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Abstract. Let G be a connected simply connected almost Q-simple algebraic group
with G := G(R) non-compact and Γ ⊂ GQ a cocompact congruence subgroup. For
any homogeneous manifold x0H ⊂ Γ\G of finite volume, and a ∈ GQ, we show that
the Hecke orbit Ta(x0H) is equidistributed on Γ\G as deg(a) → ∞, provided H is a
non-compact commutative reductive subgroup of G. As a corollary, we generalize the
equidistribution result of Hecke points ([COU], [EO1]) to homogeneous spaces G/H .
As a concrete application, we describe the equidistribution result in the rational
matrices with a given characteristic polynomial.

1. Introduction

1.1. General setting. Let G be a connected almost Q-simple algebraic Q-group, G
the identity component of GR and Γ a congruence subgroup in GQ := G ∩ GQ. We
suppose that G is non-compact. According to a classical result of Borel and Harish-
Chandra in [BH], Γ is a lattice in G, i.e., Γ has a finite co-volume in G. Denote by
µX the G-invariant probability measure on X := Γ\G and by π : G → X the standard
projection.

We recall the Hecke correspondence. For any a ∈ GQ, the set ΓaΓ is a finite union
of distinct Γ-orbits:

ΓaΓ =
⋃

1≤i≤deg(a)

Γai

where deg(a) is the degree of a. For x = π(g) ∈ X, the finite set

Ta(x) := π(aπ−1(x)) = {π(aig) | i = 1, · · · , deg(a)}

is called the Hecke orbit of x.
According to Clozel-Oh-Ullmo’s equidistribution theorem, these sets Ta(x) become

equidistributed in X with respect to µX as deg(a) → ∞ ([COU] and [EO1]).
Let H ⊂ G be a closed subgroup and λH a left Haar measure on H. For any H-orbit

Y := x
0
H ⊂ X with finite volume, we define the Hecke orbit Ta(Y ) of Y :

Ta(Y ) := π(aπ−1(Y )).

The second author partially supported by DMS 0333397.
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Noting that Y is closed (Theorem 1.13 of [Ra]), Ta(Y ) is a finite union of closed H-
orbits of finite volume. Let λa denote the unique H-invariant measure on X supported
on Ta(Y ) which is locally equal to λH on each H-orbit in Ta(Y ).

Theorem 1.1. (Equidistribution for Ta(Y )) Let G be a connected simply connected
almost Q-simple algebraic Q-group with G = GR non-compact and Γ a cocompact
congruence subgroup in GQ. Let H be a closed commutative reductive non-compact
subgroup of G.

Then for any H-orbit x0H ⊂ X with finite volume, the Hecke orbit Ta(x0
H) becomes

equidistributed with respect to µX as deg(a) → ∞.
That is, for any f ∈ Cc(X), one has

lim
deg(a)→∞

1

λa(X)

∫

X

f dλa =

∫

X

f dµX .

We remark that λa(X) ≤ λH(Y ) · deg(a) and that the condition deg(a) → ∞ is
equivalent to λa(X) → ∞ (see Corollary 7.3). Note that λa(X) is simply the total
volume of Ta(Y ).

Recall that a commutative subgroup H is said reductive if all the elements in H
are semisimple. There are many examples of x0H which satisfy the assumptions of
Theorem 1.1. For instance, for x0 = [e], H can be the group of real points of a
maximal R-isotropic torus of G which is Q-anisotropic. Such a Cartan subgroup H
always exists [PR1].

The hypothesis “Γ cocompact” and the hypothesis “H commutative reductive and
non-compact” might be avoided in Theorem 1.1: for instance, when H is maximal
semisimple instead of commutative, a similar statement can be obtained as a special
case of a general equidistribution statement for H-invariant subsets in Γ\G due to
Eskin and Oh in [EO2]. Their proof is based on Ratner’s classification of H-invariant
measure on Γ\G

In addition to Clozel-Oh-Ullmo’s theorem [COU], our proof of Theorem 1.1 is based
on the introduction of weighted Hecke operators as well as on a careful analysis of the
corresponding weights, which allows us to relate them to the standard Hecke operators.

Note that other kinds of related equidistribution statements are due to Linnik [Li],
Sarnak [Sa] and Gan and Oh [GO].

The following corollary is a restatement of Theorem 1.1, in view of the homeomor-
phism between the H-invariant measures on Γ\G and the Γ-invariant measures on
G/H.

Let V = G/H and v0 = g
0
H ∈ V with π(g0) = x0. The H-orbit x0H being closed

in X implies that v0Γ is discrete in V . Starting from the single Γ-orbit Γv0 in V , the
Hecke correspondence allows us to construct the set

Ta(v0) := ΓaΓv0 ⊂ V
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which is a finite union of discrete Γ-orbits for any a ∈ GQ. Denote by λ a G-invariant
measure on V , which is unique up to a scalar multiple.

The following corollary generalizes the equidistribution of Hecke points on G [COU]
to homogeneous spaces G/H:

Corollary 1.2. (Equidistribution for Ta(v0)) Let G, H x0 = π(g0) and Γ be as in
Theorem 1.1. Then for any compact subset Ω of V with boundary measure zero, one
has for v0 = g0H ∈ V ,

#(Ta(v0) ∩ Ω) ∼ caλ(Ω) as deg(a) → ∞

where ca = ca(Γ) are constants independent of Ω.

The most natural family of examples of homogeneous spaces G/H to which Corollary
1.2 applies are the conjugacy classes of regular semisimple elements in GQ. For s ∈ G,
denote by C(s) the conjugacy class of s, that is,

C(s) := {t ∈ G | t = gsg−1 for some g ∈ G}.

The following says that the set of elements in C(s) which can be conjugate to s via
ΓaΓ is equidistributed:

Corollary 1.3. (Equidistribution in conjugacy class) Let G and Γ be as in The-
orem 1.1. Let s ∈ GQ be a regular semisimple element whose centralizer in G is a
R-isotropic and Q-anisotropic torus.

Then for any compact subset Ω of C(s) with boundary measure zero,

#{t ∈ Ω | t = gsg−1 for some g ∈ ΓaΓ} ∼ caλ(Ω) as deg(a) → ∞

where ca = ca(Γ) are constants and λ denote a G-invariant measure on C(s).

Remark One can remove the hypothesis G simply connected and Γ cocompact in
Theorem 1.1 and Corollaries 1.2, 1.3 by considering G = G(R)◦ and only sequences of
elements a ∈ GQ with #supp(a) uniformly bounded, where supp(a) = {p | a /∈ GZp

}
roughly means the set of primes which appear in the denominators of the coefficients
of a (see Theorem 5.5 and Remark 8.3).

1.2. Example. We now give a concrete application of Corollary 1.2 and the above
remark.

Consider an irreducible polynomial P (T ) = T N + aN−1T
N−1 + · · ·+ a0 with integral

coefficients with N ≥ 3. Let α ∈ C be a root of P . Let

V := {M ∈ MN(R) | P (M) = 0}

be the variety of real matrices with characteristic polynomial P . The set VQ :=
V ∩ MN(Q) is dense in V . We will now define natural discrete subsets Vm of VQ
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indexed by N -tuples m = (m1, · · · , mN ) of positive integers which we will show be-
come equidistributed on V . These subsets Vm are defined in terms of the depth of the
eigenvector for α in the ring Z[α].

More precisely, for M ∈ VQ, let ξM = (ξ1, . . . , ξN) ∈ Z[α]N be an eigenvector for the
eigenvalue α i.e., MξM = αξM and let ΛξM

be the finite index Z-submodule of Z[α]
given by

ΛξM
:= ⊕N

i=1Zξi.

Since P is irreducible, ξM as well as ΛξM
are uniquely determined up to multiplication

by Q(α)∗. Considering the equivalence relation in the space of Z-submodules of Z[α]
given by the homothety by Q(α)∗, we have associated to each M ∈ VQ a finite index
Z-submodule class [ΛξM

] of Z[α] (cf. [LM], [T] and [S]). For m = (m1, . . . , mN ) with
mi ∈ N, mi+1|mi for each i and mN = 1, we define

Vm := {M ∈ VQ | ΛξM
∼ Λ , Z[α]/Λ ' ⊕N

i=1Z/miZ}.

For instance, if p is prime, we have

V(p,1,··· ,1) = {M ∈ VQ | ΛξM
∼ Λ , [Z[α] : Λ] = p.}

Then Vm is a discrete subset of V and VQ is the union of the Vm’s. The following
statement says that Vm becomes equidistributed on V with respect to a GLN (R)-
invariant measure λ:

Proposition 1.4. (Equidistribution for Vm) For any compact subset Ω of V with
boundary measure zero, one has, as m going to infinity with the number of prime
divisors of m uniformly bounded,

#(Vm ∩ Ω) ∼ cmλ(Ω)

where cm are constants depending only on m.

