
POLAR DECOMPOSITION FOR P-ADIC SYMMETRIC SPACES

YVES BENOIST AND HEE OH

Abstract. Let G be the group of k-points of a connected reductive k-group and
H a symmetric subgroup associated to an involution σ of G. We prove a polar
decomposition G = KAH for the symmetric space G/H over any local field k of
characteristic not 2. Here K is a compact subset of G and A is a finite union
of groups Ai which are the k-points of maximal (k, σ)-split tori, one for each
H-conjugacy class.

This decomposition is analogous to the well-known polar decomposition G =
KAH for a real symmetric space G/H.

1. Introduction

We begin with a short motivation of this article. It is well known that every non-
degenerate quadratic form on Rn can be put into diagonal form by an orthogonal
base change.

This statement is an instance of the so-called polar decomposition G = KAH for
a real symmetric space G/H (see section 5.1), with G = GL(n,R), H = O(p, n−p),
1 ≤ p ≤ n, K = O(n) and A the subgroup of diagonal matrices of G.

Let k be a non-archimedean local field. It is also well known that if the residual
characteristic of k is not 2, every non-degenerate quadratic form on kn can be put
into diagonal form by a base change preserving the sup norm (see section 5.2). The
aim of this paper is to prove a polar decomposition for any symmetric space G/H
over a local field of characteristic not 2

Here is the precise statement of our polar decomposition. Let k be a non-
archimedean local field of characteristic not 2, G a connected reductive k-group,
σ a k-involution of G and H an open k-subgroup of the group Gσ of σ-fixed points.
A k-torus S of G is said to be (k, σ)-split if it is k-split and σ(g) = g−1 for all g ∈ S.

We use the notation G, H, S,... to denote the groups of k-points of G, H, S,...
By a theorem of Helminck and Wang [HW], there are only finitely many H-

conjugacy classes of maximal (k, σ)-split tori of G. Choose a set {Ai : 1 ≤ i ≤ n}
of representatives of H-conjugacy class of maximal (k, σ)-split tori of G and set
A = ∪n

i=1Ai.

Theorem 1.1. There exists a compact subset K of G such that we have

G = KAH .
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We remark that all the subgroups Ai, 1 ≤ i ≤ n are needed, up to H-conjugacy,
in the above decomposition (Lemma 5.5) and that we can not in general choose K
to be a compact subgroup of G.

The proof relies simultaneously on algebraic properties of the symmetric spaces
G/H mostly due to Helminck and Wang, as well as on geometric properties of
the Bruhat-Tits building XG of G. In fact, we will deduce Theorem 1.1 from the
following geometric statement: (see (4.2) for the definition of σ-apartment):

Theorem 1.2. There exists a constant C > 0 such that any point x ∈ XG has
distance at most C from some σ-apartment in XG.

This paper is organized as follows: in section 2 we recall the construction of the
Bruhat-Tits building of G, as well as the polar decomposition for the group G itself
which is a consequence of the Bruhat-Tits theory. After recalling in section 3 a few
known facts on symmetric spaces over local fields, we prove in section 4 a geometric
version of the polar decomposition (Theorem 4.6) from which we deduce Theorem
1.1. We finish in section 5, by giving a few examples and comments. It may be a
good idea for a reader to start with this section which is independent of the rest of
the article.

We plan to apply our polar decomposition given in Theorem 1.1 to some count-
ing and equidistribution results, with rate of convergence, for S-integral points on
symmetric spaces in a forthcoming paper [BO]. That is why we do not work here in
the more general setting of a valued field.

After a lecture by the first author in CIRM on this paper, P. Delorme gave him the preprint [DS]
with V. Sécherre, written simultaneously and independantly, in which they prove similar results
when the residual characteristic is not 2. Their method uses the Bruhat-Tits buildings in a more
algebraic way.

2. Bruhat-Tits buildings and polar decomposition

Let k be a non-archimedean local field with a valuation ω and G be the group
of k-points of a reductive k-group G. In this section we recall the definition of the
Bruhat-Tits building XG of G, which is a metric space on which G acts properly by
isometries with a compact fundamental domain. This metric space is very similar
to the Riemannian symmetric space associated to a real reductive group. It is a
very important tool since it gives a geometric insight in understanding the algebraic
properties of G. It is precisely this insight that we will use to prove our main theorem
in this paper. We also recall several properties of XG that we will need later.

The construction of XG relies on a cautious construction of certain open compact
subgroups of G. All the theory on building presented below is due to Bruhat and
Tits ([BT1], [BT2]) but the readers may find references such as [Ti], [Ro2] or [La]
shorter and more helpful.
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2.1. Euclidean Buildings. We first give the axiomatic definition of a building.
All our buildings will be Euclidean and discrete.

