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Abstract. Based on the ideas in some recently uncovered notes of Selberg
[14] on discrete subgroups of a product of SL2(R)’s, we show that a discrete

subgroup of SL3(R) generated by lattices in upper and lower triangular sub-

groups is an arithmetic subgroup and hence a lattice in SL3(R).

1. Introduction

In a locally compact group G, a discrete subgroup Γ of finite co-volume is called
a lattice in G. Let G = SL3(R), and U1 and U2 be the strict upper and lower
triangular subgroups of G:

U1 = {

1 x z
0 1 y
0 0 1

 : x, y, z ∈ R} and U2 = {

1 0 0
x 1 0
z y 1

 : x, y, z ∈ R}.

Let F1 and F2 be lattices in U1 and U2 respectively, and set

ΓF1,F2 := 〈F1, F2〉
to be the subgroup of G generated by F1 and F2. The main goal of this paper is
to determine which F1 and F2 can generate a discrete subgroup of G.

Lattices in U1 can be divided into two classes: a lattice F1 in U1 is called ir-

reducible if F1 does not contain an element of the form

1 x z
0 1 0
0 0 1

, x 6= 0 or1 0 z
0 1 y
0 0 1

, y 6= 0; F1 is called reducible otherwise.

For the cases when F1 is reducible, it is shown in [6] that if ΓF1,F2 is discrete,
then it is commensurable with SL3(Z), up to conjugation by an element of GL3(R).
Recall that two subgroups are called commensurable with each other if their inter-
section is of finite index in each of them.

The following is our main theorem:

Theorem 1.1. If F1 is irreducible and ΓF1,F2 is discrete, then there exists a real
quadratic field K such that ΓF1,F2 is, up to conjugation by a diagonal element of
GL3(R), commensurable with the arithmetic subgroup

{g ∈ SL3(OK) : g

0 0 1
0 −1 0
1 0 0

 σgt =

0 0 1
0 −1 0
1 0 0

}
1
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where σ denotes the Galois element of K and OK the ring of integers of K.

In a semisimple Lie group G, the unipotent radical of a parabolic subgroup of
G is called a horospherical subgroup. The corresponding parabolic subgroup of a
horospherical group U is obtained by taking the normalizer subgroup of U . A pair of
horospherical subgroups are called opposite if the intersection of the corresponding
parabolic subgroups is a common Levi subgroup in both parabolic subgroups.

Theorem 1.1 was the last missing case of the following theorem where all other
cases were proved in the Ph. D thesis of the second named author [7]. The for-
mulation of this theorem is due to Margulis, who posed it after hearing Selberg’s
lecture in 1993 on Theorem 1.4 below.

Theorem 1.2. Let G be the group of real points of a connected absolutely simple
real-split algebraic group G with real rank at least two. Let F1 and F2 be lattices in
a pair of opposite horospherical subgroups of G. If the subgroup ΓF1,F2 generated by
F1 and F2 is discrete, there exists a Q-form of G with respect to which U1 and U2

are defined over Q and Fi is commensurable with Ui(Z) for each i = 1, 2. Moreover
ΓF1,F2 is commensurable with the arithmetic subgroup G(Z).

By a theorem of Borel and Harish-Chandra [1], it follows that ΓF1,F2 is a lattice
in G.

The assumption of G having higher rank (meaning that the real rank of G is at
least two) cannot be removed, as one can construct counterexamples in any special
orthogonal group SO(n, 1) of rank one. For instance, the subgroup generated by(

1 3
0 1

)
and

(
1 0
3 1

)
is of infinite index in SL2(Z).

To understand the motivation of Theorem 1.2, we recall that Margulis [4, Thm
7.1] and Raghunathan [11] showed independently that any irreducible non-uniform
lattice of a semisimple Lie group contains lattices in a pair of opposite horospherical
subgroups. This theorem was one of the main steps in Margulis’s proof of the
arithmeticity of such lattices in higher rank semisimple Lie groups without the use
of the super-rigidity theorem of Margulis [5] which had settled the arithmeticity of
both uniform and non-uniform lattices at once. The approach of studying lattices
in a pair of opposite horospherical subgroups of a non-uniform lattice goes back to
Selberg’s earlier proof of the arithmeticity of such lattices in a product of SL2(R)’s
[13]. In this context, Theorem 1.2 can be understood as a statement that this
property of a non-uniform lattice is sufficient to characterize them among discrete
subgroups in higher rank groups.

