G = SL(d,R), Weil’s classification implies that, up to
commensurability, either
- Γ is the group Γ1 of units of an order OD in a central simple algebra D of rank d over
Q which splits over R (this generalizes Examples 1 and 4), or
- Γ is the group Γ2 of ∗-invariant units of an order OD in a central simple algebra D of
rank d over a real field k, and ∗ is an antiinvolution of D nontrivial on k such that D
is split over R and all the other embeddings of the fixed field k0 of ∗ in k are real and
extend to a complex embedding of k whose corresponding real unitary group is compact
(this generalizes Examples 3 and 7).

Moreover, Γ1 is cocompact if and only if D is a division algebra and Γ2 is cocompact if
and only if either D is a division algebra or k0 6= Q.

Conversely, the Margulis arithmeticity theorem says the following. Let G be a real
semisimple Lie group of rank at least 2, with no compact factor (a factor is a group
G′ which is a quotient of G), then all irreducible lattices Γ in G are arithmetic groups
(irreducible means that any projection of Γ in a nontrivial factor of G is nondiscrete).
This theorem is the main aim of Zimmer’s book [30] and of Margulis’ book [15].
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3 Lecture on Representations

The aim of this lecture is to show how the properties of the unitary rep-
resentations of a Lie group G have an influence on the algebraic structure of
any lattice Γ of G.

We will deal here with a property due to Kazhdan. Namely, using the
decreasing properties of the coefficients of unitary representations of G, when
G is simple of rank at least 2, we will show that the abelianization of Γ is
finite. We will also see that these properties imply mixing properties for some
non-relatively compact flows on G/Γ.

3.1 Decay of coefficients

We will first prove a general decreasing property for coefficients of unitary
representations of semisimple real Lie groups.

Definition 3.1 A unitary representation π of a locally compact group G in a (separable)
Hilbert space Hπ is a morphism from G to the group U(Hπ) of unitary transfomations of
Hπ, such that ∀v ∈ Hπ, the map G→ Hπ; g 7→ π(g)v is continuous.

For any v, w ∈ Hπ, the coefficient is the continuous function cv,w : G → C given by
cv,w(g) = <π(g)v, w>.

Examples - The trivial representation is the constant representation π(g) = Id. Its
coefficients are constant maps.
- Suppose G acts continuously on a locally compact space X preserving a Radon measure
ν. Then the formula (π(g)ϕ)(x) := ϕ(g−1x) defines a unitary representation π of G in
L2(X, ν). Its coefficients are the correlation coefficients cϕ,ψ : g →

∫
G ϕ(x)ψ(gx)dν(x).

- When G is compact, any unitary representation is a hilbertian orthogonal sum of irre-
ducible unitary representations. By Peter-Weyl, these are finite dimensional.

For H ⊂ G, let us set

HH
π := {v ∈ Hπ / ∀h ∈ H, π(h)v = v}

the subspace of H-invariant vectors. Recall that a Lie group G is semisimple if its Lie
algebra g does not have any nonzero solvable ideal (or equivalently, if the group of auto-
morphims of g is a semisimple R-group) and that G is quasisimple if g is simple.

Theorem 3.2 (Howe, Moore) Let G be a connected semisimple real Lie group with
finite center and π be a unitary representation of G. Suppose that HGi

π = 0 for every
connected normal subgroup Gi 6= 1. Then, for all v, w ∈ Hπ, one has

lim
g→∞

<π(g)v, w> = 0. (3)
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Remarks - The proof of this theorem is postponed to Section 3.4.
- The symbol g →∞ means that g goes out of any compact of G.
- There are only finitely many Gi. When G is quasisimple, the hypothesis is HG

π = 0.

Corollary 3.3 Let G be a connected semisimple real Lie group with finite center and π
be a unitary representation of G without nonzero G-invariant vectors. Let H be a closed
subgroup of G whose images in the factors G/Gi 6= 1 are noncompact. Then HH

π = 0.

Remark - When g is simple, the hypothesis is H noncompact.

Proof By induction, one can suppose that ∀i, HGi
π = 0. Let v be a H-invariant vector.

The coefficient cv,v is constant on H. By Theorem 3.2, it has to be zero. Hence v = 0. ♦

3.2 Invariant vectors for SL(2)

Let us begin with a direct proof of Corollary 3.3 for SL(2,R).

For t > 0 and s ∈ R, let at :=
(

t 0
0 t−1

)
, us :=

(
1 s
0 1

)
, u−s :=

(
1 0
s 1

)
.

Proposition 3.4 Let π be a unitary representation of G = SL(2,R), t 6= 1, s 6= 0 and
v ∈ Hπ. If v is either at-invariant, us-invariant or u−s -invariant then it is G-invariant.

The proof uses the following lemma

Lemma 3.5 (Mautner) Let π be a unitary representation of a locally compact group
G. For v ∈ Hπ, ‖v‖ = 1, let Sv ⊂ G be its stabiliser Sv = {g ∈ G / π(g)v = v}. Then
a) Sv = {g ∈ G / cv,v(g) = 1}.
b) Let g ∈ G such that there exist gn ∈ G, sn ∈ Sv, s′n ∈ Sv satisfying
lim
n→∞

gn = g , lim
n→∞

sngns
′
n = e. Then g is in Sv.

Proof a) Use the equality ‖π(g)v − v‖2 = 2 ‖v‖2 − 2 Re(cv,v(g)).
b) Let n go to infinity in the equality cv,v(gn) = cv,v(sngns

′
n) to get cv,v(g) = 1. ♦

Proof of Proposition 3.4 It is enough to prove that the invariance of v by one among
at, us, u

−
s implies the invariance by the other two. Thanks to symmetries, there are only

two cases to deal with:

at-invariant =⇒ us-invariant. One may suppose t > 1. One uses Lemma 3.5.b with
gn = g = us, sn = a−nt and s′n = ant . One easily checks that lim

n→∞
sngns

′
n = lim

n→∞
ut−2ns = e.

us-invariant =⇒ at-invariant. One may suppose that t is rational, t = p
q
. One uses

Lemma 3.5.b with g = at, gn =
( p

q 0
t−1
snp

q
p

)
, sn = u−nps and s′n = unqs . One easily checks

that lim
n→∞

sngns
′
n = lim

n→∞

(
1 0

t−1
snp 1

)
= e. ♦
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3.3 Real semisimple Lie groups

To prove Theorem 3.2, we recall without proof basic facts on the structure
of semisimple Lie groups (see [12]). We use the language of root systems and
parabolic subgroups which, since E.Cartan, is the only convenient one which
allows to deal with all real semisimple Lie groups. At the end we will recall
the meaning of these concepts for the important example G = SL(d,R).

Let G be a connected semisimple Lie group with finite center.

Maximal compact subgroups The group G contains a maximal compact subgroup K
and all such subgroups are conjugate. Let k ⊂ g be the corresponding Lie algebras. There
exists an involution θ of g, called the Cartan involution, whose fixed point set is k. Write
g = k⊕q where q is the fixed point set of −θ. The Killing form K(X, Y ) = tr(adX ◦adY )
is positive definite on q and negative definite on k.

Cartan subspaces An element X of g is said to be hyperbolic if ad(X) is diagonalizable
over R. A Cartan subspace of g is a commutative subalgebra whose elements are hyperbolic
and which is maximal for these properties. All Cartan subspaces are conjugate and a
maximal commutative algebra in q is a Cartan subspace. Let us choose one of them a ⊂ q

and set A := exp(a). By definition, the real rank of G is the dimension of a. The set of
real characters of the Lie group A can be identified with the dual a?. Endowed with the
Killing form, this space is Euclidean.

Restricted roots Let us diagonalize g under the adjoint action of A. One denotes by
∆ the set of restricted roots, i.e. the set of nontrivial weights for this action. It is a
root system. One has a decomposition g = l ⊕ (⊕α∈∆gα), where gα := {Y ∈ g / ∀g ∈
A , Adg(Y ) = α(g)Y } is the root space associated to α and l is the centralizer of a.

Weyl chambers Let ∆+ be a choice of positive roots, ∆− = −∆+, and Π the set of
simple roots. Π is a basis of a?. Let u± := ⊕α∈∆±gα and p = l⊕ u+ the minimal parabolic
subalgebra associated to ∆+. Its normaliser P := NG(p) is the minimal parabolic subgroup
associated to ∆+. Let A+ := {a ∈ A / ∀α ∈ ∆+ , α(a) ≥ 1} be the corresponding Weyl
chamber in A. One has the Cartan decomposition G = KA+K. Let L be the centralizer
of a in G and U± be the connected groups with Lie algebra u±. One has the equality
P = LU+.

Parabolic subgroups For every subset θ ⊂ Π, one denotes by < θ > the vector space
generated by θ, ∆θ := ∆∩ <θ> , ∆±

θ := ∆θ∩∆±, lθ := l⊕⊕α∈∆θ
gα, u±θ := ⊕α∈∆±−∆±

θ
gα,

U±θ the associated connected groups, Aθ := {a ∈ A / ∀α ∈ θ , α(a) = 1}, A+
θ := A+ ∩Aθ,

Lθ the centralizer of Aθ in G. Let pθ := lθ ⊕ u+
θ and Pθ := LθU

+
θ the parabolic subalgebra

and subgroup associated to θ. One knows the following.
(1) The quotient L/A is compact.
(2) Every group containing P is equal to some Pθ.
(3) Pθ is generated by the subgroups P{α} for α ∈ θ.
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(4) The multiplication m : U− × P → G is a diffeomorphism onto a open subset of full
measure.
(5) If θ1 ⊂ θ2, then ∆θ1 ⊂ ∆θ2, Pθ1 ⊂ Pθ2 and U+

θ1
⊃ U+

θ2
.

Example G = SL(d,R). One can take
K = SO(d,R),
A = {a = diag(a1, . . . , ad) / ai > 0 , a1 · · · ad = 1},
A+ = {a ∈ A / a1 ≥ · · · ≥ ad},
∆ = {εi − εj , i 6= j , 1 ≤ i, j ≤ d},
∆+ = {εi − εj , 1 ≤ i < j ≤ d},
Π = {εi+1 − εi , 1 ≤ i < d},
where εi ∈ a? is the differential of the character of A denoted by the same symbol:
εi(a) = ai. The root spaces gεi−εj

are 1-dimensional (with basis Ei,j = e?j ⊗ ei) and one
has l = a [Note that these two properties are satisfied only for split semisimple Lie groups.
They are not satisfied for SO(p, q) when p ≥ q + 2 ≥ 3 ]. One has then,

u+ =


 0 ∗

. . .
0 0

 , p =

{( ∗ ∗
. . .