Let E be a real affine space endowed with an Euclidean distance dE and let W
be a discrete subgroup, generated by (hyperplane) reflections, of the group of affine
isometries of E. Let V be the corresponding vector space and vW ⊂ GL(V ) the
finite group given by the linear part of W . Here are a few vocabularies. A wall is
a hyperplane of E pointwise fixed by a reflection of W . A root is a halfspace of E
bounded by a wall. A facet is an equivalence class in E with respect to the relation:
x ∼ y if and only if x and y live in the same roots. The type of a facet is its W -orbit.
A chamber is an open facet. A point x in E is special if every wall is parallel to a
wall containing x. Such a point always exists.

Buildings are always associated to such a pair (E, W ). Roughly, they are obtained
by gluing together copies of E along convex union of facets in such a way that they
satisfy very strong geometric properties. More precisely:

A building, modeled on (E, W ), is a metric space (X, d) endowed with a system
of apartments, i.e., a collection of subsets A of X called apartments, and a partition
of X into subsets called facets such that :
- for each apartment A there is an isometry from E to A sending facets to facets,
- any two points of X is contained in at least one apartment,
- for any apartments A and A′, the intersection A∩A′ is a closed convex subset of
A which is a union of facets and there is a facet preserving isometry from A to A′

which is the identity on A ∩A′.

As a metric space, every building X is CAT(0)-space (see [KL]). A translation of
X is an isometry of X which induces a translation in each apartment A ' E of X.
The building X is essential if the only translation of X is the identity. Denote by
V0 the vector space of translations of X. The quotient Xess := V0\X is naturally an
essential building which is called the essential quotient of X and X is isometric to
the Euclidean product Xess × V0.

2.2. Reductive k-groups. We now recall the construction of some important com-
pact open subgroups of G (which are called, at least when G is semisimple, connected
and simply-connected, parahoric subgroups).

For any k-split torus S of G, let X∗(S) be the group of k-characters of S, X∗(S)
the group of k-co-characters of S, V (S) the real vector space V (S) = X∗(S) ⊗Z R.
Let T be a maximal k-split torus of G so that dim(T) = k-rank(G). Let N and Z
be respectively the normalizer and centralizer of T in G, and Φ be the root system
of G relative to T. For any root α ∈ Φ, let Uα be the corresponding root subgroup.
The group G is generated by N and these root groups Uα [Bo]. For any u in Uα,
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u 6= 1, there exists a unique element

m(u) ∈ N ∩ U−αuU−α .

The image of m(u) in the group N/Z is the reflection sα associated with the root
α. We denote by vW the group generated by these reflections sα, α ∈ Φ, and call it
the Weyl group (associated to T). When G is connected one has vW = N/Z.

The normalizer N acts linearly on the real vector space V (T ). Choose an N -
invariant euclidean structure on V (T ). There is a unique morphism ν of the group
Z into the vector space V (T ) given by the formula

χ(ν(z)) = −ω(χ(z)) ,

for all z ∈ Z and χ ∈ X∗(Z) where on the left-hand side χ is seen as a linear
form on V (T ). Hence Z acts by translation via ν on the affine space E underlying
V (T ). Since N/Z is a finite group, one has H2(N/Z, V (T )) = 0 and hence, this
action extends to a morphism ν : N → Aff(E). Such an extension is unique up
to a translation. The hyperplane H(u) fixed by ν(m(u)) is defined by the equation
α(x) + ϕα(u) = 0 for some ϕα(u) ∈ R. For x ∈ E, we introduce the set

Uα,x := {u ∈ Uα | u = 1 or α(x) + ϕα(u) ≥ 0} .

By [BT2], Uα,x is in fact a subgroup. We also set Nx := {n ∈ N | ν(n)(x) = x} ,
which is clearly a subgroup.

Let Kx denote the subgroup of G generated by Nx and Uα,x, α ∈ Φ. The subgroup
Kx is a compact open subgroup of G.

2.3. Bruhat-Tits Buildings. The Bruhat-Tits building XG of G is now defined
to be the quotient of G× E by the equivalence relation :

(g, x) ∼ (h, y) ⇐⇒ ∃n ∈ N such that y = ν(n)x and g−1hn ∈ Kx .

This building is modeled on (E, W ) where W is the affine Weyl group i.e. the group
generated by the affine reflections ν(m(u)) with u ∈ Uα, u 6= 1 and α ∈ Φ.

The apartments of XG are parametrized by maximal k-split tori of G : the apart-
ment AT ′ of XG corresponding to the torus T′ = gTg−1 for some g ∈ G is the image
of g × E in XG.

The construction of XG does not depend on the choice of a maximal k-split torus
T.

The G-action by left translations on the first factor of the product G×E induces
an isometric action of G on XG, which is proper and co-compact. The stabilizers in
G of points in XG are the conjugates of the subgroups Kx, x ∈ E. Moreover, the
kernel of this action is precisely the maximal normal compact subgroup of G.

According to ([Ti] 2.1), the Bruhat-Tits building can be characterized as in the
following proposition:
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Proposition 2.1. [Ti] The Bruhat-Tits building XG of G is the unique G-set
containing a subset A normalized by N such that
- as an N-set, A is isomorphic to E,
- every G-orbit in X meets A,
- for each x ∈ A ' E, the stabilizer of a point x contains Kx.