The hypothesis on the integers m in the above proposition is satisfied when m de-
scribes the sequence of prime numbers or the sequence of powers of a fixed prime. We
believe that this hypothesis is unnecessary, but the methods in this paper do not apply.
Another very interesting open question is whether the sequence V ( Z

m
) is equidistributed

on V as m → ∞.

On the organization of the paper: Given x0 ∈ X and a closed subgroup H of
G such that x0H has a finite volume, we introduce in section 2 the multiplicities of

Hecke points and the weighted Hecke operators T̃a = T̃
H

a . In section 3, we give an
analogous definition for local p multiplicities for each prime p and relate them with the
(global) multiplicities of Hecke points. In section 4, assuming that H is commutative
and reductive, we prove that the multiplicities of Hecke points in Ta(x0) are uniformly
bounded if the cardinalities of the support of a are uniformly bounded (Proposition
4.5). In section 5, from Proposition 4.5 we deduce Theorem 1.1 for the case when the
cardinalities of supp(a) are uniformly bounded and H non-compact, based on ergodic



EQUIDISTRIBUTION OF MATRICES 5

theoretic argument. For this part, we do not use the assumption G simply connected
or Γ cocompact.

When the cardinality of supp(a) goes to infinity, we will approximate the weighted

Hecke operator T̃a by the product T̃b Tc of a weighted Hecke operator and a Hecke
operator (Theorem 7.1). In doing so, a crucial step is to show that for H commutative
and reductive, most Hecke points in Ta(x0) has local p-multiplicity 1 for almost all p,
which is the main theorem of section 6 (Theorem 6.1). Assuming now Γ cocompact, we
then complete a proof of Theorem 1.1, using Theorem 7.1 and equidistribution results
for the standard Hecke operators, in section 7. In section 8, we prove Corollaries 1.2
and 1.3 using the duality between H-invariant measures and Γ-invariant measures.

Acknowledgment We would like to thank Elon Lindenstrauss for useful discussions.
The first named author would like to thank Caltech where most of the collaboration
took place.

2. Weighted Hecke operator

As in section 1.1, let G be a connected almost Q-simple algebraic Q-group, G the
identity component of GR, GQ = G ∩ GQ and Γ ⊂ GQ a congruence subgroup. We
assume that G is non-compact. Set X = Γ\G and let π : G → X denote the canonical
projection.

Let H be a closed subgroup of G, and consider an H-orbit Y := x0H ⊂ X with finite
volume for x0 = π(g0) ∈ X. For the sake of simplicity, we will suppose that g

0
= e and

hence that Hx
0

:= H ∩ Γ is the stabilizer of x
0

in H (the general case can be reduced

to this case simply by replacing H with g0Hg−1
0 ).

2.1. Standard Hecke operators. For a ∈ GQ, the Hecke orbit of x
0

is

Ta(x0
) = π(aΓ) = {xi | i = 1, . . . , deg(a)}

where xi := π(ai) with ai ∈ GQ. It is easy to see that deg(a) = [Γ : a−1Γa ∩ Γ].
The standard Hecke operator Ta : Cc(X) → Cc(X) is defined as follows: for any

f ∈ Cc(X) and g ∈ G,

Ta f(π(g)) =
1

deg(a)

∑

1≤i≤deg(a)

f(xig) .

Recall the equidistribution theorem for the Hecke points:

Theorem 2.1. ([COU], [EO1]) For any f ∈ Cc(X) and any x ∈ X,

lim
deg(a)→∞

Ta f(x) =

∫

X

f dµX ,

this limit being uniform for x in the compact subsets of X.
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In other words, the uniformly distributed probability measures

δa(x) :=
1

deg(a)

∑

x′∈Ta(x)

δx′

on the finite sets Ta(x) converge to µX when deg(a) → ∞.

2.2. Weighted Hecke operators. Let a ∈ GQ. For each x ∈ Ta(x0), we define its
multiplicity with respect to H by

m(x, H) := #(Σ(x, H)) ≥ 1

where
Σ(x, H) := Ta−1(x) ∩ x

0
H = {x′

0
∈ x

0
H | x ∈ Ta(x

′
0
)} .

It is easy to check that for x = π(g),

Σ(x, H) = π(H ∩ GQ) ∩ π(g−1Γg).

We will therefore write Σ(x, H ∩ GQ) and m(x, H ∩ GQ), or even Σ(x) and m(x) for
simplicity.

Indeed, these multiplicities m(x) depend only on the H-orbit ω of x, which will be
clear from more intuitive and geometric formulas for m(x) = mω (see (2.5) and (2.7)).

Definition 2.2. We define the weighted Hecke operator T̃
H

a : Cc(X) → Cb(G) with
respect to H as follows: for any f ∈ Cc(X) and g ∈ G,

T̃
H

a f(g) =
1

d̃eg
H

(a)

∑

1≤i≤deg(a)

1

m(xi)
f(xig)

where d̃eg
H

(a) denotes the weighted degree:

d̃eg
H

(a) :=
∑

1≤i≤deg(a)

1

m(xi)
.

For simplicity, we will write T̃a and d̃eg(a), omitting the superscript H whenever it

is clear. Note that T̃af is a bounded continuous function on G for f ∈ Cc(G) and T̃af
is identity on constant functions.

2.3. Weights and Hecke image of H-orbit. The main motivation for introducing
the weighted Hecke operators T̃a is the following lemma.

As in the introduction, λa = λH
a denotes the unique measure on X supported on

Ta(Y ) locally equal to λH on each H-orbit in Ta(Y ) and µa = µH
a denotes the prob-

ability measure which is proportional to λa. In the same way, denote by λY be the
unique H-invariant measure on X supported on Y locally equal to λH and by µY the
probability measure on X proportional to λY .
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Lemma 2.3. Let f ∈ Cc(X) and a ∈ GQ.
a) For any g ∈ G and h ∈ Hx

0
, one has

T̃af(hg) = T̃af(g).

Hence, T̃a can be considered as an operator T̃a : Cc(X) → Cb(Hx0
\G).

b) One has λa(X) = d̃eg(a) λY (X).

c) One has µa(f) =

∫

Y

T̃af(y) dµY (y) .

Remark The claim b) says that the weighted degree is nothing but the ratio of the
volumes of Ta(Y ) and Y .

Proof Recall that x
0

= π(e).
a) Note that, for h ∈ Hx

0
and xi ∈ Ta(x0

), we have xih ∈ Ta(x0
) and hence xih = xj

for some 1 ≤ j ≤ deg(a). It follows from the definitions that for any h ∈ Hx0
,

Σ(xj) = Σ(xi)h and m(xj) = m(xi).

One can then compute

T̃af(hg) = (d̃eg(a))−1
∑

1≤i≤deg(a)

1

m(xi)
f(xihg)

= (d̃eg(a))−1
∑

1≤j≤deg(a)

1

m(xj)
f(xjg)

= T̃af(g) .

b) Let

Xa := {(x, y) ∈ X × X | there exists g ∈ G with x = π(g) and y = π(ag) }.

As a homogeneous space, one has Xa ' G/(Γ ∩ a−1Γa). Consider the projections
π1, π2 : Xa → X given by

π1(x, y) = x and π2(x, y) = y

which are coverings of degree deg(a). Then

Ta(x) = π2(π
−1
1 (x)) and Ta(Y ) = π2(π

−1
1 (Y )).

For the finite union Z := π−1
1 (Y ) of H-orbits, denote by λZ the H-invariant measure

on Z which is given locally by λH . Fixing an H-orbit ω = xiH in Ta(Y ), let

Zω := Z ∩ π−1
2 (ω).

Then Zω is also a finite union of H-orbits.
Consider the following diagram:
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Zω ⊂ Xa

�
���

A
AAU

degree(π1|Zω
) = dω degree(π2|Zω

) = mω

Y ⊂ X ω ⊂ X

As in the above diagram, denote by dω the degree of the covering map π1|Zω
: Zω → Y

and by mω the degree of the covering map π2|Zω
: Zω → ω. Note that

dω = #(π−1
1 (x0) ∩ Zω) and mω = #(π−1

1 (Y ) ∩ π−1
2 (xi)) .(2.4)

Note that #π−1
1 (x) = deg(a). Since Ta(x) = π−1

2 (π−1
1 (x)), the projection π2 re-

stricted to each fiber of π1 is injective. Therefore one has

dω = #(Ta(x0) ∩ ω) .