0 ∗

)}
, u− =


 0 0

. . .
∗ 0

 .

Choosing for instance θc with only two simple roots, one has, in terms of block matrices,

u+
θ =


 0 ∗ ∗

0 0 ∗
0 0 0

 , pθ =


 ∗ ∗ ∗

0 ∗ ∗
0 0 ∗

 , u−θ =


 0 0 0
∗ 0 0
∗ ∗ 0

 ,

lθ =


 ∗ 0 0

0 ∗ 0
0 0 ∗

 , Aθ =


 b1Id 0 0

0 b2Id 0
0 0 b3Id

 ∈ A
 ,

and A+
θ = Aθ ∩A+. Note that another value for θ would give different numbers and sizes

of block matrices.

3.4 Decay of coefficients

In this section we give the proof of Theorem 3.2.

We will need the following lemma which is a special case of the Corollary 3.3 we have
not yet proven.

Lemma 3.6 Let π be a unitary representation of a connected quasisimple real Lie group
with finite center G, a 6= 1 be a hyperbolic element of G, and u 6= 1 be a unipotent element
of G. If v is either a-invariant or u-invariant then it is G-invariant.

Proof First case: v is a-invariant. One can suppose a ∈ A+. Let θ := {α ∈ Π / α(a) = 1}.
The same argument as in Proposition 3.4 shows that v is invariant by Uθ and U−θ . One
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concludes that v is G-invariant thanks to the following fact that the reader can easily
check for G = SL(d,R): the two groups Uθ and U−θ generate G.

Second case: v is u-invariant. According to Jacobson-Morozov, there exists a Lie
subgroup S of G containing u with Lie algebra s ' sl(2,R). By Proposition 3.4, v is
S-invariant. Since S contains hyperbolic elements, we are back to the first case. ♦

Proof of Theorem 3.2 If the coefficient <π(g)v, w> does not decrease to 0, one can
find sequences gn = k1,nank2,n ∈ G = KA+K such that

lim
n
<π(gn)v, w>= ` 6= 0 , lim

n
k1,n = k1 , lim

n
k2,n = k2 ,

and for some α ∈ Π, lim
n
α(an) = ∞. One can suppose that k1 = k2 = e.

Using the weak compactness of the unit ball of Hπ, one can suppose that the sequence
π(an)v has a weak limit v0 ∈ Hπ. This vector v0 is nonzero since

<v0, w> = lim
n
<π(an)π(k2,n)v, π(k−1

1,n)w> = lim
n
<π(gn)v, w>6= 0

Moreover, this vector is u-invariant for all u ∈ U{α}c , because, since a−1
n uan → e,

‖π(u)v0 − v0‖ ≤ lim
n
‖π(an)(π(a−1

n uan)v − v)‖ = 0 .

This contradicts Lemma 3.6. ♦

3.5 Uniform decay of coefficients

In this section, we prove that, for a higher rank semisimple Lie group G
and for K-finite vectors, the decay of coefficients is uniform.

For every vector v in a unitary representation Hπ of G, set

δ(v) = δK(v) = (dim <Kv>)1/2 ∈ N1/2 ∪ {∞}.

Theorem 3.7 (Howe, Oh) Let G be a connected semisimple real Lie group with finite
center, such that, for all normal subgroup Gi 6= 1 of G, one has rankR(Gi) ≥ 2. Then
there exists a K-biinvariant function ηG ∈ C(G) satisfying lim

g→∞
ηG(g) = 0 and such

that, for all unitary representation π of G with HGi
π = 0, ∀ i, for any v, w ∈ Hπ, with

‖v‖ = ‖w‖ = 1, one has, for g ∈ G,

| <π(g)v, w> | ≤ ηG(g)δ(v)δ(w).

Remark The (most often) best function ηG has been computed by H.Oh ([17]), thanks
to Harish-Chandra’s function

ξ(t) := (2π)−1
∫ 2π

0
(t cos2 s+ t−1 sin2 s)−1/2ds (4)

� t−1/2 log t for t� 1 . (5)
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For instance, for G = SL(d,R) where d ≥ 3 and a = diag(t1, . . . , td) ∈ A+, one can take

ηG(a) =
∏

1≤i≤[n/2]

ξ(
ti

tn+1−i
) . (6)

The proof is based on the following two propositions.

Definition 3.8 Let σ, τ be unitary representations of G. One says that σ is weakly
contained in τ , and one writes σ ≺ τ , if

∀ ε > 0, ∀C compact in G, ∀ v1, . . . , vn ∈ Hσ , ∃w1, . . . , wn ∈ Hτ /
| <σ(g)vi, vj> − <τ(g)wi, wj> | ≤ ε , ∀ g ∈ C , ∀ i, j ≤ n .

For g = kan ∈ G let us set H(g) := a, let us introduce the Harish-Chandra spherical
function ξG

ξG(g) :=
∫
K
ρ(H(gk))−1/2dk where ρ(a) = detn(Ad(a)) .

The following proposition will be applied not directly to G but to a subgroup of G
isomorphic to SL(2,R)e.

Proposition 3.9 Let G be a connected real semisimple Lie group with finite center, and π
be a unitary representation of G which is weakly contained in the left regular representation
λG. Then for every v, w ∈ Hπ with ‖v‖ = ‖w‖ = 1, and every g ∈ G, one has

| <π(g)v, w> | ≤ ξG(g) δK(v) δK(w) (7)

Proof Let us first prove these inequalities for the left regular representation λG.
First note that

for every v in L2(G), left K-finite, with ‖v‖ = 1, there exists a positive left K-invariant
function ϕ ∈ L2(G) with ‖ϕ‖ = 1 such that, for all x ∈ G, one has |v(x)| ≤ δ(v)ϕ(x).
One can take ϕ(x) := δ(v)−1(

∑
i

|vi(x)|2)1/2 where vi is an orthonormal basis of <Kv>.

If ψ is the positive K-invariant function associated in the same way to w, one gets

| <π(g)v, w> | ≤
∫
G
|v(g−1x)w(x)|dµ(x)

≤ δ(v)δ(w)
∫
G
ϕ(g−1x)ψ(x)dµ(x) ≤ δ(v) δ(w) <π(g)ϕ, ψ> .

These functions ϕ, ψ ∈ L2(G) are left K-invariant, positive and of norm 1. We want to
prove the majoration

| <π(g)ϕ, ψ> | ≤ ξG(g) . (8)
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Using the formula for the Haar measure as in Lemma 2.3, one computes

| <π(g)ϕ, ψ> | =
∫
K

(∫
AN

ϕ(an)ψ(gkan)ρ(a)dadn
)
dk

≤ ‖ϕ‖L2

∫
K

(∫
AN

ψ(H(gk)an)2ρ(a)dadn
)1/2

dk

= ‖ϕ‖L2‖ψ‖L2

∫
K
ρ(H(gk))−1/2dk

using the Cauchy-Schwarz inequality in L2(AN) and the K-invariance of ϕ and ψ.
Let us now deduce these inequalities for π. The main point is to show that, starting from

a finite family vi of vectors in Hπ such that, ∀ k ∈ K, ∀ i, one has π(k)vi =
∑
j ui,j(k)vj,

then one can find vectors w′i ∈ L2(G) as in Definition 3.8 satisfying moreover λG(k)w′i =∑
j ui,j(k

−1)w′j. For this purpose, just replace the family wi given in Definition 3.8 by
w′i =

∫
K

∑
j ui,j(k)λG(k)wj. ♦

Let us compute the function ξG for G = SL(2,R)e.

Let us show that for at = (diag(t
1/2
1 , t

−1/2
1 ), . . . , diag(t1/2e , t−1/2

e )) ∈ A+, one has

ξG(at) = ξ(t1) · · · ξ(te). (9)

One can suppose e = 1, i.e. G = SL(2,R). Then, for

k =
(

cos s −sin s
sin s cos s

)
and at =

(
t1/2 0
0 t−1/2

)
, one has

ρ(H(atk)) = ‖atk e1‖2 = t cos2 s+ t−1 sin2 s ,

and formula (9) is a consequence of Definition (4). ♦

Proposition 3.10 Let V be a finite dimensional representation of G := SL(2,R), without
nonzero invariant vectors. Let π be an irreducible unitary representation of the semidirect
product VoG such that HV

π = 0. Then the restriction of π to G is weakly contained in
the sum ∞λG of infinitely many copies of the regular representation λG.

Sketch of proof of Proposition 3.10 By Mackey’s theorem (see [30] or [13]), such
a representation π of VoG is induced from an irreducible representation σ of a proper
subgroup H of VoG containing V . Such a subgroup is solvable hence amenable, so σ
is weakly contained in the regular representation λH (see Definition 4.1). Therefore π is
weakly contained in λVoG. ♦

Proof of Theorem 3.7 We will prove this theorem only for SL(d,R), but with the
bound given by (6). The proof in the general case is similar.

Let e := [d
2
] and

S := S1 × · · · × Se ⊂ G = SL(d,R) ,

29



where Si ' SL(2,R) is the subgroup whose Lie algebra has basis Ei,j, Ej,i, Ei,i−Ej,j with
j = n+ 1− i. These subgroups commute. Let

B := A ∩ S = {a = diag(t1, . . . , td) ∈ A / titn+1−i = 1 ∀ i ≤ e} and

C := {a = diag(t1, . . . , td) ∈ A / ti = tn+1−i ∀ i ≤ e} .

For g = k1ak2 ∈ G = KA+K, write a = bc with b ∈ B, c ∈ C.
Note that G contains some subgroups Gi = VioSi where Vi ' R2 has a nontrivial

Si-action. According to Lemma 3.6, Hπ does not contains any Vi-invariant vector. Thus,
by Proposition 3.10, the restriction π|Si

is weakly contained in the infinite sum of regular
representation ∞λSi

, hence π|S is also weakly contained in ∞λS. Therefore, one can
apply Proposition 3.9 and formulas (6) and (9) to get the following upper bound, where
KS := K ∩ S,

| <π(g)v, w> | = | <π(b)π(ck2)v, π(k−1
1 )w> |

≤ ξS(b) δKS
(π(ck2)v) δKS

(π(k−1
1 )w)

= ηG(a) δKS
(π(k2)v) δKS

(π(k−1
1 )w)

≤ ηG(a) δK(v) δK(w) ,

because S and C commute. ♦

3.6 Property T

Definition 3.11 One says that a continuous representation of a locally compact group G
in a Banach space B almost has invariant vectors if, one has

∀ε > 0, ∀C compact in G, ∃v ∈ B / ‖v‖ = 1 and ∀g ∈ C, ‖g v − v‖ ≤ ε .
Such a vector v is called (ε, C)-invariant.

