
DISCRETENESS CRITERION FOR SUBGROUPS OF
PRODUCTS OF SL(2)

YVES BENOIST AND HEE OH

Abstract. Let G be a finite product of SL(2, Ki)′s for local fields Ki of char-
acteristic zero. We present a discreteness criterion for non-solvable subgroups
of G containing an irreducible lattice of a maximal unipotent subgroup of G.
In particular such a subgroup has to be arithmetic.

This extends a previous result of A. Selberg when G is a product of SL2(R)′s.

1. Introduction

Let A =
∏

i∈I Ki be an algebra which is the product of finitely many local fields
Ki of characteristic zero with card(I) ≥ 2 and A× =

∏
iK
×
i its multiplicative

group. Let G := SL(2, A) be the group of matrices with coefficients in A and
with determinant equal to 1 ∈ A. This group is isomorphic to the product of the
groups SL(2, Ki).

Recall that a lattice in a locally compact group is a discrete subgroup of finite
covolume. It is well known that a lattice Ω ⊂ A must be cocompact. It will be
said irreducible if Ω ⊂ A× ∪ {0}.

The following examples of irreducible lattices of A will play an important role
in this paper : Let K be a number field and S be a finite set of places containing
all the archimedean ones. Let A = KS be the ring which is the product of the
completions Kv of K for all v in S, OK,S be the ring of S-integers of K :

OK,S := {k ∈ K | v(k) ≥ 0 for all finite valuation v of K which is not in S}.

and σ : K → A be the diagonal embedding. We identify OK,S with its image
σ(OK,S). Then Ω := OK,S is an irreducible lattice in A.

By the arithmeticity theorem of Selberg when all Ki are equal to R [13], and
of Margulis in general ([4], [5]), the groups SL(2,OK,S) are the only irreducible
non-uniform lattices in SL(2, A), up to conjugacy and commensurability. We note
that SL(2,OK,S) contains an irreducible lattice of the unipotent upper triangular
subgroup of SL(2, A).

The following theorem says that, again up to conjugacy and commensurabil-
ity, this property characterizes these arithmetic groups among all non-solvable
discrete subgroups of SL(2, A).
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It also gives a necessary and sufficient criterion for a subgroup of SL(2, A)
containing an irreducible lattice of the unipotent upper triangular subgroup to
be discrete.

There does exist a discreteness criterion for such subgroups in SL(2,R) (see
[14]) but this is not known for SL(2,C).

This theorem is due to Selberg in [14] when G is a product of SL(2,R)’s.

Theorem 1.1. Let Ki, i ∈ I, be a finite collection of local fields of characteristic
zero for card(I) ≥ 2, and A :=

∏
i∈I Ki. Let Ω ⊂ A be an irreducible lattice, and

g0 =

(
α0 β0

γ0 δ0

)
be an element of SL(2, A) with γ0 6= 0. Let Γ be the subgroup

of SL(2, A) generated by g0 and ΓΩ where

ΓΩ := {τω =

(
1 ω
0 1

)
| ω ∈ Ω}.

Then the group Γ is discrete if and only if the following conditions are satisfied
(i) There exist c ∈ A× and a number field K ⊂ A such that

a) the projections σi : K → Ki, i ∈ I, are inequivalent completions of K;
b) the set S := {σi | i ∈ I} contains all the archimedean places of K;
c) Ω ⊂ cOK,S.

(ii) For all ω ∈ Ω, the elements γ2
0ω

2, (α0 + δ0)γ0ω and (α0 + δ0)2 are in OK,S.
In this case Γ is commensurable to a conjugate of SL(2,OK,S).

In particular, Γ is then a lattice in SL(2, A).
Notice that these conditions (i) and (ii) are invariant under the conjugation

by an upper triangular matrix of GL(2, A).
Note also that the product γ0ω need not belong to K. For instance, let A =

R × R, G = SL(2, A), Γ0 = SL(2,Z[
√

2]) ⊂ G and g0 =

(
0 −γ−1

0

γ0 0

)
∈ G

where the coefficient γ0 ∈ A is given by γ0 = (
√

2 +
√

2,
√

2−
√

2). Since g0 is
of order 2 and normalizes Γ0, the subgroup Γ of G generated by Γ0 and g0 is a
two-fold extension of Γ0. Hence Γ is discrete but γ0 does not belong to the field
K ' Q[

√
2].