Theorem 1.2 was conjectured by Margulis without the assumption of G being
real-split (see [6] for the statement of the full conjecture). Most of these general
cases were proved in [7], while the essential missing cases are when the real rank of
G is precisely two. We believe that the new ideas presented in this paper combined
with the techniques from [7] should lead us to resolving these missing cases.

As shown in [8], any Zariski dense discrete subgroup of G containing a lattice
of a horospherical subgroup necessarily intersects a pair of opposite horosphercial
subgroups as lattices. Therefore we deduce:

Corollary 1.3. Let G be as in Theorem 1.2 and Γ be a Zariski dense discrete
subgroup of G. If Γ contains a lattice of a horospherical subgroup of G, then Γ is
an arithmetic lattice of G.
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The main tool of Theorem 1.2, except for the case of Theorem 1.1, given in [7] is
Ratner’s theorem on orbit closures of unipotent flows in SLn(R)/SLn(Z) [12]. This
approach is not available in the situation of Theorem 1.1. We learned a new idea
from Selberg’s proof of the following theorem.

Letting G be the product of n-copies of SL2(R), a Hilbert modular subgroup of
G is defined to be

{(x(1), · · · , x(n)) : x(1) ∈ SL2(OK)}

where K is a totally real number field of degree n with the ring of integers OK , and
x(i)’s are n-conjugates of x(1). A lattice F in the strict upper-triangular subgroup
of G is called irreducible if any non-trivial element of F has a non-trivial projection
to each SL2(R)-component of G.

Theorem 1.4 (Selberg). [14] Let n ≥ 2 and G =
∏
n SL2(R). Let Γ be a Zariski

dense discrete subgroup of G which contains an irreducible lattice F1 in the upper
triangular subgroup. Then there exists an element g ∈

∏
n GL2(R) such that a

subgroup of gΓg−1 of finite index is contained in a Hilbert modular subgroup.

It follows from a result of Vaserstein [15] that gΓg−1 is commensurable with a
Hilbert modular subgroup. Theorem 1.4 also resolves Conjectures 1.1 and 1.2 in
[9], which was written without being aware of this theorem.

Only in December of 2008, the second named author received Selberg’s lecture
notes [14] written in the early 90’s from Hejhal, who found them while going through
Selberg’s papers in the previous summer. The lecture notes contained an ingenious
proof of the discreteness criterion on a Zariski dense subgroup containing F1 as
above, in particular implying Theorem 1.4.

While trying to understand together these beautiful lecture notes, the authors
realized the main idea of Selberg, studying the double cosets of the group Γ under
the multiplications by F1 in both sides and using the Bruhat decomposition to
detect them, can be used to resolve the case of SL3(R) which the techniques in [7]
and [9] didn’t apply to. More precisely Proposition 2.6 in the next section is the
new key ingredient which was missing in the approach of [9]. Using the fact that in
SL3(R) the group of diagonal elements preserving the co-volume of lattices in U1

commutes with the longest Weyl element w0, our proof for SL3(R) is much simpler
than Selberg’s proof of Theorem 1.4 for the product of SL2(R)’s.

The general framework of the proof, investigating the action of the common
normalizer subgroup on the space of lattices in U1 and U2, goes in the same spirit
as in [7], which had been strongly influenced by the original work of Margulis [4].

Finally we mention that we recently extended Theorem 1.4 to a product of∏
α∈I SL2(kα) for any local field kα of characteristic zero.

Acknowledgment: Benoist thanks the mathematics department of Brown Uni-
versity for the invitation which made this work possible. We would like to thank
Peter Sarnak and Dennis Hejhal for showing us Selberg’s lecture notes1. Oh is
partially supported by NSF grant DMS 0629322.