Uniqueness means that any G-set satisfying the above three properties is G-
isomorphic to XG. The G-isomorphism is unique only up to a translation of XG.
The vector space V0 of translations of XG is equal to V (S0) where S0 is the maximal
k-split torus of the center of G.

2.4. Polar decomposition for G. We now recall the polar decomposition (also
called Cartan decomposition) for the group G. This decomposition is an algebraic
corollary of the following geometric fact : G acts strongly transitively on the building
XG i.e., G acts transitively on the set of all pairs (C,A) where C is a chamber and
A is an apartment containing C.

Choose a positive root system Φ+ in Φ and set

Z+ := {z ∈ Z | ω(α(z)) ≤ 0 , ∀α ∈ Φ+}.

We also choose a special point x contained in the apartment AT .

Proposition 2.2. [BT1] For any non-archimedean local field k and any reductive
k-group G, we have

G = KxZ
+Kx.

The special case of the above decomposition when G = GL(n, k) has the following
interpretation, when we consider the action of G on the set of all ultra-metric norms
on kn.

Recall that a norm N on kn is called ultra-metric if

N(x + y) ≤ max(N(x), N(y)) for all x, y ∈ kn.

Noting that Kx is any conjugate of GL(n,O) for the valuation ring O of k and that
Z+ is a conjugate of the semi-group consisting of all diagonal matrices in valuation
decreasing order, Proposition 2.2 for GL(n, k) implies that for any two ultra-metric
norms N1 and N2 on kn there exists a basis of kn with respect to which both of N1

and N2 are diagonal i.e. of the form N(x1, . . . , xn) = sup1≤i≤n(αi|xi|) with αi > 0.

3. Structure of symmetric spaces

We collect in this section a few preliminary facts on symmetric spaces due to
Helminck and Wang (see [HW] and also [HH]).

Let k be a field with char(k) 6= 2, G a connected reductive k-group, σ a k-
involution of G and H an open k-subgroup of Gσ.
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3.1. Existence of (k, σ)-split tori. Recall that a k-torus S of G is said to be
(k, σ)-split if it is k-split and σ(g) = g−1 for all g in S.

Here is a criterion for the existence of a (k, σ)-split torus in G (Proposition 4.3
of [HW]).

Lemma 3.1. [HW] The following are equivalent:

(i) Every (k, σ)-split torus of G is trivial.
(ii) Every k-split torus of G is pointwise fixed by σ.
(iii) Every minimal normal isotropic k-subgroup of G is pointwise fixed by σ.

3.2. Finiteness of (k, σ)-split tori. We will not need the whole description of the
H-conjugacy classes of maximal (k, σ)-split tori of G.

We will only need the following proposition, which can be found in (4.5), (10.3),
(6.10) and (6.16) of [HW].

Proposition 3.2. [HW]

(a) Any maximal k-split torus of G containing a maximal (k, σ)-split torus of G
is σ-invariant.

(b) Any two maximal (k, σ)-split tori of G are conjugate to each other by an
element of G.

(c) If k is a local field, the number of H-conjugacy classes of maximal (k, σ)-split
tori of G is finite.

Hence the maximal (k, σ)-split tori of G have the same dimension, which is defined
to be the k-rank of G/H.

3.3. Finiteness of σ-invariant k-split tori. Once again, we will not need the
precise description of the H-conjugacy classes of σ-invariant maximal k-split tori of
G, but only need the following proposition.

The claim (a) below is a straightforward consequence of Proposition 2.3 of [HW]
applied to the centralizer of T. For other claims, we refer to Proposition 2.3, Lemma
2.4 and Corollary 6.16 of [HW]. We recall that every maximal k-split torus of G is
contained in a minimal parabolic k-subgroup P of G.

Proposition 3.3. [HW]

(a) Any maximal σ-invariant k-split torus T of G is a maximal k-split torus of
G.

(b) Any minimal parabolic k-subgroup P of G contains a maximal σ-invariant
k-split torus of G, unique up to conjugacy by H ∩Ru(P ).

(c) If k is a local field, the number of H-conjugacy classes of minimal parabolic
k-subgroups is finite. Hence the number of H-conjugacy classes of maximal
σ-invariant k-split tori of G is finite as well.

When k is local with char(k) = 0, the claims (c) in both Propositions 3.2 and 3.3
are also consequences of the following theorem of Borel and Serre: for every k-group
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L and its k-subgroup M, the number of L-orbits in the k-points of L/M is finite
(th. 5 of III.4.4 in [Se]).

4. KAH decomposition

To prove in Theorem 1.1, we first interpret it in geometric terms which is possible,
using the Bruhat-Tits building.

4.1. Flats, parallelism and Levi subgroups. We need a few more results on the
geometry of Euclidean buildings.

Let X be an Euclidean building. A flat in X is a subset isometric to some Eu-
clidean vector space. A geodesic is a one-dimensional flat. The system of apartments
of X is complete if it is maximal or, equivalently, if every maximal flat is an apart-
ment. In fact, every system of apartments can be extended to a complete system
of apartments. Moreover, the system of apartments is complete if and only if every
geodesic of X is contained in some apartment ([Pa] Prop. 2.18). In this case every
flat in X is contained in some apartment.