One says that G has Kazhdan’s property T if every unitary representation of G which
almost has invariant vectors actually has nonzero invariant vectors.

The main motivation for this definition are the following three propositions, which are
essentially due to Kazhdan.

Proposition 3.12 (Kazhdan) Let G be a connected quasisimple real Lie group with
finite center. If rankR(G) ≥ 2, then G has property T .

Proposition 3.13 Let Γ be a lattice in a locally compact group G.
If G has property T , then Γ also has property T .

Proposition 3.14 Let Γ be a discrete group with property T . Then
a) the group Γ is finitely generated,
b) the quotient Γ/[Γ,Γ] is finite.

As a consequence of these three propositions, one gets the main result of this section.
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Corollary 3.15 Let Γ be lattice in a connected quasisimple real Lie group with finite
center. Suppose that rankR(G) ≥ 2. Then Γ is finitely generated and Γ/[Γ,Γ] is finite.

Proof of Proposition 3.12 Let π be a unitary representation which almost has G-
invariant vectors. This means that for every ε > 0 and every compact C of G, one can
find a (ε/2, C)-invariant vector v in Hπ. One may suppose that ε < 1 and that C is
K-biinvariant, containing K and containing an element g with ηG(g) ≤ 1/2.

The average w :=
∫
K π(k)v dk is a K-invariant vector of norm ‖w‖ ≥ 1/2 such that,

for all g in C, ‖π(g)w − w‖ ≤ ε/2. Hence the vector v′ := w/‖w‖ is K-invariant and
(ε, C)-invariant.

IfHπ does not have G-invariant vector, this contradicts the bound cv′,v′(g) ≤ ξ(g) ≤ 1/2
given by Theorem 3.7. ♦

Proof of Proposition 3.13 Let π be a unitary representation of Γ which almost has
Γ-invariant vectors. We want to prove that it actually has a Γ-invariant vector. For that
we will construct a representation σ of G, the induced representation, and show that it
almost has G-invariant vectors.

Let µ be the right Haar measure on G such that µ(G/Γ) = 1. Note that, by conservation
of the volume, this measure is also left invariant. One can choose a Borel subset F ⊂ G
such that the map m : F × Γ → G; (x, γ) 7→ xγ is a bijection. It is easy to choose F such
that, for any compact C of G, m−1(C) is relatively compact in G × Γ. Let us write, for
g ∈ G and x ∈ G,

m−1(gx) = (xg, gx) .

Define a representation σ by

Hσ = {f : G→ Hπ measurable / ∀g ∈ G , ∀γ ∈ Γ , f(g) = π(γ)f(gγ)

and
∫
F
‖f(x)‖2

Hπ
dµ <∞},

(σ(g−1)f)(x) := f(gx) = π(gx)f(xg).

Let C be a compact of G and ε > 0. Let F1 ⊂ F be a relatively compact subset of G
such that µ(F−F1) < ε2/8, and Γ1 be the finite set Γ1 := {gx / g ∈ C , x ∈ F1}. Let
v ∈ Hπ be a (ε/2,Γ1)-invariant vector and define f ∈ Hσ by f |F = v. This vector f is
(ε, C)-invariant, since one has the majoration, for all g in C,

‖σ(g−1)f − f‖2
Hσ

≤
∫
F−F1

4 dµ(x) +
∫
F1

‖π(gx)f(xg)− f(x)‖2
Hπ
dµ(x)

≤ ε2/2 + (ε/2)2 ≤ ε2 .

Since G has property T , Hσ contains a nonzero G-invariant vector f0. This function is
almost always equal to a nonzero vector v0 ∈ Hπ which is then Γ-invariant. ♦

Proof of Proposition 3.14 a) Consider the unitary representation of Γ in the Hilbert
direct sum ⊕∆ `

2(Γ/∆) where ∆ ranges over all finitely generated subgroups of Γ. The
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vectors δ∆ ∈ `2(Γ/∆) ⊂ H are (0,∆)-invariant. Therefore, this representation almost has
invariant vectors. Property T implies that HΓ 6= 0, hence, for some ∆, `2(Γ/∆)Γ 6= 0,
Γ/∆ is finite and Γ is finitely generated.

b) Since Γ is finitely generated, if the quotient Γ/[Γ,Γ] were infinite, there would exist
a surjective morphism Γ → Z and Z would have property T . However, the regular
representation of Z in `2(Z) almost has invariant vectors, vn := n−1/2

∑
0≤k<n

δk, but has no

invariant vector. Contradiction. ♦

3.7 Ergodicity

One of the main applications of the decay of coefficients is the ergodicity
of some flows on the quotients G/Γ of finite volume.

Proposition 3.16 Let G be a connected semisimple real Lie group with finite center and
H be a closed subgroup of G whose images in the factors G/Gi 6= 1 are noncompact. Let
Γ be a lattice in G and ν be the G-invariant probability measure on X := G/Γ.

Then the action of H on X is ergodic and mixing.

Remarks - ergodicity means that any H-invariant measurable subset A of X satisfies
ν(A) = 0 or 1.
- mixing is a stronger property. It means that ∀A,B ⊂ X , lim

h→∞
ν(A ∩ hB) = ν(A)ν(B).

- Note that the ergodicity of the geodesic flow or of the horocycle foliation for the associ-
ated locally symmetric space K\G/Γ is a special case of this corollary.

Proof Let A ⊂ X be a H-invariant measurable subset. Let π be the unitary representa-
tion of G in L2

0(X) := {f ∈ L2(X, ν) /
∫
X fdν = 0}. One has L2

0(X)G = 0. The vector
vA = 1A − ν(A) is a H-invariant vector in L2

0(X). By Corollary 3.3, one has vA = 0.
Hence ν(A) = 0 or 1. This proves ergodicity. Mixing uses the same proof with Theorem
3.2 and the equality

ν(hA ∩B)− ν(A)ν(B) =<π(h)vA, vB>. ♦

Corollary 3.17 Let Γ be a lattice in a quasisimple real Lie group G and a ∈ A+, a 6= 1.
Then, for almost all x ∈ G/Γ, the semi-orbit {anx , n ≥ 0} is dense in G/Γ.

Proof The density of almost all quasi-orbits is a classical consequence of ergodicity: since
G/Γ is metrisable separable, it is enough to show that, for almost all open set O, the union
∪n≥0a

−nO is of full measure. This follows from its a-invariance and from ergodicity. ♦

Remark The mixing speed can be estimated thanks to the uniform decay of coefficients
given in Theorem 3.7.
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4 Lecture on Boundaries

The aim of this lecture is to show how measurable Γ-equivariant maps
between “boundaries” can be used to prove some algebraic properties for a
lattice Γ in a higher rank simple Lie group G.

We will prove a theorem of Margulis which says that Γ is almost simple,
i.e. any normal subgroup of Γ is either finite or of finite index.

Note that the same tool is at the heart of the proof of the Margulis super-
rigidity theorem, but we will not discuss this here.

4.1 Amenability

Let us recall a few different equivalent definitions of amenability.

In this section G is a locally compact (metrisable and separable) space and µ is a left
Haar measure on G. Let

UCB(G) := {f ∈ L∞(G) / lim
y→e

sup
x∈G

|f(yx)− f(x)| = 0}

be the set of bounded functions f : G→ C which are left uniformly continuous.
A mean on L∞(G) or on UCB(G) is a linear form m such that

m(1) = 1 and (f ≥ 0 ⇒ m(f) ≥ 0).
Such a linear form m is real, i.e. m(Re(f)) = Re(m(f)) and continuous: |m(f)| ≤ ‖f‖∞.

Let 1G be the trivial representation of G in C, λG the regular representation of G, and
∞λG the Hilbert direct sum of infinitely many copies of λG.

Definition 4.1 (Godement, Hulanicki) A locally compact group G is amenable if it
satisfies one of the following equivalent properties.
(1) For every continuous action of G on a compact space X, there exists an invariant
probability measure on X.
(1′) Same statement with X metrisable.
(2) For every continuous affine action of G on a compact convex subset A of a Hausdorff
locally convex topological vector space E, there exists a fixed point in A.
(2′) Same statement with E metrisable.
(3) UCB(G) has a left-invariant mean.
(4) L∞(G) has a left-invariant mean.
(5) L1(G) almost has left-invariant vectors.
(6) L2(G) almost has left-invariant vectors, i.e. 1G ≺ λG (see Definition 3.8).
(7) For every irreducible unitary representation π of G, one has πG ≺ ∞λG.
(8) 1G ≺ ∞λG.

At first glance, these eight properties look quite different. After rereading them care-
fully, one realizes that all of them have to do with fixed points or almost fixed point of
some G-actions.
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Using these definitions, one easily obtains the following examples:

Examples - The groups Z and R are amenable. Note that these two groups do not
have invariant probability measures. Examples of invariant means on L∞(Z) are given
by taking limits with respect to some ultrafilter of Z. Invariant means are not unique.
Property (2) for Z is an old result of Kakutani, whose proof is the following sentence:
one can get a fixed point as a cluster point of the sequence of barycenters of the first n
points of an orbit of Z in A. Property (6) for Z has already been proven in the proof of
Proposition 3.14.
- A compact group is amenable: use property (6).
- An extension of two amenable groups is amenable: use property (2).
- A solvable Lie group is amenable.
- A noncompact semisimple real Lie group is not amenable: property (1) is not satisfied
since the action of G on G/P does not have any invariant probability measure.

The main tools in the proof of these equivalences are those provided by classical func-
tional analysis.

Let us prove (1) ⇔ (1′) ⇔ (2) ⇔ (2′).
(1′) ⇒ (2′) The barycenter of a G-invariant probability measure on A is a fixed point.
(2′) ⇒ (1) Let F := C(X) = {continous functions on X}, E := F ? = M(X) = {bounded

measures on X} and A := P(X) = {probabilities on X} ⊂ E. The action of G on
A is continuous and affine. Here E is not assumed to be metrisable but, since G is
separable, one can write F = ∪Fα where the Fα are the separable closed G-invariant
vector subspaces of F . For all α, let pα : E → F ?