1We understand that there are plans to make [14] and several other unpublished lectures of
Selberg available on a webpage at IAS.
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2. Proof of Theorem 1.1

Let U1 and U2 be as in Theorem 1.1 with lattices F1 and F2 respectively. We
assume that F1 is irreducible. The normalizers N(U1) and N(U2) are upper and
lower triangular subgroups (with diagonals) respectively.

Let A := N(U1) ∩N(U2), that is, the diagonal subgroup of SL3(R). Set

w0 :=

0 0 1
0 −1 0
1 0 0

 .

By the Bruhat decomposition of G, the map U2 ×A× U2 → G given by

(u1, a, u2) 7→ u1aw0u2

is a diffeomorphism onto a Zariski-dense open subset, say, Ω of G. One can check
that

Ω = {(gij) ∈ G : g13 6= 0, g12g23 − g13g22 6= 0}

and that the A-component, say, diag(a1, a2, a3) of (gij) ∈ Ω of the decomposition
is determined by

(2.1) a1 = g13, a1a2 = g12g23 − g13g22, a1a2a3 = 1.

In particular for a given g ∈ Ω, the two quantities g13 and g12g23 − g13g22 are
invariant by the multiplications of elements of U2 in either side. This is an important
observation which will be used later.

For simplicity, we will often write

1 x z
0 1 y
0 0 1

 ∈ U1 as (x, y, z) ∈ U1, and

similarly,

1 0 0
x 1 0
z y 1

 ∈ U2 as (x, y, z) ∈ U2.

Note that the center Z(U1) of U1 is given by the one-dimensional group {(0, 0, z) ∈
U1 : z ∈ R}, and that the center Z(F1) of F1 is a lattice in Z(U1). Hence F1/Z(F1) is
a lattice in U1/Z(U1) with its image F1/Z(U1) identified as {(x, y) ∈ R2 : (x, y, ∗) ∈
F1}.

Lemma 2.2. There exists u ∈ U1 such that u−1ΓF1,F2u contains lattices F ′1 and
F ′2 in U1 and U2 respectively such that for some non-zero α0, β0 ∈ R,

F1/Z(U1) = F ′1/Z(U1) and F ′2/Z(U2) = {(α0x, β0y) : (y, x) ∈ F1/Z(U1)}.

Proof. Since ΓF1,F2 is Zariski dense, it intersects the Zariski open subset U1Aw0U1

non-trivially. Let γ = uaw0v ∈ U1Aw0U1. Then u−1ΓF1,F2u contains F ′1 := u−1F1u

as well as F ′2 := a(w0vF1v
−1w−1

0 )a−1. Observe that both u−1F1u and vF1v
−1 are

equal to F1, modulo the center of U1 and that

w0

1 x z
0 1 y
0 0 1

w−1
0 =

 1 0 0
−y 1 0
z −x 1

 .

Hence the claim follows by setting α0 = a2/a1 and β0 = a3/a2 for a = diag(a1, a2, a3).
�
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Therefore by replacing ΓF1,F2 by its conjugation by an element of U1, we may
henceforth assume that the lattice F2 satisfies

(2.3) F2/Z(U2) = {(α0x, β0y) : (y, x) ∈ F1/Z(U1)}

for some non-zero α0, β0 ∈ R.

Lemma 2.4. For a compact subset C of A, we have

#F2\(U2Cw0U2 ∩ Γ)/F2 <∞.

Proof. Let C2 be a compact subset such that U2 = F2C2. Since F2 ⊂ Γ and hence
U2Cw0U2 ∩ Γ ⊂ F2(C2Cw0C2 ∩ Γ)F2, we have

#F2\(U2Cw0U2 ∩ Γ)/F2 ≤ #(C2Cw0C2 ∩ Γ)

which clearly implies the claim, as a discrete subgroup contains only finitely many
elements in a given compact subset. �

Denote by B the subgroup of A consisting of elements whose conjugation actions
on U1 and U2 are volume preserving, that is,

B = {ũ :=

u 0 0
0 u−2 0
0 0 u

 : u ∈ R∗}.