Similarly,
mω = #(Y ∩ Ta−1(xi)) = m(xi)

where m(xi) is the multiplicity of xi.
Therefore we have

λa(X) =
∑

ω

λa(ω) =
∑

ω

1

mω
λZ(Zω) =

∑

ω

dω

mω
λY (Y ) = d̃eg(a) λY (X)

where the sum is taken over all H-orbits ω in Ta(Y ).
c) One follows a similar computation to obtain

λa(f) =
∑

ω

∫

ω

f(y) dλa(y) =
∑

ω

1

mω

∫

Zω

f(π2(z)) dλZ(z)

=
∑

ω

1

mω

∫

Y


 ∑

z∈π−1

1
(y)∩Zω

f(π2(z))


 dλY (y) = d̃eg(a)

∫

Y

T̃af(y) dλY (y)

where the sum is taken over all H-orbits ω included in Ta(Y ). Since λa(X) =

d̃eg(a) λY (X) by (b), this implies (c). 2

Remark The same computation as above yields the following formula, which gives the
interpretation of the multiplicities mω in relation with the standard Hecke operator:∫

Y

Ta f(y) dλY (y) =
∑

ω∈Ta(Y )

mω

∫

ω

f dλa .(2.5)

In the following the convergence of measures on X are understood in terms of weak∗

topology on the space of probability measures as usual.

Lemma 2.6. Suppose that Y = x0H is compact. Suppose that, for any f ∈ Cc(X),

lim
deg(a)→∞

T̃af(g) =

∫

X

f dµX uniformly for g on compact sets of G.
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Then one has lim
deg(a)→∞

µa = µX .

Proof This is a straightforward application of Lemma 2.3.c. 2

Let

Xa = {(x, y) ∈ X × X | there exists g ∈ G with x = π(g) and y = π(ag) }.

and π1, π2 : Xa → X be given by πi(x1, x2) = xi for i = 1, 2.
The following lemma about the multiplicity was proven in the course of proof of

Lemma 2.3.b.:

Lemma 2.7. Let x ∈ Ta(x0) and ω = xH. Then

m(x, H) = mω

where mω is the degree of the covering map π−1
1 (x0H) ∩ π−1

2 (ω) → ω induced by the
restriction of π2. That is,

mω = #π−1
1 (x0H) ∩ π−1

2 (x).

3. Multiplicity and local multiplicity

3.1. Multiplicity. Let G be a connected semisimple Q-group, G the identity compo-
nent of GR and Γ ⊂ GQ be a congruence subgroup. Set

XQ := Γ\GQ and x0 := π(e)

where π : GQ → XQ denotes the standard projection.

Definition 3.1. Let ∆ be a subgroup of GQ. For x = π(g) ∈ XQ, define

Σ(x, ∆) := π(∆) ∩ π(g−1Γg) ⊂ XQ .

Note that Σ(x, ∆) is a non-empty finite set. We call its cardinality

m(x, ∆) := #Σ(x, ∆) ≥ 1

the multiplicity of x with respect to ∆.

Remark When ∆ = H ∩GQ, the sets Σ(x, ∆) and the multiplicities m(x, ∆) coincide
with those defined in section 2.2.

Here are some basic properties of the multiplicities m(x, ∆).

Lemma 3.2. Let x ∈ XQ and ∆ a subgroup of GQ.
a) Let Γ′ ⊂ GQ be a congruence subgroup containing Γ and σ : XQ → Γ′\GQ the
canonical projection. Then one has

m(x, ∆) ≤ [Γ′ : Γ] m(σ(x), ∆) .

b) If ∆′ ⊂ GQ is a subgroup containing ∆, then

m(x, ∆) ≤ m(x, ∆′) .
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c) Let G′ be a connected semisimple Q-group containing G, Γ′ a congruence subgroup
of G′

Q and ∆′ a subgroup of G′
Q such that Γ := Γ′ ∩ G and ∆ := ∆′ ∩ G. Denote by

i : XQ → Γ′\G′
Q the canonical injection. Then one has

m(x, ∆) ≤ m(i(x), ∆′) .

Proof a) Use the inclusion σ(Σ(x, ∆)) ⊂ Σ(σ(x), ∆).
b) Use the inclusion Σ(x, ∆) ⊂ Σ(x, ∆′).
c) Use the inclusion Σ(x, ∆) ⊂ Σ(i(x), ∆′). 2

3.2. Local multiplicity. We now define the local analogs of these multiplicities. We
denote by P the set of all primes. Let p ∈ P , G a connected semisimple Qp-group
and U ⊂ GQp

a compact open subgroup of GQp
. Set XQp

:= U\GQp
and denote by

πp : GQp
→ XQp

the canonical projection.

Definition 3.3. For x = πp(g) ∈ XQp
and a subgroup ∆ of GQp

, define

Σp(x, ∆) := πp(∆) ∩ πp(g
−1U g) ⊂ XQp

;

mp(x, ∆) := #(Σp(x, ∆)) < ∞.

We call mp(x, ∆) the local multiplicity of x at p with respect to ∆.

The following lemma is similar to Lemma 3.2 for the local multiplicities.

Lemma 3.4. Let x ∈ XQp
and ∆ a subgroup of GQp

.
a) Let U ′ ⊂ GQp

be a compact open subgroup containing U and σp : XQp
→ U ′\GQp

the canonical projection. Then one has

mp(x, ∆) ≤ [U ′ : U ] mp(σp(x), ∆) .

b) If ∆′ ⊂ GQp
is a subgroup containing ∆, then

mp(x, ∆) ≤ mp(x, ∆′) .

c) Let G′ be a connected semisimple Qp-group containing G, U ′ a compact open sub-
group of G′

Qp
and ∆′ a subgroup of G′

Qp
such that U := U ′ ∩ G and ∆ := ∆′ ∩ G.

Denote by i : XQp
→ U ′\G′

Qp
the canonical injection. Then one has

mp(x, ∆) ≤ mp(i(x), ∆′) .

Proof Same proof as Lemma 3.2. 2
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3.3. Structure of Γ-orbits in XQ. We now explain the relation between the global
and local multiplicities.

Let GAf
be the group of finite adeles of G. It is the restricted topological product

for p ∈ P of all the groups GQp
with respect to the compact open subgroups GZp

. An
element g of GAf

is then a family (gp)p∈P of elements of GQp
which are in GZp

for
almost all p. For p ∈ P , let Up be a compact open subgroup of GQp

which is equal to
GZp

for almost all p. The group U :=
∏

p∈P Up is a compact open subgroup of GAf
.

We will implicitly embed GQ diagonally as a subgroup of GAf
.

The homogeneous space XAf
:= U\GAf

is the restricted product of the local ho-
mogeneous spaces XQp

:= Up\GQp
, and an element x of XAf

is a family (xp)p∈P of
elements of XQp

which are equal to the base point πp(e) for almost all p. We will
denote by πf : GAf

→ XAf
the canonical projection. Recall that for the base point

x0 = πf (e) of XAf
and for g ∈ GAf

, the Hecke orbit Tg(x0) ⊂ XAf
is given by

Tg(x0) = x0gU.

For any x ∈ XQ, denote by xp its image in XQp
under the canonical embedding of XQ

into XQp
. Similarly, for any subgroup ∆ of GQ, denote by ∆p the closure of its image

in GQp
. Let ∆̂ be the restricted product of the ∆p’s with respect to the subgroups

∆p ∩ Up, p ∈ P .

Definition 3.5. For x = π(g) ∈ XQ and a subgroup ∆ ⊂ GQ, define

Σ̂(x, ∆) := πf(∆̂) ∩ πf (g
−1Ug) =

∏

p∈P

Σp(xp, ∆p) and

m̂(x, ∆) := #Σ̂(x, ∆) =
∏

p∈P

mp(xp, ∆p)

Since mp(xp, ∆p) = 1 whenever xp = πp(e), and hence for almost all primes p ∈ P ,
one has m̂(x, ∆) < ∞.

Set

Γ := GQ ∩ U(3.6)

Then Γ is a congruence subgroup, and via the injective map XQ → XAf
induced by

the diagonal imbedding GQ → GAf
, we may identify XQ as a subset of XAf

.
The relation between the multiplicities m(x) and m̂(x) is given by the inequality:

Lemma 3.7. For any x ∈ XQ and a subgroup ∆ ⊂ GQ,, one has

m(x, ∆) ≤ m̂(x, ∆).

Proof This results from the inclusion Σ(x, ∆) ⊂ πf(∆) ∩ πf (g
−1Γg) ⊂ Σ̂(x, ∆). 2



12 YVES BENOIST AND HEE OH

3.4. Product of relatively prime elements. In this subsection, we further assume
that G is an almost Q-simple simply connected algebraic Q-group with GR non-
compact. In particular, it follows that G = GR, and by the strong approximation
theorem that GQ is dense in GAf

(see [PR]), and hence Γ is dense in U .
The following lemma is a basic fact for the adelic interpretation of the Hecke corre-

spondence.

Lemma 3.8 (GO, Lemma 2.3). For any g ∈ GQ, one has

GQ ∩ UgU = ΓgΓ and UgΓ = UgU.

Since Γ = GQ ∩ U , one has

XQ ' U\GAf
= XAf

and the Γ orbits in XQ are in bijection with the U -orbits in XAf
.

For x = π(g) in XQ ' XAf
, we define the support of x or support of g:

(3.9) supp(x) = supp(g) := {p ∈ P | xp 6= πp(e)}.