Here is a straightforward corollary of Theorem 1.1.

Corollary 1.2. Let Ki, i ∈ I, be a finite collection of local fields of characteristic
zero for card(I) ≥ 2, and A :=

∏
i∈I Ki. Let Ω1 and Ω2 be two irreducible lattices

of A, and Γ be the subgroup of SL(2, A) generated by all the matrices of the form

τω1 =

(
1 ω1

0 1

)
and τ−ω2

=

(
1 0
ω2 1

)
with ω1 ∈ Ω1 and ω2 ∈ Ω2.

Then Γ is discrete if and only if there exists a number field K ⊂ A such
that the projections σi : K → Ki are inequivalent completions of K, the set
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S := {σi | i ∈ I} contains all the archimedean places of K, and

Ω1Ω2 ⊂ OK,S.
In this case Γ is commensurable to a conjugate of SL(2,OK,S).

Both Theorem 1.1 and Corollary 1.2 are not true when card(I) = 1. For

instance, the subgroup Γ of SL(2,R) generated by

(
1 c
0 1

)
and

(
0 1
−1 0

)
is

discrete of infinite covolume for all c ∈ R, c > 2. Similarly, the subgroup Γ of

SL(2,C) generated by

(
1 c
0 1

)
,

(
1 c
√
−1

0 1

)
and

(
0 1
−1 0

)
is discrete of

infinite covolume for all c ∈ R, c ≥ 2.
On the other hand, note that there is no lattice in a non-archimedean local

field, considered as an additive group.

Analogs of Theorem 1.1 for higher rank simple groups have been proven by the
second author, using deep ergodic properties of unipotent flows (see [6], [7], [8],
[9], and [10]). This ergodic approach is not available in our case of products of
SL2’s. Hence we adopt Selberg’s number theoretic approach from [14]. We have
also applied it recently to settle an analogous problem for G = SL(3,R) in [1].

The following proof follows the general strategy of Selberg’s proof. But we
replace tricky computations by a simple use of the Mahler compactness criterion
and we avoid the use of a deep result on L-functions by replacing it with a result
of Vaserstein in [15] related to the congruence subgroup problem for SL2 so that
the proof can be adapted to our more general situation.

2. Proof of the sufficiency of the criterion

Before beginning the proof, we first make some comments and introduce some
further notations.

The algebra A is a product of fields Ki, i ∈ I, for a finite set I. Here Ki are
local fields of characteristic zero, that is, they are either copies of R, C, or of a
finite extension of Qp for some prime p. We will sometimes write Q∞ for R so
that each field Ki is a finite extension of some Qpi

. We set Ap to be the product
of all the Ki’s extending Qp. Each Ki is endowed with the unique absolute value
|.| which extends the standard absolute value on Qpi

.
Examples of irreducible lattices Ω ⊂ A are

Z ⊂ R , Z[
√
−1] ⊂ C , Z[1

p
] ⊂ R×Qp , Z[

√
2] ⊂ R× R,

where these injections are given by different ring morphisms into the factors.
The existence of a lattice Ω in A imposes a few restrictions on A: for all p,

one must have dimQp Ap ≤ dimRA∞. Each lattice Ω in A is then a torsion free
Z-module of rank dimRA∞. It is finitely generated if and only if all the Ki are
archimedean.
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We now begin the proof of Theorem 1.1 and first check that the conditions (i)
and (ii) are sufficient for the discreteness of Γ.

Using the invariance of these conditions under the conjugation by an upper
triangular matrix of GL(2, A), we may assume that α0 = 0, c = 1 so that Ω ⊂
OK,S. Since S contains all the archimedean places of K, the ring OK,S is discrete
in A. Let J be the ideal of OK,S generated by Ω. The condition (ii) tells us that

γ2
0 ∈ J−2 , δ0γ0 ∈ J−1 , δ2

0 ∈ OK,S,
where J−1 ⊂ K is the OK,S-submodule of K given by

J−1 = {a ∈ K | aj ∈ OK,S for all j in J}
and J−2 is the square of J−1. It is easy to check that the following set Γ(J) is a
subgroup of SL(2, A):

Γ(J) = {g =

(
α β
γ δ

)
∈ SL(2, A) | α ∈ OK,S , β ∈ J, γ ∈ J−1, δ ∈ OK,S}.