The restriction of the adjoint action of B on the Lie algebra Lie(U1) of U1 induces
the action of B on the space of lattices in Lie(U1), which will be identified as R3.

The logarithm map log : U1 → Lie(U1) is given by

log

1 x z
0 1 y
0 0 1

 =

0 x z − 1
2xy

0 0 y
0 0 0

 .

For simplicity, we write log(x, y, z) = (x, y, z − 1
2xy).

We denote by ∆F1 the additive subgroup of R3 generated by 2 log(F1), which is
clearly a lattice in R3. Since

2 log(X) + 2 log(X ′) = log(X(X ′)2X)

for any X = (x, y, z) and X ′ = (x′, y′, z′) in U1, we deduce that

∆F1 ⊂ log(F1).

Consider the orbit of ∆F1 under B:

B.∆F1 = {Ad(ũ)(x, y, z) : (x, y, z) ∈ ∆F1 , ũ ∈ B}
= {(u3x, u−3y, z) : (x, y, z) ∈ ∆F1 , u ∈ R∗}.

Similarly for ∆F2 defined to be the additive subgroup of R3 generated by 2 logF2,
the orbit of ∆F2 under B is of the form

B.∆F2 = {Ad(ũ)(x, y, z) : (x, y, z) ∈ ∆F2 , ũ ∈ B}
= {(u−3x, u3y, z) : (x, y, z) ∈ ∆F2 , u ∈ R∗}.

Lemma 2.5. The orbit B.∆F1 is relatively compact in the space of lattices in R3.
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Proof. (cf. proof [9, Thm 2.2]) Below we use freely several theorems due to Zassen-
haus, Minkowski, and Mahler which are standard in the geometry of numbers (see
[10], [3]). Let ε0 > 0 be such that Γ ∩Wε0 generates a nilpotent subgroup, where
Wε0 is the ε0-neighborhood of e in G and the commutators ghg−1h−1, g, h ∈ Wε0

are contained again in Wε0/2. Such a neighborhood Wε0 is called a neighborhood
of Zassenhaus. By Minkowski’s theorem, there exists c > 1, depending on the co-
volume of ∆F2 , such that any lattice in B.∆F2 contains a non-zero vector of norm at
most c. Or equivalently, for some c′ > 1, any lattice in bF2b

−1, b ∈ B has a non-zero
element in Wc′ . Take a ∈ A which contracts U2, so that a. log(X) = log(aXa−1)
is of norm less than ε0 for all x ∈ U2 ∩Wc′ . Now suppose the sequence bn.∆F1

is unbounded; so is bn.∆aF1a−1 . It follows from Mahler’s compactness criterion
that there exists a sequence δn = (xn, yn, zn) ∈ F1 such that bnaδna−1b−1

n ∈ Wε0 .
Since bn acts on (0, 0,R) trivially, it follows that (xn, yn) 6= 0. By the irreducibility
assumption on F1, we have xn 6= 0 and yn 6= 0.

Choose bnδ
′
nb
−1
n ∈ bnF2b

−1
n ∩ Wc′ , so that abnδ′nb

−1
n a−1 ∈ Wε0 . This implies

that δn and δ′n together must generate a nilpotent subgroup, and even a unipotent
subgroup, as any nilpotent subgroup generated by unipotent elements is unipotent.
This is a contradiction as xn 6= 0 and yn 6= 0. �

The following is a main proposition, the key idea of whose proof was learned
from Selberg’s lecture notes [14].

Proposition 2.6. There are infinitely many distinct (xn, yn, zn) ∈ F1 such that
for all n, k,

R(xn, yn) 6= R(xk, yk), xnyn = xkyk, zn = zk.