By ([BT1] 2.8.4), the system of apartments of the Bruhat-Tits building XG is
complete.

We now suppose that the system of apartments of X is complete. Two flats F
and F ′ of X are called parallel if their Hausdorff distance is finite i.e. if there exists
a constant C > 0 such that d(y,F ′) ≤ C and d(y′,F) ≤ C for every y ∈ F , y′ ∈ F ′.
Parallelism is an equivalence relation among flats. According to ([KL] 2.3.3 and
4.8.1) , we have
- Two flats F and F ′ are parallel if and only if they are both contained in the same
apartment A and are parallel in A ' E.
- For a given flat F , the union of flats F ′ parallel to F , which is then the union of
apartments containing F , is a sub-building of X, denoted by XF .

The singular hull of a flat F is the largest flat F s contained in every apartment
containing F . A flat is singular if it is equal to its singular hull. By construction,
we have XF = XFs .

For the Bruhat-Tits building X = XG of a reductive k-group G, one can describe
the sub-building XF as the Bruhat-Tits building XL associated to some Levi sub-
group L of G (cf. [Ro1] 3.10), which we explain below. A Levi k-subgroup L of G
is the centralizer Z(S) of some k-split torus S of G. A k-split torus S in G is called
singular if it is obtained as intersection of maximal k-split tori or, equivalently, if
it is equal to the maximal k-split torus of the center of some Levi subgroup of G.
This gives a bijection between the Levi k-subgroups of G and the singular k-split
tori of G. The singular hull of a k-split torus S is the smallest singular k-split torus
containing S.

Let L be a Levi k-subgroup of G. Note that any maximal k-split torus of L is
also a maximal k-split torus of G. According to ([BT2] 4.2.17), the union of the
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apartments AT of XG associated to a maximal k-split tori T of L is a sub-building
isometric to the Bruhat-Tits building XL of L. This sub-building is also denoted by
XL by abuse of notation. One can also check this claim using the characterization
(2.1) of the Bruhat-Tits buildings.

We can summarize the above discussion in the following proposition.

Proposition 4.1. ([BT2], [KL], [Ro1]) Let k be a non-archimedean local field and
G a reductive k-group.

(a) For each singular flat F in XG, there exists a unique singular k-split torus S
of G such that XF = XZ(S). This induces a bijection between the set of the
parallelism classes of singular flats of XG and the set of all singular k-split
tori of G.

(b) The parallel singular flats associated to a singular k-split torus S are exactly
the V (S)-orbits in XZ(S).

Remarks - Every apartment of XZ(S) is associated to a maximal k-split torus of
the Levi subgroup Z(S). Not all of them contain F .

- The group Z(S) almost never acts transitively on the set XZ(S)/V (S) of flats
parallel to F , but it acts co-compactly on it, since it already acts co-compactly on
the building XZ(S).

4.2. σ-flats. For the rest of section 4, we suppose as in our initial setting that k is
a non-archimedean local field with char(k) 6= 2, G is a connected reductive k-group,
σ is a k-involution of G and that H is an open k-subgroup of Gσ.

We first remark that the involution σ induces an involution, also denoted by σ, of
the Bruhat-Tits building XG. In fact, let G′ = 〈σ〉nG be the semi-direct product
of the group 〈σ〉 of order 2 with G. This is a reductive k-group whose Bruhat-Tits
building XG′ is the same as XG. That is why G′ acts on XG.

The following definition allows us to restate Theorem 1.1 in a geometric way.

Definition 4.2. A σ-flat in XG is a σ-invariant flat on which σ has only one fixed
point. A σ-flat in XG of maximal dimension is called a σ-apartment.

We will see below that the maximal dimension of a σ-flat in XG is equal to the k-
rank of G/H. Note that a maximal σ-flat is not always a σ-apartment: for instance,
if k-rank(G) = k-rank(H), there exists a chamber in XG of which every point is σ-
fixed. Certainly each point in this chamber is a maximal σ-flat but not of maximal
dimension unless the k-rank of G/H is zero.

This shows that the union of all σ-apartments of XG is not equal to XG in general.
However, we will see in Theorem 4.6 that this is not far from being true.

We will need the following two lemmas. The first one is analogous to Lemma 3.1

Lemma 4.3. (a) The following are equivalent:
(i) The k-rank of G/H is equal to 0.
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(ii) Every σ-apartment of XG is a point.
(iii) The involution σ acts trivially on XG.

(b) Any point x ∈ XG with σ(x) 6= x lies in a one-dimensional σ-flat.