Clearly Γ(J) is discrete. By a direct computation, one checks that Γ(J) contains
ΓΩ and g2

0, and that Γ(J) is normalized by g0. Therefore the intersection Γ∩Γ(J)
has index at most two in Γ. This proves that Γ is discrete too. �

3. Proof of the Necessity of the Criterion

For the rest of the paper, we check that the conditions (i) and (ii) in Theorem
1.1 are necessary for the discreteness of Γ.

Let d = card(I) so that A = K1 × · · · ×Kd. We remark that the hypothesis
d ≥ 2 is used only in Lemma 3.5.

For any element g of SL(2, A) we denote by γg ∈ A its lower-left coefficient.
Note that this coefficient γg depends only on the ΓΩ -double class ΓΩgΓΩ.

For a = (a1, . . . , ad) in A, we set ‖a‖ = max|ai|.

Lemma 3.1. Assume that the subgroup Γ is discrete.
a) For all g ∈ Γ with γg 6= 0, we have γg ∈ A×.
b) For every C > 0, the set of ΓΩ-double classes

ΓΩ\{g ∈ Γ | 0 < ‖γg‖ ≤ C}/ΓΩ

is finite. In particular, the set {γg | g ∈ Γ} is a discrete subset of A.

Proof. a) Let g be an element of Γ whose lower-left coefficient γg = (γ1, . . . , γd) is
non-zero. We want to check that all the coordinates γi of γg are non-zero. Suppose
that this is not the case. Then the product B of the factors Ki for which γi 6= 0 is
not equal to A. Let T be the closure of the image of the projection of Ω onto B.
Since Ω is irreducible, the subgroup T is a closed non-discrete subgroup of A and
hence is uncountable. On the other hand, the commutator [τω, [τω, g]] depends
only on the coordinates ωi for which γi 6= 0. Recall that τω has been defined
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in Theorem 1.1. Since Γ is closed, it follows that Γ contains all the elements
ht := [τt, [τt, g]] with t in T . The lower-left coefficient of ht is equal to t3γ4. Since
T is uncountable, this contradicts the discreteness of Γ.

b) Since Ω is a lattice in A, there exists a constant CΩ > 0 such that for all a
in A, there exists ω ∈ Ω with ‖a− ω‖ ≤ CΩ. For any g ∈ Γ with 0 < ‖γg‖ ≤ C
γg is invertible by a), and hence there exist a and a′ in A such that

τ−γg
= τagτa′ .

Therefore the ΓΩ-double class of g has a representative

h = τωgτω′ = τω−aτ
−
γg
τω′−a′

with ω, ω′ in Ω, ‖ω − a‖ ≤ CΩ and ‖ω′ − a′‖ ≤ CΩ. Hence these representatives
h are uniformly bounded. Since Γ is discrete, they belong to a finite set. �

The following lemma transforms our discreteness assumption on Γ into a prop-
erty of the lattice Ω in A.

Lemma 3.2. Assume that the subgroup Γ is discrete.
Then the set Ω2 := {ω1ω2 | ω1 ∈ Ω, ω2 ∈ Ω} is a discrete subset of A.

Proof. Choose an element g =

(
α β
γ δ

)
∈ Γ with γ 6= 0. For instance g = g0.

We just look at the simplest elements of Γ whose lower-left coefficients involve
the product of two elements of Ω. More precisely, we consider elements of Γ of
the form

h = h(ω1, ω2) = gτω1g
−1τω2g

where ω1 and ω2 vary in Ω. Setting n =

(
0 1
0 0

)
so that τωi

= I + ωin, one

computes
h = g + ω1gn+ ω2ng + ω1ω2gng

−1ng ,

that is,

h =

(
α + ω2γ − ω1ω2αγ

2 β + ω1α + ω2δ − ω1ω2αδγ
γ − ω1ω2γ

3 δ + ω1γ − ω1ω2δγ
2

)
(3.1)

By Lemma 3.1.b and the above computation of the lower-left coefficients γh =
γ − ω1ω2γ

3 of the elements h, the set Ω2 is discrete. �

To exploit the conclusion of Lemma 3.2, we will need the following general
proposition. It is thanks to this proposition that the number field K we are
looking for is identified.