Note that supp(g) = {p ∈ P | g /∈ Up} for g ∈ G(Q). We say that two elements g,
h of GAf

are relatively prime or that their images x = π(g) and y = π(h) in XAf
are

relatively primes if the supports supp(x) and supp(y) are disjoint.
We define the dot-product

z := x · y

of two relatively prime points of XQ as the point z ∈ XQ such that zp = xp for each
p ∈ supp(x), zp = yp for each p ∈ supp(y) and xp = x0 otherwise.

Remark The dot product z = x.y of two points x = π(g) and y = π(h) is not always
equal to π(gh). However, if one chooses the lift h of y such that, for all p in supp(x),
hp stabilizes xp, then one has x.y = π(gh).

The following well known lemma is a main tool for the commutativity of relatively
prime Hecke operators.

Lemma 3.10. Let g and h be two relatively prime elements of GQ.
a) The map (x′, y′) 7→ x′ · y′ defines a bijection between Tg(x0) × Th(x0) and Tgh(x0).
b) One has deg(gh) = deg(g)deg(h) and

ΓghΓ = ΓgΓhΓ = ΓhΓgΓ = ΓhgΓ .

c) One has the equality

Tgh(x0) = Thg(x0).
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d) Write ΓgΓ =
⋃

1≤i≤deg(g)

Γgi and ΓhΓ =
⋃

1≤j≤deg(h)

Γhj. Then

ΓghΓ =
⋃

i,j

Γgihj.

Proof a) Note that, by Lemma 3.8, one has

Tg(x0) = Γ\ΓgΓ ' U\UgU '
∏

p∈supp(π(g))

Up\Up gpUp.

Since g and h are relatively prime, one has Up gphpUp = Up gpUp for any p ∈ supp(π(h))
and Up gphpUp = Up hpUp for any p ∈ supp(π(g)).

The claims b), c) and d) can be proved similarly. 2

We now explain the behavior of the multiplicities with respect to the decomposition
into relatively prime factors.

Lemma 3.11. Let x and y be two relatively prime elements of XQ, and ∆ be a subgroup
of GQ. Then one has
a) m̂(x · y, ∆) = m̂(x, ∆)m̂(y, ∆).
b) m(x · y, ∆) ≥ max(m(x, ∆), m(y, ∆)).
c) If m̂(x, ∆) = 1, then m(x · y, ∆) = m(y, ∆).

Proof a) This equality is a straightforward consequence of the definition of m̂.
b) By Lemma 3.10 and its remark, one can choose g, h ∈ GQ such that π(g) = x,

π(h) = y and π(gh) = π(hg) = x · y. Hence one has

Γh−1Γh ⊂ Γh−1Γg−1Γgh = Γ(gh)−1Γgh .

Therefore

π(h−1Γh) ⊂ π((gh)−1Γgh) and

Σ(y, ∆) ⊂ Σ(x · y, ∆) .

This proves the inequality m(y, ∆) ≤ m(x · y, ∆) . The other direction is proved in the
same way.

c) We keep the notation of b) and introduce some new notations: for S ⊂ P and
z ∈ XQ, let zS ∈ XQ be the uniquely determined element with support S and its
p-component given by zp for each p ∈ S. Let S := supp(x) and T := supp(y). One has
the implications

z ∈ π((hg)−1Γhg) ⇒ zS ∈ π(g−1Γg)

and

z ∈ Σ(x · y, ∆) ⇒ zS ∈ Σ̂(x, ∆) .
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We now suppose that m̂(x, ∆) = 1. By the above implication, any element z ∈
Σ(x · y, ∆) satisfies supp(z) ∩ S = ∅. Hence, one has successively that supp(z) ⊂ T ,
z ∈ π(h−1Γh) and z ∈ Σ(y, ∆). This proves

Σ(y, ∆) = Σ(x · y, ∆).

2

4. Bounded multiplicity

A commutative subgroup ∆ of G is said to be reductive if all its elements are semisim-
ple.

In this section, we give, for such ∆, an upper bound for the multiplicity of any point
x ∈ XQ depending only on #(supp(x)).

4.1. Local bound.

Proposition 4.1. Let k be a finite extension of Qp, G a connected semisimple k-group
and ∆ ⊂ Gk a commutative reductive subgroup.

There exists an open subgroup U0 ⊂ Gk such that, for every compact open subgroup
U ⊂ U0, there exists a constant C = C(U, ∆) such that

for any x ∈ U\Gk one has mp(x, ∆) ≤ C .

Note that, in view of the restriction of scalars, Gk is also the group of Qp-points of
some semisimple Qp-group Rk|Qp

(G). Hence this proposition is equivalent to the same
statement with k = Qp.

We fix a k-embedding G ⊂ SLN. Let O be the ring of integers of k, M = $O its
maximal ideal, q := #(O/M) and |.| the absolute value on k such that |$| = q−1. Let
k′ be a finite extension of k which splits all the matrices in ∆, O′ be the ring of integer
of k′ and choose g

∆
∈ SLN(k′) such that g

∆
∆g−1

∆
consists of diagonal matrices.

We will see in the proof that one can take

U0 = GO ∩ g−1
∆

SLN(O′)g
∆

and(4.2)

C(U, ∆) = N ! CUC∆ with

CU := [GO : U ] and C∆ := [SLN(O′) : SLN(O′) ∩ g
∆
SLN(O′)g−1

∆
]

Proof The crucial step is the following important example.
1st case : G = PGLN, U = PGLN(O) and ∆ = {diagonal matrices of Gk}.
We can identify the homogeneous space U\Gk with the space of lattices in kN , i.e.

of O-submodules of rank N , up to homothety by the multiplicative group k∗.
The point x0 corresponds to the lattice Λ0 := ON and the point x = x0g corresponds

to the lattice Λ = g−1(ON ) up to homothety. We may and will choose this lattice Λ
to be a primitive sublattice of Λ0 i.e. Λ ⊂ Λ0 and Λ 6⊂ $Λ0. Let e1, . . . , eN be the



EQUIDISTRIBUTION OF MATRICES 15

standard basis of the O-module Λ0 = ON . Since O is principal, there exists integers
0 = m1 ≤ · · · ≤ mN and a basis f1, . . . , fN of Λ0 such that

Λ = O$m1f1 ⊕ · · · ⊕ O$mN fN .(4.3)

Set

a := diag($−m1, . . . , $−mN ) ∈ PGLN(k).

Then one has x ∈ Ta(x0). We will write equivalently Λ ∈ Ta(Λ0). Recalling the
definition of Σp(x, ∆), one sees that

Σp(x, ∆) ' {Λd := O$d1e1 ⊕ · · · ⊕ O$dN eN | d ∈ ZN , Λ ∈ Ta(Λd)}/k
∗ .

Any element of Σp(x, ∆) has a unique representative Λd which contains Λ as a primitive
submodule. This submodule Λd has same volume as Λ0. This avoids the homothety
by k∗ and gives the identification

Σp(x, ∆) ' {Λd := O$d1e1 ⊕ · · · ⊕ O$dN eN | d ∈ ZN , Λ ∈ Ta(Λd) ,
∑

di = 0} .

Note that this set Σp(x, ∆) does not depend on the choice of Λ0, provided Λ0 is in
Ta−1(Λ) and Λ0 admits a O-basis with respect to which ∆ is diagonal. Hence we are
allowed to replace Λ0 by any of the Λd ∈ Σp(x, ∆). We will do that later on.

To prove the desired inequality

#(Σp(x, ∆)) ≤ N !

we will argue by induction on N .
Define for all i the integers ni by the equalities kei ∩ Λ = O$niei. By (4.3), they

satisfy the following inequalities

for any i, m1 ≤ ni ≤ mN and there exists k0 such that nk0
= mN .

For the same reason, using the equalities k$diei ∩Λ = O$ni−di($diei), one gets the
inequalities, for any Λd ∈ Σp(x, ∆),

for any i, m1 ≤ ni−di ≤ mN and there exists i0 such that ni0−di0 = mN .

Fixing i0 ∈ {1, . . . , N}, it is enough to show that the set

Si0 := {Λd ∈ Σp(x, ∆) | ni0 − di0 = mN}

has at most (N − 1)! elements. Replacing Λ0 by any element Λd of Si0 as explained
above, one can assume that Λ0 belongs to Si0 and hence k0 = i0. Therefore one has

ni0 = mN and for any Λd ∈ Si0 di0 = 0 .(4.4)

Let pi0 : kN → kN−1 be the projection which forgets the ith0 coordinate, and set

Λ′
0 := pi0(Λ0) , Λ′ := pi0(Λ) , Λ′

d := pi0(Λd)

and a′ = diag($−m1, . . . , $−mN−1). One has the following exact sequence of finite
O-modules

0 −→ O/(Oωni0 ) −→ Λ0/Λ −→ Λ′
0/Λ′ −→ 0 .
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Since, by (4.4), one has ni0 = mN = max(mi), this sequence splits and Λ′ is contained
in Ta′(Λ′

0). Similarly,
Λ′ ∈ Ta′(Λ′

d) for all Λd ∈ Si0 .