α be the restriction map from F to Fα.
Since F ?

α is metrisable, G has a fixed point in pα(A). The intersection of the family of
nonempty compact sets Aα := {a ∈ A / pα(a) is G-invariant} is also nonempty. It is the
set of fixed points of G in A.

(1) ⇒ (2) Same as (1′) ⇒ (2′) but without the metrisability hypothesis.
(2) ⇒ (1′) Same as (2′) ⇒ (1) but easier.

Let us prove the equivalences of (3) and (4) with the previous ones.

(2) ⇒ (3) The action of G on UCB(G) by left-translations, given by π(g)f(x) := f(g−1x),
∀f ∈ UCB(G), ∀g, x ∈ G, is continuous. Hence the action on the set A of means
on UCB(G) is also continuous. This set is closed, convex, and bounded, hence weakly
compact. Any fixed point of this action is an invariant mean.

(3) ⇒ (4) First recall a few basic definitions and properties of convolution.
For ν ∈ P(G), F ∈ L∞(G), f ∈ UCB(G), α ∈ Cc(G) and x ∈ G, one has

ν ? F (x) =
∫
G F (y−1x)dν(y) ,

α ? f (x) =
∫
G α(y)f(y−1x)dµ(y).

Recall that one has ν?F ∈ L∞(G) and α?F ∈ UCB(G). Moreover, for any approximation
of identity βn ∈ Cc(G), the sequence βn ?f converges uniformly to f . One has also similar
statements with F ? α and f ? βn.

We will show the following assertion.
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Lemma 4.2 If UCB(G) has a left invariant mean m, then there exists an invariant
mean m̃ on L∞(G) such that ∀α ∈ Cc(G) satisfying

∫
G αdµ = 1, ∀F ∈ L∞(G), one has

m̃(α ? F ) = m̃(F ).

Proof First notice that, since α ? f is a uniform limit of averages of translates of f , one
has m(α ? f) = m(f) for any f ∈ UCB(G). Then fix an element α0 ∈ Cc(G) such that∫
G α0dµ = 1 and define a mean m̃ on L∞(G) by m̃(F ) = m(α0 ? F ). One computes

m̃(α ? F ) = lim
n
m(α0 ? α ? F ? βn) = lim

n
m(F ? βn) = lim

n
m(α0 ? F ? βn)

= m(α0 ? F ) = m̃(F ).

Now we deduce from this the invariance of m̃. Define as above π(g)F : x → F (g−1x),
note that α?π(g)F = αg ?F where αg(x) := ∆(g)−1α(xg−1), here ∆ denotes the modulus
function. Compute

m̃(π(g)F ) = m̃(α ? π(g)F ) = m̃(αg ? F ) = m̃(F ). ♦

(4) ⇒ (1) Let m be an invariant mean on L∞(G). Fix a point x0 ∈ X and associate to
any function h ∈ C(X) a function h̃ ∈ L∞(G) defined by h̃(g) = f(g x0). The formula
µ(h) = m(h̃) then defines a G-invariant probability measure on X.

Let us prove the equivalence of (5) with the previous properties.

(3) ⇒ (5) Recall that L∞(G) ' L1(G)?, and denote by ϕ → mϕ the natural injection of
L1(G) in the dual of L∞(G) given by mϕ(F ) =

∫
G ϕFdµ. Let

P (G) := {ϕ ∈ L1(G) / ϕ ≥ 0 and
∫
G
ϕdµ = 1}.

Let us first show that P (G) is weakly dense in the set of means on L∞(G). To that
purpose, notice that, if we endow L∞(G)? with the weak topology, its dual is L∞(G). If a
mean m was not in the weak closure of the convex set P (G), the Hahn-Banach theorem
would give an element F ∈ L∞(G) such that m(F ) > ` where ` := supϕ∈P (G)

∫
G ϕFdµ is

the essential sup of F . Contradiction with m(`− F ) ≥ 0.
Choose a mean m̃ on L∞(G) as in Lemma 4.2. Let ϕj ∈ P (G) be a filter such that mϕj

converges to m̃. Note that, since L∞(G)∗ is not metrisable, one has to use filters instead
of sequences. From the equalities mα?ϕj

(F ) = mϕj
(α′ ? F ) where α′(g) = ∆(g)−1α(g−1),

one deduces that
α ? ϕj − ϕj weakly converges to 0 for all α ∈ Cc(G) satisfying

∫
G αdµ = 1.

Let us show that one can choose ϕj such that this convergence is strong. Let
∏
α L

1(G)
be the product of infinitely many copies of L1(G) indexed by all the test functions α whose
integral equals 1. Its dual is the direct sum ⊕αL

∞(G). Let T : L1(G) −→ ∏
α L

1(G) be
the linear map defined by T (ϕ)α := α ? ϕ− ϕ.

We have shown that 0 belongs to the weak closure of the convex set T (P (G)). The
Hahn-Banach theorem implies that the weak closure of a convex set is equal to its strong
closure. Hence there is a filter, still denoted by ϕj ∈ P (G), such that,

‖α ? ϕj − ϕj‖L1 converges to 0 for all α ∈ Cc(G) satisfying
∫
G αdµ = 1. (10)
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Let ε > 0 and C be a compact of G. Recall that we want to find an element ϕ ∈ P (G)
such that, for all g ∈ K, one has ‖π(g)ϕ − ϕ‖L1 ≤ ε. Let us fix β ∈ P (G), we will show
that a suitable ϕ := β ? ϕj works.

By continuity of the left translation in L1(G), there exists an open neighborhood U of
e in G such that for all y ∈ U , one has ‖π(y)β − β‖L1(G) ≤ ε/3 .

Let us choose a covering of C by finitely many translates x1U , . . . , xnU . Thanks to (10),
one can find j such that, ‖(π(xi)β) ? ϕj − ϕj‖L1 ≤ ε/3 , ∀ i = 1, . . . , n. Writing g = xiy
with i ≤ n and y ∈ E, one gets
‖π(g)ϕ− ϕ‖L1

≤ ‖(π(xiy)β) ? ϕj − (π(xi)β) ? ϕj‖L1 + ‖(π(xi)β) ? ϕj − ϕj‖L1 + ‖ϕj − β ? ϕj‖L1

≤ ‖(π(y)β) ? ϕj − β ? ϕj‖L1 + 2ε/3 ≤ ‖π(y)β − β‖L1 ‖ϕj‖L1 + 2ε/3 ≤ ε.
(5) ⇒ (4) By asumption, there exists a sequence ϕj ∈ L1(G) such that ‖ϕj‖L1 = 1 and,
∀g ∈ G, lim

j→∞
‖π(g)ϕj−ϕj‖L1 = 0. Replacing ϕj by |ϕj|, one may suppose that ϕj ∈ P (G).

Since the set of means on L∞(G) is closed and bounded, it is weakly compact. Any cluster
value m of the sequence ϕj is an invariant mean since, ∀F ∈ L∞(G), one has

|m(π(g)F − F )| = lim
∣∣∣mϕj

(π(g)F − F )
∣∣∣ = lim

∣∣∣∣∫
G
(π(g−1)ϕj − ϕj)Fdµ

∣∣∣∣
≤ lim ‖F‖L∞‖π(g−1)ϕj − ϕj‖L1 = 0.

Let us prove the equivalence of (6), (7) and (8) with the previous properties.

(5) ⇒ (6) If ϕ is a vector of L1(G) of norm 1 such that ‖π(g)ϕ− ϕ‖L1 ≤ ε, then ψ := |ϕ| 12
is a vector of L2(G) of norm 1 such that ‖π(g)ψ − ψ‖L2 ≤ ε.

(6) ⇒ (5) If ψ is a vector of L2(G) of norm 1 such that ‖π(g)ψ − ψ‖L2 ≤ ε, then ϕ := |ψ|2
is a vector of L1(G) of norm 1 such that, by Cauchy-Schwarz:
‖π(g)ϕ− ϕ‖L1 ≤ ‖π(g)|ψ|+ |ψ|‖L2 ‖π(g)|ψ| − |ψ|‖L2 ≤ 2ε.

(6) ⇒ (7) The operator U : L2(G)⊗Hπ → L2(G,Hπ) given by U(ψ⊗ v)(x) = ψ(x)π(x−1)v
defines a unitary equivalence between λG ⊗ π and the representation of G in L2(G,Hπ)
given by (g F )(x) = F (g−1x) which is equivalent to dim(Hπ)λG. Therefore, if 1G is weakly
contained in λG, then π = 1⊗ π is weakly contained in λG ⊗ π hence in ∞λG.

(7) ⇒ (8) Clear.
(8) ⇒ (4) Let us first show that the function 1 ∈ L∞(G) belongs to the weak closure of the

set C of coefficients cψ,ψ of functions ψ ∈ L2(G), such that ‖ψ‖L2 = 1. Our hypothesis
means that, for all ε > 0 and all compact C of G, there exists a sequence ψi ∈ L2(G)
of elements of norm 1 and a sequence ai ∈ C such that

∑
i |ai|2 = 1 and, for all g ∈ C,

|1−∑i |ai|2cψi,ψi
(g)| ≤ ε. Hence the function 1 belongs to the weak closure of the closed

convex hull co(C) of C. But the function 1 is an extremal point in the unit ball of L∞(G).
Hence it is also an extremal point of co(C). Such a point belongs to the weak closure of
C (this almost means 1G ≺ λG but not quite).

In other words, we have found a sequence ψj ∈ L2(G) with ‖ψj‖L2 = 1 such that the
sequence of elements of L∞(G) given by g 7→ ‖π(g)ψj − ψj‖L2 weakly converges to 0.
Let ϕj := |ψj|2 ∈ L1(G). The same argument as (6) ⇒ (5) shows that the sequence of
elements of L∞(G) given by g 7→ ‖π(g)ϕj −ϕj‖L1 weakly converges to 0. This hypothesis
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is enough to follow the arguments of the implication (5) ⇒ (4). Therefore, every mean m
in the closure of the sequence mϕj

is G-invariant. ♦

4.2 The normal subgroup theorem

The following theorem is the aim of this lecture.