Proposition 3.3. Let A be a finite product of local fields Ki of characteristic zero.
Let Ω be an irreducible lattice of A such that the set Ω2 := {ω1ω2 | ω1 ∈ Ω, ω2 ∈ Ω}
is discrete.
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Let ΩQ ⊂ A be the Q-vector space generated by Ω,

K := {a ∈ A | aΩQ ⊂ ΩQ},(3.2)

and Li ⊂ Ki be the closure of the image of K by the projection σi : A → Ki.
Then the following hold:
a) K is a number field and the completions σi : K → Li are inequivalent.
b) The set S = {σi} of places of K contains all the archimedean ones.
c) The dimension t := dimK(ΩQ) is equal to 1 or 2.
d) The lattice Ω is commensurable to a free OK,S-submodule of rank t in A.

The main tools in the proof of Proposition 3.3 are the Minkowski lemma and
the Mahler compactness criterion. But before beginning the proof we introduce
some notations we will need.

Recall that A∞ denotes the product of the archimedean factors in A and that
d is the total number of factors in A.

Here is the Minkowski lemma:
If B ⊂ A is compact and vol(B) ≥ covolA(Ω), then Ω ∩ (B −B) 6= {0}.

We normalize the Haar measure on each Ki so that the ball

{a ∈ Ki | |a| ≤ 1}
has volume 1 and we choose the Haar measures on A and A∞ to be the product
of the Haar measures on the Ki’s.

Let AU be the open subgroup of A given by

AU := {a ∈ A | |ai| ≤ 1 for all i with Ki non-archimedean}.
We will denote by ΩU the lattice of AU which is

ΩU = Ω ∩ AU
and by Ω∞ the lattice of A∞ which is the image of ΩU under the projection
A→ A∞. One has the equalities

ΩQ = (ΩU)Q.(3.3)

We remark that one has the equality

covolA(Ω) = covolAU
(ΩU).(3.4)

To see this, we note that, since the discrete group A/AU does not contain finite
index subgroups, the projection from Ω to A/AU is surjective.

Moreover one has the equality

covolAU
(ΩU) = covolA∞(Ω∞).(3.5)

This follows from the injectivity of the projection from ΩU to Ω∞ and the nor-
malization of the measures.

We will apply the Mahler compactness criterion to the set of lattices in A∞:
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A set F of lattices in A∞ is relatively compact if and only if the lattices in F
have uniformly bounded covolume and intersect trivially a fixed neighborhood of
0 in A∞.

Proof of Proposition 3.3. a) Notice first that K is a Q-algebra whose dimension
over Q is at most dimQ ΩQ. Since Ω is irreducible, K contains no zero divisors
and hence K is a field. Fix i 6= j. In order to show that the completions given
by σi and σj are inequivalent, it is enough to find an element

a = (a1, . . . , ad) ∈ K such that |ai| < |aj|.(3.6)

We set εi := dimQpi
Ki and D = (covolAΩ)1/d′ with d′ =

∑
i εi. Applying the

Minkowski Lemma, one can find a sequence ωn of non-zero elements in Ω whose
coordinates are bounded by

|ωn,i| ≤ 2n−1/εiD , |ωn,j| ≤ 2n1/εjD and |ωn,k| ≤ 2D for k 6= i, k 6= j.(3.7)

Since lim
n→∞

ωn,i = 0 and Ω is irreducible, one must have lim
n→∞

|ωn,j| = ∞. We

introduce the lattices Ωn := ωnΩ. The covolume of these lattices Ωn are uniformly
bounded. Moreover, since Ω2 is discrete, the union ∪n≥1Ωn is a discrete subset
of A. Therefore there exists a neighborhood of 0 in A meeting trivially all the
lattices Ωn. The Mahler compactness criterion tells us that, by passing to a
subsequence, the lattices Ω∞n converge to some lattice in A∞. Hence, by passing
further to a subsequence, the lattices (Ωn)U of AU converge to some lattice of
AU . Using again the discreteness of the union ∪n≥1Ωn, since the lattices (Ωn)U
are finitely generated, one deduces that, starting from some n0 ≥ 1, the sequence
(Ωn)U is constant. That is

(ωnΩ)U = (ωn0Ω)U .(3.8)

Using the equality (3.3), the sequence of Q-vector spaces (ωnΩ)Q is also constant
for n ≥ n0. Hence the element a = ωnω

−1
n0

belongs to K and, by (3.7), satisfies
|ai| < |aj| for n large enough.