Hence by induction hypothesis, there are at most (N −1)! such Λ′
d. This concludes the

proof of this example.

2nd case : We now reduce the proof of the general case to the above example.
Using the chosen k-embedding G ⊂ SLN, set

U0 := GO ∩ g−1
∆

SLN(O′)g
∆
.

Using Lemma 3.4.a with U ′ = U0, we can suppose that U = U ′. This gives the factor
CU in the constant C.

Using Lemma 3.4.c with G′ = SLN, and changing the base field k by k′, we can
suppose that G = SLN, k′ = k and U = GO ∩ g−1GO g. This does not change the
constant C.

Using again Lemma 3.4.a with U ′ = g−1GO g we can suppose moreover that g = e.
This gives the factor C∆ in the constant C.

Using Lemma 3.4.b with ∆′ = {diagonal matrices}, we can suppose that ∆ = ∆′

This does not change the constant C.
Hence we have G = SLN, U = SLN(O) and ∆ = {diagonal matrices} and our result

is a consequence of the first case. 2

4.2. Independence of p. The following proposition is a global version of Proposition
4.1.

For x = π(g) ∈ XQ, let

s(g) = s(x) := #(supp(x))

(roughly, this integer s(g) can be thought as the number of primes which appear in the
denominators of the coefficients of the matrix g).

Proposition 4.5. Let G be a connected almost Q-simple Q-group. Let ∆ ⊂ GQ a
commutative reductive subgroup.

There exists a congruence subgroup Γ0 ⊂ GQ such that, for every congruence sub-
group Γ ⊂ Γ0 of the form Γ = GQ∩

∏
p Up for compact open subgroups Up ⊂ GQp

, there

exists a constant C = C(Γ, ∆) such that, for each x ∈ XQ, one has

m(x, ∆) ≤ Cs(x) .

Proof We fix a Q-embedding G ⊂ SLN. By Proposition 4.1, for each prime p, there
exists a compact open subgroup U0(p) of GQp

such that, for every compact open
subgroup Vp ⊂ U0(p), there exists a constant C = C(Vp, ∆) such that

for any x ∈ Vp\GQp
one has mp(x, ∆) ≤ C .

Since one can diagonalize ∆ on a finite extension of Q, it follows from (4.2) that
we can suppose U0(p) = GZp

for almost all p. More precisely, let us choose a finite
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extension L of Q and an element g∆ ∈ SLN(L) such that g∆∆g−1
∆ consist of diagonal

matrices. For any p choose a finite extension k′ of Qp containing an embedding of L.
The formula (4.2) gives U0(p) = GO∩g−1

∆
SLN(O′)g

∆
. But for almost all p the element

g∆ is in SLN(O′), hence one has U0(p) = GZp
.

Now if we set Γ0 := GQ∩
∏

p U0(p), Γ0 is a congruence subgroup. Since Up = GZp
for

almost all p, Γ being a congruence subgroup, it follows from (4.2) that C(Up, ∆) = N !
for almost all p. Therefore there exists C = C(Γ, ∆) such that

mp(x, ∆) ≤ C

for all x ∈ XQ and for all p ∈ P .
Since mp(x) = 1, whenever p is not in the support of x, the claim now follows from

Lemma 3.7. 2

5. Equidistribution for finitely many primes with Γ general

5.1. Ergodicity argument. Let G, Γ, X and H, µa = µH
a be as in Section 2. Let

x0H ⊂ X be an H-orbit with finite volume.

Lemma 5.1. Let S be a sequence of elements a in GQ with deg(a) → ∞. Suppose that
H is non-compact and that

sup
a∈S

(
max

xi∈Ta(x
0
)
m(xi, H)

)
< ∞ .(5.2)

Then one has lim
a∈S

µH
a = µX .

Proof Let P(X) be the space of probability measures on the one-point compactification
X := X ∪ {∞} when X is non compact and on X := X when X is compact. By the
weak compactness of this space P(X), it is enough to show that each weak limit of a
subsequence of µa is equal to µX . Let µ∞ be such a weak limit.

Let m0 ≥ 2 be an upper bound for all the multiplicities m(xi). One has, for all a in
S,

1

m0
deg(a) ≤ d̃eg(a) ,

and if f ∈ Cc(X) is a non-negative function,

T̃af ≤ m0 Ta f .

Applying Theorem 2.1 and Lemma 2.3.c, by integrating the previous inequality on Y ,
one gets for the limit measures in P(X)

µ∞ ≤ m0 µX .

In particular, the probability measure µ∞ is supported on X. Since H is non-compact,
Moore’s ergodicity theorem (cf. [Zi]) tells us that the action of H on X is ergodic for
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µX . Hence µX is an extremal point of the set of H-invariant probability measures on
X. The equality

µX =

(
1 −

1

m0

)(
m0µX − µ∞

m0 − 1

)
+

1

m0
µ∞

implies then µ∞ = µX . 2

5.2. Changing the congruence subgroup.

Lemma 5.3. It suffices to prove Theorem 1.1 for a subgroup Γ′ of Γ of finite index.

Proof The main idea is to use the ergodicity argument of the proof of Lemma 5.1.
First, let us adapt the notations we have already introduced for the group Γ to the
group Γ′ by adding primes: set

X ′ := Γ′\G , π′ : G → X ′ , x′
0 := π′(g0) , Y ′ := x′

0H , T ′
a(Y

′) := π′(aπ′−1(Y ′)).

Let µX′ denote the G-invariant probability measure on X ′, and λ′
a the measure on

T ′
a(Y

′) which is locally equal to λH . Also set

d̃eg′a := λ′
a(X

′) and µ′
a := (d̃eg′a)−1λ′

a.

Write Γ =
⋃

1≤j≤d

gjΓ
′ where d = [Γ : Γ′] is the degree of the covering p : X ′ → X.

Notice that the measures p∗(λ
′
agj

) are locally equal to an integral multiple mλH of λH ,

for some m ∈ {1, · · · , d} on each of the finitely many H-orbits in p(T ′
agj

(Y ′)). As a
consequence, one has the inequality

λa ≤
∑

1≤j≤d

p∗(λ
′
agj

) .

Since, for all j, 1
d
p∗(λ

′
agj

)(X) ≤ λa(X), one has the inequality

µa ≤ d
∑

1≤j≤d

p∗(µ
′
agj

) .

By hypothesis, for each 1 ≤ j ≤ d, one has

lim
a∈S

µ′
agj

= µX′ .

Hence any weak limit µ∞ of the sequence µa satisfies

µ∞ ≤ d2µX .

Such a weak limit is an H-invariant probability measure supported on X and absolutely
continuous with respect to µX . Since µX is an ergodic measure for the action of H, it
follows µ∞ = µX . This proves that lim

a∈S
µa = µX . 2

Remark 5.4. Note that in the above proof we have not used any of the assumption G
simply connected, Γ cocompact or H commutative reductive.
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5.3. Proof of Theorem 1.1 for # supp(a) uniformly bounded. We now prove
Theorem 1.1 in the case when # supp(a) is uniformly bounded. Note that we do not
need G simply connected or Γ cocompact in this case.

Theorem 5.5. Let G be a connected almost Q-simple algebraic Q-group with G =
G(R)◦ and H a closed commutative reductive non-compact subgroup of G. Let Γ be
any congruence subgroup in GQ and x0H ⊂ X an H-orbit with finite volume. Let S be
a sequence of elements a ∈ GQ such that # supp(a) is uniformly bounded for all a ∈ S
and deg(a) → ∞. Then for any f ∈ Cc(X), one has

lim
a∈S

1

λH
a (X)

∫

X

f dλH
a =

∫

X

f dµX.

Proof One can easily reduce our proofs to the case when x0 = π(e): simply by
replacing the group H by g−1

0
Hg

0
for x0 = π(g0). Let Γ0 be a congruence subgroup as

in Proposition 4.5 with respect to ∆ = H∩GQ. In view of Lemma 5.3 and Remark 5.4,
there is no loss of generality in assuming that Γ ⊂ Γ0 and Γ is of the form GQ ∩

∏
p Up

by replacing Γ by a finite index subgroup if necessary. Since m(xi, H) = m(xi, ∆)
by the remark following Definition 3.1 and supp(a) = supp(xi) for any xi ∈ Ta(x0),
Proposition 4.5 implies that the multiplicities m(xi) are uniformly bounded for all
∪a∈S Ta(x0). Hence it only remains to apply Lemma 5.1, to finish the proof. 2

6. Hecke points with local multiplicity one

For a ∈ GQ, p prime, and a subgroup ∆ of GQ, set

Sa(x0
, ∆, p) := {x ∈ Ta(x0

) | mp(x, ∆) = 1}

which is the set of Hecke points with p-multiplicity one.
The entire section is devoted to a proof of the following theorem that most Hecke

points have p-multiplicity one for all p large.