Theorem 4.3 (Kazhdan, Margulis) Let G be a real linear quasisimple Lie group. If
rankR(G) ≥ 2, then any lattice Γ in G is quasisimple, i.e. every normal subgroup N of Γ
is either finite or of finite index.

Remark This theorem is still true for G semisimple if the lattice Γ is irreducible. But
the following proof has to be modified when G has a factor of real rank 1.

Sketch of proof of Theorem 4.3 The main idea hidden behind the proof of this
theorem is to consider the σ-algebra M(Y )N of N -invariant Borel subsets of Y := G/P ,
modulo those of measure zero. Since N is normal in Γ, this σ-algebra is Γ-invariant. One
first proves that any Γ-invariant σ-algebra of G/P is the inverse image of the σ-algebra
of all Borel subsets on G/P ′ for a bigger group P ′ ⊃ P (Theorem 4.5 and Lemma 4.6).

When M(Y )N is non trivial, i.e. when P ′ 6= G, the group N acts trivially on G/P ′ and
N is in the center of G.

When M(Y )N is trivial, one shows that Γ/N is amenable. For that purpose, one con-
structs, for every continuous action of Γ/N on a compact metrisable space X, a boundary
map, i.e. a measurable Γ-equivariant map

Φ : G/P −→ P(X).

Since M(Y )N is trivial, such a boundary map must be constant. Its image is a Γ/N -
invariant probability measure on X, which proves the amenability of Γ/N . Using property
T, one deduces that Γ/N is finite.

The detailed proof will last up to the end of this lecture.

4.3 The boundary map

Starting from an action of Γ on a compact space X, one constructs a
boundary map.

Proposition 4.4 (Furstenberg) Let Γ be a lattice in a semisimple Lie group G acting
continuously on a compact metrisable space X and P be a minimal parabolic subgroup of
G. Then there exists a measurable Γ-equivariant map Φ : G/P → P(X).

- Recall that we set C(X) := {continuous functions on X}, M(X) := {bounded mea-
sures on X} and P(X) := {probabilities onX}.

- We endowed implicitly G/P with a G-quasiinvariant measure, for instance a K-
invariant measure.
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- Measurable means that for every Borel subset E of the compact metrisable space
P(X), the pullback Φ−1(E) is measurable in G/P i.e. equal to a Borel subset of G/P up
to some negligeable set.

- Γ-equivariant means that for all γ in Γ and almost all x in G/P , one has Φ(γx) =
γΦ(x).

- The map Φ is called boundary map, since G/P may be thought of as a boundary of
the symmetric space G/K.

Proof Let F := L1
Γ(G,C(X)) be the space of Γ-equivariant measurable maps f : G →

C(X) such that ‖f‖ :=
∫
Γ\G

‖f(g)‖∞dg < ∞. Let E := L∞Γ (G,M(X)) be the space of

bounded, Γ-equivariant, measurable maps m : G→M(X). The duality

<m, f >:=
∫
Γ\G

<m(g), f(g)> dg

gives an identification of E with the continuous dual of F , because if Y is a fundamental
domain of Γ in G, one has F ' L1(Y,C(X)) and E ' L∞(Y,C(X)?) ' F ?. The subset
A = L∞Γ (G,P(X)) ⊂ E is convex, closed, and bounded, hence weakly compact. Right
translation on G induces continuous actions of G on F , E, and A.

Since P is a compact extension of a solvable group, it is amenable and hence has a fixed
point Φ in A. This point Φ is the required measurable map, since a P -invariant element
of E is almost surely equal to a measurable function which is constant on the orbits of P .
♦

4.4 Quotients of G/P

For every measured space (Z, µ) where µ is a σ-finite measure, one denotes by M(Z) =
M(Z, µ) the σ-algebra of measurable subsets of Z modulo those of measure zero. In other
words,

M(Z) ' {f ∈ L∞(Z) / f 2 = f}.

Theorem 4.3 will be a consequence of the following theorem which we will prove in the
following sections.

Theorem 4.5 (Margulis) Let G be a quasisimple Lie group of real rank at least 2, Γ
a lattice in G, P a minimal parabolic subgroup and M ⊂ M(G/P ) a Γ-invariant sub-σ-
algebra. Then M is G-invariant.

Remarks - This theorem is still true for G semisimple if the lattice Γ is irreducible.
- Note that, by Proposition 3.16, the action of Γ on G/P is ergodic, i.e. any Γ-invariant
Borel subset of G/P is of zero or full measure. Theorem 4.5 is a far-reaching extension of
this assertion.
- When rankR(G) = 1, any cocompact lattice Γ in G contains an infinite normal subgroup
N such that Γ/N is not amenable. In this case the σ-algebra M(G/P )N is Γ-invariant
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but not G-invariant. The younger reader will check the existence of N when Γ is the π1

of a compact surface, noting that such a group has a nonabelian free quotient. The more
advanced reader will notice that this property is true for any Gromov hyperbolic group.

The following lemma, which is true for any separable locally compact group G, empha-
sizes the conclusion of Theorem 4.5.

For a closed subgroup H of G, the σ-algebra M(G/H) can be identified with the σ-
algebra M(G,H) of Borel right H-invariant subsets of G.

Lemma 4.6 For every left G-invariant σ-subalgebra of M(G), there exists a closed sub-
group H of G such that M = M(G,H).

Remark For all closed subgroups H1, H2 ⊂ G, one has the equivalence

H1 ⊂ H2 ⇐⇒ M(G,H1) ⊃ M(G,H2).

Therefore, the σ-algebra generated by M(G,H1) and M(G,H2) is M(G,H1 ∩H2).

Proof of Lemma 4.6 Let Ω := L∞(G,M) ⊂ L∞(G) be the subspace of M-measurable
bounded functions. Recall the topology of convergence in measure on L∞(G), i.e. the
topology of uniform convergence outside a suitable subset of arbitrarily small measure.
The sets

OC,ε(f) = {g ∈ L∞(G) / µ({x ∈ C / |g(x)− f(x)| > ε) < ε},

for C ⊂ G of finite measure and ε > 0, constitute a basis of neighborhoods of an element
f ∈ L∞(G). Let Ω0 := Ω ∩ C(G). One checks successively that
- Ω is closed in L∞(G) for the convergence in measure;
- ∀ϕ ∈ Cc(G), ∀f ∈ Ω, ϕ ? f ∈ Ω0;
- Ω0 is dense in Ω for the convergence in measure.

For x in G, the closed subgroup Hx := {h ∈ G / f(xh) = f(x) ∀f ∈ Ω0} does
not depend on x because M is G-invariant. Let us write H := Hx. By definition, Ω0

is a subalgebra of C(G/H) which is closed for the topology of uniform convergence on
all compacts and which separates points. The Stone-Weierstrass theorem shows that
Ω0 ' C(G/H). Hence, one has Ω = M(G,H). ♦

Proof that Theorem 4.5 implies Theorem 4.3
First case: Γ/N is amenable. Since rankRG ≥ 2, G has property T. By Proposition

3.13, Γ and its quotient Γ/N also have property T . But an amenable group with property
T is compact, because, since the regular representation must have an invariant vector, its
Haar measure is finite. Thus Γ/N is finite.

Second case: Γ/N is not amenable. There exists a continuous action of Γ/N on a
compact metrisable space X with no invariant probability measure. By Proposition 4.4,
there exists a measurable Γ-equivariant map Φ : G/P −→ P(X) which is not essentially
constant.
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Let M := {Φ−1(A) / A Borel subset of P(X)} modulo the subsets of measure zero.
This σ-algebra M on G/P is Γ-invariant and all M ∈ M are N -invariant. By Theorem
4.5 and Lemma 4.6, there exists a subgroup P ′ 6= G such that M = M(G,P ′). But then
all the Borel subsets of G/P ′ are N -invariant, hence the action of N on G/P ′ is trivial
and N is included in the center Z(G) :=

⋂
g∈G

gP ′g−1 of G, since G is quasisimple. ♦

4.5 Contracting automorphisms

The proof of Theorem 4.5 relies on the following proposition, which will
be proved in the next section.

Proposition 4.7 Let H be a separable locally compact group, ϕ : H → H a contracting
automorphism and E ⊂ H a measurable Borel subset.

Then, for almost all h in H, one has the following convergence in measure:

lim
n→∞

ϕ−n(hE) =

{
H if hE 3 e ,
∅ if hE 63 e .

Remarks - Contracting means that any compact of H can be sent into any neighborhood
of e by ϕn if n is sufficiently large.
- Convergence in measure means convergence in measure of the characteristic functions.
- To get some feeling of what happens, think of the extreme cases when hE contains or
avoids a neighborhood of e.

Let us keep the notations of Section 3.3 and set L−θ = U− ∩ Lθ, so that one has
U− = U−θ L

−
θ . For every subset E ⊂ U−, let us set

ψθ(E) := U−θ (E ∩ L−θ ).

Corollary 4.8 Let a ∈ A+, θ := {α ∈ Π / α(a) = 1}, and M ⊂ U− be a Borel subset.
Then, for almost all u in U−, one has the following convergence in measure on U−:

lim
n→∞

a−nuMan = ψθ(uM).

Proof Since we can replace M by `M for ` in L−θ , it is enough to prove this assertion for
almost all u in U−θ . Let M` := M ∩ U−θ ` be the fibers of the projection of M on L−θ .

By definition, conjugation by a is a contracting automorphism of U−θ . By Proposition
4.7, for all ` in L−θ and almost all u in U−θ , one has

lim
n→∞

(a−nuMan)` = (ψθ(uM))`

for the convergence in measure on U−θ . Hence, for almost all u in U−θ , this assertion is true
for almost all ` in L−θ . For such a u, Fubini’s theorem and Lebesgue’s dominated conver-
gence theorem allow us to conclude that lim

n→∞
a−nuMan = ψθ(uM) for the convergence in

measure on U−θ . ♦
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Corollary 4.9 Let M be a Γ-invariant sub-σ-algebra of M(G/P ), M ∈ M, and θ ⊂ Π,
with θ 6= Π. Then, for almost all u in U−, one has gψθ(uM) ∈ M for all g in G.

Corollary 4.9 is an important step towards Theorem 4.5. It allows us to construct,
in any Γ-invariant σ-algebra M ⊂ M(G/P ), a G-invariant sub-σ-algebra M0 ⊂ M. To
have a chance for this σ-algebra M0 to be non trivial, we will need to find θ ⊂ Π with
∅ 6= θ 6= Π, because for every Borel subset E ⊂ G/P , one has ψ∅(E) = ∅ or G/P .