b) Since the ring of integers OK is a finitely generated Z-module, one can find
a non-zero ω0 in Ω such that OKω0 ⊂ Ω. Hence OK is discrete in A and S has
to contain all the archimedean completions of K.

c) Let d1 and d2 be the number of real and complex factors in A respectively.
Since Ω is a lattice in A, one has dimQ ΩQ = d1 + 2d2. Since by a), K has d1 + d2

inequivalent archimedean completions, one has the lower bound [K : Q] ≥ d1+d2.
Since ΩQ is a K vector space, it follows that dimK ΩQ = 1 or 2. This second case
is possible only if d1 = 0, [K : Q] = d2 and K is totally real.

d) Let us for instance assume t = 2. The following proof can easily be adapted
to the case t = 1. One can find non-zero c, c′ in Ω such that Ω ⊂ Kc⊕Kc′.

We first prove that one can choose non-zero c, c′ in Ω so that

OK,S c⊕OK,S c′ ⊂ Ω.(3.9)
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Since ΩU is a free Z-module of rank 2d, one can choose non-zero c, c′ in Ω so that

OK c⊕OK c′ ⊂ ΩU .(3.10)

Fix a finite place σi and an archimedean place σj. We introduce again for these
i and j the distinct elements ωn ∈ Ω as in the proof of a). Hence there exists
n0 ≥ 1 such that one has the equality (3.8) for infinitely many n ≥ n0.

In particular, choosing an integer N0 ≥ 1 such that

N0ΩU ⊂ ω−1
n0

(ωn0Ω)U .

and setting a = N−1
0 ωnω

−1
n0

, one gets

ΩU ⊂ 1
N0

ω−1
n0

(ωnΩ)U ⊂ aΩ.

Hence, using (3.10), one has

a−1(OK c⊕OK c′) ⊂ Ω.(3.11)

We decompose the fractional ideal OK a of K as a ratio N/D of two relatively
prime ideals of OK . From inclusions (3.10) and (3.11), using the fact that N and
D are relatively prime, one gets

(N−1 c⊕N−1 c′) ⊂ Ω.

Set πi ⊂ OK to be the prime ideal of OK associated to the place σi. The
assumption (3.7) on ωn implies that N is divisible by a power πmn

i of πi with
limn→∞mn =∞. Hence

(π−mn
i c⊕ π−mn

i c′) ⊂ Ω.

Since this is true for all finite place σi in S this proves the inclusion (3.9).
Let ti := dimLi

Ki. We prove now that ti = 2. The closure Ωi of the image of
ΩQ in Ki is an Li-vector subspace of Ki. Since Ω is a lattice in A, Ωi must be
equal to Ki. Since ΩQ is a K-vector space of dimension 2, dimLi

Ωi ≤ 2. Hence
ti ≤ 2.

Let B be the algebra which is the product of all Li’s. The inclusion (3.9) proves
that OK,Sc ⊕ OK,Sc′ is discrete in A. Since OK,S is cocompact in B, it follows
that the intersection Bc ∩ Bc′ is zero. In particular, one has A = Bc⊕ Bc′, and
OK,Sc⊕OK,Sc′ is a lattice in A. Since Ω is also a lattice in A, the inclusion (3.9)
proves that these two lattices are commensurable, finishing the proof of d).

We note that this argument also proves that, for every i, one has ti = t. �

Note that the second case dimK ΩQ = 2 of Proposition 3.3 may occur. For
instance, for any lattice Ω in C, the set Ω2 is discrete. More generally:

Remark Let K be a totally real number field of degree d0 seen as a subfield of the
ring Cd0 through the d0 distinct embeddings σi : K → R ⊂ C. Let a be an element
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of Cd0 all of whose coordinates are non-real and Ω be the lattice Ω = OK ⊕OKa.
Then the square Ω2 is a discrete subset of Cd0.

Since we will not use this remark, we leave the proof to the reader.

Corollary 3.4. Let K be a number field, S a finite set of places of K containing
all the archimedean ones. Let A = KS be the algebra which is the product of the
completions Kv for v in S. We identify K with its image in A by the diagonal
embedding. Let Ω be a lattice of A which is included in K. Assume that the set
Ω2 = {ω1ω2 | ω1 ∈ Ω , ω2 ∈ Ω} is discrete in A.

Then Ω is commensurable to OK,S.