Theorem 6.1. Let G be a connected simply connected almost Q-simple Q-group with
GR non-compact and Γ a congruence subgroup of the form Γ = GQ∩

∏
p Up for compact

open subgroups Up ⊂ GQp
. Let ∆ ⊂ GQ be a commutative reductive subgroup.

Then there exists a constant D = D(Γ, ∆) > 0 such that, for all primes p and all
a ∈ GQ, one has

#(Sa(x0
, ∆, p)) ≥

(
1 −

D

p

)
#(Ta(x0

)) .

6.1. Multiplicities and modules.

Lemma 6.2. Let H ⊂ SLN be a Q-torus. Then, for almost all prime p ∈ P , there exist
N Zp-submodules Λ1, . . . , ΛN of Λ0 := (Zp)

N of index p such that, for any h ∈ HQp

with h /∈ HZp
, one has

Λ0 ∩ h(Λ0) ⊂ Λi for some i ∈ {1, · · · , N}.
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Proof We first begin by a very simple example.
1st case : H = {diagonal matrices of SLN}.
In this case, one can take

Λi := {(x1, . . . , xN) ∈ ZN
p | xi ≡ 0 mod p}.

Let h ∈ HQp
. Write

h = diag(pd1u1, . . . , p
dN uN),

where ui are units in Zp. Note that, since det(h) = 1, one has d1 + · · · + dN = 0.
Moreover, if h /∈ HZp

, at least one of the di is negative. Hence one of the di, say di0 is
positive. It follows that

Λ0 ∩ h(Λ0) ⊂ Λi0 .

General case The proof is along the same lines as in the first case except that we
will have to change the base field to diagonalize the torus. Here are the details.

Let E be a number field on which the torus H splits and g ∈ GLN(E) a matrix for
which gHg−1 is diagonal. We choose for each prime p a valuation v of E over p and
let Ev ⊃ Qp be the completion of E, Ov the ring of integers of Ev, Mv the maximal
ideal of Ov and $ a uniformizer in Mv. For almost all primes p, the matrix g belongs
to SLN(Ov). In this case, one can take for Λi any index p submodule of ZN

p such that

Λi ⊃ ZN
p ∩ g−1(Mi,v) where Mi,v := {(x1, . . . , xN ) ∈ ON

v | xi ∈ Mv}.

Note that, since g(ON
v ) = ON

v , the intersection ZN
p ∩ g−1(Mi,v) is not equal to ZN

p . Let
h ∈ HQp

and h /∈ HZp
. One can write

ghg−1 = diag($d1u1, . . . , $
dN uN),

where ui are units in Ov. Note that, since det(h) = 1, one has d1 + · · · + dN = 0.
Moreover, since h /∈ HOv

, at least one of the di is negative. Hence one of the di, say
di0 is positive. This implies

Λ0 ∩ h(Λ0) ⊂ Λi0 .

2

Proposition 6.3. Let G ⊂ SLN be a connected semisimple Q-group, Γ ⊂ GQ a
congruence subgroup of the form Γ = GQ∩

∏
p Up for compact open subgroups Up ⊂ GQp

,
H ⊂ G a Q-torus and ∆ a subgroup of HQ.

Then, for almost all primes p, there exist N Zp-submodules Λ1, . . . , ΛN of Λ0 :=
(Zp)

N of index p such that, for all a ∈ GQp
, for all Λ ∈ Ta(Λ0), one has the implication

mp(Λ, ∆) > 1 =⇒ Λ ⊂ Λi for some i ∈ {1, · · · , N}.

In the above, we have identified, for almost all p, the homogeneous space Up\GQp

with a subspace of the space PGLN(Zp)\PGLN(Qp). Note that the latter space can
be identified with the set of Zp-submodules of QN

p of rank N up to homothety by Q∗
p.

Since Zp is principal, we may further identify PGLN(Zp)\PGLN(Qp) with the space
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of Zp-submodules Λ of finite index in Λ0 which are primitive, i.e. such that Λ 6⊂ pΛ0.
If a = diag(p−m1 , . . . , p−mN ) with m1 ≤ · · · ≤ mN , one has the equivalence

Λ ∈ Ta(Λ0) ⇐⇒ Λ0/Λ ' (Z/pm2−m1Z) × · · · × (Z/pmN−m1Z) .

Proof of Proposition 6.3 By Lemma 3.4.c, one can assume that G = SLN. Since
mp(Λ, ∆) > 1, there exists h ∈ HQp

such that

h(Λ0) 6= Λ0 and Λ ∈ Ta(h(Λ0)).

Choose a scalar k ∈ Q∗
p such that the Zp-module kΛ is a primitive submodule of h(Λ0).

One has
[h(Λ0) : kΛ] = [Λ0 : Λ].

Since the Zp-modules Λ0 and h(Λ0) have same volumes, it follows that the Zp-modules
Λ and kΛ have same volumes and hence Λ = kΛ. Therefore one gets the inclusion

Λ ⊂ Λ0 ∩ h(Λ0).

It only remains to apply Lemma 6.2. 2

6.2. Counting Hecke points. We will also need the following lemma in the proof of
Theorem 6.1.

Lemma 6.4. Let G ⊂ SLN be a semisimple Q-group. We suppose that this Q-
embedding of G is an absolutely irreducible Q-representation. Then there exists a
constant D0 > 0, such that, for almost all primes p, all a ∈ GQp

and all submodule Λ1

of Λ0 := (Zp)
N of index p, one has

#{Λ ∈ Ta(Λ0) | Λ ⊂ Λ1}

deg(a)
≤

D0

p
.

The absolute irreducibility assumption in this lemma means the irreducibility over
the algebraic closure, which is stronger than the irreducibility over Q. It will be needed
to apply the fact 6.6.

To prove as well as to apply this lemma 6.4 we will need the following general four
facts.

Fact 6.5. Every connected semisimple Q-group G with trivial center has an absolutely
irreducible faithful Q-representation ρ : G → SLN.

The term Q-representation means representation defined over Q.

Proof Recall that, according to the highest weight theory, the set R+ of “dominant
weights of the root lattice” parameterizes the set of (equivalence classes of absolutely)
irreducible representations of G. Since the action of the Galois group Gal(Q/Q) on
R+ factors through the linear action of the finite group of exterior automorphisms of
G, there exist many fixed points for this action.
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Hence one can choose a faithful absolutely irreducible representation of G of highest
weight λ which is equivalent to all its Galois conjugates. According to [Ti, Theorem
3.3], since λ is in the root lattice, this representation is defined over Q. 2

Fact 6.6. Let ρ : G → SLN be an absolutely irreducible Q-representation of a connected
semisimple Q-group G. Then for almost all primes p, one gets by reduction modulo p,
a representation GFp

→ SLN(Fp) which is still absolutely irreducible.

Proof Let AQ ⊂ MN(Q) be the Q-algebra generated by ρ(GQ), L ⊂ ρ(GQ) a
finitely generated subgroup generating the Q-algebra AQ and m an integer such that
L ⊂ MN(Z[ 1

m
]). By Wedderburn’s theorem, since the representation is absolutely

irreducible, one has AQ = MN(Q). Hence there exists an integer m0 such that the
Z[ 1

m
]-algebra A generated by L contains m0MN(Z[ 1

m
]).

If one chooses p outside the divisors of mm0, the image of L in MN(Fp) generates
MN(Fp) and the representation GFp

→ SLN(Fp) is absolutely irreducible. 2

Fact 6.7. Let G be a connected Fp-group and H a connected Fp-subgroup. Then one
has the equality

(G/H)Fp
= GFp

/HFp
.

Proof See Proposition 16.5 of [Bo]. 2

Fact 6.8. For any absolutely irreducible projective Fp-variety M ⊂ PN0 of dimension
D and degree d, one has ∣∣#(MFp

) − pD
∣∣ ≤ ApD− 1

2

where the constant A depends only on N0, D and d.

Proof This generalization of Hasse’s theorem is due to Lang and Weil (see [LW]).

Proof of Lemma 6.4 The Lemma is clear if a is in GZp
. Hence we may suppose that

a 6∈ GZp
. We introduce the map Φ from the Hecke orbit Ta(Λ0) to the Grassmanian

GrN(Fp) of FN
p given by

Φ(Λ) := (Λ + pΛ0)/pΛ0.

Here, as in Proposition 6.3, Λ is viewed as a primitive Zp-submodule of Λ0 so that
Φ(Λ) 6= 0. Moreover, since a is not in GZp

, Φ(Λ) 6= Λ0/pΛ0.
This map is GZp

-equivariant where the action of GZp
on GrN(Fp) is the one obtained

through the reduction modulo p map GZp
→ GFp

, which is well-defined for almost all
primes p.