This explains the higher-rank hypothesis in Theorem 4.5.

To prove this corollary, will need the following lemma

Lemma 4.10 Let Γ be a lattice in a quasisimple real Lie group G and let a ∈ A+, a 6= 1.
Then, for almost all u ∈ U−, the semi-orbit {Γu−1an , n ≥ 0} is dense in Γ\G.

Proof of Lemma 4.10 This lemma is a consequence of Corollary 3.17, after exchanging
right and left. However, one needs one more argument because the “almost all” statement
is relative to the Lebesgue measure of U−. For this, just notice that U−P is of full
measure in G, and that for any p ∈ P , since the limit ` := lim

n→∞
a−npan exists, one has the

equivalence: ({Γuan , n ≥ 0} is dense) ⇐⇒ ({Γupan , n ≥ 0} is dense). ♦

Proof of Corollary 4.9 Let a ∈ A+ such that one has θ = {α ∈ Π / α(a) = 1}. Since
θ 6= Π, one has a 6= 1. According to point (4) of Section 3.3, one has an identification
M(U−) ' M(G/P ). We will prove that the assertion is true for all u satisfying the
conclusion of Corollary 4.8 and Lemma 4.10.

Let g be in G.One can write g = lim
i→∞

gi, where gi = γni
u−1ani , with γni

∈ Γ and

ni →∞. By Corollary 4.8, the Borel subsets a−niuM = a−niuMani converge in measure
to ψθ(uM). Hence γni

M = gia
−niuM converges in measure to gψθ(uM). Since γni

M
belongs to M, for all i, gψθ(uM) also belongs to M. ♦

Proof that Corollary 4.9 implies Theorem 4.5 Let θ1 be a minimal subset of Π such
that M ⊃ M(G/Pθ1). Suppose that this is not an equality. Since Pθ1 is generated by the
P{α} for α ∈ θ1, there exists α ∈ θ1 and a subset M ∈ M which is not right L−{α}-invariant.
This means that the set

W = {u ∈ U− / uM ∩ L−{α} and (uM)c ∩ L−{α} are not negligeable in L−{α}}

is of nonzero measure in U−. Since rankR(G) ≥ 2, one has {α} 6= Π and one can find
such a u which also satisfies the conclusion of Corollary 4.9. Hence the σ-algebra M2

generated by the subsets gψ{α}(uM) is a sub-σ-algebra of M.
By construction M2 is G-invariant. According to Lemma 4.6 and to point (2) of Section

3.3, there exists a subset θ2 ⊂ Π such that M2 = M(G/Pθ2). Since M2 contains a non
L−{α}-invariant subset, α is not in θ2. According to Lemma 4.6, the σ-algebra generated
by M(G/Pθ1) and M(G/Pθ2) is M(G/Pθ3) where θ3 = θ1 ∩ θ2. This contradicts the
minimality of θ1. ♦
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4.6 The Lebesgue density theorem

The proof of Proposition 4.7 relies on a generalization of Lebesgue’s density
points theorem. Instead of working with small Euclidean balls associated to
distances, one works with small balls associated to b-distances.

Definition 4.11 A b-distance on a space X is a map d : X × X → [0,∞[ such that
∀x, y, z ∈ X , d(x, y) = 0 ⇔ x = y , d(x, y) = d(y, x) , and d(x, z) ≤ b (d(x, y)+d(y, z)).

- In this case, one says that X is a b-metric space. Then, there exists a topology on
X for which the balls B(x, ε) := {y ∈ X / d(x, y) ≤ ε}, where ε > 0, form a basis of
neighborhood of the points x.
- One has the inclusion B(x, ε) ⊂ B(x, b ε).
- For each subset Y of X, let B(Y, ε) := ∪y∈YB(y, ε) be the ε-neighborhood of Y , and
δ(Y ) = supx,y∈Y d(x, y) be the diameter of Y .

Example Let ϕ be a contracting automorphism of a locally compact group H. It is easy
to construct a compact neighborhood C of e such that C = C−1 and ϕ(C) ⊂ C. Choose
N ≥ 1 such that ϕN(C2) ⊂ C and define, for x, y ∈ H,

dC(x, y) = 2−nC(x,y) , where nC(x, y) = sup{n ∈ Z / x−1y ∈ ϕn(C)} .

This dC is a left H-invariant 2N -distance on H.

Let (X, d) be a locally compact b-metric space and µ be a Radon measure on X, i.e. a
Borel measure which is finite on compact sets. One says that X is of finite µ-dimension
if for all x ∈ X and ε > 0, one has µ(B(x, ε)) > 0 and, for all c > 1,

sup
x∈X

lim
ε→0

µ
(
B(x, cε)

)
/µ
(
B(x, ε)

)
<∞ .

Note that if one checks this property for some c > 1, it is true for all c > 1.
Let E ⊂ X be a measurable subset. A point x ∈ E is called a density point if

lim
ε→0

µ
(
B(x, ε) ∩ E

)
/µ
(
B(x, ε)

)
= 1 .

Theorem 4.12 (Lebesgue) Let (X, d) be a locally compact b-metric space which is of
finite µ-dimension for a Radon measure µ on X, and let E be a measurable subset of X.

Then µ-almost every point of E is a density point.

Proof that Theorem 4.12 implies Proposition 4.7 Let µ be a left Haar measure
on H. The b-metric space (H, dC) of the above example is of finite µ-dimension, because
for all h ∈ H, one has B(h, 2−n) = hϕn(C). Theorem 4.12 with ε = 2−n implies that, for
almost every h in E−1,

lim
n→∞

µ(h−1ϕn(C) ∩ E)/µ(h−1ϕn(C)) = 1 .
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But the automorphism ϕ sends the Haar measure on one of its multiples. Hence

lim
n→∞

µ(C ∩ ϕ−n(hE)))/µ(C) = 1 .

This is true for an exhausting family of compact sets C. In other words, ϕ−n(hE)
converges in measure to H.

The same discussion with Ec shows that for almost all h in (Ec)−1, ϕ−n(hE) converges
in measure to ∅. ♦

To prove Theorem 4.12, we will need the following two lemmas.

Lemma 4.13 Let (X, d) be a compact b-metric space, Y ⊂ X, and F be a family of
closed subsets of X such that, for every x ∈ X, there exists a closed set F ∈ F containing
x whose diameter is nonzero but arbitrarily small.

Then, either Y is included in a finite disjoint union of elements of F , or there exists a
sequence (Fn)n>0 of disjoint elements of F such that for all n ≥ 1,

Y ⊂ F1 ∪ · · · ∪ Fn ∪ (∪k>nB(Fk, 3b δ(Fk))) .

Proof By induction, if F1, . . . , Fk have been chosen and do not cover Y , the set

Fk := {F ∈ F / ∀ i ≤ k , Fi ∩B(F, δ(F )) = ∅}

is nonempty. Let εk := supF∈Fk
δ(F ), and choose Fk+1 ∈ Fk such that δ(Fk+1) ≥ 2εk/3.

It is clear that one has limk εk = 0. Indeed, if this was not the case, there would be a
sequence of points pk ∈ Fk such that d(pi, pj) ≥ 2εj/3 ∀ i < j and this would contradict
the compacity of X.

Let us show, by contradiction, that this sequence satisfies the required properties. Let
y be a point of Y which is not in F1 ∪ · · · ∪ Fn ∪ (∪k>nB(Fk, 3b δ(Fk))) . There exists
F ∈ Fn with nonzero diameter that contains y. Let us show by induction on k ≥ n that
F belongs to Fk. In fact, one has

B(F, δ(F ) ⊂ B(y, 2b δ(F )) ⊂ B(y, 2b εk) ⊂ B(y, 3b δ(Fk+1)) .

We chose y in such a way that this last ball does not meet Fk+1. Hence B(F, δ(F ))∩Fk+1 =
∅ and F ∈ Fk+1. Therefore one finds εk ≥ δ(F ) > 0 ∀ k ≥ n. Contradiction. ♦

Let us now suppose again that (X, d) is a locally compact b-metric space and that µ is
a Radon measure on X.

A Vitali covering F of a subset Y of X is a covering of Y by closed subsets of X of
non-zero measure such that ∃λ > 1 , ∀ y ∈ Y , ∃F ∈ F such that

y ∈ F , δ(F ) is arbitrarily small and µ(B(F, 3b δ(F )))/µ(F ) ≤ λ .

Lemma 4.14 (Vitali) With these notations, for any Vitali covering F of a subset Y
of X, there exists a sequence (Fn)n>0 of disjoint elements of F such that

µ(Y −
⋃
n>0

Fn) = 0 .
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Proof First suppose that X is compact. Let (Fn)n>0 be the sequence of elements of F
given by Lemma 4.13. One has,

µ(Y −
⋃
k≤n

Fk) ≤ µ(
⋃
k>n

B(Fk, 3b δ(Fk)) ) ≤ λ
∑
k>n

µ(Fk) → 0 ,

for n→∞, because
∑
k µ(Fk) ≤ µ(X) <∞. Therefore, one has µ(Y − ⋃n>0 Fn) = 0 .

When X is only locally compact, one constructs, using a proper continuous function
f : X → [0,∞), a sequence of disjoint open relatively compact sets Xi such that µ(X −⋃
i>0Xi) = 0 . One then applies the previous argument to each subset Y ∩ Xi of the

compact X i, and to the covering Fi := {F ∈ F / F ⊂ Xi}. ♦

Proof of Theorem 4.12 Let

Bi := {x ∈ E/lim µ(B(x, ε) ∩ E )/µ(B(x, ε) ) < i−1
i
}.

It is enough to prove that ∀ i, µ(Bi) = 0. To that purpose, let us choose a sequence
(Uj)j>0 of open subsets of X containing E, such that lim

j→∞
µ(Uj−E) = 0, and let

F ij := {B(x, ε) / x ∈ E, ε > 0, B(x, ε) ⊂ Uj and µ(B(x, ε) ∩ E )/µ(B(x, ε) ) < i−1
i
}.

Since X is of finite µ-dimension, the family F ij is a Vitali covering of Bi. Hence, there
exists a sequence (F ij

n )n>0 of disjoint elements of F ij such that µ(Bi −
⋃
n>0 F

ij
n ) = 0 .