Proof. By Lemma 2.5, we can find a sequence bn ∈ B tending to infinity such that
bn∆F1 converges to a lattice in R3. In particular, there exists a sequence δn ∈ F1

and a non-identity element δ ∈ U1 such that bn. log(δn) = log(bnδnb−1
n ) converges

to log(δ).
Therefore, replacing δ by δX for a suitable X ∈ Z(F1), we may assume without

loss of generality that δ ∈ Ω = U2Aw0U2, and consequently δn ∈ Ω for all large n.
Write δn = (xn, yn, zn) ∈ F1 and δ = (x, y, z) ∈ U1. We claim that for any k,

there exist only finitely many n such that (xn, yn) is a scalar multiple of (xk, yk).
Suppose on the contrary that (xn, yn) = λn(xk, yk) for infinitely many n’s. If bn =
diag(cn, c−2

n , cn), then (c3nxn, c
−3
n yn, zn) converges to (x, y, z). Note that (xn, yn) 6=

0 and hence neither xn nor yn is zero for each n. Therefore we deduce that an infinite
subsequence of (c3nλn, c

−3
n λn) converges to (xx−1

k , yy−1
k ), which is a contradiction

as cn →∞ as n→∞. Therefore by passing to a subsequence, we may assume that
(xn, yn) /∈ R(xk, yk) for all k, n.

Observing that B commutes with w0 and normalizes U2, it is easy to check that
that the A-component of δn in the decomposition U2Aw0U2 is equal to that of
bnδnb

−1
n . Therefore the A-components of δn converge to the A-component of δ.

By Lemma 2.4, it follows that

#F2\{δn}/F2 <∞.

However as can be seen from (2.1), the multiplications by F2 from either side on
δn change neither zn nor xnyn − zn. Therefore we have infinitely many distinct
elements (xn, yn, zn) ∈ F1 with the same xnyn as well as the same zn for all n. �
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As we will see in the following lemma 2.7, Proposition 2.6 associates to F1 a real
quadratic field; hence a lattice F1 which is arbitrary a priori becomes a very special
one coming from a quadratic field.

Selberg [14] proved a claim analogous to 2.6 for the product of n-copies of SL2(R)
in order to obtain a totally real number field of degree n associated to an irreducible
lattice F1 in the upper triangular subgroup. As mentioned in the introduction, our
proof of Proposition 2.6 is simpler than Selberg’s proof due to the structure of
SL3(R) which provides a Weyl element w0 commuting with B. Such an element
does not exist in Selberg’s situation, and his proof uses more of the geometry of
numbers.

Lemma 2.7. There exist α, β 6= 0 such that

F1/Z(U1) ⊂ {(α(p+ q
√
d), β(p− q

√
d) : p, q ∈ Q}

for some quadratic number d > 0.

Proof. Consider a sequence {δn = (xn, yn, zn) ∈ F1} given by the above proposition

2.6. Setting α = x1, β = y1, and a0 =

α−1 0 0
0 1 0
0 0 β

, we define

F ′1 = a0F1a
−1
0 .

Observe that F ′1/Z(U1) contains (1, 1), (x′2, y
′
2) := (α−1x2, β

−1y2) and (x′3, y
′
3) :=

(α−1x3, β
−1y3). Since F ′1/Z(U1) is a lattice in R2, it must be contained in the Q-

span of (1, 1) and (x′2, y
′
2). Consequently,

(x′3, y
′
3) = (p0 + q0x

′
2, p0 + q0y

′
2)

for some p0, q0 ∈ Q. By the properties of (xn, yn) as given by Proposition 2.6, we
have p0 6= 0 and q0 6= 0. Moreover as x′3y

′
3 = x′2y

′
2 = 1, it follows that

(p0 + q0x
′
2)(p0 + q0(x′2)−1) = 1,

or equivalently

(x′2)2 +
1

p0q0
(p2

0 + q20 − 1)x′2 + 1 = 0.