The image of this map Φ is one GFp
-orbit and the cardinality of the fibers of Φ does

not depend on the fiber when it is non-empty. Let v be a point in this image. The
stabilizer of v in the Fp-group obtained from G by reduction modulo p, is a parabolic
subgroup. Hence the orbit M of v is a projective Fp-variety. By Fact (6.7), one has

GFp
.v = MFp

.
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The condition Λ ⊂ Λ1 is equivalent to the condition Φ(Λ) ∈ M′
Fp

where M′ is the pro-
jective Fp-subvariety of M consisting of elements included in the hyperplane determined
by Λ1. Since the Q-embedding of G is an absolutely irreducible Q-representation, by
Fact (6.6), for almost all p, the representation of GFp

in FN
p is still an absolutely irre-

ducible representation. Hence, M is not included in any hyperplane (in particular, the
above parabolic is a proper parabolic subgroup) and one has

dim(M′) < dim(M).

We want to apply Fact 6.8 to these projective Fp-varieties, for this we need to check
its hypothesis. Note first that these projective varieties are included in the Grassmanian
of FN

p with N fixed, hence using Plücker coordinates, in a projective space of dimension

N0 := 2N . The dimensions of M and M′ are also bounded by N0. The degrees of M
is bounded independently of p and a since these varieties are obtained by reduction
modulo p among finitely many flag subvarieties of the Grassmanian. Moreover M is
absolutely irreducible being a homogeneous variety of G. Since M′ is obtained from M
by intersection with hyperplanes, the degree of M′ is bounded by the degree of M. The
number and the degrees of irreducible components of M′ are bounded independently
of a, since the degree of M′ is the sum of the degrees of the irreducible components of
M′. Therefore, by applying Fact 6.8 to M as well as to the irreducible components of
M′, one has

#{Λ ∈ Ta(Λ0) | Λ ⊂ Λ1}

deg(a)
=

#M′
Fp

#MFp

≤
D0

p
,

for some constant D0 independent of a. 2

Remark The same argument proves that, if a is not in GZp
, then one has the inequality

deg(a) ≥ p .

In fact, this proof shows that deg(a) = #Ta(Λ0) ≥ #MFp
. But the number of Fp-points

of a non trivial flag variety of a semisimple Fp-group is at least p.

Proof of Theorem 6.1 Later on, we will use this theorem only for a in GZ[1/p]. In
fact, the first part of the proof is to reduce it to the case where a is in GZ[1/p].

To explain this reduction, we recall that
- The quotient Γ\GQ is the restricted product of the quotient spaces Up\GQp

, and
Up = GZp

for almost all p.
- The Hecke orbit Ta(x0) is a finite product

∏
p∈supp(a) Tap

(x0) where a =
∏

p ap with

supp(ap) = {p} (Lemma 3.10.a) .
- If x =

∏
xp ∈ Ta(x0) with xp ∈ Tap

(x0) the multiplicities mp(x, ∆) and mp(xp, ∆)
are equal.
It follows that

#Sa(x0, ∆, p)

deg(a)
=

#Sap
(x0, ∆, p)

deg(ap)
,
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which allows us to replace a by ap. From now on, we may assume that a ∈ GZ[1/p].
By Lemma 3.2.b, we may replace ∆ by the intersection of the Zariski closure of ∆

with GQ. Hence we assume ∆ = HQ where H is a Q subtorus of G.
We can also suppose that G has trivial center. In fact, for any semisimple Q-group

G, its center Z is finite. Moreover for almost all primes p, one has

Z ∩ GQp
⊂ GZp

and hence GZp
\GQp

injects in (G/Z)Zp
\(G/Z)Qp

. This allows us to replace G by G/Z.
Note also that the statement of Proposition 6.1 does not depend on any Q-embedding

of G. Hence using Fact (6.5), we may choose an absolutely irreducible Q-embedding
of G in SLN. Now Theorem 6.1 with the constant D = ND0 follows from Proposition
6.3 and Lemma 6.4. 2

We note in the above proof that, if we exclude a finite set of primes S = S(Γ, ∆),
the constant D can be chosen independent of Γ and ∆, i.e. depending only on G.

7. Proof of Theorem 1.1

7.1. Approximation of the weighted Hecke operator.

Theorem 7.1. Let G, H be as in Theorem 1.1 and let x0H an H-orbit with finite
volume with x0 = π(e). Let Γ ⊂ GQ a congruence subgroup of the form Γ = GQ∩

∏
p Up

for compact open subgroups Up ⊂ GQp
. Let a ∈ GQ and p ∈ supp(a). Write a = bc

with b and c relatively prime and supp(c) = {p}. For any f ∈ Cc(X), one has

‖T̃af − T̃b(Tc f)‖∞ ≤
D0

p
‖f‖∞

where T̃a = T̃
H

a and T̃b = T̃
H

b are weighted Hecke operators with respect to H and
D0 = D0(Γ, H ∩ GQ) > 0 is a constant.

Indeed, D0 = 2D where the constant D is as in Theorem 6.1.
Proof Set ∆ = H ∩ GQ. Define δf ∈ C(G) by

δf := d̃eg(b) deg(c) T̃b(Tc f) − d̃eg(a) T̃a(f) .

Since b and c are relatively primes, one has

δf(e) =
∑

x∈Tb(x0)

∑

y∈Tc(x0)

(
1

m(x)
−

1

m(x.y)

)
f(x.y) .

When y is in Sc(x0, ∆, p), the local multiplicity m̂(y) = mp(y) is equal to 1, and by
Lemma 3.11.c, one has m(x.y) = m(x). When y is not in Sc(x0, ∆, p), it follows from
Lemma 3.11.b that ∣∣∣∣

1

m(x)
−

1

m(x.y)

∣∣∣∣ ≤
1

m(x)
.
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Hence, using Theorem 6.1, one obtains

|δf(e)| ≤
D

p
deg(c)

∑

x∈Tb(x0)

1

m(x)
|f(x.y)|

≤
D

p
d̃eg(b) deg(c)‖f‖∞ .

By the G-equivariance, one gets the same upper bound at every point of G. Hence

‖δf‖∞ ≤
D

p
d̃eg(b) deg(c)‖f‖∞ .

Applying this inequality to the constant function, one has

|d̃eg(b) deg(c) − d̃eg(a)| ≤
D

p
d̃eg(b) deg(c) .

Therefore,

‖Tb(Tc f) − T̃af‖∞

= ‖
1

d̃eg(b)deg(c)

∑

x∈Tb(x0)

∑

y∈Tc(x0)

f(x.y)

m(x)
−

1

d̃eg(a)

∑

x∈Tb(x0)

∑

y∈Tc(x0)

f(x.y)

m(x.y)
‖∞

≤
‖δf‖∞

d̃eg(b) deg(c)
+

∣∣∣∣∣1 −
d̃eg(a)

d̃eg(b) deg(c)

∣∣∣∣∣ ‖T̃af‖∞

≤
2D

p
‖f‖∞

which is the bound we were looking for. 2

7.2. Proof of Theorem 1.1. By Theorem 5.5, we only need to consider the case
when #supp(a) is not bounded. Letting pa := max(supp(a)), we may now assume
that pa → ∞ as deg(a) → ∞. As in the proof of Theorem 5.5, we may assume that
x0 = π(e) and Γ is of the form GQ ∩

∏
p Up.

Let f ∈ Cc(X) with
∫

X
f dµX = 0. Applying Theorem 7.1 with pa, one has, writing

a = bc with b, c relatively prime and supp(c) = {pa},

lim
a∈S

‖T̃af − T̃b(Tc f)‖∞ = 0 .

We note that, since X is compact, Theorem 2.1 implies that

lim
deg(c)→∞

‖Tc f‖∞ = 0.(7.2)

It is easy to see that deg(c) ≥ pa for all sufficiently large pa. Hence as deg(a) → ∞,
deg(c) → ∞.
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Since T̃b decreases the sup norm, one has

lim
a∈S

‖T̃af‖∞ ≤ lim
a∈S

‖Tc f‖∞

and hence

lim
a∈S

‖T̃af‖∞ = 0.

This finishes the proof of Theorem 1.1 by Lemma 2.6. 2

Remark The assertion (7.2) is the only place in the proof of Theorem 1.1 where
we use the cocompactness hypothesis on Γ. Note that in the case when #supp(a) is
unbounded, our proof of Theorem 1.1 works for the case H compact as well.

Since λa(X) = d̃eg
H

(a) · λH(x0H), the following corollary shows that deg(a) → ∞
if and only if λa(X) → ∞ as mentioned in the introduction.

Corollary 7.3. Let G, H be as in Theorem 1.1 and Γ be any congruence subgroup.
For a sequence {a ∈ GQ}, one has the equivalence:

deg(a) → ∞ ⇐⇒ d̃eg
H

(a) → ∞ .