But then
µ(Bi) ≤

∑
n>0

µ(F ij
n ) ≤ i

∑
n>0

µ(F ij
n −E) ≤ i µ(Uj−E)

for all j. Hence µ(Bi) = 0. ♦
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5 Lecture on Local Fields

Local fields are an important tool for discrete groups. For instance, they
are a decisive ingredient in the proof of the Tits alternative or of the Margulis
arithmeticity theorem. We will not discuss these points here. Instead, we
will show how local fields allow us to understand a larger class of groups than
arithmetic groups, the so-called S-arithmetic groups.

These groups happen to be lattices in locally compact groups G which are
products of real and p-adic Lie groups. Moreover, many theorems for lattices
in real Lie groups can be extended to lattices in such groups G with a very
similar proof. In fact, the main property of R used in these proofs was “locally
compact field” and not “archimedean field”.

Hence, this lecture will be a rereading of the proofs of the previous chapters.
As a by-product of this point of view, we will construct cocompact lattices

in SL(d, L), where L is a p-adic field, and we will see that when d ≥ 3, such
lattices have property T and are quasisimple.

5.1 Examples

Here, as in Section 2.1, we give a few explicit examples of lattices.

Let p, p1, p2 be prime numbers, and d ≥ 2 , m ≥ 1 be integers such that m is prime to
p and −m is a square in Qp and set σ the involution of Q[

√
−m]. Let Id be the d × d

identity matrix.
In the following examples, the embedding of Γ is the diagonal embedding.

Example 1 The group Γ := SL(d,Z[1
p
]) is a noncocompact lattice in SL(d,R)×SL(d,Qp).

Example 2 The group Γ := {g ∈ SL(d,Z[ 1
p1p2

]) / g tg = Id} is a cocompact lattice in

SO(d,Qp1)× SO(d,Qp2), when d ≥ 3.

Example 3 The group Γ := {g ∈ SL(d,Z[
√
−m
p

]) / g tgσ = Id} is a cocompact lattice in

SL(d,Qp).

Example 4 Let L be a finite extension of Qp. One can choose a totally real algebraic
integer α over Z of degree [L : Qp] such that L = Qp[α]. The group

Γ := {g ∈ SL(d,Z[α,
√
−m
p

]) / g tgσ = Id} is a cocompact lattice in SL(d, L).

Example 5 Using the two square roots of −m in Qp, the group

Γ := SL(d,Z[
√
−m
p

]) is a noncocompact lattice in SL(d,C)× SL(d,Qp)× SL(d,Qp).

Example 6 Let Fp((t)) be the field of Laurent series over Fp. The group
Γ := SL(d,Fp[t−1]) is a noncocompact lattice in SL(d,Fp((t))).
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We will give a proof for Examples 1 to 4. The proof for the last ones is similar.

5.2 S-completions

Let us recall a few definitions related to the completions of Q.

S-completions For p prime, let Qp be the p-adic completion of Q for the absolute value
|.|p such that |p|p = p−1. Let Zp := {x ∈ Qp / |x|p ≤ 1} and let µp be the Haar measure
on Qp such that µp(Zp) = 1.

For p = ∞, let Q∞ := R be the completion of Q for the usual absolute value |.|∞ such
that |x|∞ = x when x > 0, and µ∞ be the Haar measure on Q∞ such that µ∞([0, 1]) = 1.

The Qp, for p ∈ V := {p ∈ N, prime} ∪ {∞}, exhaust all the completions of Q.
Moreover, for x in Q×, one has the product formula∏

p |x|p = 1.
For S ⊂ V , let

ZS := Z[(1
p
)p∈S−∞], QS :=

∏
p∈S

Qp and Q◦
S := {x ∈ Q×

S /
∏
p∈S

|xp|p = 1}.

The ring ZS is a subring of the field Q. The field Q will be seen as a subring of the ring
QS via the diagonal embedding. When S is finite, the ring QS is locally compact.

Lemma 5.1 Let S be a finite subset of V containing ∞. Then
a) ZS is a discrete, cocompact subgroup of QS;
b) Z×S is a cocompact lattice in Q◦

S;
c) for any S ′ ⊂ S with S ′ 6= S, ZS is dense in QS′.

Example For p prime, the group Z[1
p
] is discrete, cocompact in R × Qp, and dense in

both R and Qp.

Proof a) Let OS := R×
∏

p∈S−∞
Zp. One has OS + ZS = QS and OS ∩ ZS = Z.

b) Let US := R× ×
∏

p∈S−∞
Z×p . One has USZ×S = Q◦

S and US ∩ Z×S = {±1}.

c) Exercise. ♦

Adèles and idèles The language of adèles is a way to deal with all completions of a
number field which is more concise and efficient than the S-arithmetic one. For instance,
it will allow us to say in a simple way that the cocompactness and density in Lemma 5.1
are uniform in S. For our purposes, the concept of adèles can be avoided and the reader
may forget the following paragraph.

Let A = AQ be the ring of adèles of Q. It is the restricted product of all Qp. More
precisely, for a finite subset S ⊂ V,

A(S) := {x ∈
∏
p∈V

Qp / ∀ p 6∈ S , |xp|p ≤ 1} and A :=
⋃

S finite

A(S) .
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The rings A(S) are endowed with the product topology and A is endowed with the in-
ductive limit topology. The ring A of adèles is locally compact. We denote by µ its Haar
measure whose restriction to the A(S) is the product measure of µp.

The subring A(∞) is the ring of integral adèles. The field Q embedded diagonally in A
is the subring of principal adèles.

The group of idèles is the multiplicative group I = A× endowed with the topology
induced by the embedding I → A× A ; x 7→ (x, x−1). The group I is locally compact. It
contains the subgroup of integral idèles I(∞) := A(∞)×, the subgroup of principal idèles
Q×, and

I◦ := {x ∈ I / |x| = 1}, where |x| =
∏
p∈V

|xp|p .

The following lemma is a stronger version of Lemma 5.1.

Lemma 5.2 a) Q is a discrete cocompact subgroup of A.
b) Q× is a cocompact lattice in I◦.
c) For any p ∈ V, Q is dense in Ap := A/Qp.

Proof a) One has A(∞) + Q = A and A(∞) ∩Q = Z.
b) One has I(∞) Q× = I and I(∞) ∩Q× = {±1}.
c) For p = ∞, Z is dense in

∏
` 6=∞

Z`. For p <∞, Z[1
p
] is dense in R×

∏
` 6=p,∞

Z`. ♦

Remark There is a similar construction for any number field k using all the absolute
values v of k: Ak is the restricted product of all the completions kv. We will not develop
this important point of view here, since thanks to Weil’s restriction of scalars we will
mostly work with the field k = Q.

5.3 The space of lattices of Qd
S

In this section and the next one, we extend the results of lecture 2 to
the S-arithmetic setting. The proofs are almost the same and will be only
sketched.

Here is the extension of Proposition 2.1

Proposition 5.3 a) The group SL(d,ZS) is a lattice in SL(d,QS).
b) The group SL(d,Q) is a lattice in SL(d,A).

For every prime number p, the group Gp := SL(d,Qp) admits an Iwasawa decomposition
Gp = KpApNp, where Kp := SL(d,Zp) , Ap := {g = diag(pn1 , . . . , pnd) ∈ Gp}, and
Np := {g ∈ Gp / g−1 is strictly upper triangular}, recalling the Iwasawa decomposition of
SL(d,R) seen in Section 2.2. One also gets, for the group GQS

:= GL(d,QS), an Iwasawa
decomposition GQS

= KQSAQSNQS . We introduce again
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AQS
s := {a ∈ AQS / |ai,i| ≤ s |ai+1,i+1| , for i = 1, . . . , d− 1 }, for s ≥ 1,

NQS
t := {n ∈ NQS / |ni,j| ≤ t , for 1 ≤ i < j ≤ d }, for t ≥ 0. We define the Siegel

domain SQS
s,t := KQSAQS

s NQS
t , and set GZS

:= GL(d,ZS).
Similarly, the group GA = GL(d,A) admits an Iwasawa decomposition GA = KAAANA.

We define in the same way the Siegel domain SA
s,t := KAAA

sN
A
t and set GQ = GL(d,Q).

Lemma 5.4 For s ≥ 2√
3
, t ≥ 1

2
, one has GQS

= SQS
s,t GZS

and GA = SA
s,tGQ.

Proof Same as Lemma 2.2. Just replace the norm on Rd by the canonical norm on Qd
S or

Ad, which is the product ‖v‖ =
∏
p ‖vp‖p of the canonical local norms ‖w‖p := supi |wi|p

for p < ∞ and ‖w‖∞ := (
∑
iw

2
i )

1
2 . Note that, for all x ∈ QS or A, there exists y ∈ Q

such that, for all p <∞, |xp − y|p ≤ 1 and |x∞ − y|∞ ≤ 1
2
. ♦

Proposition 5.3 is now a consequence of the following lemma, whose proof is the same
as Lemma 2.3. Let RQS

s,t := SQS
s,t ∩ SL(d,QS) and RA

s,t := SA
s,t ∩ SL(d,A).

Lemma 5.5 a) The volume of RQS
s,t in SL(d,QS) for the Haar measure is finite.

a) The volume of RA
s,t in SL(d,A) for the Haar measure is finite.

The set XQS of lattices (i.e. discrete, cocompact subgroups) in Qd
S is the quotient space

XQS := GQS
/GZS

. For any lattice Λ of Qd
S, one denotes by d(Λ) the volume of Qd

S/Λ. It
is given by the formula d(Λ) = |det(f1, . . . , fd)| for any ZS-basis (f1, . . . , fd) of Λ.

Similarly XA := GA/GQ is the set of lattices Λ in Ad and the covolume d(Λ) is given
by the same formula.

We still have Hermite’s bound and Mahler’s criterion with the same proofs.

Lemma 5.6 Any lattice Λ in Qd
S or Ad contains a vector v with 0 < ‖v‖ ≤ (4

3
)

d−1
4 d(Λ)

1
d .

Proposition 5.7 A subset Y ⊂ XQS or XA is relatively compact if and only if there exist
constants α, β > 0 such that for all Λ ∈ Y , one has d(Λ) ≤ β and infv∈Λ−0 ‖v‖ ≥ α .

5.4 Cocompact lattices

Let G ⊂ GL(d,C) be a Q-group. Note that GQS
and GA are well-defined

and locally compact groups in which the respective subgroups GZS
and GQ,

are discrete. We want to know when these subgroups are cocompact.