This implies that x′2 is either a rational number or a real quadratic number with
its reciprocal being its conjugate. The former cannot happen as it would imply F1

is reducible.
Therefore we have obtained that

F ′1/Z(U1) ⊂ {(p+ q
√
d, p− q

√
d) : p, q ∈ Q}

for some quadratic number d > 0, which implies the claim. �

Consider the Q-points of the special unitary group defined by the hermitian
matrix w0 and K = Q(

√
d):

SU(w0)Q := {g ∈ SL3(K) : g

0 0 1
0 −1 0
1 0 0

 σgt =

0 0 1
0 −1 0
1 0 0

}.
Denote by Λ the corresponding arithmetic subgroup:

Λ := SU(w0)Q ∩ SL3(OK).
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It is easy to check that log(Λ ∩ U1) is given by

{(x, σ(x), r
√
d) : x ∈ OK , r ∈ Z}

with log(Z(Λ ∩ U1)) given by {(0, 0,Z ·
√
d)}.

Proposition 2.8. For a0 =

α−1 0 0
0 1 0
0 0 β

, the lattice a0F1a
−1
0 is commensurable

with the subgroup U1 ∩ Λ.

Proof. By replacing F1 by a0F1a
−1
0 , we may assume that F1/Z(U1) is a Z-module

of the real quadratic field Q(
√
d) of rank two. As we concern only the commensu-

rability class, we will further assume that

F1/Z(U1) = {(p+ q
√
d, p− q

√
d) : p, q ∈ Z}.

Note that the commutator of X1 = (x1, y1, z1) and X2 = (x2, y2, z2) in U1 is of
the form:

X1X2X
−1
1 X−1

2 = (0, 0, x1y2 − x2y1) ∈ U1.

Therefore the center Z(F1) is contained in the Q-multiple of
√
d.

It is also easy to see that for any (p, q) ∈ Z2, there exists an element φ(p, q) ∈ R,
unique up to the addition by log(Z(F1)) such that

(p+ q
√
d, p− q

√
d, φ(p, q)) ∈ ∆F1 .

By the uniqueness, we may choose φ so that the map (p, q) ∈ Z2 7→ φ(p, q) is a
Z-linear map.

Since
(p+ q

√
d, p− q

√
d, φ(p, q) +

1
2

(p2 − q2d)) ∈ F1,

Proposition 2.6 implies that there are infinitely many pn, qn ∈ Z such that φ(pn, qn)
is a constant modulo the center of F1. This implies that φ = 0, modulo the center
of F1. This proves that ∆F1 is commensurable with log(Λ ∩ U1). Hence F1 is
commensurable with the lattice U1 ∩ Λ. �

Corollary 2.9. The stabilizer of ∆F1 in B is commensurable with

{diag(u, u−2, u) : u ∈ UK}
where UK denotes the units of OK . In particular, the orbit B.∆F1 is compact.

Proof. As a0F1a
−1
0 is commensurable with U1∩Λ, there exist an ideal a of OK and

k0 ∈ Z such that ∆a0F1a
−1
0

contains

{(x, σ(x), z) : x ∈ a, z ∈ (k0Z) ·
√
d}.

Now a∗ := {u ∈ OK : ua = a} is an infinite subgroup of the unit group UK . Clearly
{diag(u, u−2, u) : u ∈ a∗} is contained in the stabilizer of ∆F1 in B. As B is a
one-dimensional group, having an infinite stabilizer clearly implies that the orbit
B.∆F1 is compact. �

The following lemma is stated in [4, Lem 2.1.4].

Lemma 2.10. Let Γ be a discrete subgroup of a Lie group G and H1, H2 closed
subgroups of G. If Hi ∩ Γ is co-compact in Hi for i = 1, 2, then H1 ∩ H2 ∩ Γ is
co-compact in H1 ∩H2.
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Proof. Let gm ∈ H1∩H2 be any sequence. By the assumption, there exist sequences
γm ∈ H1 ∩ Γ and γ′m ∈ H2 ∩ Γ such that gmγm → h1 ∈ H1 and gmγ

′
m → h2 ∈ H2.

Then γ−1
m γ′m → h−1

1 h2 and hence γ−1
m γ′m is a constant sequence for all large m.