Proof (i) ⇒ (ii) Let F be a σ-flat of dimension 1. Note that the singular hull F s

of F is a σ-invariant flat of XG. By Proposition 4.1, there exists a singular k-split
torus S such that XFs = XZ(S). This torus S and its centralizer L is σ-invariant.
The building XL is isometric to a product Xess

L × V (S). The group S acts on this
product by translations on the Euclidean factor V (S). Since the action of σ on
V (S) ' F s is non-trivial, the action of σ on S is also non-trivial. It follows that the
k-rank of G/H is non-zero.

(ii) ⇒ (iii) For x ∈ XG, suppose σ(x) 6= x. We want to prove that there exists
a one dimensional σ-flat F containing x. This will also prove the claim (b). Since
there exists an apartment containing both x and σ(x), there exists a geodesic F0

containing both x and σ(x). The points x and σ(x) cut this geodesic into three
pieces : two rays F− and F+ and a segment [x, σ(x)]. Let

F := F− ∪ [x, σ(x)] ∪ σ(F−) .

This path F is indeed a geodesic since it is locally a geodesic and XG is a CAT(0)-
space. By construction, F is also σ-invariant. Since σ(x) 6= x, F is a one-
dimensional σ-flat, as desired.

(iii) ⇒ (i) Let S be a maximal (k, σ)-split torus of G and T a maximal k-split
torus of G containing S. By Proposition 3.2 (a), the torus T is σ-invariant. Hence
the corresponding apartment AT is also σ-invariant. If the k-rank of G/H is non-
zero, the action of σ on T is non-trivial. Hence the action of σ on AT is also
non-trivial. This proves the claim. 2

4.3. σ-apartments. Note that a maximal (k, σ)-split torus of G may not be a
singular k-split torus. Nevertheless, we have the following assertion analogous to
Proposition 4.1.

Lemma 4.4. (a) For any σ-apartment F of XG, there exists a unique maximal
(k, σ)-split tori R of G such that XF = XZ(R). This induces a bijection
between the set of all parallelism classes of σ-apartments of XG and the set
of all maximal (k, σ)-split tori of G

(b) For a maximal (k, σ)-split torus R of G, the parallel σ-apartments F associ-
ated to R are exactly the V (R)-orbits in the building XZ(R) and the subgroup
H ∩ Z(R) acts co-compactly on the quotient building XZ(R)/V (R).

(c) Every apartment of XG containing a σ-apartment is σ-invariant.

As an immediate corollary, we obtain:

Corollary 4.5. The k-rank of G/H is equal to the dimension of the σ-apartments
of XG.
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Proof of Lemma 4.4 We will prove (a), (b) and (c) simultaneously.
Let F be a σ-apartment of XG. Let F s be the singular hull of F and S the unique

singular k-split torus of G such that XZ(S) = XFs (see Proposition 4.1). Note that
the torus S and its centralizer L := Z(S) are also σ-invariant. Let R be the maximal
(k, σ)-split torus of S. Again by Proposition 4.1, the vector space V (S) acts simply
transitively on F s. Since this action is σ-equivariant, and F is a σ-flat of maximal
dimension in F s, F is a V (R)-orbit.

Since F s is the singular hull of F , the torus S is also the singular hull of R. It
follows that L is equal to the centralizer of R and hence XZ(R) = XF .

By the maximality of the σ-flat F , the quotient building XL/V (R) does not
contain any one-dimensional σ-flat. Hence, by Lemma 4.3 (i), L/R does not contain
any non-trivial (k, σ)-split torus and hence R is a maximal (k, σ)-split torus in L.
Since L is the centralizer of R, it follows that R is a maximal (k, σ)-split torus of
G. To show the uniqueness, if R′ is any maximal (k, σ)-split torus of G such that
XZ(R′) = XF , then R′ is contained in S and hence in R as well. By the maximality
of R′, R′ = R. This shows the first part of the claim (a).

By Lemma 3.1 (iii), the group H ∩ L acts co-compactly on XL/V (R). This,
together with the previous discussion, proves (b). By Lemma 4.3 (iii), the action
of σ on the building XL/V (R) is trivial. Therefore every flat containing F is σ-
invariant. This proves (c).

To finish the proof of (a), letting R be a maximal (k, σ)-split torus of G, we want
to prove that there exists a σ-apartment F of XG, unique to parallelism, such that
XZ(R) = XF .

The singular hull S of R and its centralizer L = Z(S), being equal to Z(R), are
σ-invariant. The associated building XL is also σ-invariant and the action of the
vector space V (S) on XL commutes with σ. Hence the V (R)-orbits in XL are σ-flats
any two of which are parallel to each other. Let F be one of these σ-flats. Since R
is maximal, the reductive k-group L/R does not contain any non-trivial (k, σ)-split
torus.

By Lemma 4.3 (iii), σ acts trivially on the quotient building XL/V (R). Hence
F is a σ-flat of maximal dimension, i.e., a σ-apartment. Since the torus S is the
singular hull of R, the V (S)-orbit F s containing F is the singular hull of F and we
have XZ(R) = XF .

Finally, if F ′ is any σ-apartment such that XZ(R) = XF ′ , then F ′ is contained in
a V (S)-orbit and hence in a V (R)-orbit in XL. Therefore since F ′ is of maximal
dimension, F ′ is equal to a V (R)-orbit in XL. Hence F ′ is parallel to F . This
completes the proof of (a).