Proof Since d̃eg
H

(a) ≤ deg(a) clearly, we only have to prove the implication =⇒.
When #supp(a) is bounded, we have seen in Proposition 4.5 that the multiplicities

are bounded by some integer m0. Hence deg(a) ≤ m0 d̃eg(a) .
Suppose #supp(a) goes to infinity. By Lemma 3.7, one has

d̃eg(a) ≥
∏

p

d̂egp(a)

where d̂egp(a) =
∑

x∈Tap(x0)

1

mp(x, H ∩ GQ)
. Letting pa = max(supp(a)), one obtains

from 6.1 that for pa > D0

d̃eg(a) ≥ d̂egpa
(a) ≥

(
1 −

D

pa

)
deg(apa

) ≥
1

2
deg(apa

) ≥ pa/2.

To prove the last inequality, just use the remark following the proof of Lemma 6.4.

In both cases, d̃eg(a) goes to infinity. 2

8. Duality and double classes

8.1. Hecke orbits on G/H. Corollary 1.2 will be a consequence of Theorem 1.1 and of
the following proposition. Recall that a Radon measure on a locally compact Hausdorff
space simply means a locally finite regular Borel measure.
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Proposition 8.1. Let G be a locally compact group. Let Γ and H be two closed
subgroups of G. Fix a right Haar measure λΓ on Γ and a left Haar measure λH on H.
Then there are homeomorphisms among the following spaces equipped with the weak ∗
topologies





right H-invariant

Radon measures

on Γ\G



 ↔





left Γ-invariant and

right H- invariant

Radon measures on G



 ↔





left Γ-invariant

Radon measures

on G/H





µ ↔ ν ↔ ρ

given by, for any f ∈ Cc(G),

∫
Γ\G

(
∫
Γ
f(γg) dλΓ(γ)) dµ(Γg) =

∫
G

f(g) dν(g) =
∫

G/H
(
∫

H
f(gh) dλH(h)) dρ(gH) .

This proposition follows immediately by applying the following general lemma twice.

Lemma 8.2. Let G be a locally compact group and H a closed subgroup of G. Fix a
left Haar measure λH on H. Then there is a homeomorphism between the following
spaces {

right H-invariant

Radon measures on G

}
↔

{
Radon measures

on G/H

}

ν ↔ ρ

given by, for any f ∈ Cc(G),

∫
G

f(g) dν(g) =
∫

G/H
(
∫

H
f(gh) dλH(h)) dρ(gH) .

Proof The map I : Cc(G) → Cc(G/H) defined by

I(f)(gH) =

∫

H

f(gh)dλH(h)

is surjective [Ra, Lemma 1.1]. For a given right H-invariant Radon measure ν on G,
define

ρ(I(f)) :=

∫

G

f(g)dν(g) = ν(f)

for f ∈ Cc(G). To check this is well defined, suppose that I(f) = 0. Then
∫

G

I(f)(gH)dν(g) = 0.

By applying Fubini’s lemma, one has
∫

H

∫
G

f(gh)dν(g)dλH(h) = 0. Since ν is right
H-invariant, it follows that

∫
H

ν(f)dλH(h) = 0 and hence ν(f) = 0. Hence ρ defines a
Radon measure on G/H. Now for a given ρ, one can define a right H-invariant measure
ν on G as above. Clearly this map ν → ρ is a homeomorphism. 2
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Note that if Γ is a closed subgroup of G, then the left Γ-invariant measures ν cor-
respond to the left Γ-invariant measures ρ in the above lemma, and hence Proposition
8.1 follows.

Proof of Corollary 1.2 Let dg and dh denote the Haar measures on G and H
respectively so that Γ\G and (Γ∩H)\H have both volume 1. Let λ be the G-invariant
measure λ on G/H to be the “quotient” of dg by dh, i.e., for any f ∈ Cc(G), we have

∫

G

fdg =

∫

G/H

∫

H

f(gh) dhdλ[g].

In this case, one has λa(X) = d̃eg(a) and one can take

ca = d̃eg(a) .

In fact, according to the homeomorphism given in Proposition 8.1, each H-invariant
measure µa = c−1

a λa on X = Γ\G correspond to the Γ-invariant measure ρa on V =
G/H given by

ρa(Ω) =
1

ca

#(Va ∩ Ω)

for any measurable subset Ω ⊂ V , and the measure µX on X = Γ\G correspond to
the measure λ on V = G/H. By Theorem 1.1, the sequence µa converges to µX , and
hence the sequence ρa converges to λ. 2

Remark 8.3. Corollary 1.2 is still true even if G is not necessarily simply connected
and Γ is not necessarily cocompact if one take G = G(R)0 and a ∈ GQ with #supp(a)
uniformly bounded. The same proof works, replacing Theorem 1.1 by Theorem 5.5.

Proof of Corollary 1.3 Denote by H the centralizer of s in G. Then H is a non-
compact torus, which is Q-anisotropic. The last condition is equivalent to saying the
H-orbit [e]H is compact in Γ\G. The homogeneous space V = G/H can be identified
with C(s) via the map g 7→ gsg−1, and this identification carries Va to the set

{t ∈ C(s) | t = gsg−1 for some g ∈ ΓaΓ}.

Hence this corollary is a special case of Corollary 1.2. 2

8.2. Conjugacy classes of rational matrices. We can now come back to our con-
crete example.
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Proof of Proposition 1.4 Denote by M0 the companion matrix associated to the
polynomial P (T ) = T N + aN−1T

N−1 + · · · + a0 with N ≥ 3:

M0 :=

0

B

B

B

B

B

B

@

0 1 · · · 0
0 0 · · · 0
... 1

−a0 −a1 · · · −aN−1

1

C

C

C

C

C

C

A

.

Let GL+
N (R) denote the subgroup of GLN (R) consisting of all matrices of positive

determinant. As is well known, V (resp. VQ) is the conjugacy class of M0 in GL+
N(R)

(resp. GL+
N(Q)). Note that the centralizer of M0 in PGLN is a maximal torus which

is R-isotropic since N ≥ 3 and Q-anisotropic since P is irreducible (cf. [EMS]). Hence
if we set G = PGL+

N(R) and H to be the centralizer of M0 in G, then G and H satisfies
the assumptions in Theorem 5.5 (with G = PGLN) and we may identify V with G/H
via the map gM0g

−1 7→ gH. Now by Remark 8.3, we may apply Corollary 1.2 to this
case with Γ = PGL+

N(Z) = SLN(Z), provided # supp(a) are uniformly bounded.
Set am = diag(m1, . . . , mN). The condition on m in Proposition 1.4 is equivalent to

saying that # supp(am) are uniformly bounded for all m. Therefore we only need to
check that

(8.4) Vm = Ad(SLN(Z)am SLN(Z))(M0).

Set
L := {Λ | finite index Z-submodule of Z[α]}/ ∼

where Λ1 ∼ Λ2 if and only if Λ1 = uΛ2 for some non-zero u ∈ Q(α).
In the space L, we may define, for each m = (m1, · · · , mN), the Hecke orbit Tm(Z[α])

of Z[α] to be

Tm(Z[α]) := {[Λ] ∈ L | Z[α]/Λ ' ⊕N
i=1Z/miZ}.

Define the map φ : VQ → L by M 7→ [ΛξM
] where ξM = (ξ1, . . . , ξN) ∈ Z[α]N

is an eigenvector of M for α. Since the eigenvector ξM of M for α is unique up to
multiplication by Q(α), φ is well defined. Observing that

Vm = φ−1(Tm(Z[α])),

the following lemma provides (8.4).

Lemma 8.5. The map φ : VQ → L is a surjection such that for any m = (m1, · · · , mN)
with mi ∈ N, mi+1|mi for all i and mN = 1,

Ad(SLN (Z)am SLN (Z))(M0) = φ−1(Tm(Z[α]))

Proof If we set ξ0 := (1, α, . . . , αN−1)t ∈ Z[α]N , then M0ξ0 = αξ0. Let [Λ] ∈ L. Since
(1, α, . . . , αN−1) is a basis of the Z-module Z[α], there exists g = (gij) ∈ GL+

N(Q) ∩
MN(Z) such that (ξ1, · · · , ξN) is a basis for Λ where (ξ1, · · · , ξN)t = gξ0. Clearly,
gξ0 is an eigenvector for M := gM0g

−1 with respect to the eigenvalue α. Hence
φ(gM0g

−1) = [Λ]. This shows φ is surjective.
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By the elementary divisor theory, any g ∈ GL+
N(Q) belongs to SLN (Z)am SLN (Z)

where am = diag(m1, · · · , mN) is the unique diagonal element with the property that
mi ∈ N, mi+1|mi for all i and mN = 1. Moreover, by the structure theorem for Z-
submodules of ZN , for ξ = gξ0 with g ∈ GL+

N(Q), the quotient Z[α]/Λ is isomorphic to
⊕N

i=1Z/miZ for some Λ ∈ [Λξ] if and only if g ∈ SLN(Z)am SLN(Z). This finishes the
proof. 2

It is easy to see that the same proof holds for N = 2 and α ∈ R as well. However
the arguments in this paper does not prove the case of N = 2 with α ∈ C, which we
believe to be still true.
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