It follows that for some m0 > 1,

δm := γmγ
−1
m0
∈ H1 ∩H2 ∩ Γ

for all large m. Hence gmδm → h1γ
−1
m0

, showing that any sequence in (H1 ∩
H2)/(H1 ∩H2 ∩ Γ) has a convergent subsequence. This implies our claim. �

Proposition 2.11. The lattice a0F2a
−1
0 is commensurable with the subgroup U2∩Λ.

Proof. Since the argument proving Corollary 2.9 is symmetric for F1 and F2, the
stabilizer of ∆F2 of B is commensurable with {diag(u, u−2, u) : u ∈ UK′} for some
real quadratic field K ′. By (2.3), the stabilizer of F2/Z(F2) in B is equal to that of
F1/Z(F1) and hence contains the stabilizers of ∆F1 and ∆F2 in B. Therefore the
two quadratic fields K and K ′ must coincide. Hence for some a1 ∈ A, the lattice
a1F2a

−1
1 is commensurable with U2 ∩ Λ, while a0F2a

−1
0 is commensurable with

U1 ∩ Λ. By conjugating ΓF1,F2 with a0, we may assume without loss of generality
that a0 = e. Therefore F1 is commensurable with Λ∩U1 and F2 is commensurable
with a1(Λ ∩ U2)a−1

1 .
We now claim that F2 is commensurable with Λ ∩ U2. The proof below is

adapted from [9, Prop. 2.4]. As noted before, there exists an infinite subgroup
of {diag(u, u−2, u) : u ∈ UK} which stabilizes ∆F1 and ∆F2 simultaneously. We
denote this subgroup of B by ΛB .

Let Γ0 denote the normalizer of ΓF1,F2 . Then Γ0 is discrete as the normalizer of
a discrete Zariski dense subgroup is discrete. Clearly, Γ0 contains ΛB n F1.

Take a non-trivial element γ = (x′, y′, z′) ∈ F2 with x′y′z′ 6= 0. Then γ(B n
U1)γ−1 ∩ (B n U1) is a conjugate of B; in particular, it is non-trivial. As ∆B n F1

is a co-compact subgroup of B n U1, it follows from Lemma 2.10 that γ(∆B n
F1)γ−1 ∩ (∆B n F1) is a co-compact subgroup of γ(B n U1)γ−1 ∩ (B n U1), and
hence non-trivial.

Therefore there exist

δ1 =

u1 0 0
0 u−2

1 0
0 0 u1

1 x1 z1
0 1 y1
0 0 1

 and δ2 =

u2 0 0
0 u−2

2 0
0 0 u2

1 x2 z2
0 1 y2
0 0 1


in ∆B n F1 satisfying

(2.12) γδ1 = δ2γ.

We claim that

(2.13) x′, y′ ∈ K and y′ = σ(x′).

It follows from (2.12) that u1 = u2, z1 = z2 6= 0 and 1 x1 z1
u3

1x
′ u3

1x
′x1 + 1 u3

1x
′z1 + y1

z′ z′x1 + u−3
1 y′ z′z1 + u−3

1 y′y1 + 1

 =

1 + x2x
′ + z2z

′ x2 + z2y
′ z2

x′ + y2z
′ 1 + y2y

′ y2
z′ y′ 1

 .

By comparing the (2, 3) and (1, 2) entries of the matrix equation (2.12), we
deduce

x′ =
y2 − y1
u3

1z1
and y′ =

x1 − x2

z2
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and hence
x′, y′ ∈ K.

In order to show y′ = σ(x′), it suffices to show

σ(u3
1) = − z1

σ(z1)
,

as σ(xi) = yi for each i = 1, 2.
By comparing (3, 2) and (3, 3) entries, we obtain

z1 =
x1σ(x1)
1− u3

1

.

Using u−1
1 = σ(u1), we deduce z1

σ(z1)
= −σ(u3

1), proving the claim (2.13). As F2 is
commensurable with a1(Λ ∩ U2)a−1

1 , the existence of γ ∈ F2 with γ = (x′, σ(x′), ∗)
implies that F2 is commensurable with Λ ∩ U2. �

Theorem 2.14. For an upper triangular matrix g ∈ GL3(R), gΓF1,F2g
−1 is com-

mensurable with Λ.