4.4. Geometric interpretation. Here is a geometric reformulation of Theorem
1.1.
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For C > 0, a subset Y of a metric space X is C-dense if every point of X has
distance at most C from Y . A subset Y is quasi-dense in X if it is C-dense for some
C > 0.

Theorem 4.6. Let k be a non-archimedean local field with char(k) 6= 2, G a con-
nected reductive k-group and σ a k-involution of G. The union of all σ-apartments
is quasi-dense in the Bruhat-Tits building XG.

We begin by proving the following lemma:

Lemma 4.7. Either σ acts trivially on XG or the set {x ∈ XG | σ(x) 6= x} is
quasi-dense in XG.

Remark When the residual characteristic of k is not 2, according to Prasad and Yu
[PY], the set Xσ

G of σ-fixed points can be identified with the Bruhat-Tits building
XH of H, when σ-action is non-trivial on XG. This gives a proof of Lemma 4.7 in
this case. We present below a short proof of the above lemma assuming only that
char (k) 6= 2.

Proof of Lemma 4.7 Suppose that σ-action on XG is non-trivial. We will show
that there exists a constant C > 0 such that, for every x ∈ XG, the ball B(x, C) is
not pointwise fixed by σ.

Suppose not. Then there exists a sequence {xn ∈ XG} such that the balls B(xn, n)
are pointwise fixed by σ. We may assume that for a fixed x0 ∈ XG, xn = gnx0 for
some gn ∈ G. Then the element σn := gnσg−1

n is an involutive automorphism of
G which acts trivially on B(x0, n). Hence the sequence σn sub-converges to the
identity in Aut(G). Hence any compact open subgroup of Aut(G) contains σn for
all sufficiently large n. On the other hand, if char(k) = 0, then Aut(G) contains a
compact open subgroup which is torsion free. If the residual characteristic of k is
p 6= 2, the group Aut(G), as any group G′ of k-points of a k-group G′, contains a
compact open subgroup which is a pro-p-group. Since a pro-p-group has no elements
of order 2, the order of σn is 2, and we obtain a contradiction in either case. 2

Proof of Theorem 4.6 We want to prove that there exists a constant CG > 0
such that every point x ∈ XG has distance at most CG from some σ-apartment F
of XG.

We argue by induction on the dimension of G. Writing, as in section 2, XG '
Xess

G × V (S0) where S0 is the maximal k-split torus of the center of G, we may
assume that G is semisimple.

If σ acts trivially on XG then every point of XG is a σ-apartment in which case
our claim trivially holds. Hence we assume that σ does not act trivially on XG. By
Lemma 4.7 and Lemma 4.3 (b), we may then assume that x lies in a one-dimensional
σ-flat F . Then x belongs to the sub-building XFs where F s is the singular hull of F .
By Proposition 4.1 and Lemma 4.4, the sub-building XFs is equal to the building
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XL associated to some σ-invariant Levi-subgroup L  G such that every σ-apt in
XL is also an σ-apt in XG. We apply our induction hypothesis to the reductive
subgroup L to conclude.

Note that the distance on the building Xess
G is unique only up to some scalar

factors, one for each quasi-simple isotropic normal k-subgroup of G. The constant
CG will depend on this normalization of those scalar factors. The same is true for
L.

Each σ-invariant Levi subgroup L gives rise to some constant CL. This constant
CL depends only on the H-conjugacy class of L.

To obtain a finite upper bound for these CL, we need to know that there are
only finitely many H-conjugacy classes of σ-invariant Levi subgroup of G. Since
a k-split torus contains only finitely many singular k-split sub-tori, this assertion
is a direct consequence of the finiteness of the number of H-conjugacy classes of
maximal σ-invariant k-split tori of G (Proposition 3.3). 2

4.5. Orbits of (k, σ)-split tori in XG. The following corollary is the link between
Theorem 1.1 and Theorem 4.6.

As in the introduction, we choose maximal (k, σ)-split tori A1, . . .An, which
are representatives of H-conjugacy classes of all maximal (k, σ)-split tori of G (cf.
Proposition 3.2). Let A be the union of the groups of k-points Ai, 1 ≤ i ≤ n.

Corollary 4.8. Let k be a non-archimedean local field with char(k) 6= 2, G a con-
nected reductive k-group, σ a k-involution of G and H an open k-subgroup of Gσ.

For any fixed x0 ∈ XG, there exists a constant C > 0 such that for all x ∈ XG,
there exist h ∈ H and 1 ≤ i ≤ n with

d(hx, Aix0) ≤ C.

In other words, the union of the H-orbits meeting Ax0 is quasi-dense in XG.

Proof By Theorem 4.6, the set of σ-apartments are C0-dense in XG for some C0 > 0.
Hence d(x, x1) < C0 for some x1 contained in a σ-apartment F . Then by Lemma
4.4, x1 is contained the sub-building XZ(S) of the centralizer of a maximal (k, σ)-split
torus S of G. By Proposition 3.2 (c), S is conjugate to one of Ai by an element of
H and hence for some h ∈ H, hx1 ∈ XZ(Ai).