The hypothesis “Ω2 discrete” can not be omitted. Here is an example. Let
K = Q[i], S = {∞, v} where v is the completion for the prime ideal (2 + i) so
that Kv = Q5. Then Ω := Z[1

5
]⊕Zi is a lattice in C×Q5 included in Q[i] but Ω

is not commensurable to OK,S = Z[ 1
2+i

].

Proof. This is a direct consequence of Proposition 3.3.d since the assumption
Ω ⊂ K implies that ΩQ = K. �

The following lemma tells us that the number field K constructed in Proposi-
tion 3.3 is the one we are looking for.

We pick again an element g =

(
α β
γ δ

)
of Γ with γ 6= 0. For instance g = g0.

Lemma 3.5. Assume that d ≥ 2 and that the subgroup Γ is discrete. Let K ⊂ A
be the number field given by (3.2) and c be a non-zero element of Ω. Then
a) One has Ω ⊂ cK.
b) The elements c2γ2, (α + δ)2 and (α + δ)cγ are in K.

Proof. We first prove that

(ω1ω2γ
2 − 1)−1ω1 ∈ ΩQ for all ω1, ω2 in Ω r 0.(3.12)

Since d ≥ 2, according to the Dirichlet S-unit theorem, there exists an element
u of infinite order in O×K,S. Since, by Proposition 3.3.e, Ω is commensurable to
a finitely generated OK,S-submodule, replacing u by a suitable power, one can
assume uΩ = Ω.

Fix any non-zero elements ω1, ω2 in Ω. For any two integers n′ and n′′, one
introduce the elements h′ and h′′ of Γ

h′ = gτω′1g
−1τω′2g and h′′ = gτω′′1 g

−1τω′′2 g

with
ω′1 = un

′
ω1 , ω′2 = u−n

′
ω2 , ω′′1 = un

′′
ω1 and ω′′2 = u−n

′′
ω2 .
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The coefficients of these matrices

h′ =

(
α′ β′

γ′ δ′

)
and h′′ =

(
α′′ β′′

γ′′ δ′′

)
have been computed in (3.1). Since one has

ω1ω2 = ω′1ω
′
2 = ω′′1ω

′′
2 ,

one has γ′ = γ′′. Hence according to Lemma 3.1, one can choose n′, n′′ distinct
such that h′ and h′′ are in the same ΓΩ-double class. As a consequence, there
exists a non-zero element ω0 ∈ Ω such that

δ′′ = δ′ + γ′ω0 .

Using the computation in (3.1), this can be rewritten as

δ + ω′′1γ − ω1ω2γ
2δ = δ + ω′1γ − ω1ω2γ

2δ + (γ − ω1ω2γ
3)ω0,

that is

(un
′′ − un′)ω1 = (1− ω1ω2γ

2)ω0.

It follows that (ω1ω2γ
2− 1) is invertible. Since (un

′′ − un′)−1 is in K and ω0 is in
Ω, (ω1ω2γ

2 − 1)−1ω1 belongs to ΩQ. This proves the statement (3.12).

a) According to Proposition 3.3, one has dimK(ΩQ) = 1 or 2. We show now
that this second case is excluded. If not, one would have ΩQ = Kc ⊕ Kc′ for
another non-zero element c′ in Ω. Using the invariance by conjugation, one may
assume that c′ is the identity element c′ = 1 of A×. Choosing ω1 = 1 and ω2 = ±1
in equation (3.12), one deduces that (γ2 ± 1) are invertible and that the inverses
(γ2 ± 1)−1 are in K ⊕Kc. Hence there exists a non-zero triple (m1,m2,m3) in
K3 such that

m1(γ2 − 1)−1 +m2(γ2 + 1)−1 = m3.

This proves that γ2 is algebraic over K of degree 1 or 2. We now divide the proof
into two cases:

First case: γ2 6∈ K. In this case, since (γ2 − 1)−1 is in K ⊕Kc, the element c
would be algebraic of degree 2 over K and K ⊕Kc would be field. This would
contradict the definition (3.2) of K.

Second case: γ2 ∈ K. In this case, one can choose ω1 = 1 and ω2 = c in
equation (3.12) and one gets that (γ2c − 1)−1 ∈ K ⊕ Kc. Hence c would be
algebraic of degree 2 over K which gives the same contradiction as in the first
case.