Proof. We have shown so far that for some upper triangular matrix g ∈ GL3(R),
gΓF1,F2g

−1 contains subgroups of finite indices in Λ∩U1 and Λ∩U2. By a theorem
of Venkataramana [16], this implies that gΓF1,F2g

−1 is commensurable with Λ,
finishing the proof. �

Proof of Theorem 1.1: Let g be an upper triangular matrix of GL3(R) given by
Theorem 2.14. Since gF2g

−1 ⊂ gU2g
−1∩SU(w0)Q, it follows that gU2g

−1 is defined
over Q with respect to the Q-form of G given by SU(w0). Since both subgroups
gU2g

−1 and U2 are opposite to U1 and defined over Q, there exists h ∈ U1(Q)
such that hgU2g

−1h−1 = U2 by [2]. Hence hg belongs to the intersection of the
normalizers of U1 and U2 in GL3(R). Consequently d := hg is a diagonal element.
Since h ∈ SU(w0)Q, hΛh−1 is commensurable with Λ, and hence dΓF1,F2d

−1 is
commensurable with Λ, finishing the proof.
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[2] A. Borel and J. Tits Groups réductifs I.H.E.S. Publ. Math. 27, (1965) 55-151

[3] J. W. Cassels An introduction to the Geometry of Numbers Springer-Verlag, New York, 1969

[4] G. A. Margulis Arithmetic properties of discrete groups Russian Math Surveys Vol 29, 1974,
107–156

[5] G. A. Margulis Arithmeticity of the irreducible lattices in the semisimple groups of rank

greater than 1, Inventiones Mathematicae, Vol 76, 1984, 93–120
[6] H. Oh Discrete subgroups of SLn(R) generated by lattices in horospherical subgroups C. R.

Acad. Sci. Paris, I. Vol 323 (1996), pp. 1219-1224

[7] H. Oh Discrete subgroups generated by lattices in opposite horospherical subgroups J. Algebra,
Vol 203 (1998), pp. 621-676

[8] H. Oh On discrete subgroups containing a lattice in a horospherical subgroup Israel J. Math,
Vol 110 (1999), pp. 333-340

[9] H. Oh On a problem concerning arithmeticity of discrete subgroups action on H× · · · ×H In

Algebraic groups and Arithmetic, 427–440, Tata. Inst. Fund. Res, Mumbai, 2004

[10] M. S. Raghunathan Discrete subgroups of Lie groups Springer-Verlag, New York, 1972
[11] M. S. Raghunathan Discrete subgroups and Q-structure on semisimple Lie groups Proc.

Intern. Collo. Discrete subgroups of Lie groups and Applications to Moduli, (Tata Institute,
Bombay, 1973), pp. 225-321, Tata. Inst. Fund. Res. Stud. Math., 7, 1975



DISCRETE SUBGROUPS 11

[12] M. Ratner Raghunathan’s topological conjecture and distribution of unipotent flows Duke
Math. J. Vol 63 (1991) 235–280

[13] A. Selberg Recent developments in the theory of discontinous groups of motions of symmet-

ric spaces Proc. 15th Scandinavian Congrss (Oslo 1968), pp. 99-120, Lec. Notes in Math.,
Springer, Vol 118 (1970)

[14] A. Selberg Unpublished lecture on discrete subgroups of motions of products of upper half

planes
[15] L. N. Vaserstein On the group SL2 over Dedekind rings of arithmetic type Math. USSR Sb.

18 (1972) 321-332
[16] T. N. Venkataramana On systems of generators of arithmetic subgroups of higher rank groups

Pacific. J. Math. Vol 166 (1994) 193–212

E-mail address: Yves.Benoist@math.u-psud.fr

E-mail address: heeoh@math.brown.edu

CNRS-Universit’e Paris-Sud Bat 425, 91405, Orsay, France

Department of Mathematics, Brown University, Providence, RI 02912, USA & Korea
Institute for Advanced Study, Seoul, Korea