Fix a σ-apartment Fi associated to Ai as in Lemma 4.4 for each 1 ≤ i ≤ n
and let ei denote the Hausdorff distance between Fi and Aix0. By Lemma 4.4, the
group H∩Z(Ai) acts co-compactly on the quotient building XZ(Ai)/V (Ai). In other
words, there is di > 0 such that any point in XZ(Ai) is within distance di from any
σ-apartment in XZ(Ai) parallel to Fi, up to translation by H ∩ Z(Ai).

Therefore
d(h′hx1,Fi) < di for some h′ ∈ H ∩ Z(Ai).

Hence

d(h′hx, Aix0) ≤ d(x, x1) + d(h′hx1,Fi) + d(Fi, Aix0) ≤ C0 + di + ei.
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It remains to put C := C0 + max1≤i≤n(di + ei).
2

Proof of Theorem 1.1 It is now very easy to conclude. Fixing a point x0 ∈ XG,
let C > 0 be a constant given by Corollary 4.8 and K the compact subset of G given
by

K := {k ∈ G | d(x0, kx0) ≤ C} .

For any g ∈ G, we apply Corollary 4.8 to x = g−1x0 to obtain elements h ∈ H,
a ∈ ∪n

i=1Ai such that
d(hx, a−1x0) ≤ C ,

or, equivalently,
d(x0, gh−1a−1x0) ≤ C .

In other words, we have g = kah for some k ∈ K. 2

5. Examples

In order to put our polar decomposition in perspective, we now recall some well-
known examples.

5.1. The real case. We first discuss the archimedean case k = R and recall the
proof of the following basic fact:

Fact 5.1. Every non-degenerate quadratic form q on the Euclidean space Rn can be
put into diagonal form by an orthogonal base change.

Proof Choose a point e1 on the Euclidean unit sphere in Rn where q achieves the
maximum. Note that the Euclidean orthogonal of e1 is also orthogonal for q. Hence
we can use an induction argument. 2

Remark Fact 5.1 is a special case of the polar decomposition G = KAH for a
real symmetric space G/H with G = GL(n,R), K = O(n), A the subgroup of
diagonal matrices and H = O(p, n−p) for any 0 ≤ p ≤ n: Write q = q0 ◦ g−1 with
q0 = x2

1 + · · ·+ x2
p − x2

p+1 − · · · − x2
n and g ∈ G. If we write g = kah ∈ KAH, then

the quadratic form q ◦ k = q0 ◦ a−1 is diagonal.

We now recall more precisely the “real” polar decomposition and its proof. Let
G be a connected reductive R-group, σ an R-involution of G and H an open R-
subgroup of Gσ. Recall that an R-involution θ of G is called Cartan if the group
K = Gθ of θ-fixed points is a maximal R-anisotropic subgroup of G.

The following facts are well-known (see [Sc]):
- There exists a Cartan involution θ of G which commutes with σ, i.e., σθ = θσ.
- A maximal (R, σ)-split torus A of the group H′ := Gσθ of σθ-fixed points is a

maximal R-split torus of H′ as well as a maximal (R, σ)-split torus of G. Moreover,
all maximal (R, σ)-split tori of G are H-conjugate.
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Letting K = Gθ and A a maximal (R, σ)-split torus of the group H′, the polar
decomposition for G/H is given as follows:

Proposition 5.2. (see [Sc]) We have G = KAH with K = KR, A = AR and
H =HR.

We recall here a sketch of proof to emphasize both analogies and differences with
our proof in the non-archimedean case.

Sketch of proof As in the proof of Fact 5.1, the proof uses a minimizing argument.
Let g ∈ G. Fix a base point x0 = K/K in the Riemannian symmetric space
XG = G/K and and let x := g−1x0. Let y = h−1x0, with h ∈ H, be the nearest
point to x on the totally geodesic sub-manifold XH := H/(H ∩ K). The geodesic
from x0 to hx is orthogonal to XH . Hence the point hx is in the symmetric subspace
XH′ = H ′/(H ′ ∩K) “orthogonal at x0” to XH . Therefore we have x0 = h′hx with
h′ ∈ H ′, or, in other words, g = kh′h with k ∈ K. Using the Cartan decomposition
H ′ = (H ∩K)A(H ∩K) for the subgroup H ′, we then obtain g ∈ KAH, as desired.
2

5.2. Quadratic forms. We now discuss the diagonalization of quadratic forms in
the non-archimedean case. The following well-known fact is analogous to Fact 5.1:

Fact 5.3. Let k be a non-archimedean local field of residual characteristic not 2.
Every non-degenerate quadratic form on kn can be put into diagonal form by a

base change preserving the sup norm.

Recall that the stabilizer of the sup norm ‖x‖ = sup1≤i≤n|xi| is the maximal
compact subgroup K0 = GL(n,O) ⊂ GL(n, k) where O is the valuation ring of k.