Hence one has dimK(ΩQ) = 2 and Ω ⊂ Kc
b) The equation (3.12) with ω1 = ω2 = c gives

c2γ2 ∈ K.(3.13)
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Applying (3.13) to the lower-left coefficient (α+ δ)γ of g2, one obtains c2(α+
δ)2γ2 ∈ K and hence

(α + δ)2 ∈ K.(3.14)

Applying (3.14) to each element τωg ∈ Γ, for all ω ∈ Ω, one gets that the square

of the trace of the matrices τωg =

(
α + γω β + δω
γ δ

)
is also in K. That is,

(α + δ)2 + 2(α + δ)γω + γ2ω2 ∈ K.
Hence one has

(α + δ)cγ ∈ K.(3.15)

This ends the proof of Lemma 3.5. �

To prove Theorem 1.1, it remains to check the following lemma.

Lemma 3.6. Assume that d ≥ 2 and that the subgroup Γ is discrete. Let K ⊂ A
be the number field given by (3.2) and ω be a non-zero element of Ω. Then the
elements ω2γ2, (α + δ)2 and (α + δ)ωγ are in OK,S.

This is the most delicate and the longest part in Selberg’s proof for a product
of SL(2,R)’s. Selberg uses subtle properties of L-functions associated to the
number field K. We will base this part of our argument on the following result
of Vaserstein in [15].

Proposition 3.7. (Vaserstein) Let K be a number field, S a finite set of places
of K containing all the archimedean ones, and N a positive integer. Set ΓN to

be the subgroup of SL(2,OK) generated by all the elements τω :=

(
1 ω
0 1

)
and

τ−ω :=

(
1 0
ω 1

)
with ω ∈ NOK,S.

Assume that card(S) ≥ 2. Then ΓN is of finite index in SL(2,OK,S).

We now end the proof of Theorem 1.1.

Proof of Lemma 3.6. According to Lemma 3.5.a and Corollary 3.4, after conju-
gation by a diagonal matrix, one may assume that Ω is commensurable to the
ring of S-integers OK,S of K.

After conjugating by an upper triangular unipotent matrix, we may also assume
that the upper-left coefficient α of the matrix g is α = 0. One has then

g =

(
0 −γ−1

γ δ

)
.

But then, for all ω ∈ Ω, one computes

gτωg
−1 = τ−γ2ω(3.16)
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Since, by Lemma 3.5.b, γ2 is in K, one can find a positive integer N such that
NOK,S is included in both Ω and γ−2Ω.

According to (3.16), the group Γ contains the group ΓN which is of finite index
in SL(2,OK,S).

Since Γ is discrete and ΓN is a lattice in SL(2, A), the subgroup ΓN is of finite
index in Γ. This implies that Γ is a lattice of SL(2, A) and is commensurable to
SL(2,OK,S).

We say that an algebraic element x over K is a S-integer, resp. a S-unit, if
it is a S ′-integer, resp. a S ′-unit, in the field K ′ = K[x] for the set S ′ of places
of K ′ lying over S. In particular the eigenvalues of all the elements of Γ are
S-units, and the traces of the elements of Γ are S-integers in some extension of
K. Hence δ = trace(g) is an S-integer and, for all ω ∈ Ω, γω = trace(τωg − g) is
an S-integer. Their squares δ2, γ2ω2 and their product δγω are S-integers too.
Since, by Lemma 3.5.b, they belong to K, one gets that δ2, γ2ω2 and δγω are
elements of OK,S. �

We have proven the statement (i) and (ii) of Theorem 1.1 and also that
there exists some element h in GL(2, A) such that hΓh−1 is commensurable
to SL(2,OK,S). Since one has the equality GL(2, A) = GL(2, K) SL(2, A)Z(A)
where Z(A) is the center of GL(2, A), one can choose h in SL(2, A). This ends
the proof of Theorem 1.1. �

Proof of Corollary 1.2. The sufficiency of the conditions are proven as in section
2. Note that the condition Ω1Ω2 ⊂ OK,S implies that there exists c ∈ A× such
that Ω1 ⊂ cOK,S. One then shows that a conjugate of Γ is included in one of the
discrete groups Γ(J).

The necessity of the conditions is a direct consequence of Theorem 1.1. This
theorem applied to each matrix g = τ−ω2

with ω2 ∈ Ω2 tells us that for each
ω1 ∈ Ω1 the elements ω2

1ω
2
2 and 2ω1ω2 are in OK,S. Hence ω1ω2 is in OK,S too.�
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