Godement’s criterion remains the same.

Theorem 5.8 (Borel, Harish-Chandra) Let G be a Q-group. Then one has the equiv-
alence:
GQS

/GZS
is compact ⇔ GA/GQ is compact ⇔ GR/GZ is compact ⇔ G is Q-anisotropic.
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When G is semisimple, the proof is the same as in lecture 2, we just have to replace
the intermediate lemmas and propositions by the following ones.

Lemma 5.9 Let G ⊂ H be an injective morphism of Q-groups. Suppose that G has
no nontrivial Q-character. Then the injections GQS

/GZS
↪→ HQS

/HZS
and GA/GQ ↪→

HA/HQ are homeomorphisms onto closed subsets.

Lemma 5.10 Let VQ be a Q-vector space, V = VQ⊗C, G ⊂ GL(V ) a Q-subgroup without
nontrivial Q-characters. Suppose there exists a G-invariant polynomial P ∈ Q[V ] such
that

∀v ∈ VQ , P (v) = 0 ⇐⇒ v = 0 .
Then the quotients GQS

/GZS
and GA/GQ are compact.

Lemma 5.11 Let ϕ : G→ H be a Q-isogeny between two semisimple Q-groups. Then
a) the groups ϕ(GZS

) and HZS
are commensurable;

b) the induced map GA/GQ → HA/HQ is proper.

Corollary 5.12 a) In Example 5.1.2, Γ is cocompact in SO(d,Qp1)× SO(d,Qp2).
b) In Example 5.1.3, Γ is cocompact in SL(d,Qp).
c) In Example 5.1.4, Γ is cocompact in SL(d,L).

Proof of Corollary 5.12 a) Apply Lemma 5.10 to the orthogonal Q-group
G := SO(d,C) = {g ∈ SL(d,C) / g tg = Id}, the set S := {p1, p2,∞}, the natural
representation in VQ = Qd, and the polynomial P (v) =

∑
i v

2
i . Notice that GR is compact.

b) Apply Lemma 5.10 to the unitary Q-group

G =
{(

a −m b
b a

)
∈ GL(2d,C) / (a+ µ b) (ta− µ tb) = Id , det(a+ µ b) = 1

}
,

where µ =
√
−m, with the set S := {p,∞}, the natural representation in VQ = Qd ×Qd,

and the polynomial P (v, w) =
∑
i(v

2
i +mw2

i ). Notice that GR ' SU(d,R) is compact.
The map (a, b) → a+

√
−mb gives isomorphisms GZS

' Γ and GQp
' SL(d,Qp).

c) Let S = {p,∞}, and G be the group defined in b), but considered it as a k0-group
with k0 = Q[α]. Restrict it as a Q-group H so that HZS

' GZ[α
p
] . The d real completions

of k0 give compact real unitary groups, hence HR is compact and H is Q-anisotropic. The
field L is the only p-adic completion of k0, hence HQp

= GL ' SL(d, L). One has just to
apply Theorem 5.8. ♦

Remark To convince the reader that Examples c) do exist for any finite extension L/Qp

of degree n, we will give a construction of
a totally real algebraic integer α of degree n such that L = Qp[α].

Consider β ∈ L such that L = Qp[β]. Let Q ∈ Qp[X] be the minimal polynomial of β over
Qp, and R ∈ R[X] a polynomial of degree n whose roots are real and distinct. Because Q
is dense in R×Qp, one can find P ∈ Q[X] sufficiently near both Q and R. Take for α a
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suitable multiple α = Nα0 of a root α0 of P , and note that L = Qp[α] by Hensel lemma.
♦

A general overview Let H be a Q-group. Suppose that H is semisimple or, more
generally, that H does not have any non trivial Q-character χ : H → GL(1,C). By a
theorem of Borel and Harish-Chandra,

HZS
is a lattice in HQS

and HQ is a lattice in HA.

Note that, according to the weak and strong approximation theorems of Kneser and
Platonov, for any semisimple simply connected Q-group H, p ∈ V with HQp

noncompact,
and S 3 p,

HZS
is dense in HQS−p

and HQ is dense in HA/HQp
.

The examples above are the main motivation for the following definition.
Let G =

∏
iGi be a finite product of non-compact groups Gi which are the Qpi

points
of some quasisimple Qpi

-groups for some pi ∈ V .

An irreducible subgroup Γ of G is said to be arithmetic if there exists an algebraic group
H defined over Q, a finite set S ⊂ V, and a group morphism π : HQS

→ G with compact
kernel and cocompact image such that the groups Γ and π(HZS

) are commensurable

Note that, in this case, π is automatically “algebraic”.
The classification of all arithmetic groups Γ, up to commensurability, relies again on

the classification of all algebraic absolutely simple groups defined over a number field k.
According to a theorem of Borel and Harder ([7]),

for any semisimple Qp-group H, the group HQp
contains at least one lattice.

Note that, since G = HQp
contains a compact open subgroup U without torsion,

any lattice Γ in HQp
is cocompact

(to prove this basic fact, just check that U acts freely on G/Γ and hence that all U -orbits
in G/Γ have same volume).

Margulis arithmeticity theorem also applies to this case:

if G has no compact factors and the total rank of G is at least 2,
then all irreducible lattices Γ of G are arithmetic groups

(see [15]). Here the total rank of G is the sum of all the Qpi
-ranks of the Gi.
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5.5 Decay of coefficients

The decay of coefficients and the uniform decay of coefficients are still true
for p-adic semisimple Lie groups.

Theorem 5.13 Let G =
∏
iGi be a product of groups Gi which are the Qpi

-points of
quasisimple Qpi

-groups for some pi ∈ V. Let π be a unitary representation of G such that

HG′
π = 0 for all non-compact normal subgroup G′ of G. Then, for all v, w ∈ Hπ, one has
lim
g→∞

<π(g)v, w> = 0.

Corollary 5.14 Let G be quasisimple simply connected Qp-group, π a unitary represen-
tation of GQp

without nonzero GQp
-invariant vectors, and H a non-relatively compact

subgroup of GQp
. Then HH

π = 0.

A group G as in Theorem 5.13 still has maximal compact subgroups K, Cartan sub-
spaces A, restricted roots ∆, Weyl chambers A+, and parabolic subgroups Pθ as in Section
3.3. And those share almost all the same properties as in the real case... Well... the max-
imal compact subgoups are not all conjugate, the Cartan subspaces have to be replaced
by the product of Qpi

-points of maximally Qpi
-split tori, A+ is not always a subsemigroup

of A... These are technical details I do not want to enter into. The recipe is: for what we
want, it works the same. Let us just give an example.

For G = SL(d,Qp), one can take K = SL(d,Zp), A = {a = diag(p−n1 , . . . , p−nd) ∈ G},
A+ = {a ∈ A / n1 ≥ · · · ≥ nd}. Then ∆, ∆+, Π, u+, p, u−, u+

θ , pθ, u−θ , lθ, Aθ and A+
θ are

given by the same formulas as in Section 3.3, and one has G = KA+K.

For every vector v of a unitary representation Hπ of G, one sets δ(v) = δK(v) :=
(dim <Kv>)1/2.

Theorem 5.15 Let G =
∏
iGi be as in Theorem 5.13. Suppose that rankQpi

(Gi) ≥ 2

∀ i. Then there exists a K-biinvariant function ηG ∈ C(G) satisfying lim
g→∞

ηG(g) = 0,

and such that for every unitary representations π of G with HGi
π = 0 ∀ i, and for every

v, w ∈ Hπ with ‖v‖ = ‖w‖ = 1, one has | < π(g)v, w > | ≤ ηG(g)δ(v)δ(w). for every
g ∈ G.

Remark The function ηG has also been computed by H.Oh in the p-adic case (see [18]),
using Harish-Chandra’s function

ξ(|p−n|) = ξ(pn) =
(p− 1)n+ (p+ 1)

(p+ 1)pn/2

For instance, for G = SL(d,Qp), d ≥ 3, and a = diag(t1, . . . , td) with |t1| ≥ · · · ≥ |td|,

ηG(a) =
∏

1≤i≤[n/2]

ξ(| ti
tn+1−i

|) .

The proofs of these theorems are the same as in lecture 3, we just have to replace the
intermediate lemmas and propositions by the following lemmas with the same proofs.
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Lemma 5.16 Let π be a unitary representation of G = SL(2,Qp), and v ∈ Hπ. If v is
either A-invariant, U+-invariant or U−-invariant then it is G-invariant.

For g = kan ∈ G, let us set H(g) = a, and reintroduce the Harish-Chandra spherical
function ξG given by ξG(g) =

∫
K ρ(H(gk))−1/2dk where ρ(a) = detn(Ada) .

Lemma 5.17 Let G =
∏
iGi be as in Theorem 5.13 and let π be a unitary representation

of G which is weakly contained in λG. For every v, w ∈ Hπ with ‖v‖ = ‖w‖ = 1, and
every g ∈ G, one has | <π(g)v, w> | ≤ ξG(g)δK(v)δK(w) .

Lemma 5.18 Let V be a Q-representation of the Q-group G := SL(2), without nonzero
invariant vectors. Let π be an irreducible unitary representation of the semidirect product
VQp

oGQp
, without VQp

-invariant vectors. Then the restriction of π to GQp
is weakly

contained in the regular representation of GQp
.

5.6 Property T and normal subgroups

As in Section 3.6, the previous control on the coefficients of unitary repre-
sentations of G leads to algebraic properties for the lattices of G.

Proposition 5.19 Let G =
∏
iGi be as in Theorem 5.13, with rankQpi

(Gi) ≥ 2 ∀ i. Then

a) G has property T ;
b) any lattice Γ in G is finitely generated and has a finite abelianization Γ/[Γ,Γ].

Remark For a nontrivial Q-group G, the groups GQ and GA never have property T ,
because GQ is not finitely generated and GA is not compactly generated.

If one adapts the arguments of lecture 4 to G, one gets the following result.

Theorem 5.20 Let G =
∏
iGi be as in Theorem 5.13, and let Γ be a lattice in G. If

rankQpi
(Gi) ≥ 2 ∀ i, then Γ is quasisimple.

Remark One can weaken the rank assumption in Theorem 5.20 in : total rank(G) ≥ 2.

If the reader wants to know more on one of these five lectures, he should read [26]

for lecture 1 or, respectively, [5], [13], [15], and [19] for lectures 2, 3, 4,

and 5.
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