Proof Choose a point e1 on the unit ball On where |q| is maximum. Note that
e1 is primitive, i.e., ke1 ∩ On = Oe1 . Hence e1 can be completed to a basis, say
(e1, . . . , en), of On. Write q(

∑
xiei) =

∑
aijxixj where the matrix b = (aij) is

symmetric. One can assume a11 = 1. By the maximality of |q(e1)| = a11 = 1, we
have |q(ei)| = |ai,i| ≤ 1 for each i. It follows from |q(e1 + ei)| ≤ 1 that |2a1,i| ≤ 1 for
each i. Since the residual characteristic is not 2, we have |a1,i| ≤ 1. Therefore the
n-tuple (e1, e

′
2, . . . , e

′
n) with e′i := ei − a1,ie1 is also a basis of On and e′2, . . . e

′
n are

orthogonal to e1. We then use an induction argument to conclude. 2

We may translate Fact 5.3 in terms of our polar decomposition. Let q0 be a
non-degenerate diagonal quadratic form on kn, G := GL(n), K0 := GL(n,O), A0

the k-group of diagonal matrices, H := O(q0), so that X := G/H is the space
of non-degenerate quadratic forms and X := G/H is the space of quadratic forms
G-equivalent to q0. The subset of diagonal quadratic forms is Xdiag := X ∩ A0q0.
Fact 5.3 gives the equality

X = K0Xdiag or G = K0(A0H)k .
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The set (A0H)k is a finite union of double classes A0giH, where the set of indices i
is given by (k∗/k∗2)n. Letting Ai := g−1

i A0gi, A the union of Ai’s and K the union
of K0gi’s. we obtain the polar decomposition G = KAH as in Theorem 1.1. Note
here that K is a compact subset.

Remark If the residual characteristic is 2 but the characteristic of k is not 2, the
same argument shows that there exists a compact subset K0 of GL(n, k) such that
every non-degenerate quadratic form on kn can be put into diagonal form by a base
change in K0 i.e., G = K0(A0H)k. One can easily find an example where K0 cannot
be chosen to be a subgroup.

5.3. The group case. The following is a well-known corollary of Proposition 2.2.

Corollary 5.4. Let k be a non-archimedean local field, G a reductive k-group and
A a maximal k-split torus of G. Then there exists a compact subset K of G such
that G = KAK.

Proof We keep the same notation as in Proposition 2.2. Let Zc = Kx ∩ Z be the
maximal compact subgroup of Z. The quotient Z/Zc is an abelian group of rank r
and the image of T in Z/Zc is a subgroup of finite index. 2

This corollary is also a special case of our polar decomposition (Theorem 1.1) for
the group G × G with the involution given by σ(g1, g2) = (g2, g1) for which H is
the diagonal embedding of G into G × G. In this example there exists only one
H-conjugacy class of maximal (k, σ)-split tori of G×G.

Remark Note that even in this corollary one can not always choose the compact
subset K to be a subgroup of G because the map from T to Z/Zc is not surjective
in general.

5.4. All σ-apartments are useful. The following lemma with Lemma 4.4 (a)
shows that all the representatives Ai of H-conjugacy classes of maximal (k, σ)-split
tori of G are useful in our polar decomposition (Theorem 1.1 or 4.6).

Lemma 5.5. Let k be a non-archimedean local field with char(k) 6= 2, G a connected
reductive k-group, σ a k-involution of G and H an open k-subgroup of Gσ.

Let F ,F1, . . . ,F` be maximal σ-apartments (see definition 4.2) of XG such that

sup
x∈F

d(x,∪1≤i≤`H.Fi) < ∞ .

Then F is parallel to one of the translates hFi with h ∈ H and 1 ≤ i ≤ `.

Proof Since there are only finitely many directions of singular flats in F , we can
choose a σ-invariant geodesic t → ct in F with the same singular hull as F and
satisfying σ(ct) = c−t for all t. By hypothesis we can find C0 > 0, 1 ≤ i ≤ ` and
sequences tn →∞, hn ∈ H such that

d(ctn , hnFi) ≤ C0 .
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Applying σ, we have

d(c−tn , hnFi) ≤ C0 .

Using the fact that in a CAT(0)-space, the distance function to a convex subset is
a convex function, we deduce that for all s ∈ [−tn, tn]

d(cs, hnFi) ≤ C0

and that

d(c0, hnxi) ≤ C0

where xi denotes the unique point of Fi which is σ-invariant. The sequence hn

remains in a compact subset of G and hence converges to an element h ∈ H, after
passing to a sub-sequence. We then have that for all s ∈ R,

d(cs, hFi) ≤ C0 .

Hence the geodesic G := {ct , t ∈ R} is parallel to a geodesic in hFi (see 2.3.3 in
[KL]). But then hFi is included in the sub-building XG. Since G and F have the
same singular hull, we have hFi ⊂ XG = XF . Therefore Lemma 4.4 implies that
hFi is parallel to F . 2
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